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Quantum effective action and its analytic

continuation



Partition and Schwinger functionals

Z[J ] = eW [J ] =

∫
Dϕ e−S[ϕ]+

∫
x Jϕ

with

S[ϕ] =

∫ 1/T

0

∫
d3x L (ϕ(x), ∂µϕ(x))

generating functional of (connected) correlation functions

contains contributions from all orders in perturbation theory



Quantum effective action

Γ[φ] =

∫
Jφ−W [J ]

with

φ(x) =
δ

δJ(x)
W [J ] = 〈ϕ(x)〉

generating functional of one-particle irreducible diagrams

exact on tree level

contains renormalized parameters (masses, coupling
constants, decay width,...)

contains full inverse propagator G−1(p)

Γ(2)(p, p′) =
δ

δφ(−p)
δ

δφ(p′)
Γ[φ] = (2π)d δ(d)(p− p′) G−1(p)



Källen-Lehmann spectral representation I

For standard quantum field theories

S[ϕ] =

∫
ddx L(ϕ, ∂µϕ)

one can derive from basic principles in operator picture

space-time symmetry

causality

unitarity

G(p) =

∫ ∞
0

dµ2 ρ(µ2)
1

p2 + µ2

holds for Euclidean space p2 = p2
0 + ~p2

and Minkowski space p2 = −p2
0 + ~p2



Källen-Lehmann spectral representation II

G(p) =

∫ ∞
0

dµ2 ρ(µ2)
1

2
√
~p2 + µ2

×

(
1

−p0 +
√
~p2 + µ2

− 1

−p0 −
√
~p2 + µ2

)

all singularities and cuts are on the real frequency axis
different variants of propagators correspond to different
integration contours in the complex frequency plane
close to the real frequency axis

G(p) =

∫ ∞
0

dµ2 ρ(µ2) P 1

−p2
0 + ~p2 + µ2︸ ︷︷ ︸

∈ R

+ i π sign(Re p0) sign(Im p0)︸ ︷︷ ︸
=:s(p0)

ρ(p2
0 − ~p2)

︸ ︷︷ ︸
∈ R



Inverse propagator

close to real p0 axis

P (p) = G−1(p) = P1(p2
0 − ~p2)︸ ︷︷ ︸
∈ R

−is(p0)P2(p2
0 − ~p2)︸ ︷︷ ︸
≥0

physical excitations correspond to singularities in G(p) or
minima in P (p)

close to a point where P1(p) vanishes one can expand

P1 = Z(−p2
0 + ~p2 +m2) + . . .

P2 = Zγ2 + . . .

gives propagator of Breit-Wigner form

G(p) =
1

Z

−p2
0 + ~p2 +m2 + is(p0)γ2

(−p2
0 + ~p2 +m2)2 + γ4



Functional renormalization and exact

flow equation



Modified partition and Schwinger functionals

in Euclidean space

Zk[J ] = eWk[J ] =

∫
Dϕ e−S[ϕ]−∆Sk[ϕ]+

∫
Jϕ

with infrared regulator term

∆Sk[ϕ] =
1

2

∫
p
ϕ(−p)Rk(p)ϕ(p)

Rk depends on p2
0 + ~p2

is real and positive

decays for large p2
0 + ~p2



Flowing action

Γk[φ] =

∫
Jφ−Wk[J ]︸ ︷︷ ︸

Legendre transform

−∆Sk[φ]

has properties

lim
k→∞

Γk[φ] = S[φ] + one loop

lim
k→0

Γk[φ] = Γ[φ]

and fulfills exact flow equation (Wetterich 1993)

∂kΓk[φ] =
1

2
Tr(Γ

(2)
k +Rk)

−1∂kRk

(equivalent to infinity hierarchy of flow equations for n-point
functions)



Derivative expansion

flow is ”local” in momentum space due to ∂kRk(p)

acts as effective UV regulator if Rk(p) decays sufficiently fast
for large p2

0 + ~p2

derivative expansion works often well since only IR modes
contribute to flow

Γk =

∫
ddx

{
Uk(ρ) +

1

2
Zk ~∇φ~∇φ+

1

4
Yk ~∇ρ~∇ρ+ . . .

}



Regulator function and analytic

continuation



Why analytic continuation?

Functional renormalization works well in Euclidean/Matsubara
space but many physical quantities are easier to access in
Minkowski space

Examples:

spectral density and particle decay width
transport properties such as conductivities, viscosities etc.

Different strategies to access real time properties

extend formalism to Minkowski space functional integral
keep on working with Matsubara space functional integral,
use analytic continuation at k = 0
keep on working with Matsubara space functional integral,
use analytic continuation of flow equations



Strategy 1: Extend formalism to Minkowski space

some technical problems

factors i appear at various places
−p20 + ~p2 is not positive definite: what is IR and what is UV?
not obvious how to choose Rk(p) such that

lim
k→∞

Γk[φ] = S[φ]

needs Schwinger-Keldysh closed time contour

technically involved formalism
averaging over initial density matrix sometimes difficult

can be used also in far-from-equilibrium situations



Strategy 2: Work with functional integral in Matsubara
space and use analytic continuation at k = 0

can be done with numerical techniques: Padé approximants

numerical effort rather large

knowledge about spectral properties does not improve RG
running

only linear response properties accessible



Strategy 3: Work with functional integral in Matsubara
space and use analytic continuation of flow equations

no numerical methods needed for analytical continuation

truncations with only a few parameters that parameterize
efficiently the quasi-particle properties can be used

flow equations for real-time properties

space-time symmetries can be preserved

only linear response properties accessible

Follow this strategy here!



Choosing a regulator function 1

following discussion for truncations where inverse propagator
is of the form

Pk = Z
(
−p2

0 + ~p2 +m2 − is(p0)γ2
)

choose regulator function such that flow equations can be
analytically continued

requirements on Rk in Minkowski space a priori not clear

here: choose cutoff that has all desired properties for
Euclidean arguments and use analytic continuation

not possible for all regulator functions: Rk(p) that is smooth
for Euclidean argument can have singularities, poles, cuts etc.
in the complex plane!



Choosing a regulator function 2

choose here a class of rather simple regulator functions

Rk(p) =
Z k2

1 + c1

(
−p20+~p2

k2

)
+ c2

(
−p20+~p2

k2

)2
+ . . .

with ci ≥ 0. Simplest non-trivial choice is c1 = c ≥ 0,
c2 = c3 = · · · = 0.

allows for convenient decomposition

(Pk +Rk)
−1 =

1

Z

(
β1

p2 + α1k2
+

β2

p2 + α2k2
+ . . .

)
with complex coefficients βi, αi that depend also on s(p0).



Application to O(N) model



Model & truncation

Microscopic action for O(N) model

S =

∫ iT

0
dt

∫
d3x

{
N∑
m=1

1

2
φm(∂2

τ − ~∇2)φm +
1

2
λ ρ2

}

Truncation

Γk =

∫ { N∑
m=1

1

2
φm Pφ

(
i∂t,−i~∇

)
φm

+
1

4
ρ Pρ

(
i∂t,−i~∇

)
ρ+ Uk(ρ)

}
with ρ = 1

2

∑N
m=1 φ

2
m.



Effective propagators

Expand around background field

φ1 = φ0 + δφ1, φ1 = δφ2, . . .

and keep only quadratic part

Γk,2 =

∫
p

{
1

2
δφ1

[
Pφ + ρPρ + U ′ + 2ρU ′′

]
δφ1

+

N∑
m=2

1

2
δφm

[
Pφ + U ′

]
δφm

}
use also the decomposition

Pφ(p0, ~p) = Zφ(−p2
0 + ~p2)

[
−p2

0 + ~p2
]
− is(p0)γ2

φ(−p2
0 + ~p2)

and similar for Pρ.



Goldstone propagator

at minimum U ′ = 0 and Goldstone mode is massless

use expansion point −p2
0 + ~p2 = 0

imaginary part vanishes γφ(0) = 0

Goldstone propagator:

1

Zφ(0)(−p2
0 + ~p2) + U ′

flow can be characterized in terms of the anomalous dimension

ηφ = − 1

Zφ(0)
k∂kZφ(0)



Radial mode (or Higgs mode) propagator

radial mode is massive

use expansion point

p0 =
√
~p2 +m2

and write there

Pφ + ρPρ ≈ Z1

[
−p2

0 + ~p2
]
− is(p0)γ2

1

decay width is due to possible decay of radial excitation into
two Goldstone excitations

characterized by flow equations for Z1, γ1 and Uk



Flow of the effective potential

∂kUk =
1

2

∫
p0=iωn

∫
~p

{
1

Z1(~p2 − p2
0)− is(p0)γ2

1 + U ′ + 2ρU ′′ + 1
ZRk

+
1

~p2 − p2
0 + U ′ + 1

ZRk

}
1

Z
∂kRk

frequencies are summed over the discrete Matsubara values
p0 = iωn = i2πTn

one should not take the above expression literally for
Matsubara frequencies: s(p0) only defined close to real axis

use contour integration methods to perform the Matsubara
summation: boils down to evaluating residues and integrals
along branch cuts close to the real frequency axis!



Numerical results

only first application of formalism for illustration

for O(2) model in 3 + 1 dimensions at T = 0

for expansion of effective potential around minimum

Uk(ρ) = Uk(ρ0) +
1

2
λk (ρ− ρ0,k)

2

truncation with the parameters

λk, ρ0, Z1, γ1

supplemented by the anomalous dimension

ηφ = − 1

Zφ
k∂kZφ
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Flow of the interaction strength λk.
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Flow of the minimum of the effective potential ρ0,k.
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Anomalous dimension ηφ.
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Flow of the coefficient Z1 (solid line). We also show the resulting
behavior if the flow equation is evaluated at q0 = 0 instead (dashed line).
Interestingly, one finds Z1 →∞ for k → 0 in the latter case whereas the
result is completely regular if the flow equation is evaluated on-shell.
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Flow of the discontinuity coefficient γ21 (solid line). We also show the
resulting behavior if the flow equation is evaluated at q0 = 0 instead
(dashed line). As expected, the discontinuity γ21 is non-zero on-shell
whereas it vanishes for q0 = 0.



Conclusions

Analytic continuation of flow equations works in praxis

Improved derivative expansion in Minkowski space possible

Many dynamical and linear response properties can now be
calculated from this formalism


