Analytic continuation of functional renormalization group equations

Stefan Flörchinger (CERN)

Aachen, 07.03.2012

Short outline

- Quantum effective action and its analytic continuation
- Functional renormalization and exact flow equation
- Regulator function and analytic continuation
- Application to scalar $O(N)$ model

Quantum effective action and its analytic continuation

Partition and Schwinger functionals

$$
Z[J]=e^{W[J]}=\int D \varphi e^{-S[\varphi]+\int_{x} J \varphi}
$$

with

$$
S[\varphi]=\int_{0}^{1 / T} \int d^{3} x \mathcal{L}\left(\varphi(x), \partial_{\mu} \varphi(x)\right)
$$

- generating functional of (connected) correlation functions
- contains contributions from all orders in perturbation theory

Quantum effective action

$$
\Gamma[\phi]=\int J \phi-W[J]
$$

with

$$
\phi(x)=\frac{\delta}{\delta J(x)} W[J]=\langle\varphi(x)\rangle
$$

- generating functional of one-particle irreducible diagrams
- exact on tree level
- contains renormalized parameters (masses, coupling constants, decay width,...)
- contains full inverse propagator $G^{-1}(p)$

$$
\Gamma^{(2)}\left(p, p^{\prime}\right)=\frac{\delta}{\delta \phi(-p)} \frac{\delta}{\delta \phi\left(p^{\prime}\right)} \Gamma[\phi]=(2 \pi)^{d} \delta^{(d)}\left(p-p^{\prime}\right) G^{-1}(p)
$$

Källen-Lehmann spectral representation I

For standard quantum field theories

$$
S[\varphi]=\int d^{d} x \mathcal{L}\left(\varphi, \partial_{\mu} \varphi\right)
$$

one can derive from basic principles in operator picture

- space-time symmetry
- causality
- unitarity

$$
G(p)=\int_{0}^{\infty} d \mu^{2} \rho\left(\mu^{2}\right) \frac{1}{p^{2}+\mu^{2}}
$$

- holds for Euclidean space $p^{2}=p_{0}^{2}+\vec{p}^{2}$
- and Minkowski space $p^{2}=-p_{0}^{2}+\vec{p}^{2}$

Källen-Lehmann spectral representation II

$$
\begin{aligned}
G(p)= & \int_{0}^{\infty} d \mu^{2} \rho\left(\mu^{2}\right) \frac{1}{2 \sqrt{\vec{p}^{2}+\mu^{2}}} \\
& \times\left(\frac{1}{-p_{0}+\sqrt{\vec{p}^{2}+\mu^{2}}}-\frac{1}{-p_{0}-\sqrt{\vec{p}^{2}+\mu^{2}}}\right)
\end{aligned}
$$

- all singularities and cuts are on the real frequency axis
- different variants of propagators correspond to different integration contours in the complex frequency plane
- close to the real frequency axis

$$
\begin{aligned}
G(p)= & \underbrace{\int_{0}^{\infty} d \mu^{2} \rho\left(\mu^{2}\right) \mathcal{P} \frac{1}{-p_{0}^{2}+\vec{p}^{2}+\mu^{2}}}_{\in \mathbb{R}} \\
& +i \pi \underbrace{\operatorname{sign}\left(\operatorname{Re} p_{0}\right) \operatorname{sign}\left(\operatorname{Im} p_{0}\right)}_{=: s\left(p_{0}\right)} \rho\left(p_{0}^{2}-\vec{p}^{2}\right)
\end{aligned}
$$

Inverse propagator

- close to real p_{0} axis

$$
P(p)=G^{-1}(p)=\underbrace{P_{1}\left(p_{0}^{2}-\vec{p}^{2}\right)}_{\in \mathbb{R}}-i s\left(p_{0}\right) \underbrace{P_{2}\left(p_{0}^{2}-\vec{p}^{2}\right)}_{\geq 0}
$$

- physical excitations correspond to singularities in $G(p)$ or minima in $P(p)$
- close to a point where $P_{1}(p)$ vanishes one can expand

$$
\begin{aligned}
& P_{1}=Z\left(-p_{0}^{2}+\vec{p}^{2}+m^{2}\right)+\ldots \\
& P_{2}=Z \gamma^{2}+\ldots
\end{aligned}
$$

- gives propagator of Breit-Wigner form

$$
G(p)=\frac{1}{Z} \frac{-p_{0}^{2}+\vec{p}^{2}+m^{2}+i s\left(p_{0}\right) \gamma^{2}}{\left(-p_{0}^{2}+\vec{p}^{2}+m^{2}\right)^{2}+\gamma^{4}}
$$

Functional renormalization and exact flow equation

Modified partition and Schwinger functionals
in Euclidean space

$$
Z_{k}[J]=e^{W_{k}[J]}=\int D \varphi e^{-S[\varphi]-\Delta S_{k}[\varphi]+\int J \varphi}
$$

with infrared regulator term

$$
\Delta S_{k}[\varphi]=\frac{1}{2} \int_{p} \varphi(-p) R_{k}(p) \varphi(p)
$$

- R_{k} depends on $p_{0}^{2}+\vec{p}^{2}$
- is real and positive
- decays for large $p_{0}^{2}+\vec{p}^{2}$

Flowing action

$$
\Gamma_{k}[\phi]=\underbrace{\int J \phi-W_{k}[J]}_{\text {Legendre transform }}-\Delta S_{k}[\phi]
$$

has properties

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \Gamma_{k}[\phi] & =S[\phi]+\text { one loop } \\
\lim _{k \rightarrow 0} \Gamma_{k}[\phi] & =\Gamma[\phi]
\end{aligned}
$$

and fulfills exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{Tr}\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1} \partial_{k} R_{k}
$$

(equivalent to infinity hierarchy of flow equations for n-point functions)

Derivative expansion

- flow is "local" in momentum space due to $\partial_{k} R_{k}(p)$
- acts as effective UV regulator if $R_{k}(p)$ decays sufficiently fast for large $p_{0}^{2}+\vec{p}^{2}$
- derivative expansion works often well since only IR modes contribute to flow

$$
\Gamma_{k}=\int d^{d} x\left\{U_{k}(\rho)+\frac{1}{2} Z_{k} \vec{\nabla} \phi \vec{\nabla} \phi+\frac{1}{4} Y_{k} \vec{\nabla} \rho \vec{\nabla} \rho+\ldots\right\}
$$

Regulator function and analytic continuation

Why analytic continuation?

- Functional renormalization works well in Euclidean/Matsubara space but many physical quantities are easier to access in Minkowski space
- Examples:
- spectral density and particle decay width
- transport properties such as conductivities, viscosities etc.
- Different strategies to access real time properties
- extend formalism to Minkowski space functional integral
- keep on working with Matsubara space functional integral, use analytic continuation at $k=0$
- keep on working with Matsubara space functional integral, use analytic continuation of flow equations

Strategy 1: Extend formalism to Minkowski space

- some technical problems
- factors i appear at various places
- $-p_{0}^{2}+\vec{p}^{2}$ is not positive definite: what is IR and what is UV?
- not obvious how to choose $R_{k}(p)$ such that

$$
\lim _{k \rightarrow \infty} \Gamma_{k}[\phi]=S[\phi]
$$

- needs Schwinger-Keldysh closed time contour
- technically involved formalism
- averaging over initial density matrix sometimes difficult
- can be used also in far-from-equilibrium situations

Strategy 2: Work with functional integral in Matsubara space and use analytic continuation at $k=0$

- can be done with numerical techniques: Padé approximants
- numerical effort rather large
- knowledge about spectral properties does not improve RG running
- only linear response properties accessible

Strategy 3: Work with functional integral in Matsubara space and use analytic continuation of flow equations

- no numerical methods needed for analytical continuation
- truncations with only a few parameters that parameterize efficiently the quasi-particle properties can be used
- flow equations for real-time properties
- space-time symmetries can be preserved
- only linear response properties accessible

Follow this strategy here!

- following discussion for truncations where inverse propagator is of the form

$$
P_{k}=Z\left(-p_{0}^{2}+\vec{p}^{2}+m^{2}-i s\left(p_{0}\right) \gamma^{2}\right)
$$

- choose regulator function such that flow equations can be analytically continued
- requirements on R_{k} in Minkowski space a priori not clear
- here: choose cutoff that has all desired properties for Euclidean arguments and use analytic continuation
- not possible for all regulator functions: $R_{k}(p)$ that is smooth for Euclidean argument can have singularities, poles, cuts etc. in the complex plane!

Choosing a regulator function 2

- choose here a class of rather simple regulator functions

$$
R_{k}(p)=\frac{Z k^{2}}{1+c_{1}\left(\frac{-p_{0}^{2}+\vec{p}^{2}}{k^{2}}\right)+c_{2}\left(\frac{-p_{0}^{2}+\vec{p}^{2}}{k^{2}}\right)^{2}+\ldots}
$$

with $c_{i} \geq 0$. Simplest non-trivial choice is $c_{1}=c \geq 0$, $c_{2}=c_{3}=\cdots=0$.

- allows for convenient decomposition

$$
\left(P_{k}+R_{k}\right)^{-1}=\frac{1}{Z}\left(\frac{\beta_{1}}{p^{2}+\alpha_{1} k^{2}}+\frac{\beta_{2}}{p^{2}+\alpha_{2} k^{2}}+\ldots\right)
$$

with complex coefficients β_{i}, α_{i} that depend also on $s\left(p_{0}\right)$.

Application to $O(N)$ model

Model \& truncation

Microscopic action for $O(N)$ model

$$
S=\int_{0}^{i T} d t \int d^{3} x\left\{\sum_{m=1}^{N} \frac{1}{2} \phi_{m}\left(\partial_{\tau}^{2}-\vec{\nabla}^{2}\right) \phi_{m}+\frac{1}{2} \lambda \rho^{2}\right\}
$$

Truncation

$$
\begin{aligned}
\Gamma_{k}= & \int\left\{\sum_{m=1}^{N} \frac{1}{2} \phi_{m} P_{\phi}\left(i \partial_{t},-i \vec{\nabla}\right) \phi_{m}\right. \\
& \left.+\frac{1}{4} \rho P_{\rho}\left(i \partial_{t},-i \vec{\nabla}\right) \rho+U_{k}(\rho)\right\}
\end{aligned}
$$

with $\rho=\frac{1}{2} \sum_{m=1}^{N} \phi_{m}^{2}$.

Effective propagators
Expand around background field

$$
\phi_{1}=\phi_{0}+\delta \phi_{1}, \quad \phi_{1}=\delta \phi_{2}, \ldots
$$

and keep only quadratic part

$$
\begin{aligned}
\Gamma_{k, 2}= & \int_{p}\left\{\frac{1}{2} \delta \phi_{1}\left[P_{\phi}+\rho P_{\rho}+U^{\prime}+2 \rho U^{\prime \prime}\right] \delta \phi_{1}\right. \\
& \left.+\sum_{m=2}^{N} \frac{1}{2} \delta \phi_{m}\left[P_{\phi}+U^{\prime}\right] \delta \phi_{m}\right\}
\end{aligned}
$$

use also the decomposition

$$
P_{\phi}\left(p_{0}, \vec{p}\right)=Z_{\phi}\left(-p_{0}^{2}+\vec{p}^{2}\right)\left[-p_{0}^{2}+\vec{p}^{2}\right]-i s\left(p_{0}\right) \gamma_{\phi}^{2}\left(-p_{0}^{2}+\vec{p}^{2}\right)
$$

and similar for P_{ρ}.

- at minimum $U^{\prime}=0$ and Goldstone mode is massless
- use expansion point $-p_{0}^{2}+\vec{p}^{2}=0$
- imaginary part vanishes $\gamma_{\phi}(0)=0$
- Goldstone propagator:

$$
\frac{1}{Z_{\phi}(0)\left(-p_{0}^{2}+\vec{p}^{2}\right)+U^{\prime}}
$$

- flow can be characterized in terms of the anomalous dimension

$$
\eta_{\phi}=-\frac{1}{Z_{\phi}(0)} k \partial_{k} Z_{\phi}(0)
$$

Radial mode (or Higgs mode) propagator

- radial mode is massive
- use expansion point

$$
p_{0}=\sqrt{\vec{p}^{2}+m^{2}}
$$

- and write there

$$
P_{\phi}+\rho P_{\rho} \approx Z_{1}\left[-p_{0}^{2}+\vec{p}^{2}\right]-i s\left(p_{0}\right) \gamma_{1}^{2}
$$

- decay width is due to possible decay of radial excitation into two Goldstone excitations
- characterized by flow equations for Z_{1}, γ_{1} and U_{k}

Flow of the effective potential

$$
\begin{aligned}
\partial_{k} U_{k}=\frac{1}{2} \int_{p_{0}=i \omega_{n}} \int_{\vec{p}}\{ & \frac{1}{Z_{1}\left(\vec{p}^{2}-p_{0}^{2}\right)-i s\left(p_{0}\right) \gamma_{1}^{2}+U^{\prime}+2 \rho U^{\prime \prime}+\frac{1}{Z} R_{k}} \\
& \left.+\frac{1}{\vec{p}^{2}-p_{0}^{2}+U^{\prime}+\frac{1}{Z} R_{k}}\right\} \frac{1}{Z} \partial_{k} R_{k}
\end{aligned}
$$

- frequencies are summed over the discrete Matsubara values

$$
p_{0}=i \omega_{n}=i 2 \pi T n
$$

- one should not take the above expression literally for Matsubara frequencies: $s\left(p_{0}\right)$ only defined close to real axis
- use contour integration methods to perform the Matsubara summation: boils down to evaluating residues and integrals along branch cuts close to the real frequency axis!

Numerical results

- only first application of formalism for illustration
- for $O(2)$ model in $3+1$ dimensions at $T=0$
- for expansion of effective potential around minimum

$$
U_{k}(\rho)=U_{k}\left(\rho_{0}\right)+\frac{1}{2} \lambda_{k}\left(\rho-\rho_{0, k}\right)^{2}
$$

- truncation with the parameters

$$
\lambda_{k}, \quad \rho_{0}, \quad Z_{1}, \quad \gamma_{1}
$$

supplemented by the anomalous dimension

$$
\eta_{\phi}=-\frac{1}{Z_{\phi}} k \partial_{k} Z_{\phi}
$$

Flow of the interaction strength λ_{k}.

Flow of the minimum of the effective potential $\rho_{0, k}$.

Anomalous dimension η_{ϕ}.

Flow of the coefficient Z_{1} (solid line). We also show the resulting behavior if the flow equation is evaluated at $q_{0}=0$ instead (dashed line). Interestingly, one finds $Z_{1} \rightarrow \infty$ for $k \rightarrow 0$ in the latter case whereas the result is completely regular if the flow equation is evaluated on-shell.

Flow of the discontinuity coefficient γ_{1}^{2} (solid line). We also show the resulting behavior if the flow equation is evaluated at $q_{0}=0$ instead (dashed line). As expected, the discontinuity γ_{1}^{2} is non-zero on-shell whereas it vanishes for $q_{0}=0$.

- Analytic continuation of flow equations works in praxis
- Improved derivative expansion in Minkowski space possible
- Many dynamical and linear response properties can now be calculated from this formalism

