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Why are Ultracold quantum gases interesting?

Ultracold gases in the bulk are simple systems!
o for example: Fermi surface is usually a sphere.

Both fermions and bosons can be studied.

Interactions can be tuned to arbitrary values.

o Lower dimensional systems can be realized.

Very nice model system to test methods of quantum and statistical
field theory!



Cold atoms in a laser trap

o typical density
o particle number N = 106
o cloud volume V =107 cm
e interparticle distance d = 0.1 pm

3

o typical temperature

o temperature T = 107%K

o thermal de-Broglie length Ay =1 um
@ typical interaction parameters

e interaction range Aygw = 1074 um
o scattering length a = (0...00) um



Theoretical challenge

@ quantum effects are important

@ many particles / nonzero density

@ nonzero temperature

@ large interaction strength

@ possibly non-equilibrium dynamics

@ similar problems as in QCD matter: Heavy ion collisions,
Neutron stars, ...

@ advantage for cold quantum gases: very well controlled,
experiments on a table-top



Complexity problem with strong interaction

@ Strong interactions lead to strong effects. Qualitative features
of a theory can change!

@ Physical properties can become universal! Microscopic details
become irrelevant.

@ Strong interaction effects lead to fast Equilibration: Dynamics
can be described by Close-to-Equilibrium methods.
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@ 2 component Fermi gas - BCS-BEC crossover
@ 3 component Fermi gas - 77
o Three-body problem: Efimov effect
(Efimov, Phys. Lett. 33B, 563 (1970),
Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))
o On the lattice: Trion formation

(Rapp, Zarand, Honerkamp, and Hofstetter, PRL 98, 160405 (2007),
Rapp, Hofstetter and Zarand, PRB 77, 144520 (2008).)



Single component Fermi gas

@ Most properties of dilute ultracold quantum gases are
dominated by s-wave interactions.

e For identical fermions (only one spin component)
wavefunction has to be antisymmetric in position space.

@ s-wave interaction suppressed by Pauli blocking.

@ Behaves like ideal Fermi gas in many respects.



Two component Fermi gas

Two spin (or hyperfine-spin) components 11 and .

For equal mass My, = My,, density n,, = ny, etc. SU(2)
spin symmetry

s-wave interaction measured by scattering length a.
Repulsive microscopic interaction: Landau Fermi liquid.

Attractive interaction leads to many interesting effects!

Scattering length can be tuned experimentally with Feshbach
resonances.
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BCS-BEC Crossover
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@ Small negative scattering length a — 0_
e Formation of Cooper pairs in momentum space
o BCS-theory valid
o superfluid at small temperatures
e order parameter ¢ ~ 119
@ Small positive scattering length a — 04
e Formation of dimers or molecules in position space
o Bosonic mean field theory valid
o superfluid at small temperatures
e order parameter ¢ ~ 119
@ Between both limits: Continuous BCS-BEC Crossover
e scattering length becomes large: strong interaction
o superfluid, order parameter ¢ ~ 1110 at small T'



Phase diagram BCS-BEC Crossover

o Crossover best parameterized by ¢! = (akp)~ .
o Different methods give phase diagram

@ Result of renormalization group study:
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(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010).)

@ More complicated phase diagram with population imbalance



Three component Fermi gas

e For equal masses, densities etc. global SU(3) symmetry

U1 Yn
Yo | = u ||, UGSU(3).
3 Y3

Similar to flavor symmetry in the Standard model!
o For small scattering length |a| — 0

o BCS (a < 0) or BEC (a > 0) superfluidity at small T.
o order parameter is conjugate triplet 3 under SU(3)

1 a3
o= w2 | ~ | V391 ].
3 P11)a

o SU(3) symmetry is broken spontaneously for ¢ # 0.
e What happens for large |a|?
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How should we describe the world?

@ There are many different phenomena.
o We look for a unified description.
o We look for an intuitive description.

o Einstein: Everything should be made as simple as possible.
But not simpler.

QuAaNTUM FIELD THEORY.



Classical field theory

e Describes electro-magnetic fields, waves, ... (h — 0).

Crucial object: classical action

S[g] = /dt/ddx L(¢, 010,V ,...)

Classical field equations from % =0.

Symmetries of S lead to conserved currents.

All physical observables are easily obtained from S.



Quantum field theory

@ Describes electrons, atoms, quarks, gluons, protons,...
...and cold quantum gases

o Crucial object: quantum effective action
I[¢] = /dt/ddx U(®) + ...

@ Quantum field equations from g—l(; =0

e Symmetries of I' lead to conserved currents
@ All physical observables are easily obtained from I'

o I' is generating functional of 1-Pl Feynman diagrams and
depends on external parameters like T, i, or B



Symmetries of non-relativistic field theories

e U(1) for particle number conservation.
@ Possibly SU(N) spin symmetry.
Translations and Rotations.

Galilean boost transformations.

Possibly scale / conformal symmetries (at a = c0).

U(1), SU(N) and Galilean invariance are broken spontaneously
by a Bose-Einstein condensate.

o Galilean invariance is broken explicitely by a thermal bath for
T > 0.



The renormalization group

@ Very important in modern understanding of quantum field
theory.

@ Describes how (effective) theories evolve to other (effective)
theories at smaller energy/momentum scales.

o Makes a simple, efficient and intuitive description of complex
phenomena possible.



How do we obtain the quantum effective action I'[¢]?

Idea of functional renormalization: I'[¢] — I';[¢]
@ k is additional infrared cutoff parameter.
o I'y[¢p] — T'[¢] for k — 0.
o I'y[¢] — S[¢] for k — oc.
@ Dependence on T,y or B trivial for k — co.
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[[¢] and the grand canonical ensemble

Functional integral representation of the partition function
7 =B _ Ty o~ BH-uN) _ / Dy e—Sh,
Generalization with J = %ka

e~ Tkl®] :/Dxe_5[¢+X]+JX_§XRk>X.

@ Ry is an infrared cutoff function

e suppresses all fluctuations Ry — oo for k — oc.
e is removed R, — 0 for kK — 0.

o I'y[¢] is the average action or flowing action.

@ Grand canonical potential is obtained from
BQa =Tk[¢] for k=0and J =0.



How the flowing action flows

Simple and exact flow equation (WETTERICH 1993)

OL'k[¢] = %STr (F;(f) [¢] + Rk)_l Ok Ry,

o Differential equation for a functional.

@ For most cases not solvable exactly.
o Approximate solutions can be found from Truncations.
o Ansatz for 'y, with a finite number of parameters.
o Derive ordinary differential equations for this parameters or

couplings from the flow equation for I'.
e Solve these equations numerically.



Simple truncation for fermions with three components

- 1=
Iy = /W(ar — V2 — )Y+ ¢ (0r — §V2 +m2)p

* 1 —,
+x"(0r — §V2 + mi)x
h egr(@ivgbg + he)  + g(eabix + h.c.).

@ Units aresuch that Ai=kp =2M =1

o Wavefunction renormalization for v, ¢ and x is implicit.
e I';, contains terms for

o fermion field P = (1,2, 13)
o bosonic field © = (1, P2, 93) ~ (Y203, Y391, Y11)2)
e trion field X~ Y123

¥

A\

»
>

Vi i Pi

\- B i
v
@



“Refermionization”

@ Trion field is introduced via a generalized
Hubbard-Stratonovich transformation
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o Fermion-boson coupling is regenerated by the flow

Pz A . 4

h =0 i
A .
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@ Express this again by trion exchange
(Gies and Wetterich, PRD 65, 065001 (2002),
Floerchinger and Wetterich, PLB 680, 371 (2009).)




Binding energies

e Vacuum limit T'— 0, n — 0.
E[meV]
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@ Binding energy per atom for

o molecule or dimer ¢ (dashed line)
e trion or trimer y (solid line)

o For large scattering length a trion is energetically favorable!

@ Three-body bound state even for a < 0.



Quantum phase diagram

o BCS-Trion-BEC transition
(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).

e a — 0_: Cooper pairs, SU(3) x U(1) = SU(2) x U(1).
e a — 04: BEC of molecules, SU(3) x U(1) — SU(2) x U(1).
e a — too: Trion phase, SU(3) unbroken.

@ Quantum phase transitions
e from BCS to Trion phase
e from Trion to BEC phase.



Efimov effect
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Self-similarity in energy spectrum.
Efimov trimers become more and more shallow. At a = ¢

Epi=e 2"/ F,.

Simple truncation: sg =~ 0.82.
Advanced truncation: sy =~ 1.006 (exact result)
(Moroz, Floerchinger, Schmidt and Wetterich, PRA 79, 042705 (2009).)
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Renormalization group limit cycle

e For =0 and a~! = 0 flow equations for rescaled couplings
ké @\ _ [7/25 —13/25 I
ok \mi) — \36/25 7/25 mi)’

@ Solution is log-periodic in scale.

[‘); In(k/A)

o Every zero-crossing of ﬁli corresponds to a new bound state.

@ For u# 0 or a=! # 0 limit cycle scaling stops at some scale
k. Only finite number of Efimov trimers.



Contact to experiments

@ Model can be generalized to case without SU(3) symmetry
(Floerchinger, Schmidt and Wetterich, PRA A 79, 053633 (2009)).

e Hyperfine states of SLi have large scattering lengths.
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@ Binding energies might be measured using RF-spectroscopy.

o Lifetime is quite short ~ 10ns.



Three-body loss rate

@ Three-body loss rate measured experimentally (Ottenstein et al.,
PRL 101, 203202 (2008); Huckans et al., PRL 102, 165302 (2009))
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Trion may decay into deeper bound molecule states

Calculate B-field dependence of loss process above.
@ Left resonance (position and width) fixes model parameters.
°

Form of curve for large B is prediction.

Similar results obtained by other methods
(Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009);

Naidon and Ueda, PRL 103, 073203 (2009).)



Conclusions

e Ultracold fermions with three components quite interesting
o Functional renormalization group description works well
o Efimov effect arises from limit cycle
@ Many-body physics shows parallels to QCD
e BCS - “Color" — superfluidity for small negative a
e Trion — “Hadron” — phase for large |a]
e BEC — “Color" — superfluidity for small positive a
o Experimental tests are possible
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Truncations

For many purposes derivative expansions are suitable
approximations. For example we use for the BCS-BEC Crossover

e = /Tj{@zz*(af— W+ M (2,0, — Ay

1
—h(@ Y112 + h.c.) + 5)%(1/1“/})2 + Ui(¢™ o, M)}

o The coefficients Z,, A,, Ay, h and the effective potential Uy,
are scale-dependent.

@ The effective potential Uy contains no derivatives - describes
homogeneous fields.

o Wave-function renormalization and self-energy corrections for
fermions can be included as well.
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@ Symmetry breaking:




The effective potential

@ We use a Taylor expansion around the minimum pg

* * 1 *
Ur(p*p) = —p +m* (¢"p = po) + 5A ("¢ — po)”.

o Typical flow:
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Solving the flow equation - Thermodynamic observables

We calculate the grand canonical potential and can therefore
access many thermodynamic observables!

dU = —dp = —sdT — ndu

By taking derivatives one obtains e. g. for Bose gas in d = 3

@ entropy density s = — 5=

c3/n??

@ energy density
€e=—p+Ts+ un,

e specific heat ¢,,

@ isoth. compressibility 7,

@ adiab. compressibility kg,

Lo e s @ velocity of sound |,
] 2 4 6 R T/”

e velocity of sound Il.



