Ultracold gases and Functional renormalization I

Stefan Flörchinger (Heidelberg)

Work in collaboration with
S. Diehl (Innsbruck), H. Gies (Jena), S. Moroz,
J. M. Pawlowski, R. Schmidt, M. Scherer (Jena) and C. Wetterich

FOR 723 Retreat, LadenbuRG 2008

Why are Ultracold quantum gases interesting?

- Ultracold gases in the bulk are simple systems!

Why are Ultracold quantum gases interesting?

- Ultracold gases in the bulk are simple systems!
- for example: Fermi surface is usually a sphere.

Why are Ultracold quantum gases interesting?

- Ultracold gases in the bulk are simple systems!
- for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.

Why are Ultracold quantum gases interesting?

- Ultracold gases in the bulk are simple systems!
- for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.
- Interactions can be tuned to arbitrary values.

Why are Ultracold quantum gases interesting?

- Ultracold gases in the bulk are simple systems!
- for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.
- Interactions can be tuned to arbitrary values.
- Lower dimensional systems can be realized.

Why are Ultracold quantum gases interesting?

- Ultracold gases in the bulk are simple systems!
- for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.
- Interactions can be tuned to arbitrary values.
- Lower dimensional systems can be realized.

Very nice model system to test methods of quantum and statistical field theory!

Lagrangians

We use a local field theory to describe the microscopic model. Examples:

Lagrangians

We use a local field theory to describe the microscopic model. Examples:
(1) Bose gas with pointlike interaction

$$
\mathcal{L}=\varphi^{*}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \varphi+\frac{1}{2}\left(\varphi^{*} \varphi\right)^{2}
$$

Lagrangians

We use a local field theory to describe the microscopic model.
Examples:
(1) Bose gas with pointlike interaction

$$
\mathcal{L}=\varphi^{*}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \varphi+\frac{1}{2}\left(\varphi^{*} \varphi\right)^{2}
$$

(2) Fermions in the BCS-BEC-Crossover

$$
\begin{aligned}
\mathcal{L}= & \psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{*}\left(\partial_{\tau}-\frac{1}{2} \vec{\nabla}^{2}-2 \mu+\nu\right) \varphi \\
& -h\left(\varphi^{*} \psi_{1} \psi_{2}+h . c .\right)
\end{aligned}
$$

Lagrangians

We use a local field theory to describe the microscopic model.
Examples:
(1) Bose gas with pointlike interaction

$$
\mathcal{L}=\varphi^{*}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \varphi+\frac{1}{2}\left(\varphi^{*} \varphi\right)^{2}
$$

(2) Fermions in the BCS-BEC-Crossover

$$
\begin{aligned}
\mathcal{L}= & \psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{*}\left(\partial_{\tau}-\frac{1}{2} \vec{\nabla}^{2}-2 \mu+\nu\right) \varphi \\
& -h\left(\varphi^{*} \psi_{1} \psi_{2}+\text { h.c. }\right) .
\end{aligned}
$$

These are effective theories on the length scale of the Bohr radius $a_{0} \approx 0.5 \times 10^{-10} \mathrm{~m}$.

Symmetries of nonrelativistic field theories

- $\mathrm{U}(1)$ for particle number conservation.

Symmetries of nonrelativistic field theories

- $\mathrm{U}(1)$ for particle number conservation.
- Translations and Rotations.

Symmetries of nonrelativistic field theories

- U(1) for particle number conservation.
- Translations and Rotations.
- Galilean boost transformations.

Symmetries of nonrelativistic field theories

- U(1) for particle number conservation.
- Translations and Rotations.
- Galilean boost transformations.
- Possibly conformal symmetries (see talk by S. Moroz).

Symmetries of nonrelativistic field theories

- $\mathrm{U}(1)$ for particle number conservation.
- Translations and Rotations.
- Galilean boost transformations.
- Possibly conformal symmetries (see talk by S. Moroz).
- $\mathrm{U}(1)$ and Galilean invariance are broken spontaneously by a Bose-Einstein condensate.

Symmetries of nonrelativistic field theories

- $\mathrm{U}(1)$ for particle number conservation.
- Translations and Rotations.
- Galilean boost transformations.
- Possibly conformal symmetries (see talk by S. Moroz).
- U(1) and Galilean invariance are broken spontaneously by a Bose-Einstein condensate.
- Galilean invariance is broken explicitely by a thermal bath for $T>0$.

The grand canonical ensemble

Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

The grand canonical ensemble
Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

Generalization with $J=\frac{\delta}{\delta \phi} \Gamma_{k}[\phi]$

$$
e^{-\Gamma_{k}[\phi]}=\int D \chi e^{-S[\phi+\chi]+J \chi-\frac{1}{2} \chi R_{k} \chi} .
$$

The grand canonical ensemble

Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

Generalization with $J=\frac{\delta}{\delta \phi} \Gamma_{k}[\phi]$

$$
e^{-\Gamma_{k}[\phi]}=\int D \chi e^{-S[\phi+\chi]+J \chi-\frac{1}{2} \chi R_{k} \chi} .
$$

- R_{k} is an infrared cutoff function

The grand canonical ensemble

Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

Generalization with $J=\frac{\delta}{\delta \phi} \Gamma_{k}[\phi]$

$$
e^{-\Gamma_{k}[\phi]}=\int D \chi e^{-S[\phi+\chi]+J \chi-\frac{1}{2} \chi R_{k} \chi} .
$$

- R_{k} is an infrared cutoff function
- suppresses all fluctuations $R_{k} \rightarrow \infty$ for $k \rightarrow \infty$.

The grand canonical ensemble

Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

Generalization with $J=\frac{\delta}{\delta \phi} \Gamma_{k}[\phi]$

$$
e^{-\Gamma_{k}[\phi]}=\int D \chi e^{-S[\phi+\chi]+J \chi-\frac{1}{2} \chi R_{k} \chi} .
$$

- R_{k} is an infrared cutoff function
- suppresses all fluctuations $R_{k} \rightarrow \infty$ for $k \rightarrow \infty$.
- is removed $R_{k} \rightarrow 0$ for $k \rightarrow 0$.

The grand canonical ensemble

Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

Generalization with $J=\frac{\delta}{\delta \phi} \Gamma_{k}[\phi]$

$$
e^{-\Gamma_{k}[\phi]}=\int D \chi e^{-S[\phi+\chi]+J \chi-\frac{1}{2} \chi R_{k} \chi} .
$$

- R_{k} is an infrared cutoff function
- suppresses all fluctuations $R_{k} \rightarrow \infty$ for $k \rightarrow \infty$.
- is removed $R_{k} \rightarrow 0$ for $k \rightarrow 0$.
- $\Gamma_{k}[\phi]$ is the average action or flowing action.

The grand canonical ensemble

Functional integral representation of the partition function

$$
Z=e^{-\beta \Omega_{G}}=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D \chi e^{-S[\chi]}
$$

Generalization with $J=\frac{\delta}{\delta \phi} \Gamma_{k}[\phi]$

$$
e^{-\Gamma_{k}[\phi]}=\int D \chi e^{-S[\phi+\chi]+J \chi-\frac{1}{2} \chi R_{k} \chi} .
$$

- R_{k} is an infrared cutoff function
- suppresses all fluctuations $R_{k} \rightarrow \infty$ for $k \rightarrow \infty$.
- is removed $R_{k} \rightarrow 0$ for $k \rightarrow 0$.
- $\Gamma_{k}[\phi]$ is the average action or flowing action.
- Grand canonical potential is obtained from $\beta \Omega_{G}=\Gamma_{k}[\phi]$ for $k=0$ and $J=0$.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

- Differential equation for a functional.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

- Differential equation for a functional.
- For most cases not solvable exactly.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

- Differential equation for a functional.
- For most cases not solvable exactly.
- Approximate solutions can be found from Truncations.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

- Differential equation for a functional.
- For most cases not solvable exactly.
- Approximate solutions can be found from Truncations.
- Ansatz for Γ_{k} with a finite number of parameters.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

- Differential equation for a functional.
- For most cases not solvable exactly.
- Approximate solutions can be found from Truncations.
- Ansatz for Γ_{k} with a finite number of parameters.
- Derive ordinary differential equations for this parameters or couplings from the flow equation for Γ_{k}.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$
\partial_{k} \Gamma_{k}[\phi]=\frac{1}{2} \operatorname{STr}\left(\Gamma_{k}^{(2)}[\phi]+R_{k}\right)^{-1} \partial_{k} R_{k} .
$$

- Differential equation for a functional.
- For most cases not solvable exactly.
- Approximate solutions can be found from Truncations.
- Ansatz for Γ_{k} with a finite number of parameters.
- Derive ordinary differential equations for this parameters or couplings from the flow equation for Γ_{k}.
- Solve these equations numerically.

A remark on the cutoff function

- In principle the choice of the infrared regulator R_{k} is quite arbitrary.

A remark on the cutoff function

- In principle the choice of the infrared regulator R_{k} is quite arbitrary.
- Different forms may be used for error estimation.

A remark on the cutoff function

- In principle the choice of the infrared regulator R_{k} is quite arbitrary.
- Different forms may be used for error estimation.
- The idea of optimization is to choose R_{k} such that a maximum of sensible physics is obtained for a given truncation (Litim, Pawlowski).

A remark on the cutoff function

- In principle the choice of the infrared regulator R_{k} is quite arbitrary.
- Different forms may be used for error estimation.
- The idea of optimization is to choose R_{k} such that a maximum of sensible physics is obtained for a given truncation (Litim, Pawlowski).
- In our case it is usefull to have R_{k} independent from frequency. Matsubara summation can then be done analytically.

A remark on the cutoff function

- In principle the choice of the infrared regulator R_{k} is quite arbitrary.
- Different forms may be used for error estimation.
- The idea of optimization is to choose R_{k} such that a maximum of sensible physics is obtained for a given truncation (Litim, Pawlowski).
- In our case it is usefull to have R_{k} independent from frequency. Matsubara summation can then be done analytically.
- For fermions we choose a cutoff that regularizes the fermi surface.

Truncations

For many purposes derivative expansions are suitable approximations. For example we use for the BCS-BEC Crossover

$$
\begin{aligned}
\Gamma_{k}= & \int_{\tau, \vec{x}}\left\{\psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{*}\left(Z_{\varphi} \partial_{\tau}-A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}\right) \varphi\right. \\
& \left.-h\left(\varphi^{*} \psi_{1} \psi_{2}+h . c .\right)+\frac{1}{2} \lambda_{\psi}\left(\psi^{\dagger} \psi\right)^{2}+U_{k}\left(\varphi^{*} \varphi, \mu\right)\right\}
\end{aligned}
$$

Truncations

For many purposes derivative expansions are suitable approximations. For example we use for the BCS-BEC Crossover

$$
\begin{aligned}
\Gamma_{k}= & \int_{\tau, \vec{x}}\left\{\psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{*}\left(Z_{\varphi} \partial_{\tau}-A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}\right) \varphi\right. \\
& \left.-h\left(\varphi^{*} \psi_{1} \psi_{2}+\text { h.c. }\right)+\frac{1}{2} \lambda_{\psi}\left(\psi^{\dagger} \psi\right)^{2}+U_{k}\left(\varphi^{*} \varphi, \mu\right)\right\}
\end{aligned}
$$

- The coefficients $Z_{\varphi}, A_{\varphi}, \lambda_{\psi}, h$ and the effective potential U_{k} are scale-dependent.

Truncations

For many purposes derivative expansions are suitable approximations. For example we use for the BCS-BEC Crossover

$$
\begin{aligned}
\Gamma_{k}= & \int_{\tau, \vec{x}}\left\{\psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{*}\left(Z_{\varphi} \partial_{\tau}-A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}\right) \varphi\right. \\
& \left.-h\left(\varphi^{*} \psi_{1} \psi_{2}+\text { h.c. }\right)+\frac{1}{2} \lambda_{\psi}\left(\psi^{\dagger} \psi\right)^{2}+U_{k}\left(\varphi^{*} \varphi, \mu\right)\right\}
\end{aligned}
$$

- The coefficients $Z_{\varphi}, A_{\varphi}, \lambda_{\psi}, h$ and the effective potential U_{k} are scale-dependent.
- The effective potential U_{k} contains no derivatives - describes homogeneous fields.

Truncations

For many purposes derivative expansions are suitable approximations. For example we use for the BCS-BEC Crossover

$$
\begin{aligned}
\Gamma_{k}= & \int_{\tau, \vec{x}}\left\{\psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{*}\left(Z_{\varphi} \partial_{\tau}-A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}\right) \varphi\right. \\
& \left.-h\left(\varphi^{*} \psi_{1} \psi_{2}+\text { h.c. }\right)+\frac{1}{2} \lambda_{\psi}\left(\psi^{\dagger} \psi\right)^{2}+U_{k}\left(\varphi^{*} \varphi, \mu\right)\right\}
\end{aligned}
$$

- The coefficients $Z_{\varphi}, A_{\varphi}, \lambda_{\psi}, h$ and the effective potential U_{k} are scale-dependent.
- The effective potential U_{k} contains no derivatives - describes homogeneous fields.
- Wave-function renormalization and self-energy corrections for fermions can be included as well.

The effective potential

- We use a Taylor expansion around the minimum ρ_{0}

$$
U_{k}\left(\varphi^{*} \varphi\right)=-p+m^{2}\left(\varphi^{*} \varphi-\rho_{0}\right)+\frac{1}{2} \lambda\left(\varphi^{*} \varphi-\rho_{0}\right)^{2} .
$$

The effective potential

- We use a Taylor expansion around the minimum ρ_{0}

$$
U_{k}\left(\varphi^{*} \varphi\right)=-p+m^{2}\left(\varphi^{*} \varphi-\rho_{0}\right)+\frac{1}{2} \lambda\left(\varphi^{*} \varphi-\rho_{0}\right)^{2} .
$$

- Symmetry breaking:

$T>T_{c}$

$T<T_{c}$

$T \ll T_{c}$

The effective potential

- We use a Taylor expansion around the minimum ρ_{0}

$$
U_{k}\left(\varphi^{*} \varphi\right)=-p+m^{2}\left(\varphi^{*} \varphi-\rho_{0}\right)+\frac{1}{2} \lambda\left(\varphi^{*} \varphi-\rho_{0}\right)^{2} .
$$

- Typical flow:

Solving the flow equation - Phase diagram

- Information on phase diagram is contained in form of the effective potential $U(\rho, \mu, T)$ at macroscopic scale.

Solving the flow equation - Phase diagram

- Information on phase diagram is contained in form of the effective potential $U(\rho, \mu, T)$ at macroscopic scale.
- Very nice generalization of Landau's theory of phase transitions!

Solving the flow equation - Phase diagram

- Information on phase diagram is contained in form of the effective potential $U(\rho, \mu, T)$ at macroscopic scale.
- Very nice generalization of Landau's theory of phase transitions!
- Examples:

Solving the flow equation - Phase diagram

- Information on phase diagram is contained in form of the effective potential $U(\rho, \mu, T)$ at macroscopic scale.
- Very nice generalization of Landau's theory of phase transitions!
- Examples: BCS-BEC Crossover (talk M. Scherer)

Solving the flow equation - Phase diagram

- Information on phase diagram is contained in form of the effective potential $U(\rho, \mu, T)$ at macroscopic scale.
- Very nice generalization of Landau's theory of phase transitions!
- Examples: Superfluid Bose gas in $d=2$.

Solving the flow equation - Thermodynamic observables
We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

Solving the flow equation - Thermodynamic observables We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

Solving the flow equation - Thermodynamic observables We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

- energy density

$$
\epsilon=-p+T s+\mu n
$$

Solving the flow equation - Thermodynamic observables We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

- energy density

$$
\epsilon=-p+T s+\mu n
$$

- specific heat c_{v},

Solving the flow equation - Thermodynamic observables
We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

- energy density

$$
\epsilon=-p+T s+\mu n
$$

- specific heat c_{v},
- isoth. compressibility κ_{T},

Solving the flow equation - Thermodynamic observables We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

- energy density

$$
\epsilon=-p+T s+\mu n
$$

- specific heat c_{v},
- isoth. compressibility κ_{T},
- adiab. compressibility κ_{S},

Solving the flow equation - Thermodynamic observables
We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

- energy density

$$
\epsilon=-p+T s+\mu n
$$

- specific heat c_{v},
- isoth. compressibility κ_{T},
- adiab. compressibility κ_{S},
- velocity of sound I,

Solving the flow equation - Thermodynamic observables
We calculate the grand canonical potential and can therefore access many thermodynamic observables!

$$
d U=-d p=-s d T-n d \mu
$$

By taking derivatives one obtains e. g. for Bose gas in $d=3$

- entropy density $s=-\frac{\partial U}{\partial T}$,

- energy density

$$
\epsilon=-p+T s+\mu n
$$

- specific heat c_{v},
- isoth. compressibility κ_{T},
- adiab. compressibility κ_{S},
- velocity of sound I,
- velocity of sound II.

Solving the flow equation - Occupation numbers
Usually density can be written as

$$
n=\int_{\vec{p}} n(\vec{p})
$$

with Occupation number $n(\vec{p})$. Example: Homogeneous Bose gas

$$
n(\vec{p})=n_{c} \delta^{(d)}(\vec{p})+n_{T}(\vec{p}) .
$$

Occupation numbers are measured in time-of-flight experiments.

Picture from W. Ketterle, MIT.

Flow equations for occupation numbers

Flow equations for occupation numbers

- Use momentum-dependent chemical potential $\mu=\mu(\vec{p})$

$$
S=\int_{p} \varphi^{*}(p)\left[i p_{0}+\vec{p}^{2}-\mu(\vec{p})\right] \varphi(p)+\ldots
$$

Flow equations for occupation numbers

- Use momentum-dependent chemical potential $\mu=\mu(\vec{p})$

$$
S=\int_{p} \varphi^{*}(p)\left[i p_{0}+\vec{p}^{2}-\mu(\vec{p})\right] \varphi(p)+\ldots
$$

- Obtain occupation numbers from

$$
n(\vec{p})=-\frac{\delta}{\delta \mu(\vec{p})} U
$$

Flow equations for occupation numbers

- Use momentum-dependent chemical potential $\mu=\mu(\vec{p})$

$$
S=\int_{p} \varphi^{*}(p)\left[i p_{0}+\vec{p}^{2}-\mu(\vec{p})\right] \varphi(p)+\ldots
$$

- Obtain occupation numbers from

$$
n(\vec{p})=-\frac{\delta}{\delta \mu(\vec{p})} U .
$$

- Flow equations for $n(\vec{p})$ can be derived (Wetterich 2008).

Flow equations for occupation numbers

- Use momentum-dependent chemical potential $\mu=\mu(\vec{p})$

$$
S=\int_{p} \varphi^{*}(p)\left[i p_{0}+\vec{p}^{2}-\mu(\vec{p})\right] \varphi(p)+\ldots
$$

- Obtain occupation numbers from

$$
n(\vec{p})=-\frac{\delta}{\delta \mu(\vec{p})} U
$$

- Flow equations for $n(\vec{p})$ can be derived (Wetterich 2008).
- Example: Bose gas in $d=2$ with finite size.

$$
T>T_{c}, n_{c}=0 \quad T<T_{c}, n_{c} / n=0.4 \quad T \ll T_{c}, n_{c} / n=0.9
$$

Flow equations for new physics

- 1 component Fermi gas - no s-wave interaction

Flow equations for new physics

- 1 component Fermi gas - no s-wave interaction
- 2 component Fermi gas - BCS-BEC crossover

Flow equations for new physics

- 1 component Fermi gas - no s-wave interaction
- 2 component Fermi gas - BCS-BEC crossover
- 3 component Fermi gas - ??

Flow equations for new physics

- 1 component Fermi gas - no s-wave interaction
- 2 component Fermi gas - BCS-BEC crossover
- 3 component Fermi gas - ??

On the lattice: Trion formation (Rapp ET AL. 2007).

Flow equations for new physics

- 1 component Fermi gas - no s-wave interaction
- 2 component Fermi gas - BCS-BEC crossover
- 3 component Fermi gas - ??

On the lattice: Trion formation (Rapp ET AL. 2007).
Consider model with global $\operatorname{SU}(3)$ symmetry in truncation

$$
\begin{aligned}
& \Gamma_{k}=\int_{x} \psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2} / 2+m_{\varphi}^{2}\right) \varphi \\
& +\chi^{*}\left(\partial_{\tau}-\vec{\nabla}^{2} / 3+m_{\chi}^{2}\right) \chi \\
& +h \epsilon_{i j k}\left(\varphi_{i}^{*} \psi_{j} \psi_{k}+h . c .\right) \quad+g\left(\varphi_{i} \psi_{i}^{*} \chi+h . c .\right)
\end{aligned}
$$

Flow equations for new physics

- 1 component Fermi gas - no s-wave interaction
- 2 component Fermi gas - BCS-BEC crossover
- 3 component Fermi gas - ??

On the lattice: Trion formation (RAPP ET AL. 2007).
Consider model with global $\operatorname{SU}(3)$ symmetry in truncation

$$
\left.\begin{array}{rl}
\Gamma_{k}= & \int_{x}
\end{array} \psi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2}-\mu\right) \psi+\varphi^{\dagger}\left(\partial_{\tau}-\vec{\nabla}^{2} / 2+m_{\varphi}^{2}\right) \varphi, ~+\vec{\nabla}^{2} / 3+m_{\chi}^{2}\right) \chi .
$$

atoms: $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$, bosons: $\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ trion: χ.

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)
- For nonzero density expect quantum phase diagram with

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)
- For nonzero density expect quantum phase diagram with
- BCS-Color-Superfluid

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)
- For nonzero density expect quantum phase diagram with
- BCS-Color-Superfluid
- Trion

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)
- For nonzero density expect quantum phase diagram with
- BCS-Color-Superfluid
- Trion
- BEC-Color-Superfluid.

Flow equations for new physics

- At $n=T=0$ limit-cycle scaling for g^{2} and m_{χ}^{2}

- This is Efimov's effect! (talk S. Moroz)
- For nonzero density expect quantum phase diagram with
- BCS-Color-Superfluid
- Trion
- BEC-Color-Superfluid.
- Thank you for your attention!

