News from Bosonization

Stefan Flörchinger (Heidelberg)

Work in collaboration with C. Wetterich
FOR 723 Workshop, ReisensbuRG 2009

Introduction

- We want to describe a system of fermionic fields ψ.

Introduction

- We want to describe a system of fermionic fields ψ.
- At low temperature we expect some kind of order.

Introduction

- We want to describe a system of fermionic fields ψ.
- At low temperature we expect some kind of order.
- Order parameter is a bosonic field φ.

Fermions or bosons?

- Purely fermionic description (1-PI)

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated
- Also purely bosonic description is possible (2-PI)

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated
- Also purely bosonic description is possible (2-PI)
- has advantages in ordered regime

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated
- Also purely bosonic description is possible (2-PI)
- has advantages in ordered regime
- infared properties well described

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated
- Also purely bosonic description is possible (2-PI)
- has advantages in ordered regime
- infared properties well described
- technically more complicated

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated
- Also purely bosonic description is possible (2-PI)
- has advantages in ordered regime
- infared properties well described
- technically more complicated
- formalism is nonlocal (bilocal)

Fermions or bosons?

- Purely fermionic description (1-PI)
- most convenient in symmetric regime
- many channels can be followed
- becomes difficult in ordered regime
- infrared properties (critical phenomena) complicated
- Also purely bosonic description is possible (2-PI)
- has advantages in ordered regime
- infared properties well described
- technically more complicated
- formalism is nonlocal (bilocal)
- Partial bosonization combines advantages of both approaches.

Notation

- Fermion field ψ_{α}
- Fermion field ψ_{α}
- Abstract index α labels continuous and discrete degrees of freedom.

Notation

- Fermion field ψ_{α}
- Abstract index α labels continuous and discrete degrees of freedom.
- For example: Matsubara frequency ω_{n}, momentum \vec{q} and spin i

$$
\alpha=\left(\omega_{n}, \vec{q}, i\right)
$$

Notation

- Fermion field ψ_{α}
- Abstract index α labels continuous and discrete degrees of freedom.
- For example: Matsubara frequency ω_{n}, momentum \vec{q} and spin i

$$
\alpha=\left(\omega_{n}, \vec{q}, i\right)
$$

- α differentiates also between particles ψ and holes ψ^{*} (or antiparticles $\bar{\psi}$).

Microscopic model

$$
S=\frac{1}{2} \psi_{\alpha} P_{\alpha \beta} \psi_{\beta}+\frac{1}{4!} \lambda_{\alpha \beta \gamma \delta} \psi_{\alpha} \psi_{\beta} \psi_{\gamma} \psi_{\delta}
$$

- Inverse propagator P

Microscopic model

$$
S=\frac{1}{2} \psi_{\alpha} P_{\alpha \beta} \psi_{\beta}+\frac{1}{4!} \lambda_{\alpha \beta \gamma \delta} \psi_{\alpha} \psi_{\beta} \psi_{\gamma} \psi_{\delta}
$$

- Inverse propagator P
- Fermion-fermion interaction λ

Microscopic model

$$
S=\frac{1}{2} \psi_{\alpha} P_{\alpha \beta} \psi_{\beta}+\frac{1}{4!} \lambda_{\alpha \beta \gamma \delta} \psi_{\alpha} \psi_{\beta} \psi_{\gamma} \psi_{\delta}
$$

- Inverse propagator P
- Fermion-fermion interaction λ
- Examples: Hubbard model, BCS-model, NJL-model,...

Hubbard-Stratonovich transformation

- Add Gaussian functional integral over boson field φ

$$
\int D \varphi e^{-\frac{1}{2}\left(\varphi-\chi Q^{-1}\right) Q\left(\varphi-Q^{-1} \chi\right)}
$$

Hubbard-Stratonovich transformation

- Add Gaussian functional integral over boson field φ

$$
\int D \varphi e^{-\frac{1}{2}\left(\varphi-\chi Q^{-1}\right) Q\left(\varphi-Q^{-1} \chi\right)}
$$

- Operator χ quadratic in fermion field

$$
\chi_{\epsilon}=H_{\epsilon \alpha \beta} \psi_{\alpha} \psi_{\beta}
$$

Hubbard-Stratonovich transformation

- Add Gaussian functional integral over boson field φ

$$
\int D \varphi e^{-\frac{1}{2}\left(\varphi-\chi Q^{-1}\right) Q\left(\varphi-Q^{-1} \chi\right)}
$$

- Operator χ quadratic in fermion field

$$
\chi_{\epsilon}=H_{\epsilon \alpha \beta} \psi_{\alpha} \psi_{\beta}
$$

- Choose H and Q such that λ-term is cancelled

$$
\frac{1}{4!} \lambda_{\alpha \beta \gamma \delta}+\frac{1}{2}\left(H Q^{-1} H\right)_{\alpha \beta \gamma \delta}=0 .
$$

Hubbard-Stratonovich transformation

- Add Gaussian functional integral over boson field φ

$$
\int D \varphi e^{-\frac{1}{2}\left(\varphi-\chi Q^{-1}\right) Q\left(\varphi-Q^{-1} \chi\right)}
$$

- Operator χ quadratic in fermion field

$$
\chi_{\epsilon}=H_{\epsilon \alpha \beta} \psi_{\alpha} \psi_{\beta} .
$$

- Choose H and Q such that λ-term is cancelled

$$
\frac{1}{4!} \lambda_{\alpha \beta \gamma \delta}+\frac{1}{2}\left(H Q^{-1} H\right)_{\alpha \beta \gamma \delta}=0 .
$$

- Arrive at theory for fermions and bosons

$$
S=\frac{1}{2} \psi P \psi+\frac{1}{2} \varphi Q \varphi-\varphi H \psi \psi .
$$

Hubbard-Stratonovich II

- Fermion interaction is expressed as boson exchange.

Hubbard-Stratonovich II

- Fermion interaction is expressed as boson exchange.
- Need boson field for every channel!

Hubbard-Stratonovich II

- Fermion interaction is expressed as boson exchange.
- Need boson field for every channel!
- Divergence in λ corresponds to order parameter $\langle\varphi\rangle \neq 0$.

Rebosonization

- Fermion coupling λ is regenerated by renormalization flow.

Rebosonization

- Fermion coupling λ is regenerated by renormalization flow.

- Gies \& Wetterich (2001): Use scale dependent boson fields $\varphi_{k}[\psi]$ to have $\lambda=0$ on all scales.

Rebosonization

- Fermion coupling λ is regenerated by renormalization flow.

- Gies \& Wetterich (2001): Use scale dependent boson fields $\varphi_{k}[\psi]$ to have $\lambda=0$ on all scales.
- Related work: Pawlowski (2007).

Rebosonization

- Fermion coupling λ is regenerated by renormalization flow.

- Gies \& Wetterich (2001): Use scale dependent boson fields $\varphi_{k}[\psi]$ to have $\lambda=0$ on all scales.
- Related work: Pawlowski (2007).
- We will present an exact and simple one-loop flow equation for this task.
(S. Floerchinger and C. Wetterich, arXiv:0905.0915)

Nonlinear field transformation

Consider flow equation (Wetterich 1993)

$$
\left.\partial_{k} \Gamma_{k}[\psi, \varphi]\right|_{\varphi}=\frac{1}{2} \mathrm{~S} \operatorname{Tr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1} \partial_{k} R_{k}\right\}
$$

with k-dependent change of variables $\varphi=\varphi[\bar{\varphi}]$

$$
\left.\partial_{k} \Gamma_{k}\right|_{\bar{\varphi}}=\left.\partial_{k} \Gamma_{k}\right|_{\varphi}-\left.\int_{q} \frac{\delta \Gamma_{k}}{\delta \bar{\varphi}} \partial_{k} \bar{\varphi}\right|_{\varphi} .
$$

- $\partial_{k} \bar{\varphi} \sim \psi \psi$ allows for "rebosonization".

Nonlinear field transformation

Consider flow equation (Wetterich 1993)

$$
\left.\partial_{k} \Gamma_{k}[\psi, \varphi]\right|_{\varphi}=\frac{1}{2} \mathrm{~S} \operatorname{Tr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1} \partial_{k} R_{k}\right\}
$$

with k-dependent change of variables $\varphi=\varphi[\bar{\varphi}]$

$$
\left.\partial_{k} \Gamma_{k}\right|_{\bar{\varphi}}=\left.\partial_{k} \Gamma_{k}\right|_{\varphi}-\left.\int_{q} \frac{\delta \Gamma_{k}}{\delta \bar{\varphi}} \partial_{k} \bar{\varphi}\right|_{\varphi} .
$$

- $\partial_{k} \bar{\varphi} \sim \psi \psi$ allows for "rebosonization".
- $\Gamma_{k}^{(2)}$ and R_{k} transform as tensors of rank two.

Nonlinear field transformation

Consider flow equation (Wetterich 1993)

$$
\left.\partial_{k} \Gamma_{k}[\psi, \varphi]\right|_{\varphi}=\frac{1}{2} \operatorname{STr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1} \partial_{k} R_{k}\right\}
$$

with k-dependent change of variables $\varphi=\varphi[\bar{\varphi}]$

$$
\left.\partial_{k} \Gamma_{k}\right|_{\bar{\varphi}}=\left.\partial_{k} \Gamma_{k}\right|_{\varphi}-\left.\int_{q} \frac{\delta \Gamma_{k}}{\delta \bar{\varphi}} \partial_{k} \bar{\varphi}\right|_{\varphi} .
$$

- $\partial_{k} \bar{\varphi} \sim \psi \psi$ allows for "rebosonization".
- $\Gamma_{k}^{(2)}$ and R_{k} transform as tensors of rank two.
- Connection terms $\sim \frac{\delta^{2} \varphi}{\delta \bar{\varphi} \delta \bar{\varphi}}$ destroy one-loop structure.

Nonlinear field transformation

Consider flow equation (Wetterich 1993)

$$
\left.\partial_{k} \Gamma_{k}[\psi, \varphi]\right|_{\varphi}=\frac{1}{2} \operatorname{STr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1} \partial_{k} R_{k}\right\}
$$

with k-dependent change of variables $\varphi=\varphi[\bar{\varphi}]$

$$
\left.\partial_{k} \Gamma_{k}\right|_{\bar{\varphi}}=\left.\partial_{k} \Gamma_{k}\right|_{\varphi}-\left.\int_{q} \frac{\delta \Gamma_{k}}{\delta \bar{\varphi}} \partial_{k} \bar{\varphi}\right|_{\varphi} .
$$

- $\partial_{k} \bar{\varphi} \sim \psi \psi$ allows for "rebosonization".
- $\Gamma_{k}^{(2)}$ and R_{k} transform as tensors of rank two.
- Connection terms $\sim \frac{\delta^{2} \varphi}{\delta \bar{\varphi} \phi \bar{\varphi}}$ destroy one-loop structure.
- $\Gamma_{k}[\bar{\varphi}]:=\Gamma_{k}[\varphi[\bar{\varphi}]]$ has different properties than $\Gamma_{k}[\varphi]$.

Scale-dependent bosonization

- Hubbard-Stratonovich transformation with k-dependent Q ("boson propagator") and H ("Yukawa interaction").

Scale-dependent bosonization

- Hubbard-Stratonovich transformation with k-dependent Q ("boson propagator") and H ("Yukawa interaction").
- Scale-dependent Schwinger functional

$$
e^{W_{k}[\eta, j]}=\int D \tilde{\psi} D \tilde{\varphi} e^{-S_{k}[\tilde{\psi}, \tilde{\varphi}]+\eta \tilde{\psi}+j \tilde{\varphi}}
$$

with

$$
\begin{aligned}
S_{k}[\tilde{\psi}, \tilde{\varphi}]= & S_{\psi}[\tilde{\psi}]+\frac{1}{2} \tilde{\psi}\left(R_{k}^{\psi}\right) \tilde{\psi}+\frac{1}{2} \tilde{\varphi}\left(Q+R_{k}^{\varphi}\right) \tilde{\varphi} \\
& +\frac{1}{2}(\tilde{\psi} \tilde{\psi} H) Q^{-1}(H \tilde{\psi} \tilde{\psi})-\tilde{\varphi}(H \tilde{\psi} \tilde{\psi})
\end{aligned}
$$

Scale-dependent bosonization

- Hubbard-Stratonovich transformation with k-dependent Q ("boson propagator") and H ("Yukawa interaction").
- Scale-dependent Schwinger functional

$$
e^{W_{k}[\eta, j]}=\int D \tilde{\psi} D \tilde{\varphi} e^{-S_{k}[\tilde{\psi}, \tilde{\varphi}]+n \tilde{\psi}+j \tilde{\varphi}}
$$

with

$$
\begin{aligned}
S_{k}[\tilde{\psi}, \tilde{\varphi}]= & S_{\psi}[\tilde{\psi}]+\frac{1}{2} \tilde{\psi}\left(R_{k}^{\psi}\right) \tilde{\psi}+\frac{1}{2} \tilde{\varphi}\left(Q+R_{k}^{\varphi}\right) \tilde{\varphi} \\
& +\frac{1}{2}(\tilde{\psi} \tilde{\psi} H) Q^{-1}(H \tilde{\psi} \tilde{\psi})-\tilde{\varphi}(H \tilde{\psi} \tilde{\psi})
\end{aligned}
$$

- k-dependent are: R_{k}, H and Q.

Exact flow equation

$$
\begin{aligned}
\partial_{k} \Gamma_{k}= & \frac{1}{2} \operatorname{STr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\left(\partial_{k} R_{k}-R_{k}\left(\partial_{k} Q^{-1}\right) R_{k}\right)\right\} \\
& -\frac{1}{2} \Gamma_{k}^{(1)}\left(\partial_{k} Q^{-1}\right) \Gamma_{k}^{(1)}+\gamma_{k}
\end{aligned}
$$

- One-loop term is supplemented by "tree" term.

Exact flow equation

$$
\begin{aligned}
\partial_{k} \Gamma_{k}= & \frac{1}{2} \operatorname{STr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\left(\partial_{k} R_{k}-R_{k}\left(\partial_{k} Q^{-1}\right) R_{k}\right)\right\} \\
& -\frac{1}{2} \Gamma_{k}^{(1)}\left(\partial_{k} Q^{-1}\right) \Gamma_{k}^{(1)}+\gamma_{k}
\end{aligned}
$$

- One-loop term is supplemented by "tree" term.
- Q^{-1} has entries in φ, φ-block, only.

Exact flow equation

$$
\begin{aligned}
\partial_{k} \Gamma_{k}= & \frac{1}{2} \operatorname{STr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\left(\partial_{k} R_{k}-R_{k}\left(\partial_{k} Q^{-1}\right) R_{k}\right)\right\} \\
& -\frac{1}{2} \Gamma_{k}^{(1)}\left(\partial_{k} Q^{-1}\right) \Gamma_{k}^{(1)}+\gamma_{k}
\end{aligned}
$$

- One-loop term is supplemented by "tree" term.
- Q^{-1} has entries in φ, φ-block, only.
- Field-independent term γ_{k} can often be dropped.

$$
\partial_{k} \Gamma_{k}=
$$

Properties of exaxt flow equation

- Scale dependence of H was choosen such that

$$
\partial_{k} H_{\epsilon \alpha \beta}=\left(\partial_{k} \ln Q\right)_{\epsilon \rho} H_{\rho \alpha \beta} .
$$

Properties of exaxt flow equation

- Scale dependence of H was choosen such that

$$
\partial_{k} H_{\epsilon \alpha \beta}=\left(\partial_{k} \ln Q\right)_{\epsilon \rho} H_{\rho \alpha \beta} .
$$

- Indepently choosen $\partial_{k} Q$ and $\partial_{k} H=\left(\partial_{k} F\right) H$ are equivalent to linear change in φ.

Properties of exaxt flow equation

- Scale dependence of H was choosen such that

$$
\partial_{k} H_{\epsilon \alpha \beta}=\left(\partial_{k} \ln Q\right)_{\epsilon \rho} H_{\rho \alpha \beta} .
$$

- Indepently choosen $\partial_{k} Q$ and $\partial_{k} H=\left(\partial_{k} F\right) H$ are equivalent to linear change in φ.
- Generalization to other composite operators are possible.

Properties of exaxt flow equation

- Scale dependence of H was choosen such that

$$
\partial_{k} H_{\epsilon \alpha \beta}=\left(\partial_{k} \ln Q\right)_{\epsilon \rho} H_{\rho \alpha \beta} .
$$

- Indepently choosen $\partial_{k} Q$ and $\partial_{k} H=\left(\partial_{k} F\right) H$ are equivalent to linear change in φ.
- Generalization to other composite operators are possible.
- For $R_{k}^{\varphi}=0$ formalism is close to purely fermionic flow.

Flowing bosonization

Flowing bosonization

- $\partial_{k} Q^{-1}$ can be choosen such that $\partial_{k} \lambda=0$.

Flowing bosonization

- $\partial_{k} Q^{-1}$ can be choosen such that $\partial_{k} \lambda=0$.
- This gives corrections to $\partial_{k} h$ and $\partial_{k} \mathcal{P}_{\varphi}$.

Proof of flow equation

Schwinger functional

$$
\begin{equation*}
e^{W_{k}[\eta, j]}=\int D \tilde{\psi} D \tilde{\varphi} e^{-S_{k}[\tilde{\psi}, \tilde{\varphi}]+\eta \tilde{\psi}+j \tilde{\varphi}} \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
S_{k}[\tilde{\psi}, \tilde{\varphi}]= & S_{\psi}[\tilde{\psi}]+\frac{1}{2} \tilde{\psi} R_{k}^{\psi} \tilde{\psi}+\frac{1}{2} \tilde{\varphi}\left(Q+R_{k}^{\varphi}\right) \tilde{\varphi} \\
& +\frac{1}{2} \chi Q^{-1} \chi-\tilde{\varphi} \chi . \tag{2}
\end{align*}
$$

Shift in field $\tilde{\varphi}$

$$
\begin{align*}
e^{W_{k}[\eta, j]}= & \int D \tilde{\psi} e^{-S_{\psi}[\tilde{\psi}]-\frac{1}{2} \tilde{\psi} R_{k}^{\psi} \tilde{\psi}+\eta \tilde{\psi}} \\
& \times e^{\frac{1}{2}(j+\chi)\left(Q+R_{k}^{\varphi}\right)^{-1}(j+\chi)-\frac{1}{2} \chi Q^{-1} \chi} \\
& \times \int D \tilde{\varphi} e^{-\frac{1}{2} \tilde{\varphi}\left(Q+R_{k}^{\varphi}\right) \tilde{\varphi}} \tag{3}
\end{align*}
$$

Equivalence of both equations yields

$$
\begin{equation*}
\left\langle\chi_{\epsilon}\right\rangle=Q_{\epsilon \rho} \varphi_{\rho}-l_{\epsilon} \tag{4}
\end{equation*}
$$

with the modified source $l_{\epsilon}=j_{\epsilon}-\left(R_{k}^{\varphi}\right)_{\epsilon \sigma} \varphi_{\sigma}$. Similarly

$$
\begin{align*}
\left\langle\chi_{\epsilon} \chi_{\sigma}\right\rangle= & {\left[\left(Q+R_{k}^{\varphi}\right)\left(\delta_{j} \delta_{j} W_{k}\right)\left(Q+R_{k}^{\varphi}\right)\right]_{\epsilon \sigma} } \\
& +(Q \varphi-l)_{\epsilon}(Q \varphi-l)_{\sigma}-\left(Q+R_{k}^{\varphi}\right)_{\epsilon \sigma}, \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle\tilde{\varphi}_{\epsilon} \chi_{\sigma}\right\rangle=\left\langle\tilde{\varphi}_{\epsilon} \tilde{\varphi}_{\tau}\right\rangle\left(Q+R_{k}^{\varphi}\right)_{\tau \sigma}-\varphi_{\epsilon} j_{\sigma}-\delta_{\epsilon \sigma} \\
& =\varphi_{\epsilon}(Q \varphi)_{\sigma}+\left[\left(\delta_{j} \delta_{j} W_{k}\right)\left(Q+R_{k}^{\varphi}\right)\right]_{\epsilon \sigma}-\varphi_{\epsilon} l_{\sigma}-\delta_{\epsilon \sigma} . \tag{6}
\end{align*}
$$

We now turn to the scale-dependence of $W_{k}[\eta, j]$

$$
\begin{align*}
\partial_{k} W_{k}= & -\frac{1}{2}\left\langle\tilde{\psi}\left(\partial_{k} R_{k}^{\psi}\right) \tilde{\psi}\right\rangle-\frac{1}{2}\left\langle\tilde{\varphi}\left(\partial_{k} R_{k}^{\varphi}+\partial_{k} Q\right) \tilde{\varphi}\right\rangle \\
& +\frac{1}{2}\left\langle\chi\left(\partial_{k} Q^{-1}\right) \chi\right\rangle \\
& -\left\langle\tilde{\varphi} Q\left(\partial_{k} Q^{-1}\right) \chi\right\rangle . \tag{7}
\end{align*}
$$

Use now (2), (3), (4)

$$
\begin{align*}
\partial_{k} W_{k}= & -\frac{1}{2} \psi\left(\partial_{k} R_{k}^{\psi}\right) \psi-\frac{1}{2} \varphi\left(\partial_{k} R_{k}^{\varphi}\right) \varphi \\
& -\frac{1}{2} \operatorname{STr}\left\{\left(\partial_{k} R_{k}^{\psi}\right)\left(\delta_{\eta} \delta_{\eta} W_{k}\right)\right\} \\
& -\frac{1}{2} \operatorname{Tr}\left\{\left[\partial_{k} R_{k}^{\varphi}-R_{k}^{\varphi}\left(\partial_{k} Q^{-1}\right) R_{k}^{\varphi}\right]\left(\delta_{j} \delta_{j} W_{k}\right)\right\} \\
& +\frac{1}{2} l\left(\partial_{k} Q^{-1}\right) l+\frac{1}{2} \operatorname{Tr}\left\{\partial_{k} Q^{-1}\left(Q-R_{k}^{\varphi}\right)\right\} \tag{8}
\end{align*}
$$

The average action is defined as the modified Legendre transform

$$
\begin{align*}
\Gamma_{k}[\psi, \varphi]= & \eta \psi+j \varphi-W_{k}[\eta, j] \\
& -\frac{1}{2} \psi R_{k}^{\psi} \psi-\frac{1}{2} \varphi R_{k}^{\varphi} \varphi . \tag{9}
\end{align*}
$$

As usual, one has

$$
\begin{equation*}
\frac{\delta}{\delta \psi_{\alpha}} \Gamma_{k}= \pm \eta_{\alpha}-\left(R_{k}^{\psi}\right)_{\alpha \beta} \psi_{\beta}, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\delta}{\delta \varphi_{\epsilon}} \Gamma_{k}=j_{\epsilon}-\left(R_{k}^{\varphi}\right)_{\epsilon \sigma} \varphi_{\sigma}=l_{\epsilon} . \tag{11}
\end{equation*}
$$

This yields our central result

$$
\begin{align*}
\partial_{k} \Gamma_{k}= & \frac{1}{2} \operatorname{S} \operatorname{Tr}\left\{\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\left(\partial_{k} R_{k}-R_{k}\left(\partial_{k} Q^{-1}\right) R_{k}\right)\right\} \\
& -\frac{1}{2} \Gamma_{k}^{(1)}\left(\partial_{k} Q^{-1}\right) \Gamma_{k}^{(1)}+\gamma_{k} \tag{12}
\end{align*}
$$

with

$$
\begin{equation*}
\gamma_{k}=-\frac{1}{2} \operatorname{Tr}\left\{\left(\partial_{k} Q^{-1}\right)\left(Q-R_{k}\right)\right\} \tag{13}
\end{equation*}
$$

Conclusions

- Simple but exact flow equation was derived.

Conclusions

- Simple but exact flow equation was derived.
- This allows an implementation of "flowing bosonization".

Conclusions

- Simple but exact flow equation was derived.
- This allows an implementation of "flowing bosonization".
- Details can be found in arXiv:0905.0915.

Conclusions

- Simple but exact flow equation was derived.
- This allows an implementation of "flowing bosonization".
- Details can be found in arXiv:0905.0915.
- Thank you for your attention!

