Composite chiral fermions from the renormalization group

Stefan Flörchinger (CERN)

ERG 2014, Lefkada, 23/09/2014

Remaining problems of the standard model

- Standard model of elementary particle physics works surprisingly well.
- Seems to describe all measurements at the LHC so far.
- Contains 18 free parameters (without neutrino masses)
 - 3 gauge couplings for U(1), SU(2) and SU(3)
 - 1 Higgs field vacuum expectation value
 - 1 Higgs field self coupling
 - 3 lepton masses
 - 6 quark masses
 - ullet 3 CKM mixing angles + 1 phase

13 out of 18 parameters are determined by the Yukawa couplings.

- Open questions are:
 - Why are there three generations?
 - What explains the Yukawa-coupling hierarchy between generations?
 - What gives mass to neutrinos?
 - What determines the Higgs VEV? (Hierarchy problem)

Are leptons and quarks composite?

- It seems plausible that there is some structure underlying the standard model that explains the Yukawa couplings.
- Quarks and leptons before electroweak symmetry breaking are chiral: left-handed and right-handed fields in different gauge representations
- Chiral symmetry forbids a mass term.
- Can chiral fermions be composite?
- In principle yes, there is at least no good argument against it.
- Some constrains come from anomaly matching ['t Hooft (1979)].
- However, a formalism to describe this and to determine whether chiral bound states form in a given theory, is lacking.
- For example it is clear that Schrödingers equation cannot be used.

Constituents have not been found so far...

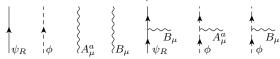
- If leptons and quark consist of more elementary constituents the question arises why these have never been found.
- In principle a confining theory with strong interactions at a very high energy scale could do the job.
- Can only work if this theory has unbroken chiral symmetry in contrast to QCD.

There is no obvious candidate for a theory underlying the standard model so let us sharpen knifes by asking some questions on the standard model itself.

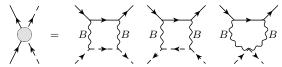
Right-handed fermions and scalar bosons

Start from

- right-handed lepton ψ_R : SU(2) singlet, U(1)_Y charge g'
- mass-less scalar boson ϕ : SU(2) doublet, U(1) $_Y$ charge $-\frac{1}{2}g'$
- ullet gauge fields B_μ for U(1) $_Y$ and A_μ^a for SU(2)



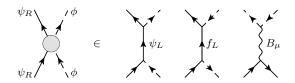
Quantum fluctuations induce fermion-boson vertex $\lambda_{\phi R}$



- all particles in the loop are mass-less
- perturbative one-loop contributions linearly infrared divergent

Composite fields

- What can be composite particles of ψ_R and ϕ ?
- Or: What substructures can fermion-boson vertex $\lambda_{\phi R}$ have?



- left handed lepton ψ_L : SU(2) doublet, U(1)_Y charge $\frac{1}{2}g'$
- left-handed fermion f_L : SU(2) doublet, U(1)_Y charge $\frac{3}{2}g'$
- ullet vector boson of B_{μ} type
- ψ_R and ϕ have opposite U(1) $_Y$ charge or attractive interaction, in favor of bound state ψ_L

Fermionic Hubbard-Stratonovich transformation

- perform Hubbard-Stratonovich transformation with respect to the attractive channel
- \bullet field for ψ_L is introduced as auxiliary field with quadratic "Lagrangian"

$$\mathscr{L}_{\mathrm{HS}} = i(\bar{\psi}_L - \bar{\xi}_L) \, \bar{\sigma}^\mu D_\mu \, q_L \, (-D_\nu D^\nu) \, \left(\psi_L - \xi_L\right)$$

- ullet D_{μ} is covariant derivative appropriate for ψ_L
- ξ_L is quadratic in right-handed fermion and scalar fields, $\xi_L \sim \phi \psi_R$
- the function

$$q_L(p^2) = 1 + \nu_L^2/p^2$$

contains a non-local mass ν_L

ullet for large u_L the fermion ψ_L is heavy and plays no role

Effective theory after HS transformation

- Right-handed fermions as before, standard kinetic term.
- ullet Left-handed fermions with kinetic term and non-local mass term u_L

$$\mathcal{L}_{\psi_L} = i \left(\bar{\psi}_L \right)_{\dot{a}} \left(\bar{\sigma}^{\mu} \right)^{\dot{a}b} \left(\partial_{\mu} - i A^a_{\mu} t^a_L - i B_{\mu} y_L \right) (\psi_L)_b$$
$$+ i \nu_L^2 \left(\bar{\psi}_L \right)_{\dot{a}} \left(\left[\sigma^{\mu} D_{\mu} \right]^{-1} \right)^{\dot{a}b} (\psi_L)_b$$

Yukawa interactions

$$\mathscr{L}_{\text{Yukawa}} = -h \, \left[(\bar{\psi}_L)_{\dot{a}} \, \phi \, (\psi_R)^{\dot{a}} + (\bar{\psi}_R)^a \, \phi^\dagger \, (\psi_L)_a \right].$$

Boson-Fermion interaction vertex

$$\mathcal{L}_{\phi R} = i \left(\bar{\psi}_R \right)^a \phi^{\dagger} \lambda_{\phi R} \left(-D^{\nu} D_{\nu} \right) \left(\sigma^{\mu} \right)_{a\dot{b}} D_{\mu} \phi \left(\psi_R \right)^{\dot{b}}$$

Kinetic terms for scalars and gauge fields as before.

Adapting parameters

Boson-fermion vertex has two contributions

$$\lambda_{\phi R} = (\lambda_{\phi R})_{\mathsf{loops}} - \frac{h^2}{p^2 + \nu_L^2}$$

- first term generated by radiative corrections / loops
- second term from HS transformation
- Idea is now to adapt h and ν_L such that $\lambda_{\phi R} = 0$.
- ullet One-loop calculation with IR cutoff Λ gives

$$(\lambda_{\phi R})_{\text{loops}} = \frac{g^{\prime 4}}{16\pi^2} \left[\frac{1}{4\Lambda^2} - p^2 \frac{7}{12\Lambda^4} + \mathcal{O}(p^4) \right].$$

which cancels to the given order in p^2 for

$$h_{\Lambda}^2 = \frac{3g'^4}{448\pi^2}, \qquad \nu_{L,\Lambda}^2 = \frac{3}{7}\Lambda^2.$$

- for $g'^2=\alpha\frac{4\pi}{\cos^2\theta_W}$ with the fine structure constant $\alpha(M_Z)=1/128$ and $\sin^2\theta_W(M_Z)=0.23126$ one finds $h_\Lambda=0.0033$
- surprisingly close to Yukawa coupling of au-lepton $h_{ au}=0.0072$
- ullet non-local mass u_L vanishes for $\Lambda o 0$

Exact flow equation with HS transformation

For functional RG study one needs flow equation that implements k-dependent HS transformation [Floerchinger & Wetterich, PLB 680, 371 (2009), see also Gies & Wetterich (2002), Pawlowski (2007)]

$$\begin{array}{rcl} \partial_k \Gamma_k & = & \frac{1}{2} \mathrm{STr} \left\{ (\Gamma_k^{(2)} + R_k)^{-1} \left(\partial_k R_k - R_k (\partial_k Q^{-1}) R_k \right) \right\} \\ & & - \frac{1}{2} \overset{\leftarrow}{\Gamma}_k^{(1)} \left(\partial_k Q^{-1} \right) \overset{\rightarrow}{\Gamma}_k^{(1)} \end{array}$$

- exact flow equation that generalizes Wetterich equation
- ullet $\Gamma_k^{(1)}$ is functional derivative with respect to the composite field
- $\partial_k Q^{-1}$ can be chosen arbitrary
- works also for fermionic composite fields

Regulator functions

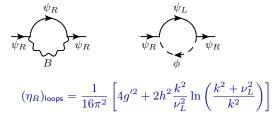
- all relevant diagrams are UV finite
- simple IR regulators are sufficient

$$\Delta \mathcal{L}_{k} = -i k^{2} (\bar{\psi}_{L})_{\dot{a}} \left([\sigma^{\mu} \partial_{\mu}]^{-1} \right)^{\dot{a}\dot{b}} (\psi_{L})_{b}$$
$$-i k^{2} (\bar{\psi}_{R})^{a} \left([\bar{\sigma}^{\mu} \partial_{\mu}]^{-1} \right)_{a\dot{b}} (\psi_{R})^{\dot{b}}$$
$$+ k^{2} \phi^{\dagger} \phi$$
$$- k^{2} \frac{1}{2} \left(A^{a\mu} A^{a}_{\ \mu} + B^{\mu} B_{\mu} \right) + k^{2} \bar{c}^{a} c^{a}$$

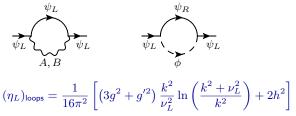
- regulator functions break gauge invariance
- results presented in the following are for fixed gauge: Feynman gauge

Flow equations for anomalous dimensions

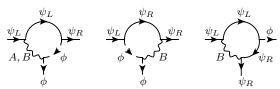
• anomalous dimension right-handed fermions



anomalous dimension left-handed fermions



Flow equations Yukawa coupling



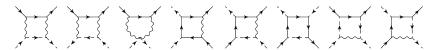
Yukawa coupling at vanishing momentum

$$(\partial_t h)_{\text{loops}} = \frac{1}{16\pi^2} \left[-h \left(3g^2 - g'^2 \right) \frac{k^2}{\nu_L^2} \ln \left(\frac{k^2 + \nu_L^2}{k^2} \right) - 2h g'^2 - 8h g'^2 \frac{k^2}{\nu_L^2} \ln \left(\frac{k^2 + \nu_L^2}{k^2} \right) \right]$$

First derivative with respect to fermion momentum p^2

$$(\partial_t h')_{\text{loops}} = \frac{1}{16\pi^2} \left[h \left(\frac{3}{4} g^2 - \frac{1}{4} g'^2 \right) \left[-12 \frac{k^2}{\nu_L^4} + 6 \frac{2k^4 + k^2 \nu_L^2}{\nu_L^6} \right] \right] \times \ln \left(\frac{k^2 + \nu_L^2}{k^2} \right) + \frac{1}{2} h g'^2 \frac{1}{k^2}$$

Flow equation boson-fermion vertex



at vanishing momentum

$$(\partial_t \lambda_{\phi R})_{\text{loops}} = \frac{1}{16\pi^2} \left[-\frac{1}{2} g'^4 \frac{1}{k^2} + 8h^2 g'^2 \frac{1}{k^2 + \nu_L^2} - 3h^4 \frac{k^2}{\nu_L^4} \ln\left(\frac{(2\nu_L^2 + k^2)k^2}{(\nu_L^2 + k^2)}\right) - h^2 \left(\frac{3}{2} g^2 + \frac{1}{2} g'^2\right) \left[\frac{3k^2 + 2\nu_L^2}{\nu_L^2 (\nu_L^2 + k^2)} - \frac{3k^2}{\nu_L^4} \ln\left(\frac{k^2 + \nu_L^2}{k^2}\right) \right] \right]$$

first derivative with respect to fermion momentum p^2

$$\begin{split} (\partial_t \lambda_{\phi R}')_{\text{loops}} &= \frac{1}{16\pi^2} \bigg[\frac{7}{3} g'^4 \frac{1}{k^4} + 2h^2 g'^2 \frac{k^2 + 2\nu_L^2}{(k^2 + \nu_L^2)^2 k^2} - h^2 \left(\frac{3}{2} g^2 + \frac{1}{2} g'^2 \right) \\ &\times \bigg[- \frac{24k^2}{\nu_L^6} - \frac{2}{k^2 \nu_L^2} + \frac{2}{k^2 (k^2 + \nu_L^2)} + \frac{12k^2 (2k^2 + \nu_L^2)}{\nu_L^8} \ln \left(\frac{k^2 + \nu_L^2}{k^2} \right) \bigg] \bigg] \end{split}$$

Scale-dependent HS transformation

• choose parameters of k-dependent HS transformation such that

$$\partial_k \lambda_{\phi R}(p^2)\big|_{p^2=0} = 0, \qquad \partial_k \lambda'_{\phi R}(p^2)\big|_{p^2=0} = 0.$$

 \bullet choose also p-dependent wave-function renormalization for composite field $\psi_L(p)$ such that

$$\left. \partial_k h(p^2) \right|_{p^2 = 0} = 0.$$

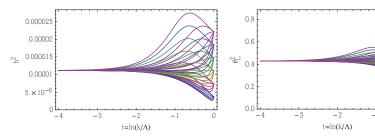
that gives final flow equations for non-local mass

$$\begin{split} \partial_t \nu_L^2 = & (\eta_L)_{\text{loops}} \ \nu_L^2 + \frac{\nu_L^4}{h^2} (\partial_t \lambda_{\phi_R})_{\text{loops}} + \frac{\nu_L^6}{h^2} (\partial_t \lambda_{\phi_R}')_{\text{loops}} \\ & + \frac{2\nu_L^4}{h} (\partial_t h')_{\text{loops}} \end{split}$$

and the Yukawa coupling

$$\begin{split} \partial_t h^2 = & 2h \, (\partial_t h)_{\mathsf{loops}} + h^2 \, [(\eta_R)_{\mathsf{loops}} + (\eta_L)_{\mathsf{loops}}] \\ & + 2\nu_L^2 \, (\partial_t \lambda_{\phi R})_{\mathsf{loops}} + \nu_L^4 \, (\partial_t \lambda_{\phi R}')_{\mathsf{loops}} + \nu_L^2 \, 2h \, (\partial_t h')_{\mathsf{loops}} \end{split}$$

Solution of flow equations



- ullet for fixed gauge couplings $g(M_Z)=0.651$ and $g'(M_Z)=0.807$
- fixed point approximately at

$$h^{*2} = \frac{3g'^4}{448\pi^2} \approx 0.000011, \qquad \tilde{\nu}_L^{*2} = \frac{\nu_L^2}{k^2} = \frac{3}{7} \approx 0.43$$

- ullet non-local mass parameter u_L vanishes with k
- Yukawa coupling related to $U(1)_Y$ gauge coupling
- numerical value $h^* = 0.0033$ close to $h_{\tau\text{-lepton}} = 0.0072$

Flow of gauge couplings

• One loop perturbative flow equations

$$\partial_t g = -\frac{\frac{22}{3} - \frac{1}{3}(n_{l_L} + 3n_{q_L}) - \frac{1}{6}}{16\pi^2}g^3,$$

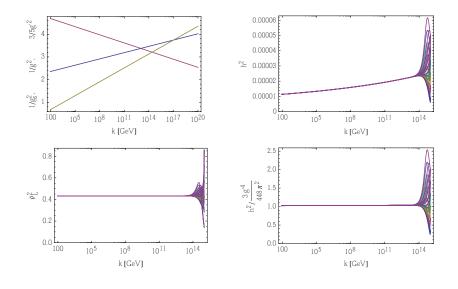
$$\partial_t g' = \frac{\frac{2}{3}\left(\frac{1}{2}n_{l_L} + n_{l_R^e} + \frac{1}{6}n_{q_L} + \frac{4}{3}n_{q_R^u} + \frac{1}{3}n_{q_R^d}\right) + \frac{1}{6}}{16\pi^2}g'^3,$$

where the fermion content is

- ullet n_{l_L} left-handed leptons,
- \bullet $n_{l_{\mathcal{B}}^{e}}$ right-handed leptons of electron type,
- n_{q_L} left-handed quarks,
- $n_{q_R^u}$ right-handed quarks of up-type,
- ullet $n_{q_B^d}$ right-handed quarks of down-type
- For the standard model with complete fermion content

$$g^{2}(k) = \frac{1}{\frac{1}{g^{2}(k_{0})} + \frac{19}{96\pi^{2}} \ln(k/k_{0})},$$
$$g^{2}(k) = \frac{1}{\frac{1}{g^{2}(k_{0})} - \frac{41}{96\pi^{2}} \ln(k/k_{0})}.$$

Flow with flowing gauge couplings

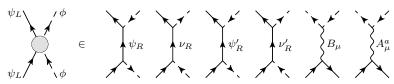


Remarks on anomalies

- it is known that theories with only right-handed fermions (or only left-handed fermions) lead to gauge anomalies
- on first sight this seems to make an initial theory with only right-handed fermions inconsistent
- on the other side, the auxiliary fields that are added by the Hubbard-Stratonovich transformation can also contribute to the anomaly and might even cancel it
- quite generally, theories with composite chiral fermions must fulfill anomaly matching conditions ['t Hooft (1979)]
- these issues need more study

Composite right-handed fermions

• also right-handed fermions might be composite



- ullet combinations of left-handed fermions ψ_L and scalars ϕ
 - right-handed fermion ψ_R : SU(2) singlet, U(1)_Y charge g'
 - ullet right-handed fermion u_L : SU(2) singlet, U(1) $_Y$ charge 0
 - ullet right-handed fermion ψ_R' : SU(2) triplet, U(1) $_Y$ charge g'
 - right-handed fermion ν_L' : SU(2) triplet, U(1)_Y charge 0
 - ullet vector boson of B_{μ} type
 - ullet vector boson of A_{μ}^{a} type
- ullet ψ_L and ϕ can be bound by U(1) $_Y$ or SU(2) interactions
- ullet attractive U(1) $_Y$ interaction favors right-handed neutrino type u_R

Conclusions

- Left-handed au-lepton could be composite of scalar doublet and right-handed au-lepton!
- ullet Yukawa coupling can be predicted and agrees up to factor ~ 2 with experimental value but good agreement could be partly accidental.
- Theoretical uncertainties still high:
 - Fierz ambiguities in Hubbard-Stratonovich transformation
 - Effect of scalar field self interaction and vacuum expectation value
- Flow equation with scale-dependent Hubbard-Stratonovich transformation can be used to investigate this interesting physics.
- More detailed analysis needed to investigate possibilities for other bound states (right-handed neutrinos?).
- Question of anomalies needs further studies.