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based on work with Urs Achim Wiedemann

Mode-by-mode fluid dynamics for relativistic heavy ion
collisions [arXiv:1307.3453]

Characterization of initial fluctuations for the hydrodynamical
description of heavy ion collisions, [arXiv:1307.7611]

Fluctuations around Bjorken Flow and the onset of turbulent
phenomena, [JHEP 11, 100 (2011)]



What fluctuations are interesting and why?

Initial hydro fluctuations: Event-by-event perturbations
around the average of hydrodynamical fields at time τ0:

energy density ε
fluid velocity uµ

shear stress πµν

more general also: baryon number density nB ,
electric charge density, electromagnetic fields, ...

measure for deviations from equilibrium

contain interesting information from early times

governed by universal evolution equations

can be used to constrain thermodynamic and transport
properties



Similarities to cosmic microwave background

fluctuation spectrum contains info from early times

many numbers can be measured and compared to theory

can lead to detailed understanding of evolution and properties

could trigger precision era in heavy ion physics



A complete story about fluctuations

1 initial fluctuations at initialization time of hydro should be
characterized and quantified completely

2 fluctuations have to be propagated through the
hydrodynamical regime

3 contribution of different fluctuations to the particle spectra
must be understood and quantified

4 fluctuations generated from non-hydro sources (such as jets)
have to be taken into account



Background-fluctuation splitting

Background or average over many events is described by
smooth fields

wBG = 〈w〉
uµBG = 〈uµ〉

Fluctuations are added on top

w = wBG + δw

uµ = uµBG + δuµ

For background one may assume Bjorken boost and azimuthal
rotation invariance

wBG = wBG(τ, r)

uµBG = (uτBG, u
r
BG, 0, 0)



Characterization of transverse density 1

Fluctuations in initial transverse enthalpy density w(r, φ) can be
characterized in terms of eccentricities εn,m and angles ψn,m
[Ollitrault, Teaney, Luzum, and others]

εn,m e
imψn,m =

∫
dr
∫ 2π
0 dϕ rn+1 eimϕw(r, ϕ)∫

dr
∫ 2π
0 dϕ rn+1w(r, ϕ)

w(r, φ) completely determined by set of all εn,m and ψn,m

closely related method is based on cumulants [Teaney, Yan]

no positive transverse density can be associated to small set
of cumulants (beyond Gaussian order) such that higher order
cumulants vanish

generalization to velocity and shear fluctuations not known



Characterization of transverse density 2

Characterizations based on orthonormal functions exist
[Gubser & Yarom, Shuryak & Staig, Floerchinger & Wiedemann,

Coleman-Smith, Petersen & Wolpert]

Based on orthonormal set of functions and background density:
[Floerchinger & Wiedemann, 2013]

w(r, ϕ) = wBG(r) + wBG(r)

mmax∑
m=−mmax

lmax∑
l=1

w̃
(m)
l eimϕ Jm(k

(m)
l r)

w(r, φ) completely determined by set of all w̃
(m)
l

higher l correspond to smaller spatial resolution

single or few coefficients w̃
(m)
l lead to positive density

single modes can be propagated in hydro

works similar for vectors (velocity) and tensors (shear stress)



Transverse density from Glauber model



Velocity fluctuation

initial velocity fluctuations at τ0 ≈ 0.5 fm/c are conceivable

characterization similar as for density fluctuations. Two
polarizations

ur = urBG +
1√
2
(ũ− + ũ+)

uφ =
i√
2 r

(ũ− − ũ+)

with

ũ−(r, φ) =
∑
m,l

ũ
−(m)
l eimφ Jm−1

(
k
(m)
l r

)
ũ+(r, φ) =

∑
m,l

ũ
+(m)
l eimφ Jm+1

(
k
(m)
l r

)

would be interesting to search for them in experimental data



Event ensembles

Event ensembles can be characterized in terms of functional
probability distribution pτ0 [w, u

µ, πµν , . . .].

Simplest case is Gaussian form

pτ0 ∼ exp

[
− 1

2

mmax∑
m=−mmax

lmax∑
l1,l2=1

T
(m)
l1l2

w̃
(m)∗
l1

w̃
(m)
l2

]

Fully determined by correlator

(T (m))−1
l1l2

= 〈w̃(m)
l1

w̃
(m)∗
l2
〉
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Evolving fluctuations

Bessel expansion can also be used to solve evolution equations

expand enthalpy density, fluid velocity and shear in modes

leads to set of coupled ordinary differential equations for
expansion coefficients

truncated set can be solved numerically

do this here for linearized equations



Freeze-out surface

Background and fluctuations are propagated until Tfo = 120MeV
is reached.
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(solid: η/s = 0.08, dotted: η/s = 0, dashed: η/s = 0.3)

Distribution functions are determined and free streaming is
assumed for later times [Cooper & Frye]



Contribution of modes to “single event spectrum”

Particle spectrum (or its logarithm) can be expanded in
contribution from different modes

ln

(
dN single event

pTdpTdφdy

)
= lnS0(pT )︸ ︷︷ ︸

from background

+
∑
m,l

w̃
(m)
l eimφθ

(m)
l (pT )︸ ︷︷ ︸

from fluctuations

each mode has it’s own angle w̃
(m)
l = |w̃(m)

l | e
imψ

(m)
l

pT dependence of different modes described by θ
(m)
l (pT )



Harmonic flow coefficients

Double differential harmonic flow coefficient to lowest order

v2m{2}(paT , pbT ) =
lmax∑

l1,l2=1

θ
(m)
l1

(paT ) θ
(m)
l2

(pbT ) 〈w̃
(m)
l1

w̃
(m)∗
l2
〉

intuite matrix expression

in general no factorization

higher order corrections important for non-central collisions



One-particle spectrum

S(pT ) = dN/(2πpTdpTdηdφ)
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Points: 5% most central collisions, ALICE [PRL 109, 252301 (2012)]
Curves: Our calculation, no hadron rescattering and decays after
freeze-out.



Harmonic flow coefficients for central collisions

Elliptic flow for charged particles
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Solid curves: Different maximal resolution lmax

Dashed curve: Mode (m = 2, l = 1) suppressed by factor 0.7



Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Harmonic flow coefficients for central collisions

Flow coefficient v4 for charged particles
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Curves: Different maximal resolution lmax



Harmonic flow coefficients for central collisions

Flow coefficient v5 for charged particles
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Harmonic flow coefficients, central, particle identified
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Conclusions

Method to characterize and propagate initial fluctuations in
hydrodynamical fields has been developed

First study for enthalpy density fluctuations in Glauber model

yields good description of vm(pT ) for central collisions
shows that fluctuations up to lmax ≈ 5 can be resolved

Fluctuations to be studied:
transverse plane rapidity direction

enthalpy density / entropy X -
fluid velocity - -
shear stress - -
baryon number density - -
electromagnetic fields - -
electric charge density - -
chiral order parameter - -



Backup



Linear vs. non-linear

Non-linearities can arise from

hydrodynamic evolution
freeze-out
hadron decay and rescattering phase

Formalism can be generalized in two ways

background with elliptic flow, small (linear) fluctuations
background with radial flow only, non-linear evolution of
fluctuations
leads to coupling between modes with different m in a way
constrained by azimuthal symmetry


