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Introduction



The quantum effective action
Schwinger functional from functional integral

eW [J] =

∫
Dϕ e−S[ϕ]+

∫
x
Jϕ

Generates connected correlation functions, e.g.

δ2

δJ(x)δJ(y)
W [J ] = 〈ϕ(x)ϕ(y)〉c = 〈ϕ(x)ϕ(y)〉 − 〈ϕ(x)〉〈ϕ(y)〉

Quantum effective action by Legendre transform

Γ[φ] =

∫
x

Jφ−W [J ], with φ =
δW [J ]

δJ
.

Generates one-particle irreducible correlation functions: Propagators
and vertices obtained by functional derivatives of Γ[φ] can be used
in tree-level expressions to yield exact correlation functions.

Contains renormalized masses, coupling constants etc.

Thermodynamic and transport properties follow from Γ[φ], as well.



How do we obtain the quantum effective action Γ[φ]?

Idea of functional renormalization: Γ[φ]→ Γk[φ]

k is additional infrared cutoff parameter.

Γk[φ]→ S[φ] for k →∞ .

Γk[φ]→ Γ[φ] for k → 0 .



Flowing action
Modified Schwinger functional

eWk[J] =

∫
Dϕ e−S[ϕ]− 1

2

∫
p
ϕ(−p)Rk(p)ϕ(p)+

∫
x
Jϕ

Rk(p) is infrared cutoff function,

lim
p2→0

Rk(p) ≈ k2, lim
p2→∞

Rk(p) = 0,

lim
k→0

Rk(p) = 0, lim
k→∞

Rk(p) =∞.

Flowing action defined as

Γk[φ] =

∫
x

Jφ−Wk[J ]− 1

2

∫
p

φ(−p)Rk(p)φ(p)

Interpolates between classical action and quantum effective action

lim
k→∞

Γk[φ] = S[φ],

lim
k→0

Γk[φ] = Γ[φ].



How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

∂kΓk[φ] =
1

2
STr

(
Γ

(2)
k [φ] +Rk

)−1

∂kRk.

Differential equation for a functional.

For most cases not solvable exactly.

Approximate solutions can be found from Truncations.

Ansatz for Γk with a finite number of parameters.
Derive ordinary differential equations for this parameters or couplings
from the flow equation for Γk.
Solve these equations numerically.



Truncations

Main truncation schemes usually employed are

Derivative expansion

Γk =

∫
x

{
Uk(ϕ∗ϕ) + Zk ϕ

∗(−∂µ∂µ)ϕ+ . . .
}

Vertex expansion

Γk =

∫
q

ϕ∗(q)Pk(q)ϕ(q)

+

∫
q1..q4

Ak(q1, .., q4)ϕ∗(q1)ϕ(q2)ϕ∗(q3)ϕ(q4) + . . .

Momentum dependence of vertices is crucial but this gets quickly
complicated...

One needs a way to take the most important structures into account.



Problems with momentum dependence

Numerical schemes to resolve the momentum dependence face various
problems

Symmetries / Ward identities

Numerical effort

Singularities

Spontaneous symmetry breaking

Analytic continuation to real frequencies

Unitarity and Causality

Physical interpretation

Idea followed here: Concentrate on physical important singular structures.



Bound states



Motivation

Formation of bound states was one of the first problems discussed in
quantum mechanics

Bound state formation is much more difficult to treat in Quantum
field theory.

Bethe-Salpeter equation can be used to sum Ladder diagrams but it
is difficult to go beyond.

Good alternatives needed!



Flow equations and Bound states

Wetterich’s flow equation was used by Ellwanger to study bound
states in the Wick-Cutkosky model.
(U. Ellwanger, Z. Phys. C 62, 503 (1994).)

Wegner’s flow equation for Hamiltonians was used to investigate
bound states in two dimensions
(S. D. Glazek and K. G. Wilson, PRD 57, 3558 (1998).)

Partial bosonization and k-dependent, non-linear field
transformations were used for the NJL-model
(H. Gies and C. Wetterich, PRD 65, 065001 (2002).)



Four point function in QED

Exact four point function in QED

Two very different contributions

Photon exchange

Bound state formation

Different physics with different description but both included in
exact four-point function.



Perturbative QED point of view

basic process

gets renormalized by

leads for example to

g − 2

2
≈ α

2π
≈ 0.0011614

Bound state formation is non-perturbative

Bethe-Salpeter equation allows to resum parts of this



Quantum mechanics point of view 1

Integrate photon out, take non-relativistic limit

−e2

(~p− ~p′)2
∼ −e2

4π|~x1 − ~x2|

Schrödinger equation
Hψ = Eψ

Hamiltonian

H =
1

2(me +mP )
(~pe + ~pP )2 +

1

2µ
~p2
r + V

Solution gives series of bound states

Hψnlm = Enψnlm

ψnlm = Rnl(r)Ylm(Ω~r)



Quantum mechanics point of view 2

Four point function

∑
nlm

gnlm(mP ~p
′ −me~q

′) g∗nlm(mP ~p−me~q )

q0 + p0 − 1
2(me+mP ) (~p+ ~q)2 − En

.

Limits are

Only instantaneous interactions
No radiation corrections
Not Lorentz invariant



Unified treatment

Should describe both

Perturbative QED (High energies / momenta)

Bound states (Small energy / momenta)

Basic ideas

Introduce auxiliary fields for the orbitals

simple description of bound states
efficient treatment of singular momentum structure

Keep photon exchange picture for interaction

retardation effects
radiation corrections
simple scattering theory for large energies

On large scale only photon exchange

introduce orbitals gradually during flow

Can be done with flowing bosonization.



Flowing bosonization

Start with QED + auxiliary fields for bound states

Auxiliary fields decouple at the microscopic scale hΛ = 0.

Need one auxiliary field for every orbital j = (n, l,m).

For instantaneous photon (c→∞):

Yukawa vertex depends on relative velocity of electron and proton

hj = hj (~p/me − ~q/mP )

.
Propagator matrix depends on center of mass momentum

Gjj′ = Gjj′(p+ q).



Flowing bosonization with exact flow equation 1

Exact flow equation

∂kΓk =
1

2
STr(Γ

(2)
k +Rk)−1(∂kRk −Rk(∂kQ

−1)Rk)

− 1

2
Γ

(1)
k (∂kQ

−1)Γ
(1)
k .

(S. Floerchinger and C. Wetterich, PLB 680, 371 (2009).)

Derived from k-dependent Hubbard-Stratonovich transformation.

Γ
(1)
k is functional derivative with respect to the composite field.

∂kQ
−1 can be chosen arbitrary.



Flowing bosonization with exact flow equation 2

Flow of four point function can be absorbed by convenient choice of
∂kQ

−1.

This modifies flow of coupling h and bound state propagator



Flowing bosonization with exact flow equation 3

For non-relativistic particles with instantaneous interaction one can
solve the flow equations. Equivalence to Schrödinger equation can
be shown (S. Floerchinger, Eur. Phys. J. C 69, 119 (2010)).

For k = 0 the effective four-point function has two main
contributions

Fundamental fields and composite fields are treated equal.

This allows to treat

Interactions between composite fields
Spontaneous symmetry breaking
Bound states of composite fields



Analytic continuation



Why analytic continuation

Physical propagating degrees of freedom are characterized by a pole
or cut in the correlation function.

A pole in the propagator corresponds to a stable particle, a cut
corresponds to a resonance.

Many technical methods e.g. to perform Matsubara summations use
the analytic structures and at the end one needs the residue at a
pole or the integral along a cut.

Idea: Concentrate on the singular structures and describe them by
as few parameters as possible.



Physics takes place in Minkowski space

Many singular structures can only be properly seen in Minkowski
space. (In Euclidean space there are some at ~p = 0 for massless
particles or at Fermi surfaces.)

Numerical approaches have difficulties with singularities and try to
avoid them as far as possible (and therefore usually work in
Euclidean space).

But: Singularities in correlation functions are physical and very
important. We should not be afraid of them!

Functional renormalization as a semi-analytic method has the
potential to cope well with singularities but is mainly used in
Euclidean space so far.

Idea followed here: Derive flow equations directly for real time
properties by using analytic continuation.



Different strategies for analytic continuation

1. Extend formalism to Minkowski space functional integral

2. Keep on working with Matsubara space functional integral,
use analytic continuation at k = 0.

3. Keep on working with Matsubara space functional integral,
use analytic continuation of flow equations.



Strategy 1: Extend formalism to Minkowski space

some technical problems

factors i appear at various places
−p20 + ~p2 is not positive definite: what is IR and what is UV?
not obvious how to choose Rk(p) such that

lim
k→∞

Γk[φ] = S[φ]

needs Schwinger-Keldysh closed time contour

technically involved formalism
averaging over initial density matrix sometimes difficult

can be used also in far-from-equilibrium situations



Strategy 2: Work with functional integral in Matsubara
space and use analytic continuation at k = 0

can be done with numerical techniques: Padé approximants or
maximal entropy methods

numerical effort rather large

knowledge about spectral properties does not improve RG running

only linear response properties accessible

some results already available:

N. Dupuis, PRA 80, 043627 (2009).
A. Sinner, N. Hasselmann, P. Kopietz, PRL 102, 120601 (2009).
R. Schmidt, T. Enss, Phys. Rev. A 83, 063620 (2011).
M. Haas, L. Fister, J. M. Pawlowski, arXiv:1308.4960



Strategy 3: Work with functional integral in Matsubara
space and use analytic continuation of flow equations

no numerical methods needed for analytical continuation

truncations with only a few parameters that parameterize efficiently
the quasi-particle properties can be used

flow equations for real-time properties

space-time symmetries can be preserved

only linear response properties accessible

Follow this strategy here!



Analytic structure of the effective action

Consider the Quantum effective action

Γ[φ] =

∫
x

Jφ−W [J ].

The propagator

Γ(2)(p, p′) = (2π)dδ(d)(p− p′) G−1(p)

has the Källen-Lehmann spectral representation

G(p) =

∫ ∞
0

dµ2 ρ(µ2)
1

p2 + µ2
.

This holds both for

Euclidean space: p2 = ~p2 + p2
4

Minkowski space: p2 = −p2
0 + ~p2



Propagator in Minkowski space

Consider p0 ∈ C as complex. Close to real p0 axis one has

From spectral representation

P (p) = G(p)−1 = P1(p2
0 − ~p2)− i s(p0)P2(p2

0 − ~p2)

with
s(p0) = sign(Re p0) sign(Im p0)

and real functions P1 and P2.

Nonzero P2 leads to a branch cut in the propagator:
The imaginary part of P (p) jumps at the real p0 axis.

Physical implication of non-zero P2 is non-zero decay width of
quasi-particles (finite life-time).



Analytic continuation setup

Keep on working with Euclidean space functional integral.

Definition of Γk and flow equation remains unchanged,

∂kΓk[φ] =
1

2
Tr(Γ

(2)
k [φ] +Rk)−1∂kRk.

Choose cutoff function Rk with correct properties for Euclidean
argument p2 ≥ 0

Rk(p2)→∞ for k →∞ (implies Γk[φ]→ S[φ])
Rk(p2)→ 0 for k → 0 (implies Γk[φ]→ Γ[φ])
Rk(p2) ≥ 0, Rk(p2)→ 0 for p2 � k2

Flow equations for n-point functions

Γ
(n)
k (p1, ..., pn)

are analytically continued towards the real frequency axis.

Truncation uses expansion around real p0 (Minkowski space).



Derivative expansion in Minkowski space

Consider a point p2
0 − ~p2 = m2 where P1(m2) = 0.

One can expand around this point

P1 = Z(−p2
0 + ~p2 +m2) + · · ·

P2 = Zγ2 + · · ·

Leads to Breit-Wigner form of propagator (with γ2 = mΓ)

G(p) =
1

Z

−p2
0 + ~p2 +m2 + i s(p0)mΓ

(−p2
0 + ~p2 +m2)2 +m2Γ2

.

A few flowing parameters describe efficiently the singular structure
of the propagator.



Choosing a regulator

The analytic properties of correlation functions at k > 0 depend on
the choice of Rk(p).

One would like to perform loop integrations analytically as far as
possible to facilitate analytic continuation.

Useful are the following choices

Rk(p0, ~p) = Zk2 1

1 + c1

(
−p20+~p2

k2

)
+ c2

(
−p20+~p2

k2

)2

+ . . .
.

Allows to do the Matsubara summations analytically for truncation
based on derivative expansion.



Truncation for relativistic scalar O(N) theory

Γk =

∫
t,~x

{
N∑
j=1

1

2
φ̄j P̄φ(i∂t,−i~∇) φ̄j

+
1

4
ρ̄ P̄ρ(i∂t,−i~∇) ρ̄+ Ūk(ρ̄)

}

with ρ̄ = 1
2

∑N
j=1 φ̄

2
j .

Goldstone propagator massless, expanded around p0 − ~p2 = 0

P̄φ(p0, ~p) ≈ Z̄φ (−p2
0 + ~p2)

Radial mode is massive, expanded around p2
0 − ~p2 = m2

1

P̄φ(p0, ~p) + ρ̄0P̄ρ(p0, ~p) + Ū ′k + 2ρ̄Ū ′′k

≈ Z̄φZ1

[
(−p2

0 + ~p2 +m2
1)− is(p0) γ2

1

]



Flow of the effective potential

∂tUk(ρ)
∣∣
ρ̄

=
1

2

∫
p0=iωn,~p

{
(N − 1)

~p2 − p2
0 + U ′ + 1

Z̄φ
Rk

+
1

Z1 [(~p2 − p2
0)− i s(p0)γ2

1 ] + U ′ + 2ρU ′′ + 1
Z̄φ
Rk

}
1

Z̄φ
∂tRk.

Summation over Matsubara frequencies p0 = i2πTn can be done
using contour integrals.

Radial mode has non-zero decay width since it can decay into
Goldstone excitations.

Use Taylor expansion for numerical calculations

Uk(ρ) = Uk(ρ0,k) +m2
k(ρ− ρ0,k) +

1

2
λk(ρ− ρ0,k)2



Flow of the interaction strength λk

-10 -8 -6 -4 -2 0
0.50

0.52

0.54

0.56

0.58

0.60

0.62

λk

ln(k/Λ)



Flow of the minimum of the effective potential ρ0,k

-10 -8 -6 -4 -2 0
0.000

0.005

0.010

0.015

0.020

ρ0,k/Λ
2

ln(k/Λ)



Flow of the propagator

Goldstone mode propagator characterized by anomalous dimension

ηφ = − 1

Z̄φ
k∂kZ̄φ

Radial mode propagator

G1 =
1

Z1 [(−p2
0 + ~p2)− is(p0)γ2

1 ] + 2λkρ2
0

flow equation for Z1 is evaluated in the standard way
flow equation for γ2

1 is evaluated from discontinuity at p0 = m1 ± iε



Anomalous dimension ηφ
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Flow of the coefficient Z1
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black solid line: evaluation at p0 = m1

red dashed line: evaluation at p0 = 0



Flow of the discontinuity coefficient γ2
1
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Conclusions



Conclusions

Functional renormalization is powerful method for non-perturbative
QFT studies.

Analytic continuation allows to access directly physical information
in real time.

Together with k-dependent Hubbard-Stratonovich transformation
this will allow for efficient truncations with few parameters taking all
singular structures into account.

Bound states can be treated as well.

Allows unified treatment of fundamental and composite fields.

Would be interesting to make connection to RG in light cone
coordinates (DGLAP).


