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FEquilibrium: grand canonical ensemble

o describes volume V' with temperature T' and chemical potentials ug, pe
and ps associated with conserved baryon, charge and strangeness numbers

@ exchange of energy and particles with heat bath

@ can be simulated with Lattice QCD

@ all thermodynamic properties follow from
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o For example mean value of net baryon number
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Hadron resonance gas

@ Pressure for free hadrons and resonances with vacuum masses

T2 i B; i s
P=— E dim?lﬁ (ﬂ) cosh< MB+QNQ+SMS>
™=

T T

o Implies relations like

Kpop = —H2— =L =1
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when only baryons with B; = £1 contribute.

o Similarly,
kpMp = Spop

o And for s = pg = 0 one has relations like

Spop = 253 = tanh (HTB)
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Hadron resonance gas versus experiment

@ Ratios of cumulants are independent of volume V' and less sensitive to
kinematic cuts
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o Particularly well suited to compare to experiment

10.0 T T — —
2),.,(1
BN
1.0 L
HRG: 32 —
42 —
21 —
STAR: 3/2 e~
4/2 -~ 12
2/1 4~ sy [GeV]
oq .70 SNNEEV]
5 10 20 50 100 200

(Data: STAR, Lines: HRG, [F. Karsch, K. Redlich, PLB 695, 136 (2011)])



Lattice QCD results on cumulants

e Cumulants of conserved quantum numbers can be calculated in lattice
QCD. e. g. [HotQCD, PRD 86, 034509 (2012)]

@ Results for
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Ratios of cumulants from Lattice QCD

@ From Wouppertal-Budapest collaboration [PRL 111, 062005 (2013)]
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More realistic description of fireball

@ Ratios of cumulants of conserved quantum numbers N, Nc and Ng
have been proposed as particularly nice observables
@ Problem 1: What is optimal range of acceptance?
o Full coverage for 208Pb - 208Pb: No fluctuations at all

Np = 2 x 208 = 416, Ne =2 x 82 = 164, Ng =0.

o Too small coverage: Poisson statistics
@ Problem 2: Fireball is not in equilibrium

o At best approx. local equilibrium (viscous fluid dynamics) for some time
o Freeze-out corresponds to dropping out of equilibrium
o Need more differential description including dependence on rapidity and pr



Correlation functions as generalized cumulants

o Correlation functions for conserved quantum numbers can also be studied
locally

o Baryon number density fluctuations

CP P, &5t &) = (np(t, D) np(t', o)) — (np(t, D)) (ns (', &)

Integral over equal time correlation determines variance
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Similar for higher order correlation functions
o Correlation functions for different thermodynamic variables can be
translated

(e,;nB,nc,ns) < (T,ps,po, ps)



Cooper-Frye freeze-out
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o Single particle distribution (Cooper & Frye 1974)

dN; dxt
E = —DPpu i\Ds
#p /zf (2m)3 filpi)

with close-to equilibrium distribution
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o Precise position of freeze-out surface is not known. Usual assumption

(T'(z)) = Tt = const



Particle correlations from freeze-out

o Can be used for expectation values...

@ ... but also for correlation functions
dNi /de / / dz# dzw / /
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The right hand side involves correlation functions
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between different points = and 2’ on the freeze-out surface.

Works similar for higher order correlation functions.

o Thermal fluctuations and initial state fluctuations contribute to correlation
functions



Particle correlations from field correlation functions
@ One can decompose

T(2)=T(@) +6T(),  p(@) = ile)+ ou(a)
and expand the distribution functions
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Critical physics

o Critical physics shows up in correlation functions

@ In homogeneous space

(pl@)e@+ 1) ~ ey o ()

with correlation length

1
SYT-Tp

o Critical slowing down leads drop out of equilibrium (talk by R.
Venugopalan)

o Could lead to (partial) freeze-out

@ Correlation functions of net baryons, net charge etc could be sensitive to
this.



Mode-by-mode fluid dynamic description

o Correlation functions in a fireball can be expanded in Bessel-Fourier basis

@ Chemical and kinetic freeze-out can be studied in that basis, as well
[S. Floerchinger, U. A. Wiedemann, PRC 89, 034914 (2014)]

o Leads to differential correlation functions

dN dN
Ca (1, 1,715 M2, O2, PT2) =< >
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and similar for higher orders Cs, Cy etc.
o Integration over ranges of 1, ¢ and pr gives cumulants of particle numbers
@ Should help to improve theory-experiment comparison.
@ Besides thermal fluctuations, also initial state fluctuations contribute.

@ Propagation of initial state fluctuations in net baryon number is sensitive
to baryon diffusion i. e. heat conductivity
[S. Floerchinger, M. Martinez, PRC 92, 064906 (2015)]



Effective action

e Equations of motion for expectation values and correlation functions can
be obtained from one-particle irreducible effective action

L[®, T, ] = /dd:r {28,0*0"® + U(T, 1, ®) + ...}

with effective potential U related to pressure

p(T, :u‘) = 7U(T7 Hy ¢>)

@ Also viscous fluid dynamics can be described in this way
[S. Floerchinger, 1603.07148]

o Correlation functions can be obtained from functional derivatives of I".

@ Well understood for order parameter fields - less understood for
thermodynamic / fluid dynamic fields.



Effective action

@ The effective potential or pressure p(T', 1) contains information about
equation of state and can be determined by Lattice QCD.
@ Other elements of T" can be calculated by

e analytically continued LQCD results
o perturbation theory

o functional renormalization

o classical simulations

o universal critical physics

e model calculations, ...

o Effective actions can be very helpful to think about physics.

e For QCD, the microscopic theory is very well known and heavy ions
collisions provide a chance to investigate resulting effective action I"

o Challenge for theory will be to calculate effective action T for QCD

o Challenge for phenomenology is to constrain I from observables.



Initial state fluctuations in baryon number and their
evolution



FEvolution of baryon number in fluid dynamics

o Small perturbation in static medium with v = (1,0, 0,0)

0

S o2 -
aén(m Z) = DV~on(t, T)

@ Baryon number diffusion constant
2
ol (42)
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@ Heat capacity x appears here because

baryon diffusion R heat conduction
in Landau frame in Eckart frame

e Is D finite forn — 0 7



Heat conductivity

@ Heat conductivity of QCD rather poorly understood theoretically so far.

o From perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

T4

e p2a2in as (b <T)

o From AdS/CFT [Son & Starinets, JHEP 0603 (2006)]
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Baryon diffusion constant D finite for y — 0 !



Relativistic fluid dynamics

o Evolution of baryon number density from conservation law

uOun +nV,ut + V' =0

o Diffusion current v determined by heat conductivity

Y = —k [:’_Tp]z AO‘B@B (%)



Bjorken expansion
o Consider Bjorken type expansion
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@ Heat conductivity x does not enter by symmetry argument

o Compare ideal gas to lattice QCD equation of state
[Borsanyi et al., JHEP 08 (2012) 053]
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Perturbations around Bjorken expansion

Consider situation with (n(z)) = (u(z)) =0
o Local event-by-event fluctuation dn # 0

o Concentrate now on Bjorken flow profile for u*

Consider perturbation dn

0.5+ Lon — D(7) (aﬁ + o2 %a?,) 5n =0
T T

@ Structures in transverse and rapidity directions are “flattened out” by heat
conductive dissipation



Solution by Bessel-Fourier expansion

o Expand perturbations like

n(r,r, é,m) / dk k Z /dq on(r, k,m, q) /™I I (kr)

o Leads to ODE
8T5n+%§n—|—D(7') (k + ) on =0.

e For ¢ = 0 and different k ~ 1/fm, AdS/CFT value x = 8#2%77
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FEvolution of perturbations

o For k = 0 and different ¢ = 1,3,5, AdS/CFT value x = 872 Ly
13
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@ Only long-range fluctuations survive diffusive damping.




Fluctuations at freeze-out

Background-perturbation splitting can also be used at freeze-out

Interesting observable is net baryon number

@ Correlation functions and distributions contain information about baryon
number fluctuations

Two-particle correlation function of baryons minus anti-baryons

Charyon ($1 — d2,m1 — 12) = (n(d1,m) n(P2,m2))e



Baryon number correlation function

@ In Fourier representation

d im i
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heat conductivity leads to exponential suppression
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@ [; and I2 can be approximated as
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o I> > I, would lead to long-range correlations in rapidity direction
(" baryon number ridge”)




