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Why are fluctuations interesting?

“Standard model of heavy ion collisions” based on almost
ideal hydrodynamics works rather well.

This is also a puzzle:

Why is equilibration so fast?
Is there turbulence due to small viscosity?

Hydrodynamic fluctuations: Local and event-by-event
perturbations around the average of hydrodynamical fields:

energy density ε
fluid velocity uµ

Measure for deviations from equilibrium

Contain interesting information from early times

Might affect other phenomena, e.g. jet quenching



Theoretical framework

An ensemble average over many events with fixed impact
parameter b is described by smooth hydrodynamical fields

ε̄ = 〈ε〉
ūµ = 〈uµ〉

Fluctuations are added on top

ε = ε̄+ δε

uµ = ūµ + δuµ

Here we use Bjorkens model

ε̄ = ε̄(τ)

ūµ = (1, 0, 0, 0)

uµ = ūµ +
(
δuτ , u1, u2, uy

)
(in coordinates τ =

√
(x0)2 − (x3)2, x1, x2, y = arctanh(x3/x0))



Linear fluctuations

Consider only terms linear in δε, (u1, u2, uy)
We decompose velocity field into

gradient term, described by divergence

ϑ = ∂1u
1 + ∂2u

2 + ∂yu
y

rotation term, described by vorticity

ω1 = τ ∂2u
y − 1

τ
∂yu

2

ω2 =
1

τ
∂yu

1 − τ ∂1uy

ω3 = ∂1u
2 − ∂2u1

ϑ and δε are coupled: sound waves

Vorticity modes decouple from ϑ and δε
Solution in Fourier space yields for ideal hydrodynamics

ω1, ω2 ∼
1

τ2/3
, ω3 ∼ τ1/3.



Limits of linearized theory

Linear approximation only works for:

energy density
δε

ε̄
� 1

velocity field

Re =
uT l (ε+ p)

η
=
uT l (Ts+ µn)

η
� 1

Large Reynolds number Re� 1 leads to turbulence!

Typical numbers: T = 0.3 Gev, l = 5 fm, uT = 0.1c, µn = 0

⇒ Re ≈ 1

η/s



Mach number

Ma =

√
u1u1 + u2u2 + uyuy

cS

Turbulent motion can be described as “compression-less” for
Ma� 1, which means one can take

ϑ = ∂1u
1 + ∂2u

2 + ∂yu
y = 0.

We make a change of variables
kinematic viscosity

ν0 =
η

s TBj(τ0)

rescaled time / velocities

t = 3

4τ
1/3
0

τ4/3 vj =
(τ0
τ

)1/3
uj



Compression-less flow

This leads us to

∂tvj +

2∑
m=1

vm∂mvj +
1

τ2
vy∂yvj + ∂jd

−ν0
(
∂21 + ∂22 +

1

τ2
∂2y

)
vj = 0.

d is related to temperature fluctuations

solenoidal constraint

∂1v1 + ∂2v2 +
1

τ2
∂yvy = 0

for large times τ effectively two-dimensional



Turbulence in d = 2

Kraichnan (1967):

inverse cascade of energy to
small wave numbers

cascade of vorticity to large
wave numbers

E(k) ∼ k−3

qualitatively different to d = 3,
emerges here dynamically

k

E(k)

∼ k−3

Batchelor (1969):

scaling theory of decaying turbulence in d = 2

E(t, k) = λ3 t f(k λ t) with λ2 = 〈~v2〉 = const.

turbulent motion goes to smaller and smaller wave numbers
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Vorticity with viscosity

ω3 = ∂1u
2 − ∂2u1

ω1 = τ∂2u
y − 1

τ
∂yu

2

The linearized equations can be solved in Fourier space.
For k1 = 1 fm−1, k2 = ky = 0 and different viscosities
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Phenomenological consequences

Effect of hydrodynamical fluctuations can be calculated for
Blast-wave model and Cooper-Frye freeze-out

correction to one-particle spectrum is sensitive to the numbers

〈(u1)2 + (u2)2〉, 〈(uy)2〉, 〈T 2〉 − 〈T 〉2

effect qualitatively similar to the one of viscosity

two-particle spectrum is sensitive to the correlation functions
of hydrodynamical fluctuations

allows to compare to predictions of Kraichnan and Batchelor
for Re→∞

Also, macroscopic flow can be directly influenced by turbulent
fluctuations.



Summary

We have shown that

Transverse vorticity mode grows!

Hydrodynamical fluctuations on expanding medium can
become turbulent

Evolution laws can be mapped to two-dimensional
Navier-Stokes equation for late times

Turbulence has interesting effects on the two-particle spectrum

More details will be published soon.



Backup



Little Bang vs. Big Bang

Heavy Ions

Bjorken model

xµ = (τ, x1, x2, y)

gµν =


−1

1
1

τ2


ε0(τ), uµ0 = (1, 0, 0, 0)

+ hydrodyn. fluctuations

ε = ε0(τ) + ε1(τ, x1, x2, y)

uµ = uµ0 + uµ1 (τ, x1, x2, y)

Cosmology

Friedmann-Robertson-Walker

xµ = (t, x1, x2, x3)

gµν =


−1

a(t)
a(t)

a(t)


ε0(t), uµ0 = (1, 0, 0, 0)

+ hydrodyn. fluctuations

ε = ε0(t) + ε1(t, x1, x2, x3)

uµ = uµ0 + uµ1 (t, x1, x2, x3)

+ gravity fluctuations



Turbulence in d = 3
fully developed turbulence

Re =
u l

ν0
→∞

dissipated energy per unit time

d

dt
〈~v2〉 = −ν0

〈
(~∇× ~v)2

〉
= −ε

Richardson (1922):

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

Kolmogorov (1941):

E(k) ∼ ε2/3k−5/3

L. da Vinci (ca. 1500)

with

1
2 〈~v

2〉 =

∫ ∞
0

dk E(k)



Effects on macroscopic motion of fluid

Turbulent fluctuations might affect macroscopic motion

modified equation of state
modified transport properties

Anomalous, turbulent or eddy viscosity

proposed by Asakawa, Bass, Müller (2006) for plasma
turbulence and Romatschke (2007) for fluid turbulence
could become negative in d = 2 (Kraichnan (1976))
depends on detailed state of turbulence – not universal
gradient expansion needs separation of scales

More work needed


