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Introduction



What perturbations are interesting and why?

Initial fluid perturbations: Event-by-event fluctuations around a
background or average of fluid fields at time τ0:

energy density ε
fluid velocity uµ

shear stress πµν

more general also: baryon number density nB ,
electric charge density, electromagnetic fields, ...

governed by universal evolution equations

can be used to constrain thermodynamic and transport properties

contain interesting information from early times
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A program to understand fluid perturbations

1 Characterize initial perturbations.

2 Propagated them through fluid dynamic regime.

3 Determine influence on particle spectra and harmonic flow
coefficients.

4 Take also perturbations from non-hydro sources (jets) into account.
[see talk of K. Zapp]
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Characterization of initial conditions



Transverse enthalpy density

Based on Bessel-Fourier expansion and background density
[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen &

Wolpert 2012, Floerchinger & Wiedemann 2014]

w(r, φ) = wBG(r) + wBG(r)
∑
m,l

w
(m)
l eimφ Jm

(
z
(m)
l ρ(r)

)

azimuthal wavenumber m, radial wavenumber l

w
(m)
l dimensionless

higher m and l correspond to finer spatial resolution

coefficients w
(m)
l can be related to eccentricienies

works similar for vectors (velocity) and tensors (shear stress)
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Transverse density from Glauber model
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Event ensembles

Event-by-event probability distribution

pτ0 [w, u
µ, πµν , . . .]

Moments / correlation functions〈
w

(m1)
l1

w
(m2)
l2

. . . w
(mn)
ln

〉
contain information from initial state physics / early dynamics
universal (model independent) properties would be nice to have
same information in cumulants (connected correlation functions)
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Statistics of initial density perturbations

Independent point-sources model (IPSM)

w(~x) =

[
1

τ0

dWBG

dη

]
1

N

N∑
j=1

δ(2)(~x− ~xj)

random positions ~xj , independent and identically distributed

probability distribution p(~xj) reflects collision geometry

possible to determine correlation functions analytically for central
and non-central collisions [Floerchinger & Wiedemann (2014)]

Long-wavelength modes (small m and l) that don’t resolve
differences between point-like and extended sources have
universal statistics.
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Scaling with number of sources
Connected correlation functions (cumulants) scale with N like
[see also Ollitrault & Yan (2014), Bzdak & Skokov (2014)]

〈w(m1)
l1
· · ·w(mn)

ln
〉c ∼

1

Nn−1

scaling broken for non-central collisions

b-dependence of term that break scaling is known

cumulants or connected 
correlation functions

fixed reaction!
plane angle

h· · · i
Z[j]

h· · · ic
ln Z[j]

ln

exp

random reaction!
plane angle

h· · · i�
Z�[j]

ln

exp

h· · · i�,c 6= h· · · ic,�
ln Z�[j] 6= (ln Z[j])�

moments or!
correlation functions

�R

�R

averaging �R
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Fluid dynamic response



Perturbative expansion

Write the hydrodynamic fields h = (w, uµ, πµν , πBulk, . . .)

at initial time τ0 as

h = h0 + ε h1

with background h0, fluctuation part ε h1

at later time τ > τ0 as

h = h0 + ε h1 + ε2h2 + ε3h3 + . . .

Solve for time evolution in this scheme

h0 is solution of full, non-linear hydro equations in symmetric
situation: azimuthal rotation and Bjorken boost invariant

h1 is solution of linearized hydro equations around h0,
can be solved mode-by-mode

h2 can be obtained by from interactions between modes etc.
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Response to density perturbations

For a single event

V ∗
m = vme

−imψm

=
∑
l

S(m)l w
(m)
l +

∑
m1,m2,
l1,l2

S(m1,m2)l1,l2 w
(m1)
l1

w
(m2)
l2

δm,m1+m2
+ . . .

S(m)l is linear dynamic response function

S(m1,m2)l1,l2 is quadratic dynamic response function etc.

Symmetries imply conservation of azimuthal wavenumber

Response functions depend on thermodynamic and transport
properties, in particular viscosity.
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Flow correlations from initial density correlations
Moments of flow coefficients〈

V ∗
m1
· · ·V ∗

mn

〉
=S(m1)l1 · · ·S(mn)ln

〈
w

(m1)
l1
· · ·w(mn)

ln

〉
+ non-linear terms

combination of dynamical response coefficients and correlation
functions of initial density perturbations

linear, quadratic and higher-order terms

For N independent sources and central collisions

vm{n}n ∼
1

Nn−1

holds also for extended sources
holds also for non-linear response contributions
can be extended to other conn. correlation functions, e. g. 〈V2V3V

∗
5 〉

gets broken for non-central collisions
impact parameter dependence of corrections is known
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Scaling with system size

Large (PbPb) and small systems (pPb) have different number of
independent sources N .

For linear dynamics one has parametrically

vm{n} ∼ S(m)l
N1/n

N
.

To have vm{n}|PbPb = vm{n}|pPb one needs

S(m)l|pPb

S(m)l|PbPb
=

(
NpPb

NPbPb

)1− 1
n

< 1.

Response function S(m)l must be smaller for pPb than for PbPb.
S(m)l is independent of n, above equation can be true only for one n.
S(m)l depends on system size only via initial background wBG(r).
Precise dependence can be investigated more closely.
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How response functions can be

determined:

1. Hydrodynamic evolution



Background evolution

System of coupled 1 + 1 dimensional non-linear partial differential
equations for

enthalpy density w(τ, r) (or temperature T (τ, r))

fluid velocity uτ (τ, r), ur(τ, r)

two independent components of shear stress πµν(τ, r)

Can be easily solved numerically
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Evolving perturbation modes

Linearized hydro equations: set of coupled 3 + 1 dimensional, linear,
partial differential equations.

Use Fourier expansion

hj(τ, r, φ, η) =
∑
m

∫
dkη
2π

h
(m)
j (τ, r, kη) e

i(mφ+kηη).

Reduces to 1 + 1 dimensions.

Can be solved numerically for each initial Bessel-Fourier mode.
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Mode interactions

Non-linear terms in the evolution equations lead to mode
interactions.

Quadratic and higher order in initial perturbations.

Can be determined from iterative solution but has not been fully
worked out yet.

Convergence can be tested with numerical solution of full hydro
equations.
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Scaling tests

Start with single enthalpy density mode (m = 2, l = 1) on top of
background

w(τ0, r, φ) = wBG(τ0, r)
[
1 + 2 w̃

(2)
1 J2(k

(2)
1 r) cos(2φ)

]
.

Evolve this with hydro solver ECHO-QGP
[Del Zanna et al., EPJC 73, 2524 (2013), see also following talk]

Determine Fourier components

w̃(m)(τ, r) =
1

wBG(r)

1

2π

∫
dφ e−imφ w(τ, r, φ)
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Scaling tests at first order

Compare enthalpy w̃(2)(τ, r) at fixed τ for different initial weights
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Scaling tests at second order

From symmetry considerations one expects that modes with m = 0 and

m = 4 receive mainly quadratic contributions ∼
(
w̃

(2)
1

)2
.
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Hydrodynamic response to initial enthalpy density fluctuations is
perturbative.

Non-linearities can be understood order-by-order and lead to
characteristic “overtones”.

Results motivate more thorough development of fluid dynamic
perturbation theory.
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How response functions can be

determined:

2. Kinetic freeze-out



Freeze-out surface

Perturbative expansion can be used also at freeze-out.
[Floerchinger, Wiedemann 2013]

Freeze-out surface is azimuthally symmetric as background.

Generalization to kinetic hadronic scattering and decay phase
possible.
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Particle distribution

for single event

ln

(
dN single event

pT dpT dφdy

)
= lnS0(pT )︸ ︷︷ ︸

from background

+
∑
m,l

w
(m)
l eimφθ

(m)
l (pT )︸ ︷︷ ︸

from fluctuations

each mode comes with an angle, w
(m)
l = |w(m)

l | eimψ(m)
l

each mode has different pT -dependence, θ
(m)
l (pT )

quadratic order correction∑
m1,m2,l1,l2

w
(m1)
l1

w
(m2)
l2

ei(m1+m2)φ κ
(m1,m2)
l1,l2

(pT )

non-linearities from hydro evolution and freeze-out
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Harmonic flow coefficients

Double differential harmonic flow coefficient (to lowest order)

vm{2}2(paT , pbT ) =
∑
l1,l2

θ
(m)
l1

(paT ) θ
(m)
l2

(pbT ) 〈w(m)
l1

w
(m)∗
l2
〉

intuitive matrix expression

in general no factorization

can be generalized to higher order flow cumulants
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Summary and Conclusions



Conclusions

Systematic expansion in initial fluid perturbations seems possible
(good convergence properties) and very useful.

Formalism works in praxis (see backup slides for results of “proof of
principle” study).

Initial density perturbations have some universal properties that can
help to better constrain thermodynamic and transport properties.

Fluid dynamic response allows to access correlation functions of
initial perturbations.
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Backup



Characterization of transverse density via eccentricities

Fluctuations in initial transverse enthalpy density w(r, φ) can be
characterized in terms of eccentricities εn,m and angles ψn,m
[Ollitrault, Teaney, Yan, Luzum, and others]

εn,m e
imψn,m =

∫
dr
∫ 2π

0
dϕ rn+1 eimϕ w(r, ϕ)∫

dr
∫ 2π

0
dϕ rn+1 w(r, ϕ)

w(r, φ) completely determined by set of all εn,m and ψn,m

closely related method is based on cumulants [Teaney, Yan]

no positive transverse density can be associated to small set of
cumulants (beyond Gaussian order) such that higher order
cumulants vanish

generalization to velocity and shear fluctuations not known



Scaling tests at third order

From symmetry considerations one expects that modes m = 6 receive

mainly cubic contributions ∼
(
w̃

(2)
1

)3
.
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Scaling tests embedded in realistic event
Embed mode (m = 2, l = 1) into realistic fluctuating event and compare
to embedding into pure background.
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Scaling tests with several initial modes
Start with linear combination of (m = 2, l = 2) and (m = 3, l = 1)
modes and test scaling for m = 1 and m = 5 response.
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Generalized Glauber model

Fluctuations due to nucleon positions: used so far

ε(τ,x, y) =

Npart∑
i=1

εw(τ,x− xi, y), uµ = (1, 0, 0, 0)

can be generalized to include also velocity fluctuations

Tµν(τ,x, y) =

Npart∑
i=1

Tµνw (τ,x− xi, y)

More generally describe primordial fluid fields by

expectation values 〈ε(τ0,x, y)〉, 〈uµ(τ0,x, y)〉, 〈nB(τ0,x, y)〉
correlation functions 〈ε(τ0,x, y) ε(τ0,x′, y′)〉, etc.

Origin of this fluctuations is initial state physics and
early-time, non-equilibrium dynamics.



Velocity fluctuations
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also the velocity field will fluctuate at the initialization time τ0
take here transverse velocity for every participant to be Gaussian
distributed with width 0.1c

vorticity |∂1u2 − ∂2u1| and divergence |∂1u1 + ∂2u
2|



“Proof of principle” study: One-particle spectrum

Initial conditions from Glauber Monte Carlo Model

S(pT ) = dN/(2πpT dpT dηdφ)
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Points: 5% most central collisions, ALICE [PRL 109, 252301 (2012)]
Curves: Our calculation, no hadron rescattering and decays after freeze-out.



Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Curves: Different maximal resolution lmax



Harmonic flow coefficients for central collisions

Elliptic flow for charged particles
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Solid curves: Different maximal resolution lmax

Dashed curve: Mode (m = 2, l = 1) suppressed by factor 0.7



Harmonic flow coefficients for central collisions

Flow coefficient v4 for charged particles
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Curves: Different maximal resolution lmax



Harmonic flow coefficients for central collisions

Flow coefficient v5 for charged particles
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Harmonic flow coefficients, central, particle identified
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