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From heavy ion collisions to cosmology

goal of heavy ion program is to understand QFT in- and
out-of-equilibrium
needed e. g. for Condensed matter physics, Cosmology
ongoing experiments at RHIC and at the LHC
standard model of heavy ion collision is now in terms of
viscous relativistic fluid dynamics
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Fluid dynamic perturbation theory for heavy ions

proposed in: [Floerchinger & Wiedemann, PLB 728, 407 (2014)]

goal: determine transport properties experimentally

so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]

new: solve fluid equations for smooth and symmetric background
and order-by-order in perturbations

less numerical effort – more systematic studies

good convergence properties [Floerchinger et al., PLB 735, 305 (2014),

Brouzakis et al. PRD 91, 065007 (2015)]

similar technique used in cosmology since many years

some insights from heavy ion physics might be useful for cosmology
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Backreaction: General idea

for 0 + 1 dimensional, non-linear dynamics

ϕ̇ = f(ϕ) = f0 + f1 ϕ+ 1
2f2 ϕ

2 + . . .

one has for expectation values ϕ̄ = 〈ϕ〉

˙̄ϕ = f0 + f1 ϕ̄+ 1
2f2 ϕ̄

2 + 1
2f2 〈(ϕ− ϕ̄)2〉+ . . .

evolution equation for expectation value ϕ̄ depends on two-point
correlation function or spectrum P2 = 〈(ϕ− ϕ̄)2〉
evolution equation for spectrum depends on bispectrum and so on

more complicated for higher dimensional theories

more complicated for gauge theories such as gravity
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Backreaction in gravity
Einstein’s equations are non-linear.

Important question [Ellis (1984)]: If Einstein’s field equations describe
small scales, including inhomogeneities, do they also hold on large
scales?

Is there a sizable backreaction from inhomogeneities to evolution of
background fields, i.e. to the cosmological expansion?

Difficult question, has been studied by many people
[Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh

(1998); Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002);

Wetterich (2003); Räsänen (2004); Kolb, Matarrese & Riotto (2006); Brown,

Behrend, Malik (2009); Gasperini, Marozzi & Veneziano (2009); Clarkson &

Umeh (2011); Green & Wald (2011); ...]

Recent reviews: [Buchert & Räsänen, Ann. Rev. Nucl. Part. Sci. 62, 57

(2012); Green & Wald, Class. Quant. Grav. 31, 234003 (2014)]

No general consensus but most people believe now that
gravitational backreaction is rather small.

Here we look at a backreaction on the matter side of Einstein’s
equations.
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = (ε+ p+ πbulk)uµuν + (p+ πbulk)gµν + πµν

Nµ = nuµ + νµ

energy density ε, pressure p = p(ε), number density n

fluid velocity uµ

constitutive relations for viscous terms in derivative expansion

bulk viscous pressure πbulk = −ζ ∇µuµ + . . .

shear stress πµν = −η
[
∆µα∇αuν + ∆να∇αuµ − 2

3
∆µν∇αuα

]
+ . . .

diffusion current να = −κ
[
nT
ε+p

]2
∆αβ∂β

(
µ
T

)
+ . . .

Fluid dynamic equations from covariant conservation laws

∇µTµν = 0, ∇µNµ = 0.
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Fluid equation for energy density

uµ∂µε+ (ε+ p)∇µuµ − ζΘ2 − 2ησµνσµν = 0

with

bulk viscosity ζ, shear viscosity η

expansion scalar

Θ = ∇µuµ = 1
a

[
3 ȧa + ~∇ · ~v −Ψ~∇ · ~v − 3 ȧaΨ− 3Φ̇− 3~v · ~∇Φ + . . .

]

shear stress (∆µν = gµν + uµuν)

σµν =
[

1
2∆µα∆νβ + 1

2∆µβ∆να − 1
3∆µν∆αβ

]
∇αuβ

For small fluid velocity ~v2 � c2 and Newtonian potentials Φ,Ψ� 1

ε̇+ ~v · ~∇ε+ (ε+ p)
(

3 ȧa + ~∇ · ~v
)

= ζ
a

[
3 ȧa + ~∇ · ~v

]2
+ η

a

[
∂ivj∂ivj + ∂ivj∂jvi − 2

3 (~∇ · ~v)2
]
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Fluid dynamic backreaction in Cosmology
Expectation value of energy density ε̄ = 〈ε〉

1
a

˙̄ε+ 3H (ε̄+ p̄− 3ζ̄H) = D

with dissipative backreaction term

D = 1
a2 〈η

[
∂ivj∂ivj + ∂ivj∂jvi − 2

3∂ivi∂jvj
]
〉

+ 1
a2 〈ζ[~∇ · ~v]2〉+ 1

a 〈~v · ~∇ (p− 6ζH)〉

D vanishes for unperturbed homogeneous and isotropic universe

D has contribution from shear viscosity, bulk viscosity and
thermodynamic work done by contraction against pressure gradients

viscous terms in D are positive semi-definite

bulk viscous pressure πbulk = −3ζ̄H already present in background

for 1
a
~∇~v ∼ H backreaction term at same order

for spatially constant viscosities and scalar perturbations only

D =
ζ̄+ 4

3 η̄

a2

∫
d3q Pθθ(q)
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Why is dissipation interesting for (late time) cosmology?

Ideal cosmological fluid can be characterized by the equation of
state. Allows to distinguish and constrain different components

radiation
cold and warm dark matter
dark energy

Dissipative or transport properties can provide finer details

example: Silk damping

Constraints of viscous properties in the dark sector such as

shear and bulk viscosity
heat conductivity
relaxation times ...

could lead to nice constraints of dark matter models

For curiosity one may also ask whether qualitatively new effects can
arise from dissipation
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Dissipative effects in cosmological expansion

So far only homogenous expansion + linear perturbations investigated

for homogeneous and isotropic expansion only effect from bulk
viscosity

bulk viscous pressure is negative

peff = p+ πbulk = p− 3ζH

negative viscous pressure πbulk < 0 acts similar to dark energy and
can be used to accelerate the universe
[Murphy (1973); Padmanabhan & Chitre (1987); Fabris, Goncalves & de Sa

Ribeiro (2006); Li & Barrow (2009); Velten & Schwarz (2011); Gagnon &

Lesgourgues (2011); ...]

Model based on scalar particles with small self interaction leads to
phenomenologically plausible cosmology
[Gagnon & Lesgourgues (2011)]
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Is negative effective pressure physical?

Accelerated expansion from bulk viscous pressure for homogeneous
universe needs negative effective pressure peff = p− 3ζH < 0

Is this physically plausible?

Kinetic theory gives

peff(x) =

∫
d3p

(2π)3
~p2

3E~p
f(x, ~p) ≥ 0

There is also a fluid dynamic stability argument against peff < 0

Ε

peff HΕL

Ε1 Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

If there is a vacuum with ε = peff = 0, negative pressure phases
cannot be stable. (But could be metastable.)
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Dissipation of perturbations

The dissipative backreaction does not need negative effective
pressure

1
a

˙̄ε+ 3H (ε̄+ p̄eff) = D

D is an integral over perturbations, could become large at late times.

Can it potentially accelerate the universe?

Need equation for scale parameter.

Use trace of Einstein’s equations R = 8πGNT
µ
µ

1
aḢ + 2H2 = 4πGN

3 (ε̄− 3p̄eff)

does not depend on unknown quantities like 〈(ε+ peff)uµuν〉
To close the equations one needs equation of state p̄eff = p̄eff(ε̄)
and dissipation parameter D
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Deceleration parameter
assume now simple equation of state peff = ŵ ε

obtain for deceleration parameter q = −1− Ḣ
aH2

− dq
d ln a + 2(q − 1)

(
q − 1

2 (1 + 3ŵ)
)

= 4πGND(1−3ŵ)
3H3

for D = 0 attractive fixed point at q∗ = 1+3ŵ
2

and in particular
q∗ = 1

2
for matter domination (deceleration)

for D > 0 the fixed point is shifted to larger values
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Could viscous backreaction lead to ΛCDM expansion?
Backreaction term D(z) will be some function of redshift.

For given dissipative properties D(z) can be determined, but
calculation is involved.

One may ask simpler question: For what form of D(z) would the
expansion be as in the ΛCDM model?

The ad hoc ansatz D(z) = const ·H(z) leads to modified Friedmann
equations

ε̄− D
4H = 3

8πGN
H2, p̄eff − D

12H = − 1
8πGN

(
2 1
aḢ + 3H2

)
In terms of ε̂ = ε̄− D

3H one can write

1
a

˙̂ε+ 3H(ε̂+ p̄eff) = 0, R+ 8πGND
3H = −8πGN(ε̂− 3p̄eff)

For p̄eff = 0 these are standard equations for ΛCDM model with

Λ = 2πGND
3H
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Estimating viscous backreaction D

For 4πGND
3H3 ≈ 4 one could explain the current accelerated expansion

(q ≈ −0.6) by dissipative backreaction.

Is this possible?

In principle one can determine D for given equation of state and
viscous properties from dynamics of structure formation.

So far only rough estimates. If shear viscosity dominates:

D = 1
a2 〈η

[
∂ivj∂ivj + ∂ivj∂jvi − 2

3∂ivi∂jvj
]
〉 ≈ ση̄H2

with σ = O(1). Corresponds to ∆v ≈ 100 km/s for ∆x ≈ 1 MPc

Leads to
4πGND

3H3 ≈ ση̄H
2ρc

with ρc = 3H2

8πGN

Need also estimate for viscosity η
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Viscosities

Shear and bulk viscosity arise from transport of momentum.

Relativistic particles / radiation contribute to shear viscosity

η = cη εR τR

prefactor cη = O(1)
energy density of radiation εR
mean free time τR, large for small interaction cross section
fluid approximation requires τRH < 1

Bulk viscosity vanishes in situations with conformal symmetry but
can be large when conformal symmetry is broken.

For massive scalar particles with λϕ4 interaction [Jeon & Yaffe (1996)]

ζ ∼ m6

λ4T 3 e
2m/T , η ∼ m5/2T 1/2

λ2 for T
m � 1

Bulk viscosity can become large when inelastic collisions become rare
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Estimating viscous backreaction D

Concentrate on shear viscosity induced by radiation

4πGND
3H3 ≈ ση̄H

2ρc
=

σcη
2

εR
ρc
τRH

could only become of order one for εR/ρc = O(1), τRH = O(1)

photons or rel. neutrinos have too long mean free times, τRH � 1

curiously, gravitons have mean free time [Hawking (1966)]

τG = 1
16πGNη

allows to solve for η and τG [Weinberg (1972)] and leads to

4πGND
3H3 ≈ σ

√
cηεG
24ρc

presumably too small to have an interesting effect

Considerations illustrate how D is determined by the properties of
different components of the universe or could be used to constrain them.
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How is structure formation modified?

Viscosities modify dynamics of structure formation.

On linear level this can be easily taken into account.

from energy conservation (θ = ~∇ · ~v)

δ̇ε+ 3 ȧ
a
δε+ ε̄ θ = 0

from Navier-Stokes equation

ε̄
[
θ̇ + ȧ

a
θ − q2ψ

]
+ 1

a

(
ζ + 4

3
η
)
q2θ = 0

Poisson equation
−q2ψ = 4πGNa

2δε

In terms of δ = δε
ε̄

δ̈ +
[
ȧ
a +

ζ+ 4
3η

aε̄ q2
]
δ̇ − 4πGNε̄ δ = 0

The viscosites slow down gravitational collapse but do not wash out
structure.

More detailed investigations in progress.
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Conclusions

Backreaction term D describes how energy from perturbation is
dissipated into background energy density.

It is clear that there are dissipative effects of some size also in the
dark sector, but unclear of what size.

Fluid velocity gradients grow due to gravitational collapse but could
be dissipated by viscosity.

If dissipative effects are large they could potentially explain the
observed accelerated expansion.

Dissipative backreaction is triggered by structure formation so it
would be natural that it sets in at late times.

If dissipative effects are smaller they are still interesting in order to
learn more about the dark sector.
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Backup
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Modification of Friedmann’s equations 1
For universe with fluid velocity inhomogeneities one cannot easily
take direct average of Einstein’s equations.

However, fluid equation for energy density and trace of Einstein’s
equations can be used.

By integration one finds modified Friedmann equation

H(τ)2 = 8πGN
3

[
ε̄(τ)−

∫ τ

τI

dτ ′
(
a(τ ′)
a(τ)

)4

a(τ ′)D(τ ′)

]

Additive deviation from Friedmann’s law for D(τ ′) > 0

Part of the total energy density is due to dissipative production

ε̄ = ε̄nd + ε̄d

Assume for dissipatively produced part

˙̄εd + 3
ȧ

a
(1 + ŵd)ε̄d = aD
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Modification of Friedmann’s equations 2
Leads to another variant of Friedmann’s equation

H(τ)2 = 8πGN
3

[
ε̄nd(τ) +

∫ τ

τI

dτ ′
[(

a(τ ′)
a(τ)

)3+3ŵd

−
(
a(τ ′)
a(τ)

)4
]
a(τ ′)D(τ ′)

]

If the dissipative backreaction D produces pure radiation, ŵd = 1/3,
it does not show up in effective Friedmann equation at all!

For ŵd < 1/3 there is a new component with positive contribution
on the right hand side of the effective Friedmann equation.

To understand expansion, parametrize for late times

D(τ) = H(τ)
(
a(τ)
a(τ0)

)−κ
D̃

with constants D̃ and κ.

Hubble parameter as function of (a0/a) = 1 + z

H(a) = H0

√
ΩΛ + ΩM

(
a0
a

)3
+ ΩR

(
a0
a

)4
+ ΩD

(
a0
a

)κ
For κ ≈ 0 the role of ΩΛ and ΩD would be similar.
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