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Equilibrium: grand canonical ensemble

describes volume V with temperature T and chemical potentials µB , µC
and µS associated with conserved baryon, charge and strangeness numbers

exchange of energy and particles with heat bath

can be simulated with Lattice QCD

all thermodynamic properties follow from
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Hadron resonance gas

Pressure for free hadrons and resonances with vacuum masses
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when only baryons with Bi = ±1 contribute.

Similarly,
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Hadron resonance gas versus experiment

Ratios of cumulants are independent of volume V and less sensitive to
kinematic cuts
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Particularly well suited to compare to experiment
F. Karsch, K. Redlich / Physics Letters B 695 (2011) 136–142 139

Fig. 1. The ratio of quadratic fluctuations and mean net baryon number (σ 2
B /MB ),

cubic to quadratic (S BσB ) and quartic to quadratic (κBσ 2
B ) baryon number fluctua-

tions calculated in the HRG model on the freeze-out curve and compared to results
obtained by the STAR Collaboration [13]. The dashed curves show the approximate
tanh(µB/T ) result for κBσ 2

B and S Bσ , respectively.

findings of the STAR Collaboration, which measured moments of
baryon number fluctuations through net-proton number fluctua-
tions [13].

Fig. 1 shows a comparison of the energy dependence of quad-
ratic fluctuations (σ 2

B ) normalized to the net baryon number (MB ),
skewness S BσB and kurtosis κBσ 2

B obtained in the HRG model at
chemical freeze-out with the STAR data.

Obviously, the HRG model provides a good description of prop-
erties of different moments of net proton number fluctuations
measured at RHIC energies. The reason for considering ratios of
charge fluctuations rather than absolute values for different mo-
ments was, of course, that one is independent of definitions of
the interaction volume and also is less sensitive to experimental
cuts and systematic errors. Moreover, some of these ratios have
an interesting interpretation, like e.g. the ratio χ (4)

B /χ (2)
B which

directly characterizes the dominant degrees of freedom carrying
baryon number [5]. In addition it is also of interest to understand
whether the HRG model can quantitatively describe the energy de-
pendence of the STAR data [13] on the first four moments, i.e. the
mean, variance, skewness and kurtosis.2

In order to compare the HRG model calculations with the
experimental results presented in [13] we note that this analy-
sis only explored fluctuations in a limited phase space. In fact,
the data on mean particle yields differ from previous results ob-
tained by the STAR Collaboration [16]. From Ref. [13] one gets:
M p−p̄ ≃ 1.75 ± 0.25 and M p−p̄ ≃ 3.5 ± 0.4 in the central (0–5%)
bin of Au–Au collisions at

√
sN N = 200 GeV and 62.4 GeV, respec-

tively. These values should be compared with M p−p̄ ≃ 8 ± 1.8 and
M p−p̄ ≃ 15.4±2.1 obtained at mid-rapidity at corresponding ener-
gies in [16]. These data differ by a common factor K ≃ 0.22. Part of
the difference may be attributed to the fact that net proton fluc-
tuation data in Ref. [13] were taken in the restricted transverse
momentum range 0.4 < pT < 0.8 GeV.

In the HRG model used by us the thermal phase–space of all
particles is not restricted. Consequently, in order to compare pre-
dictions for different moments of net proton fluctuations with
experimental data one needs to rescale its thermal phase space
by the above mentioned factor K ≃ 0.22. Effectively, this corre-
sponds to rescaling the volume parameter V T 3 appearing for in-
stance in Eq. (8), by the K -factor, although its origin is not nec-

2 Of course, as we have already verified consistency of three ratios with the HRG
model calculations, only the energy dependence of one of theses observable pro-
vides additional information.

essarily related with a smaller volume of the system at chemical
freeze-out.

The change of volume with energy on the freeze-out line is
calculated by comparing data on dNπ−/dy at mid rapidity for
different

√
s with HRG model results.3 We then obtain, V =

[dNπ−/dy]data/nHRG
π− [T , µ⃗], where in the HRG model the negatively

charged pion density nHRG
π− is calculated using the relation between√

s and the thermal parameters given in Eqs. (1) and (2). Our re-
sults on V (

√
s ) extracted in this way are consistent with those

obtained recently in Ref. [10].
Fig. 2 (top left) shows the energy dependence of the first mo-

ment (Mp−p̄) of net proton number in the HRG model with a
volume parameter, V T 3, rescaled by the factor K ≃ 0.22. One can
see in this figure that the HRG model results are consistent with
the data.

Taking into account the results for various ratios of moments
shown in Fig. 1 it immediately follows that the HRG model will
also describe the energy dependence of other moments, i.e. vari-
ance, skewness and kurtosis. These are also shown in Fig. 2.

The good agreement of HRG model calculations with RHIC data
allows us to make predictions for different moments of charge
fluctuations covering the energy range of the RHIC low energy scan
and the lowest energy for heavy ion collision at the LHC. We sum-
marize the HRG model results at different energies in Table 2.

4.2. Electric charge and strangeness fluctuations

More subtle dependencies on temperature and baryon number
arise in the case of electric charge and strangeness fluctuations
where multiple charged hadrons get larger weight in higher mo-
ments and where meson as well as baryon sectors contribute. This
results in characteristic deviations of the kurtosis, more precisely
κQ σ 2

Q = χ (4)
Q /χ (2)

Q , from unity and also the skewness no longer is
simply related to tanh(µB/T ). In the case of electric charge fluc-
tuations we may separate contributions of different charge sectors
to the partition function. For instance, for n even, we may then
obtain for moments of electric charge fluctuations,

χ (n)
Q = 1

V T 3

(
ln Z |Q |=1(T ,µB ,µQ ,µS)

+ 2n ln Z |Q |=2(T ,µB ,µQ ,µS)
)
, (21)

where the logarithms of partition functions, ln Z |Q | , are obtained
from Eq. (5) by restricting the sums over mesons and baryons
to the relevant charge sectors. From this it is obvious that devi-
ations of κQ σ 2

Q = χ (4)
Q /χ (2)

Q from unity only arises from contribu-
tions of baryons with electric charge 2. Similarly the odd moments
are modified. On the freeze-out curve this leads to a characteris-
tic dependence of ratios of moments on the collision energy that
is shown in Fig. 3. In the energy range relevant for current low-
energy runs at RHIC [12] as well as at LHC one has κQ σ 2

Q ≃ 1.8,
which varies only little with

√
sN N .

In addition one may analyze correlations between baryon num-
ber and different moments of charge fluctuations. Some results are
shown in the left hand part of Fig. 3.

For completeness we show in Fig. 4 fluctuations and correla-
tions in the strangeness sector of the HRG model. In practice it
may be more difficult to compare this with experimental results
as it will be crucial that the analysis allows for strangeness fluc-
tuations in a sub-volume and will not impose the constraint of
vanishing strangeness on event-by-event basis.

3 For a compilation of heavy ion data on charged pion yields at mid–rapidity at
different energies see e.g. Ref. [8].

(Data: STAR, Lines: HRG, [F. Karsch, K. Redlich, PLB 695, 136 (2011)])
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Lattice QCD results on cumulants

Cumulants of conserved quantum numbers can be calculated in lattice
QCD. e. g. [HotQCD, PRD 86, 034509 (2012)]

Results for
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This also is true for lower temperatures. However, in this
case extrapolations linear in 1=N2

! are no longer sufficient
for the electric charge and strangeness fluctuations.
Systematic effects at OððaTÞ4Þ start to become important.
This is evident from the data sets at T ¼ 150 MeV, which
are shown in Fig. 4 as well. We note that also at this
temperature, which is the lowest temperature for which
we perform continuum extrapolations, extrapolations
based on the r1 and fK temperature scales are in good
agreement.

Having demonstrated consistency of the continuum es-
timate obtained using r1 and fK, we, as stated previously,
use the scale from fK in the rest of the paper because the
slope in the fits is smaller.

The data for the net charge fluctuations in the tempera-
ture interval 120–250 MeV, results of the linear extrapola-
tion for "B

2 =T
2, and quadratic extrapolations for "S

2=T
2 and

"Q
2 =T

2 are shown in Figs. 5 and 6. In Fig. 6 (right) we also
show the ratio of net baryon number and electric charge
fluctuations. The continuum extrapolation shown for this
quantity has been obtained from the corresponding extrap-
olations for "B

2 =T
2 and "Q

2 =T
2.

Continuum extrapolations in the crossover and the low
temperature regions require additional considerations be-
cause the three different conserved charge susceptibilities
show different sensitivities to cutoff effects. In order to
quantify differences from the HRG model results in this
temperature regime, and in order to clarify the extent to
which the HRGmodel provides a good description of QCD
results, we analyze the ratios "X

2 ="
X;HRG
2 , X ¼ B,Q, and S,

in Fig. 7. We find that, while baryon number fluctuations
start to agree with HRG model results for T & 165 MeV,
the net strangeness fluctuations become larger than the
HRG values for temperatures below T ’ 190 MeV and
then approach the HRG values from above at T &
150 MeV. At T $ 150 MeV, the differences are still
(10%–20)%.
The electric charge fluctuations show much larger devi-

ations from the HRG model as is evident from Fig. 7. In
particular, below T ’ 170 MeV, the cutoff dependence in

"Q
2 ="

Q;HRG
2 is large and extrapolations including just lead-

ing order a2-corrections fail. As discussed in Sec. IVA,
this, to a large extent, is due to the severe cutoff depen-
dence of the pion spectrum, i.e., the anomalously large rms

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 120  140  160  180  200  220  240

T [MeV]

χ2
B/T2

HRG

fK scale

SB

continuum extrap.
Nτ=12

8
6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 120  140  160  180  200  220  240

T [MeV]

χ2
B/χ2

Q

fK scale

SB

HRG

continuum extrapolation
Nτ=6

8
12

FIG. 6 (color online). Net baryon number fluctuations in units of T2 (left) and the ratio of net baryon number and net electric charge
fluctuations (right). Calculations of fK have been used to fix the temperature scale. Also shown are results from a continuum
extrapolation taking into account Oða2Þ corrections. For "B

2 ="
Q
2 we also show the ratio of continuum extrapolations constructed for
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2 =T

2 and "Q
2 =T

2 separately. The HRG model result and the SB limit is given by the solid lines.
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FIG. 5 (color online). Fluctuations of net strangeness (left) and electric charge (right) in units of T2. Calculations of fK have been
used to fix the temperature scale. Also shown are continuum extrapolated results taking into account cutoff effects up to quadratic order
in 1=N2

! . The HRG model result and the SB limit is given by the solid lines.
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Ratios of cumulants from Lattice QCD

From Wuppertal-Budapest collaboration [PRL 111, 062005 (2013)]

RB42 =
χB4
χB2

=
〈δN4

B〉
〈δN2

B〉
RQ31 =

χQ3
χQ1

=
〈δN3

Q〉
〈δNQ〉

Taking into account the limit on Tf that we obtained

through RQ
31, the three values of !B that we extract from

this observable are listed in Table I. The experimental
evidence for the freeze-out temperature was just an upper
bound (cf. Fig. 3); thus, using the data in Fig. 4 can only
provide for the!B prediction a lower bound. In Table I, we
assume that Tf > 145 MeV. The uncertainty in the freeze-
out temperature is the dominant source of error.
Note that these chemical potentials differ from the

results of the statistical hadronization model [20,21].
Also, the typical freeze-out temperatures from the statisti-
cal fits lie above the upper bound found in this Letter.
In Fig. 5, we show our results for RB

31 as a function of the
temperature, while in Fig. 6, we show RB

12 for different
temperatures, as a function of!B. Their Taylor expansions
around !B ¼ 0 read:

RB
31ðT;!BÞ ¼

"B
3 ðT;!BÞ

"B
1 ðT;!BÞ

¼ "B
4 ðT; 0Þ þ "BQ

31 ðT; 0Þq1ðTÞ þ "BS
31 ðT; 0Þs1ðTÞ

"B
2 ðT; 0Þ þ "BQ

11 ðT; 0Þq1ðTÞ þ "BS
11 ðT; 0Þs1ðTÞ

þOð!2
BÞ;

RB
12ðT;!BÞ ¼

"B
1 ðT;!BÞ

"B
2 ðT;!BÞ

¼ "B
2 ðT; 0Þ þ "BQ

11 ðT; 0Þq1ðTÞ þ "BS
11 ðT; 0Þs1ðTÞ

"B
2 ðT; 0Þ

!B

T
þOð!3

BÞ:

Therefore, similarly to the electric charge fluctuations,
RB
31 allows us to extract Tf and from RB

12, we can then
obtain !B. This will allow us to independently extract
the freeze-out temperature and chemical potential by
comparing them to the corresponding experimental
values, once they become available. Notice that the
ordering of the temperatures in Figs. 4 and 6 is opposite.
RB
12 might in future be used to set an upper bound for

!B. This cross-check is of fundamental importance: an
inconsistency between the two sets of freeze-out pa-
rameters obtained from the electric charge and baryon

number fluctuations might signal that it is not possible to
treat the experimental system in terms of lattice QCD
simulations in thermal equilibrium.
In Fig. 7, we show the ratio RB

42 ¼ "B
4 ðT;!BÞ=

"B
2 ðT;!BÞ as a function of the temperature. This observ-

able corresponds to #$2 of the baryon number distribution.
It will allow us to further independently extract Tf. Notice
that, in the case of baryon number, the observables are
essentially flat in the hadronic phase: if the experimental
value should lie in the transition region (T * 150 MeV),
we will be able to accurately determine Tf, if it lies in the
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possible interpolations). Weighting these continuum
results by the goodness of the fit, a histogram is formed,
the width of which defines the systematic error (for details,
see Ref. [14]). In this Letter, we show the combined
systematic and statistical errors on the continuum data.

Similarly to previous works, we choose a tree-level
Symanzik improved gauge and a stout-improved staggered
fermionic action (see Ref. [15] for details). The stout-
smearing [16] reduces taste violation (this kind of smearing

has one of the smallest taste violations among the ones
used in the literature for large scale thermodynamic simu-
lations, together with the HISQ action [17,18] used by the
hotQCD collaboration). This lattice artifact needs to be
kept under control when studying higher order fluctuations
of electric charge, which are pion dominated at small
temperatures, and thus, particularly sensitive to this issue.
The observables under study are defined as:

!BSQ
lmn

Tlþmþn ¼
@lþmþnðp=T4Þ

@ð"B=TÞl@ð"S=TÞm@ð"Q=TÞn
; (1)

and they are related to the moments of the distributions of
the corresponding conserved charges by

mean: M ¼ !1; variance: #2 ¼ !2;

skewness: S ¼ !3=!
3=2
2 ; kurtosis: $ ¼ !4=!

2
2:

(2)

With these moments, we can express the volume indepen-
dent ratios

S# ¼ !3=!2; $#2 ¼ !4=!2;

M=#2 ¼ !1=!2; S#3=M ¼ !3=!1:
(3)

The experimental conditions are such, that the three
chemical potentials "B, "Q, and "S are not independent of
each other: the finite baryon density in the system is gener-
ated by the nucleon stopping in the collision region, and
is therefore due to light quarks only. Strangeness conserva-
tion then implies that the strangeness density hnSi ¼ 0.
Similarly, the initial isospin asymmetry of the colliding
nuclei yields a relationship between the electric charge
and baryon-number densities: hnQi ¼ Z=AhnBi. For Au-Au
and Pb-Pb collisions, a good approximation is to assume
Z=A ¼ 0:4.
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More realistic description of fireball

Ratios of cumulants of conserved quantum numbers NB , NC and NS
have been proposed as particularly nice observables

Problem 1: What is optimal range of acceptance?
Full coverage for 208Pb - 208Pb: No fluctuations at all

NB = 2× 208 = 416, NC = 2× 82 = 164, NS = 0.

Too small coverage: Poisson statistics

Problem 2: Fireball is not in equilibrium
At best approx. local equilibrium (viscous fluid dynamics) for some time
Freeze-out corresponds to dropping out of equilibrium
Need more differential description including dependence on rapidity and pT
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Correlation functions as generalized cumulants

Correlation functions for conserved quantum numbers can also be studied
locally

Baryon number density fluctuations

C
(B,B)
2 (t, ~x; t′, ~x′) = 〈nB(t, ~x)nB(t′, x′)〉 − 〈nB(t, ~x)〉〈nB(t′, ~x′) 〉

Integral over equal time correlation determines variance

σ2
B = 〈δN2

B〉 =

∫
V

d3x

∫
V

d3x′ C
(B,B)
2 (t, ~x; t, ~x′)

Similar for higher order correlation functions

Correlation functions for different thermodynamic variables can be
translated

(ε, nB , nC , nS) ↔ (T, µB , µC , µS)
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Cooper-Frye freeze-out
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Single particle distribution (Cooper & Frye 1974)

E
dNi
d3p

= −pµ
∫

Σf

dΣµ

(2π)3
fi(p;x)

with close-to equilibrium distribution

fi(p;x) = fi(p;T (x), µi(x), uµ(x), πµν(x), ϕ(x), . . .)

Precise position of freeze-out surface is not known. Usual assumption

〈T (x)〉 = Tfo = const
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Particle correlations from freeze-out

Can be used for expectation values...〈
E
dNi
d3p

〉
=

〈
−pµ

∫
Σf

dΣµ

(2π)3
fi(p;x)

〉

... but also for correlation functions〈
E
dNi
d3p

E′
dNj
d3p′

〉
= pµp

′
ν

∫
Σf

dΣµ

(2π)3

dΣ′ν

(2π)3

〈
fi(p;x) fj(p

′;x′)
〉

The right hand side involves correlation functions〈
fi(p;x) fj(p

′;x′)
〉

between different points x and x′ on the freeze-out surface.

Works similar for higher order correlation functions.

Thermal fluctuations and initial state fluctuations contribute to correlation
functions

9 / 23



Particle correlations from field correlation functions

One can decompose

T (x) = T̄ (x) + δT (x), µ(x) = µ̄(x) + δµ(x)

and expand the distribution functions

fi(p;x) =fi(p; T̄ (x), µ̄i(x), . . .)

+ δT (x)
∂

∂T
fi(p; T̄ (x), µ̄(x), . . .)

+ δµ(x)
∂

∂µ
fi(p; T̄ (x), µ̄(x), . . .) + . . .

Two-particle correlation function governed by integral over〈
fi(p;x) fj(p

′;x′)
〉

=fi(p; T̄ (x), . . .) fj(p
′; T̄ (x′), . . .)

+
〈
δT (x)δT (x′)

〉 ∂
∂T

fi(p; T̄ (x), . . .)
∂

∂T
fj(p; T̄ (x′), . . .)

+
〈
δµ(x)δµ(x′)

〉 ∂
∂µ

fi(p; T̄ (x), . . .)
∂

∂µ
fj(p; T̄ (x′), . . .)

+
〈
δϕ(x)δϕ(x′)

〉 ∂
∂ϕ

fi(p; T̄ (x), . . .)
∂

∂ϕ
fj(p; T̄ (x′), . . .)

+ . . .
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Critical physics

Critical physics shows up in correlation functions

In homogeneous space

〈ϕ(~x)ϕ(~x+ ~r)〉 ∼ 1

rd−2+η
exp

(
r

ξ

)
with correlation length

ξ ∼ 1

|T − Tc|ν

Critical slowing down leads drop out of equilibrium (talk by R.
Venugopalan)

Could lead to (partial) freeze-out

Correlation functions of net baryons, net charge etc could be sensitive to
this.

11 / 23



Mode-by-mode fluid dynamic description

Correlation functions in a fireball can be expanded in Bessel-Fourier basis

Chemical and kinetic freeze-out can be studied in that basis, as well
[S. Floerchinger, U. A. Wiedemann, PRC 89, 034914 (2014)]

Leads to differential correlation functions

C2(η1, φ1, pT1; η2, φ2, pT2) =

〈
dN

dη1dφ1dpT1

dN

dη2dφ2dpT2

〉
c

and similar for higher orders C3, C4 etc.

Integration over ranges of η, φ and pT gives cumulants of particle numbers

Should help to improve theory-experiment comparison.

Besides thermal fluctuations, also initial state fluctuations contribute.

Propagation of initial state fluctuations in net baryon number is sensitive
to baryon diffusion i. e. heat conductivity
[S. Floerchinger, M. Martinez, PRC 92, 064906 (2015)]
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Effective action

Equations of motion for expectation values and correlation functions can
be obtained from one-particle irreducible effective action

Γ[Φ, T, µ] =

∫
ddx {Z∂µΦ∗∂µΦ + U(T, µ,Φ) + . . .}

with effective potential U related to pressure

p(T, µ) = −U(T, µ,Φ)

Also viscous fluid dynamics can be described in this way
[S. Floerchinger, 1603.07148]

Correlation functions can be obtained from functional derivatives of Γ.

Well understood for order parameter fields - less understood for
thermodynamic / fluid dynamic fields.
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Effective action

The effective potential or pressure p(T, µ) contains information about
equation of state and can be determined by Lattice QCD.

Other elements of Γ can be calculated by
analytically continued LQCD results
perturbation theory
functional renormalization
classical simulations
universal critical physics
model calculations, ...

Effective actions can be very helpful to think about physics.

For QCD, the microscopic theory is very well known and heavy ions
collisions provide a chance to investigate resulting effective action Γ

Challenge for theory will be to calculate effective action Γ for QCD

Challenge for phenomenology is to constrain Γ from observables.
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Initial state fluctuations in baryon number and their
evolution



Evolution of baryon number in fluid dynamics

Small perturbation in static medium with uµ = (1, 0, 0, 0)

∂

∂t
δn(t, ~x) = D~∇2δn(t, ~x)

Baryon number diffusion constant

D = κ

[
nT

ε+ p

]2(
∂(µ/T )

∂n

)
ε

Heat capacity κ appears here because

baryon diffusion
in Landau frame

=̂
heat conduction
in Eckart frame

Is D finite for n→ 0 ?
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Heat conductivity

Heat conductivity of QCD rather poorly understood theoretically so far.

From perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

κ ∼ T 4

µ2α2
s lnαs

(µ� T )

From AdS/CFT [Son & Starinets, JHEP 0603 (2006)]

κ = 8π2 T

µ2
η = 2π

sT

µ2
(µ� T )

Baryon diffusion constant D finite for µ→ 0 !
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Relativistic fluid dynamics

Evolution of baryon number density from conservation law

uµ∂µn+ n∇µuµ +∇µνµ = 0

Diffusion current να determined by heat conductivity κ

να = −κ
[
nT

ε+ p

]2

∆αβ∂β
( µ
T

)
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Bjorken expansion

Consider Bjorken type expansion

∂τ ε+ (ε+ p)
1

τ
−
(

4
3
η + ζ

) 1

τ2
= 0

∂τn+ n
1

τ
= 0

Heat conductivity κ does not enter by symmetry argument

Compare ideal gas to lattice QCD equation of state
[Borsanyi et al., JHEP 08 (2012) 053]
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Perturbations around Bjorken expansion

Consider situation with 〈n(x)〉 = 〈µ(x)〉 = 0

Local event-by-event fluctuation δn 6= 0

Concentrate now on Bjorken flow profile for uµ

Consider perturbation δn

∂τδn+
1

τ
δn−D(τ)

(
∂2
x + ∂2

y +
1

τ2
∂2
η

)
δn = 0

Structures in transverse and rapidity directions are “flattened out” by heat
conductive dissipation
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Solution by Bessel-Fourier expansion

Expand perturbations like

δn(τ, r, φ, η) =

∫ ∞
0

dk k

∞∑
m=−∞

∫
dq

2π
δn(τ, k,m, q) ei(mφ+qη)Jm(kr)

Leads to ODE

∂τδn+
1

τ
δn+D(τ)

(
k2 +

q2

τ2

)
δn = 0.

For q = 0 and different k ≈ 1/fm, AdS/CFT value κ = 8π2 T
µ2 η
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Evolution of perturbations

For k = 0 and different q = 1, 3, 5, AdS/CFT value κ = 8π2 T
µ2 η
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Only long-range fluctuations survive diffusive damping.
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Fluctuations at freeze-out

Background-perturbation splitting can also be used at freeze-out

Interesting observable is net baryon number

n(φ, η) = (B − B̄)(φ, η)

Correlation functions and distributions contain information about baryon
number fluctuations

Two-particle correlation function of baryons minus anti-baryons

CBaryon(φ1 − φ2, η1 − η2) = 〈n(φ1, η1)n(φ2, η2)〉c
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Baryon number correlation function

In Fourier representation

CBaryon(∆φ,∆η) =

∞∑
m=−∞

∫
dq

2π
C̃Baryon(m, q) eim∆φ+iq∆η

heat conductivity leads to exponential suppression

C̃Baryon(m, q) = e−m
2I1−q2I2 C̃Baryon(m, q)

∣∣
κ=0

I1 and I2 can be approximated as

I1 ≈
∫ τf

τ0

dτ
2

R2
κ

[
nT

ε+ p

]2 (∂(µ/T )

∂n

)
ε

I2 ≈
∫ τf

τ0

dτ
2

τ2
κ

[
nT

ε+ p

]2 (∂(µ/T )

∂n

)
ε

I2 � I1 would lead to long-range correlations in rapidity direction
(”baryon number ridge”)
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