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Abstract. We discuss the equations of motion and the conservation laws for a non-relativistic 
isospin carrying particle in a spherically symmetric monopole field and for a vanishing 
Yukawa coupling. In the ‘t Hooft-Polyakov monopole field we find no classical counterpart 
of the Rubakov effect. In the Prasad-Sommerfeld limit we can solve the equations of 
motion analytically. 

1. Introduction 

Marciano and Muzinich solved the Dirac equation in an  external Prasad-Sommerfeld 
monopole field for J = 0 analytically [ 11. Their solution describes a charge exchanging 
and  helicity conserving scattering process. Therefore, an  ‘up quark’ is scattered into 
a ‘down quark’. 

It is one purpose of this paper to show that on the classical level the charge is 
conserved for J = 0. 

In a similar way, as one obtains the Lorentz equation of motion for an  electrically 
charged particle from the classical limit of the Dirac equation in an external electromag- 
netic field, one finds the equations of motion for an  isospin carrying particle from the 
classical limit of the Dirac equation in an external Yang-Mills field [2]. 

We discuss these Wong equations for the motion of a non-relativistic Yang-Mills 
( Y M )  particle in a spherically symmetric (ss) monopole field. An ss monopole field 
is invariant under a rotation in space and a simultaneous gauge transformation [3-51. 
Throughout this paper we assume a vanishing Yukawa coupling of the YM particle to 
the Higgs field of the monopole. 

We denote the symmetry group by G and its Lie algebra by y. The Dirac field 
which belongs to the YM particle transforms according to a representation V of G. Let 
V, denote the induced representation of y. We furthermore use the abbreviations 
V ( G )  and V , ( y )  for the sets {V(g)lgEG} and {V,( (Y)~(YE y } .  

2. Wong equations in a monopole field 

The Wong equations generalise the Lorentz equation of motion for particles with 
non-Abelian charges [2,9,  101. The dynamical variables of a Y M  particle are its position 
x E R4 and its isospin I E V,( y ) .  
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Besides the generalised Lorentz law 

p F  = (mc)-’ Tr{ I .  V,( F p ” ) } p y  (1) 

we have an equation for the time evolution of I. If Dy is the covariant derivative in 
the direction of Y, then Wong’s second equation reads 

D,Z = (d/dT)Z - i xF[ V,( A @ ) ,  I ]  = 0 (2) 

i.e. the isospin is parallel transported along the particle path. From (2) one concludes 
that I performs a precessional motion 

Tr 1 2 =  constant. (3) 

For a simple Lie group G and a faithful representation V the equations (1) and (2) 
are the Euler-Lagrange equations for the Lagrange function 

L =  -mc(g,3i.Fx”)1’2-i Tr(Ks-’D,s) 

if S ( T )  is a path in V ( G )  such that 

Z ( T )  = s ( T ) K s - ’ ( T ) .  

We furthermore assume that s(0) = e and hence K = I ( 0 ) .  

energy is conserved: 
A monopole field has vanishing electrical components F,,, and therefore the kinetic 

T = ymc2 = constant. (6) 

m i = x A T r I .  V , ( B )  ( l a )  

i = i[x. v,(A),  z]. ( 1 b )  

With B, = ~ E ~ , ~ F J ~  the non-relativistic Wong equations in the A ,  = 0 gauge are 

For an Abelian gauge theory the isospin Z is conserved and ( l a )  reduces to the usual 
Lorentz law in a magnetic field. 

3. Spherically symmetric monopole fields 

For the introduction of ss monopole fields we need an embedding 

g: SU(2) + G 

a + d a )  
of the spin group into the gauge group. If R : SU(2) + SO(3) is a covering map, then 
a spherical rotation is a simultaneous rotation in space with R-’ (a )  and a gauge 
transformation with g ( a ) .  Hence a ss field A fulfils 

( 7 )  A ( x )  = ( T ( a ) A ) ( x )  = g ( a ) R ( a ) A ( R - ’ ( a ) x ) g - ’ ( a )  

i.e. is invariant with respect to spherical rotations. If sp:= up/2, t p : =  g,(s,) and L is 
the orbital angular momentum, then the infinitesimal form of ( 7 )  is 

(w - J ) A  := { w - L+Ad(w t ) } A  = - iw A A =: -i( w f l ) A  (8) 
i.e. A is a J vector field. 
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Because of (7) an ss field A ( x )  is determined by its values on the positive 3-axis 

In the spherical gauge x * A ( x )  = 0 [4] the construction rules for A( r )  are simple [5]: 
(i)  Compute the subspace + =kernel {Ad( r 3 ) }  of y. 
(ii) Let b l ,  . . . , b, be a base of 7. Then 

A( r )  = A( re3). 

A,( r )  = 0. 

Now let us define the J vector field M by 

r '  V,(A) = ( M ( x ) -  T )  A 2 

[ M l ( r ) ,  MAr) l=  iM3(r) 

where T, = V,( t ! ) ,  and the J vector field N is given by its values on the positive 3-axis 

N (  r )  = M'(  r ) .  (11) 

With these definitions the B field reads 

r 2 B = ( M -  T ) , l + ( r N ) A  (12) 

where Cll = (C. 2)2 and C, = (2 A C) A 2 denote the components of the vector C which 
are parallel and orthogonal to 2. 

Now let us discuss the motion of a YM particle in a ss monopole field. Since the 
Lagrange function 

L = +mi2 - i Tr Ks-'D,s 

for a non-relativistic isospin carrying particle in an ss monopole field is invariant under 
the transformations 

x-, R ( a ) x  

s-, V ( g ( a ) ) s  

angular momentum is conserved. A straightforward calculation gives 

J = mx A x - x A Tr( I V , ( A ) }  - Tr{Z T }  (13) 

( J + T r  Z. T ) .  i = O .  (14) 

and therefore we obtain 

Using (1) and (1 1 )-( 13) we end up with the following equations: 

r'i = i(x A X)[M - T, I ]  

mr'x = x A {Tr Z(M - T)ll+ r Tr INL} 

J = mx A x - Tr ZM, + Tr ITil. 
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Now we restrict ourselves to the case J=O.  With (17) we obtain for a vanishing 
angular momentum 

mx A = Tr IM, (18) 

Tr IT,, = 0. (180) 

By using these identities in (15), we find 

mr'Z = i Tr ZM, [ M -  T, I ] .  (19) 

Now we specialise further and discuss these equations for the 't Hooft-Polyakov 
monopole solution. 

4. A Yang-Mills particle in a 't Hooft-Polyakov monopole field 

For a 't Hooft-Polyakov monopole solution [6, 71 the symmetry group is G = SU(2) 
and hence 

M , ( r )  = K ( r ) S ,  M,( r )  = K ( r )S ,  M , ( r )  = K ' ( ~ ) s ~ .  (20) 

We furthermore assume that the Y M  particle is a SU(2)  doublet. Thus we may expand 
( T = S )  

I = y (  t )  . s. 
Because of (18a) we have 2 .  y = 0. Using this, together with 120), yields the stated 
conservation of the isospin 

l = O  (21) 

y = constant. (210)  

or equivalently 

With (14) we conclude that 

(2 .  y )  = 0 

i.e. the YM particle moves on a plane which is perpendicular to y. The equation of 
motion (16) simplifies to 

(22) 

In a Prasad-Sommerfeld monopole field K = Dr/s inh(Dr) ,  we can solve equation ( 2 2 )  
analytically. For that we introduce polar coordinates ( p ,  4 )  in the plane of the particle 
path. With the abbreviation A'= D 2 / 2 m T  we obtain 

p ( t )  = (47r/M) cosh- ' [ ( l+A' ) '  cosh(2ATr)l. (23) 

Here M = 47rD is the mass of the monopole. One should compare (23) with the 
solution in the field of a Dirac pole: 

mx = ( K ' ( r ) / r ) y  A x. 

p'( t )  = ( 2  T /  m )  t 2 .  

As one expects, p ( t ) ,  d(t)  approach the Dirac solution for M-toc.  
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5. The asymptotic solutions 

The vector fields M ( x )  and N ( x )  in (15)-(17) decay exponentially for lxI- ,a [4]. 
With (17) we obtain 

J - mx A X + Tr IT,,.  

Tr I (  T i )  - constant (25) 

J .  x  ̂- constant (26) 

(24) 

Therefore Jx - r Tr I (  T i )  and J X  = i Tr I (  T i ) .  We conclude that 

and 

i.e. the particle moves asymptotically on a cone. The asymptotic form of (16) 

(X A x)Tr I (  T i ) / r 3  = -11 A B, (x )  (27) - - 
is the equation of motion of an  electron in the field of a Dirac pole with a magnetic 
charge g = Tr I (  Tx^)/e. 

6. Additional remarks 

Throughout this paper we confined ourselves to the case of a vanishing Yukawa 
coupling of the YM particle to the Higgs field. If the Dirac field which corresponds 
to the YM particle also couples to the scalar field, i.e. 

L = + (cl( m ) 9 
then, using Wong’s arguments, one finds instead of (1) and (2) the equations 

p p  =(mc)- ’Tr{ l .  V,(F’””)}p,-Tr I .  D F ( T 6 )  

dZ/dT= ix”[ V,(A,), Z]+i[T4, I ]  

where D,(T4) = a,(rb)  -i[ V,(A,), Tb]. From the second of these modified Wong 
equations, using xpxw = 1, we especially obtain a time-dependent mass 

m = -Tr ID,(T4)x”.  

The Lagrangian (4) gets an additional term Tr K s - ’ ( T b ) s .  For an  ss field configur- 
ation (4, A)  the angular momentum (13) remains the same and our discussion of the 
equations of motion is only slightly modified. But the qualitative behaviour of the 
particle may be dramatically affected by the introduction of this additional Yukawa 
coupling. 

7. Conclusions 

Using the most general ansatz for a spherically symmetric monopole field (with arbitrary 
gauge group G) we derived with (15)-( 17) the equations of motion and the conserved 
angular momentum for a Y M  particle in such a field. Then we discuss these equations 
in various circumstances, e.g. for a vanishing angular momentum and in the asymptotic 
region 1x1 -+a. 
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With (21) we proved that for G = SU(2) an isospin doublet suffers no charge 
exchange for J = 0. Hence there exists no non-relativistic ‘classical Rubakov effect’. 

This is, of course, not very surprising, since the J = 0 sector is in the ‘anti-classical 
regime’. But nevertheless our results tells us something about the (qualitative) limits 
of Wong’s equations. 

After solving the Wong equations for a YM particle in a Prasad-Sommerfield 
monopole field we dsicussed the asymptotic form of these equations in an arbitrary 
ss monopole field. 

We find that the YM particle behaves asymptotically like an electron in an Dirac 
pole field with magnetic charge g = Tr I( Ti?)/ e. 

Acknowledgments 

The author thanks P Horvathy for valuable discussions. This work was supported by 
the Swiss National Science Foundation and the Max-Planck-Gesellschaft. 

Nofe  added. After this work was completed we learned of the article by F e h k  [8]. This paper takes a 
possible Yukawa coupling into account but restricts it to the PS limit. We point out that our equations 
(28)-(30) differ from these obtained by Fehkr. We thank P Horvathy for bringing this paper to our attention. 

References 

[ l ]  Marciano W J and Muzinich I J 1983 Phys. Rev. Lett. 50 1035 
[2] Wong S K 1970 Nuouo Cimento A 65 689 
[3] Wu A C T and Wu T T 1974 J. Math. Phys. 15 53 
[4] Jaffe and Taubes 1980 Vortices and Monopoles (Stuttgart: Birkhauser) 
[SI Wipf A 1985 Helv. Phys. Acta to appear 
[6] ’t Hooft G 1974 Nucl. Phys. B 79 276 
[7] Polyakov A M 1974 JETP Lett. 20 194 
[8] Feh6r L G 1985 Acto Phys. Polon. B to appear 
[9] Schechter J 1976 Phys. Rev. D 14 524 

[ lo ]  Duval C and Horvathy P 1982 Ann. Phys., NY 142 10 


