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mainly based on

@ Hydrodynamics and Jets in Dialogue [Eur. Phys. J. C 74, 3189 (2014),
with K. C. Zapp]

@ Interplay between hydrodynamics and jets [Nucl. Phys. A 931, 388
(2014), with K. C. Zapp]



Fvolution in time after heavy ion collision

@ Non-equilibrium evolution at early times
e initial state at from QCD? Color Glass Condensate? ...
e thermalization via strong interactions, plasma instabilities, particle
production, ...

@ Local thermal and chemical equilibrium
strong interactions lead to short thermalization times
evolution from relativistic fluid dynamics

expansion, dilution, cool-down
jets propagate in fluid medium, loose energy & momentum

o Chemical freeze-out
o for small temperatures one has mesons and baryons
e inelastic collision rates become small
e particle species do not change any more
@ Thermal freeze-out
o elastic collision rates become small
e particles stop interacting
e particle momenta do not change any more



Fluid dynamic regime

Assumes strong interaction effects leading to local equilibrium.

Fluid dynamic variables
o thermodynamic variables: e.g. e(x), n(x),
o fluid velocity u*(x),
o shear stress tensor 7" (z),
o bulk viscous pressure mguk(x).

Can be formulated as derivative expansion for TH",

Hydrodynamics is universal: many details of microscopic theory not

important.

@ Some macroscopic properties are important:

o ideal hydro: needs equation of state p = p(T', ) from
thermodynamics

o first order hydro: needs also transport coefficients like shear viscosity
n = n(T, ) and bulk viscosity ¢(T, u) from linear response theory

e second order hydro: needs also relaxation times 7Tspear, TBuk €tC.



Stmalarities to cosmological fluctuation analysis

o fluctuation spectrum contains info from early times
@ many numbers can be measured and compared to theory
@ can lead to detailed understanding of evolution

@ to learn something about the evolution one needs to know some
universal properties of initial state, for example P(k) ~ k"s~!



What perturbations are interesting and why?

o Initial fluid perturbations: Event-by-event fluctuations around an
average of fluid fields at time 79 and their evolution:

energy density €

fluid velocity u*

shear stress 7"

more general also: baryon number density n,

electric charge density, electromagnetic fields, ...

o Perturbations from non-thermalized particles

o Thermal fluctuations

@ governed by universal evolution equations

@ can be used to constrain thermodynamic and transport properties

@ contain interesting information from early times



Two-particle correlation function

@ normalized two-particle correlation function
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A program to understand fluid perturbations

@ Characterize initial perturbations
@ Propagated them through fluid dynamic regime

@ Determine influence on particle spectra and harmonic flow
coefficients

@ Take also perturbations from non-hydro sources (jets) into account
[this talk]



Distinction between jets and medium

@ perturbative jet cross-section is IR divergent, set pr cyt = 3 GeV
@ also regulated in PyTHIA soft QCD mode
@ very soft jets are part of medium

1 \ \ \ - \ \
0000 pert. mode with p, o =3 GeV

soft QCD mode ]
thermal component

1000 |~

100
10
1

dN/dpy [GeV' ]

. 1 7 7

0.0001



Energy exchange between jets and medium

@ total energy-momentum tensor is conserved

8#(Ttl>ﬁ|jk + Trf;lr/d) =0

@ Energy-momentum tensor of bulk described by hydro
T = euu” + (p + Tpu) A*Y + o
with

AR = g + ubu”

@ Source function for bulk evolution from energy-momentum loss of
jets
TV = =0Ty =Y ApY 6 (x — z;)
i

@ Energy-momentum conservation equation becomes

auTtﬁfllk =J"



Fluid equations with source terms

o Evolution of energy density
utOu e+ (e + p)ou* + 0, uy + Tpukdput = —u, J”

describes how energy is dissipated to the fluid's internal energy.
@ Second law of thermodynamics

—W”Vaﬂul, > 0, —7rbu|k8#u“ > 0, —UVJU > 0.
SN—— ~—
shear viscous dissipation bulk viscous dissipation jet dissipation

e Evolution of fluid velocity
(6 +p+ 7rbu|k)u“8uu“ + A“ﬂaﬁ (p + Wbulk) + Aal,(?lﬂr‘“’ = AQVJV

describes how momentum is transferred to the fluid.



Statistical description

For fluid description, only energy and momentum transfer J#
important.

Can be decomposed to scalar source Js = u,J" and vector source
Ji = Ak, JY

Do not want to solve this event-by-event

Event ensembles described by functional probability distribution

plJs, Jv]

Equivalently, in terms of correlation functions

(Js(x)), (Jy (), (Js(x)Js(y)),

Concentrate first on expectation values or averages of sources

Js = (Js(x)),



Energy and momentum source functions

scalar source Jg(7,7) from jet quenching Monte Carlo code JEWEL

minimum bias in perturbative mode
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Energy and momentum source functions

vector source J7;(7,7) from jet quenching Monte Carlo code JEWEL

minimum bias in perturbative mode
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Energy and momentum source functions

vector source Ji;(7,7) from jet quenching Monte Carlo code JEWEL

minimum bias in perturbative mode
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Minimum bias versus hard jet

minimum bias in perturbative mode hard di-jet
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Fluid evolution with averaged sources
Temperature
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@ solid: without source terms

@ dashed: with source terms

e main effect is slightly larger radial flow
o effect quantitatively rather small



Fluid evolution

with averaged sources

Fluid velocity
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Correlation functions of sources

Css(x,y) = (Js(@)Js(y)) — Js(x) Js(y)
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Nuclear modification factor

R=02,0-10%
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Pb+Pb collisions at \/syn = 2.76 TeV. Jets reconstructed for |n| < 0.5 and
leading track p1 > 5GeV. Data from [ALICE, J Phys CS 446, 012006 (2013)]



Di-jet asymmetry

R=0.3, 0-10%
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Di-jet asymmetry Ay = (p1,1 —p1,2)/(pL,1 +pi,2) in Pb+Pb collisions at
VSN = 2.76 TeV. Data from [CMS, PLB 712, 176 (2012)]



Conclusions

o JEWEL with realistic fluid dynamic background gives good
quantitative description of jet energy loss observables.

@ Jets depose energy and momentum in the fluid. Can be described by
source term in fluid dynamic equations.

@ Statistical description in term of event averages and correlation
functions avoids expensive combined event-by-event simulations of
jets and fluid.

e Event-averages source functions largest at early times 7 and for
small radii r.

@ Small increase in temperature by heating.

@ Increase in radial flow by up to 10 % from momentum transfer: jets
drag fluid outwards.

@ Correlation functions of energy and momentum transfer have been
determined and can be used in fluid dynamics in the next step.



