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Introduction



The quantum effective action
Schwinger functional from functional integral

Ry :/[w o~ Slel ], o

o Generates connected correlation functions, e.g.

M(;)S;(y)W[J] = {e@)e®))e = (e(x)e(y)) — (p(x)){e(y))

Quantum effective action by Legendre transform

F[(;S]:/JQS—W[J], with =20

o Generates one-particle irreducible correlation functions: Propagators
and vertices obtained by functional derivatives of I'[¢] can be used
in tree-level expressions to yield exact correlation functions.

o Contains renormalized masses, coupling constants etc.
@ Thermodynamic and transport properties follow from T'[¢], as well.



How do we obtain the quantum effective action I'[¢]?

Idea of functional renormalization: T'[¢] — T'y[¢]
o k is additional infrared cutoff parameter.
o I'y[¢] — S[¢] for k— o0.
o I'ylp] = T[¢] for k—0.
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Flowing action
Modified Schwinger functional
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@ Ry (p) is infrared cutoff function,
lim Ry(p) ~k?,  lim Re(p) =0,
p2—0 p?2—00

li = li = 0.
lim Ry(p) 0, Jim Ry (p) = oo

Flowing action defined as

relol = [ g6 = Wild) = 5 [ o-p) Rulo) ot0)

@ Interpolates between classical action and quantum effective action
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How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

0T [6] = %sw (r219) + Rk)_l O, Ry

o Differential equation for a functional.
@ For most cases not solvable exactly.

@ Approximate solutions can be found from Truncations.

e Ansatz for 'y, with a finite number of parameters.

o Derive ordinary differential equations for this parameters or couplings
from the flow equation for I'j.

e Solve these equations numerically.



Truncations

Main truncation schemes usually employed are

@ Derivative expansion

Iy = / {Uk6"0) + Zi " (-0,0")0 + ...}

@ Vertex expansion

Iy = / ©*(¢)Pu(q)¢(q)

+/ Ar(q1, - q4) " (q1) p(q2) 9" (a3) p(qa) + - -

@ Momentum dependence of vertices is crucial but this gets quickly
complicated...

@ One needs a way to take the most important structures into account.



Problems with momentum dependence

Numerical schemes to resolve the momentum dependence face various
problems

o Symmetries / Ward identities
@ Numerical effort

Singularities

Spontaneous symmetry breaking

Analytic continuation to real frequencies

Unitarity and Causality

Physical interpretation

Idea followed here: Concentrate on physical important singular structures.



Bound states



Motivation

@ Formation of bound states was one of the first problems discussed in
quantum mechanics

1926. M 6.

ANNALEN DER PHYSIK

VIERTE FOLGE. BAND 79.

1. Quantisierung als EHigenwertproblem;
vor B, Schriédinger.

@ Bound state formation is much more difficult to treat in Quantum
field theory.

o Bethe-Salpeter equation can be used to sum Ladder diagrams but it
is difficult to go beyond.

@ Good alternatives needed!



Flow equations and Bound states

o Wetterich's flow equation was used by Ellwanger to study bound
states in the Wick-Cutkosky model.

(U. Ellwanger, Z. Phys. C 62, 503 (1994).)

o Wegner's flow equation for Hamiltonians was used to investigate
bound states in two dimensions
(S. D. Glazek and K. G. Wilson, PRD 57, 3558 (1998).)

o Partial bosonization and k-dependent, non-linear field

transformations were used for the NJL-model
(H. Gies and C. Wetterich, PRD 65, 065001 (2002).)



Four point function in QFED

e P
e Exact four point function in QED \\’/

Electrown Proton

@ Two very different contributions

e Photon exchange >/ A <

e Bound state formation AN

o Different physics with different description but both included in
exact four-point function.



Perturbative QED point of view

@ basic process >’»/’/\ <
gets renormalized by >“\/\”< > - <’ > Q <

leads for example to P

922 ~0.0011614 S
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o Bound state formation is non-perturbative

Bethe-Salpeter equation allows to resum parts of this



Quantum mechanics point of view 1
@ Integrate photon out, take non-relativistic limit
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@ Schrodinger equation
Hy = Ey

e Hamiltonian
1

1
H= ——(fo+7p)*+ 02+ V
2(me + mp) (Pe + Pr) 2,up

@ Solution gives series of bound states

Hwnlm = nd}nlm
wnlm - Rnl(T)Yi’m(QF)



Quantum mechanics point of view 2

e Four point function
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o Limits are
e Only instantaneous interactions
o No radiation corrections
o Not Lorentz invariant



Unified treatment

Should describe both
o Perturbative QED (High energies / momenta)
@ Bound states (Small energy / momenta)
Basic ideas

@ Introduce auxiliary fields for the orbitals

e simple description of bound states
o efficient treatment of singular momentum structure

o Keep photon exchange picture for interaction

o retardation effects
e radiation corrections
e simple scattering theory for large energies

@ On large scale only photon exchange

e introduce orbitals gradually during flow

Can be done with flowing bosonization.



Flowing bosonization

o Start with QED + auxiliary fields for bound states

a0 S

Electron Probon Photon Bound state

o Auxiliary fields decouple at the microscopic scale hy = 0.
o Need one auxiliary field for every orbital j = (n,l,m).

e For instantaneous photon (¢ — o0):
e Yukawa vertex depends on relative velocity of electron and proton

h;j = hj (p/me — G/mp)

e Propagator matrix depends on center of mass momentum

Gy =GP+ q)-



Flowing bosonization with exact flow equation 1

o Exact flow equation
1
0Ty :§STr(F,(f) + Ry)  (OkRy, — Ri(0rQ Y Ry)
1
- §r§j>(a,€Q*1)F,§1>.

(S. Floerchinger and C. Wetterich, PLB 680, 371 (2009).)
o Derived from k-dependent Hubbard-Stratonovich transformation.
° F,(Cl) is functional derivative with respect to the composite field.

@ 0,Q ! can be chosen arbitrary.



Flowing bosonization with exact flow equation 2

e Flow of four point function can be absorbed by convenient choice of
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Flowing bosonization with exact flow equation 3

o For non-relativistic particles with instantaneous interaction one can
solve the flow equations. Equivalence to Schrédinger equation can
be shown (S. Floerchinger, Eur. Phys. J. C 69, 119 (2010)).

@ For k = 0 the effective four-point function has two main
contributions

NS >< *
AN

o Fundamental fields and composite fields are treated equal.
@ This allows to treat

o Interactions between composite fields
e Spontaneous symmetry breaking
e Bound states of composite fields



Analytic continuation



Why analytic continuation

@ Physical propagating degrees of freedom are characterized by a pole
or cut in the correlation function.

@ A pole in the propagator corresponds to a stable particle, a cut
corresponds to a resonance.

@ Many technical methods e.g. to perform Matsubara summations use
the analytic structures and at the end one needs the residue at a
pole or the integral along a cut.

o Idea: Concentrate on the singular structures and describe them by
as few parameters as possible.



Physics takes place in Minkowsk: space

@ Many singular structures can only be properly seen in Minkowski
space. (In Euclidean space there are some at 5 = 0 for massless
particles or at Fermi surfaces.)

o Numerical approaches have difficulties with singularities and try to
avoid them as far as possible (and therefore usually work in
Euclidean space).

e But: Singularities in correlation functions are physical and very
important. We should not be afraid of them!

o Functional renormalization as a semi-analytic method has the
potential to cope well with singularities but is mainly used in
Euclidean space so far.

@ ldea followed here: Derive flow equations directly for real time
properties by using analytic continuation.



Different strategies for analytic continuation

o 1. Extend formalism to Minkowski space functional integral
o 2. Keep on working with Matsubara space functional integral,
use analytic continuation at k£ = 0.

o 3. Keep on working with Matsubara space functional integral,
use analytic continuation of flow equations.



Strateqy 1: Fxtend formalism to Minkowsk: space

@ some technical problems

o factors ¢ appear at various places
o —pi + p° is not positive definite: what is IR and what is UV?
e not obvious how to choose Ry (p) such that

lim Ty[¢] = S[¢]

k—oo

@ needs Schwinger-Keldysh closed time contour

e technically involved formalism
e averaging over initial density matrix sometimes difficult

@ can be used also in far-from-equilibrium situations



Strategy 2: Work with functional integral in Matsubara
space and use analytic continuation at k =0

can be done with numerical techniques: Padé approximants or
maximal entropy methods

numerical effort rather large

knowledge about spectral properties does not improve RG running
only linear response properties accessible

some results already available:

N. Dupuis, PRA 80, 043627 (2009).

A. Sinner, N. Hasselmann, P. Kopietz, PRL 102, 120601 (2009).
R. Schmidt, T. Enss, Phys. Rev. A 83, 063620 (2011).

M. Haas, L. Fister, J. M. Pawlowski, arXiv:1308.4960



Strategy 3: Work with functional integral in Matsubara
space and use analytic continuation of flow equations

@ no numerical methods needed for analytical continuation

@ truncations with only a few parameters that parameterize efficiently
the quasi-particle properties can be used

o flow equations for real-time properties
@ space-time symmetries can be preserved

@ only linear response properties accessible

Follow this strategy here!



Analytic structure of the effective action

Consider the Quantum effective action
rig) = [ o~ Wi
The propagator
I (p,p') = 2m)*%6 @ (p—p') G (p)

has the Kallen-Lehmann spectral representation

o0 1
G = d 2 2 . 5
(p) /0 1 p(p )pz e
This holds both for
o Euclidean space: p? = p? eri

e Minkowski space: p? = —pZ + p?



Propagator in Minkowski space

Consider py € C as complex. Close to real py axis one has

@ From spectral representation

P(p) = G(p)~! = Pi(pg — 9°) — i s(po) Pa2(pg — P°)
with
s(po) = sign(Re pg) sign(Im po)
and real functions P; and Ps.

@ Nonzero P, leads to a branch cut in the propagator:
The imaginary part of P(p) jumps at the real pg axis.

@ Physical implication of non-zero P is non-zero decay width of
quasi-particles (finite life-time).



Analytic continuation setup

Keep on working with Euclidean space functional integral.

Definition of I';, and flow equation remains unchanged,

Oulk[¢] = §Tr( I'P[4] + Ry) 05 Ry

Choose cutoff function Ry, with correct properties for Euclidean
argument p2 > 0

o Ry(p*) — oo for k — oo (implies T'x[p] — S[¢])

o Rip(p®) =0 fork— 0 (implies Tx[¢] — T'[¢])

o Rip(p®) >0, Ri(p?) — 0 for p* > k?

@ Flow equations for n-point functions

T (D1, s )

are analytically continued towards the real frequency axis.

Truncation uses expansion around real py (Minkowski space).



Derwative expansion in Minkowsk: space

o Consider a point p2 — p? = m? where P;(m?) = 0.

@ One can expand around this point
PL= 247+ m) + o
P2 = Z’y2 + cee
e Leads to Breit-Wigner form of propagator (with 42 = mI')

Gl )_l—p3+;52+m2+is(po)mF
P =2 @+ P+ m?2 +m2T?

A few flowing parameters describe efficiently the singular structure
of the propagator.



Choosing a regqulator

The analytic properties of correlation functions at & > 0 depend on
the choice of Ry(p).

One would like to perform loop integrations analytically as far as
possible to facilitate analytic continuation.

Useful are the following choices
1

Rk(pmﬁ):ZkQ P) :
—n2 2
1+c1( ”;;jﬁz)Jch( pzjﬁz> +...

o Allows to do the Matsubara summations analytically for truncation
based on derivative expansion.



Truncation for relativistic scalar O(N) theory

N
.
Fk :/ta{ZQQbJ P¢(28t,—zV) d)]
s L j=1

+ 2p By(i0h, —iV) p + Uk(/’)}

=] =

. _ N I
with p = 1 > im1 qi)?
e Goldstone propagator massless, expanded around py — p% = 0

Py(po,p) = Zy (—p§ + 1)

e Radial mode is massive, expanded around p% — p* = m?

p‘i’(va@ + ﬁopp(Pmﬁ) + [j-]/c + 2[_70]2/
~ ZoZ0 (=9 + 7+ m3) — is(po) 77



Flow of the effective potential

1 (N —1)
ol =5 [ {0
PO=1Wn ,P pT = pO + U + ZRk

1 1
4 . — Oy Ry
Zy[(* = pp) — i s(po)ri) + U +2pU" + 7 Ry } Zy

@ Summation over Matsubara frequencies py = i27Tn can be done
using contour integrals.

@ Radial mode has non-zero decay width since it can decay into
Goldstone excitations.

o Use Taylor expansion for numerical calculations

1
Uk(p) = Us(po,r) + mi(p — po,r) + 5)%([) — pok)?



Flow of the interaction strength Ay

Ak
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Flow of the minimum of the effective potential pg
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Flow of the propagator

@ Goldstone mode propagator characterized by anomalous dimension

1 _
Ny = *Zkakz(ﬁ

o Radial mode propagator

1

Gy = -
YT Z (g + ?) — is(po)d] + 2hp3

o flow equation for Z; is evaluated in the standard way
o flow equation for 4 is evaluated from discontinuity at po = m =+ ie



Anomalous dimension 1y
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Flow of the coefficient Z;

Zy
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@ black solid line: evaluation at py = m;

@ red dashed line: evaluation at pg =0



Flow of the discontinuity coefficient ~?
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@ black solid line: evaluation at py = m;

@ red dashed line: evaluation at pg =0



Conclusions



Conclusions

o Functional renormalization is powerful method for non-perturbative
QFT studies.

@ Analytic continuation allows to access directly physical information
in real time.

o Together with k-dependent Hubbard-Stratonovich transformation
this will allow for efficient truncations with few parameters taking all
singular structures into account.

@ Bound states can be treated as well.
o Allows unified treatment of fundamental and composite fields.

o Would be interesting to make connection to RG in light cone
coordinates (DGLAP).



