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It is shown that the time-dependent WKB expansion highlights some of the hidden 
properties o f  the Schr6dinger equation and forms a natural bridge between that 
equation and the functional integral formulation of  quantum mechanics. In par- 
ticular it is shown that the leading (zero- and first-order in h) terms in the WKB 
expansion are essentially classical, and the relationship o f  this result to the 
classical nature of  the WKB partition function, and of  the anomalies in quantum 
field theory, is discussed. 

1. INTRODUCTION 

Although the Schr6dinger equation has been in existence for 60 years and 
its applications pervade most of modern physics and chemistry, the 
equation itself continues to be of great intrinsic interest and to yield new 
insights. 

In the present paper we wish to show that some such insights can be 
gained by writing the time-dependent Schr6dinger equation in its 
(nonlinear) real form. In this form one sees that the Schr6dinger system 
depends basically on h 2 rather than h, and is ripe for development in h 2. In 
particular one sees that the term linear in h (the time-dependent WKB ~1) 
term) is essentially classical and is, in fact, generated by the purely classical 
Hamilton-Jacobi equation. As such, this term should have a classical 
meaning, and the classical meaning is elucidated. 

Apart from its intrinsic interest, the time-dependent WKB term and 
the subsequent WKB expansion of the (time-dependent) Schr6dinger 
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system is of interest because it forms a bridge between the Schr6dinger for- 
mulation and the functional integral formulation of quantum mechanicsJ 2~ 
Indeed, the most popular first approximation to the functional integral is 
the classical-path approximation, and the subsequent development of the 
functional integral in powers of h (loops) corresponds exactly to the WKB 
development just mentioned. °) In particular, the term of order h relative to 
the classical approximation (one-loop term) in the functional integral is 
just the leading WKB term discussed above. Since in the functional integral 
formalism this term always appears as a determinant (coming from the 
Gaussian distribution around the classical path), we shall call it the WKB 
determinant. The derivations of this term from the wave equation and from 
the functional integral formalism (which we shall give) are very different, 
and give different insights into its nature. In each case, however, both the 
derivation and the end result is essentially classical. 

The classical nature of the WKB term becomes even more evident 
when one considers the quantum-mechanical partition (4) function Z(t), 
because in the WKB approximation to Z(t), the Planck constant h simply 
does not appear. An interesting consequence of this result is that it helps to 
explain the apparent paradox that the so-called global "anomalies" of 
quantum field theory, ~5~ which play such a central role in grand unification 
and string theories, are quantum mechanical from the point of view of 
Feynman graphs (6) but are classical from the point of view of index 
theorems3 v) The point is that, as we shall show, the anomalies are WKB 
(one-loop) contributions and can be expressed as quantum-mechanical 
partition functions. The relationship between anomalies and essentially 
classical WKB partition functions is illustrated in detail for one simple 
model. 

For quadratic Lagrangians the WKB approximation becomes exact, 
and hence we thought it worthwhile to write down the wave function, or 
functional integral, for a wide class of quadratic Lagrangians called abelian 
(Section 8). It turns out that all abelian quadratic Lagrangians can be 
reduced to one which describes a particle in the presence of a harmonic 
oscillator potential and a potential which corresponds to a constant 
magnetic field. Furthermore, there exists a transformation which eliminates 
the magnetic field, so that the computations can be reduced to those for a 
harmonic oscillator and the general result recovered by using the inverse 
transformation. 

Finally it should be stated that most of the results presented here are 
not new, though some of them are relatively recent. What we hope to have 
done is to have shown that a number of previous results can be simplified 
and woven into a coherent whole, and to emphasize that the WKB parts of 
these results are essentially classical. 
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2. REAL FORM AND HIDDEN PROPERTIES 
OF THE SCHRODINGER EQUATION 

By writing the Schr6dinger wave function 7* in the form 

iS  
=pl/2e ~ , where p and S are real 

one may decompose the Schr6dinger equation 

85v h 2 
ih . . . .  3 ~ +  V(x) 'e 

8t 2m 

(1) 

(2) 

into the two real equations 

8S 1 h 2 {3pl/2~ 
0t (vs)2+ V(x)= m \ o '/2 ] 

and 

(3) 

h ( ~ P t + v - j ) = 0 ,  where j=lp(VS)m (4) 

and these equations exhibit the following rather remarkable properties of 
the Schr6dinger system which are otherwise not so evident: 

(1) As might be inferred from the manner in which it is written, the 
second equation (4) is just the usual Schr6dinger continuity equation. 
Indeed, one sees by inspection that 

J ! p ( v s ) -  h = m  -2~m (~*V~U- gqTgt,) (5) 

Thus the decomposition of the Schr6dinger equation into real parts is 
simultaneously a decomposition into the continuity equation and the 
equation (3), which may then be regarded as the "kernel" of the 
Schr6dinger equation. 

(2) Once the overall factor h has been eliminated from the continuity 
equation (4), this equation is independent of h. Thus the continuity 
equation gives a purely classical relationship between p and S, the 
quantum mechanical (h) appearing only in the "kernel" equation (3). 

(3) Even in the kernel equation (3) there appears only the square of 
h. This shows that, once an h has been absorbed in the definition of S in 
(1), the Schr6dinger system actually depends only on h 2. Furthermore, one 
sees from (3) that h 2 appears in a manner that leaves the equation ripe for 
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an iteration in h 2. (Of course, whether the iteration converges depends on 
the potential). 

(4) If, in particular, one considers the WKB approximation (neglect 
of terms of order h2), one sees that one obtains not only the usual classical 
Hamilton-Jacobi equation but two classical equations, namely, 

~sc 1 ~p~,  1 v . . . .  ~ --7+g7-- (vSc)2+v(x)=O and --~--t- m tp~.v~o=0 (6) 

the second of which may be regarded as coming from the first-order term 
in h (but not containing h!). In this sense the (time-dependent) WKB 
approximation may be regarded as essentially classical. As will be seen 
later, this corresponds to the fact that the one-loop approximation to the 
partition function (and to the Schwinger function in QFT) is essentially 
classical. 

(5) As will be shown in the next section, a solution to the second 
equation in (6) can always be found in terms of the Hamilton-Jacobi 
function So, namely, 

P,c = det ( - 
~2Sc(X, 

~xi oa/a' t!/ ) (7) 

where ai = xi(0) is the initial value of xi(t). In fact, the derivations (8)°) and 
analysis of the solution (7) will constitute a substantial part of this paper. 

(6) Given the solution (7), the general solution p,. is evidently given 
by p,. = t/p=,., where r/is any solution of the simpler residual equation 

~ + ! (V~)-(V&) = 0 (S) 
(~t m 

Geometrically, the solutions r/are those functions which are constant along 
the lines with tangents parallel to (m, VS,,) in (t, x)-space. From this, and 
the fact that the initial value p=c(x, 0) of p=c(x, t) is completely determined 
by the initial value of So(x, t) from (7), one sees that one of the main roles 
of r/is to free the initial value of p,.(x, t) from that of Sc(x, t). 

Although Eqs. (3) and (4) were derived from the Schr6dinger equation 
in order to have a familiar starting point, the properties we have just 
described are actually more transparent if one starts from the Lagrangian 
density for the Schr6dinger equation, namely, 

ih h 2 
Le(x) =~- (~*c~, ~ -  ~,~, ~e*)-Tin IV'/'l 2 - V[~12 (9) 
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Indeed, if one writes the wave function ~ in the form (1), this Lagrangian 
reduces to 

\~t 2m(VS)2+ v -~m(Vp)2 (lO) 

from which Eqs. (3) and (4) and points (1)-(4) above follow by inspection. 
One also sees that p may be regarded as a Lagrange multiplier for the 
Hamilton-Jacobi equation in the classical part of 5e, and that the current 
conservation equation (4) may be regarded either as a field equation, or as 
the Noether-current conservation law u°) for the symmetry S(x, t ) ~  
S(x, t) + c of ~ ,  where c = const. Indeed, the usual Noether rule for fields S 
that appear in Lagrangian densities only through their derivatives yields 
the current 

0cf  ~S Oc~ 
J" - c~S~ c~c - r3S~ (11 ) 

whose conservation taw is just the field equation, and in the present 
instance the current j~, is evidently p(1, VS/m). 

3. DERIVATION OF THE SPECIAL SOLUTION 

In this section we wish to derive the special solution (7) of the 
continuity equation in (6) from the Hamilton-Jacobi equation 

c~S,. 1 
t3t F - - (VSc)2+  V = 0  (12) rn 

For this purpose one differentiates (12) with respect to x~(t) and x; (0)= ai. 
Since V(x) does not depend on a,., it drops out and one obtains 

f ¢~23c ' x 1 ( (~23 e ~ f  ~23 c x] 

1 /t3Sc\/ c33Sc \ 

or, on writing the second derivatives in matrix form, 

1 1 
Q,MiJ+mMikNkj+ m (VS,.). (VMij) = 0  (I4) 
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where M and N are the matrices indicated. On multiplying (14) to the left 
by M-1, taking the trace of the result, and using the general formula 

tr(M -1 6M) = 6(ln det M) (15) 

for the first variation of any nonsingular matrix M, one obtains 

~ ? ~ ( d e t M ) + l ( d e t M ) t r N + l  ( V S c ) . ( V d e t M ) = O  (16) 
m m 

But since tr N is just ASc, the last two terms in (16) can be combined, and 
one obtains 

a,(det M ) + 1  V((det M) VS,.)= 0 (17) 
m 

The result then follows by making the obvious identification 

( 0 2 S ~  (18) 
P,c = det( - M) = det - ~?xi Oaj/ 

the minus sign being chosen because a2S/Oa ax is generically negative. 3 
Note that the derivation hinges on the fact that V(x) is independent of 

ai. Hence the result (17) does not generalize to the case when the h 2 term 
in (3) is not neglected. Indeed in that case it is easy to see that (17) picks 
up the term 

h 2 .~ _~ (z~/91/2~ 
~- (det M) tr(M 1 K ) ,  where K° - c~a i cqxj \ pl/2 ] (19) 

Clearly K does not vanish unless 04S/cqx 2 c~a 2 is zero, and while this may 
happen in exceptional cases (see Sections 8 and 9, for example), it does not 
happen in general. 

4. CLASSICAL MEANING OF THE SPECIAL SOLUTION 

The fact that the special solution Psc can be expressed in terms of the 
Hamilton-Jacobi function Sc means that even a purely classical theory 
must have hidden in it an analogue of the Schr6dinger density gt. ~u and its 
accompanying conservation law! One may then ask: What is the physical 
meaning of this classical ,,~u*gr, and its conservation law? 

One meaning of the conservation law is obtained, of course, from 
Noether's theorem, because just as the quantum-mechanical conservation 

3 We shall assume throughout  this paper that psc~O. The zeros of p~. are, in fact, of great 
physical interest in themselves (see, for example, Ref. 8), but  they shall not  concern us here. 
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law follows from the invariance of the Schr6dinger equation under the 
phase transformation ~(x) - ,  e~g ~, where e is constant, the classical conser- 
vation law follows from the invariance of the Hamilton-Jacobi equation 
under the corresponding transformation Sc ~ S~ + c. 

What we really seek, however, is a direct physical meaning for p,,.. 
This is obtained by noting that, according to standard Hamilton-Jacobi 
theory, the quantity ( -  OSjOa~) is just the initial momentum p~(0). Indeed, 
from the general Lagrangian variational principle, one has 

82'  
6S~=(~ L dt + [p. 6x]2, pk =-~xk=m2k + gk(x ) (20) 

where p,  is the canonical momentum, and gk is a function of x only. And 
since for classical paths the first term is zero, one has, in particular, 

8Sc 
8a, = -p , (0)  (21) 

Hence the density p,~. may also be written in the form 

p~ = det (@~(0)'] (22) \ a~jj 

Equation (22) shows that p~,. is just the Jacobian for the transformation 
from initial momenta to final positions (keeping the initial positions fixed). 
Thus Psc converts any small distribution A3p(0) in initial momentum into a 
distribution in final position according to 

(23) 

So finally one sees that the physical meaning of Ps, is that it determines the 
spread in the final position (e.g., area where a projectile may land) in terms 
of the spread in the initial momentum (e.g., spread in the angle of 
projection). Thus, for artillery computations at least, P,c is an important 
quantity! Of course, the fact that ~ d3x p,c(x) is conserved simply means 
that (if Psc is not singular) a moving particle must arrive somewhere. 

5. FREE CASE, GENERAL INITIAL CONDITIONS, 
AND THE WKB GREEN'S FUNCTION 

Although the free ( V = 0 )  Schr6dinger wave equation and the free 
classical action are each fairly trivial, it is nevertheless worthwhile to 
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investigate the relationship between them. It is well known that the free 
classical action is 

m 
Scj(x, a, t )=~  (x -a)  2 (24) 

and from this one sees at once that 

~2Scf m 6g and p~/2 (25) 
~ a i  OXJ = t scf "= - -  

where P,d is the special solution of (4). Furthermore, since Ap, d is zero, 
one sees that the pair (S d, Pscfl in this case actually form an exact solution 
to the Schr6dinger system, and hence 

I'm\ 3/2 [ i m(x -- a) 2] 
) exp[  2, (26) 

is an exact solution of the free Schr6dinger equation. Furthermore, since 
for any smooth test-function g(x), one has 

lim f ~y(x, a, t) g(x) = (27rh) 3/2 g(a) 
t = 0  

(27) 

one sees that ~ / i s  the solution that tends to (272h) 3/2 O3(x-a)  as t - ,  0. 
Thus the combination of the special solution of (4) (i.e., the solution with 

= 0) and the free classical action corresponds to the wave function that 
starts out as a delta function. Alternatively, since 

q)(x, t) = (2~h) 3/2 f d3x ~/(x, a, t) ~(a) (28) 

then satisfies the free Schr6dinger equation with initial value ~b(a), one 
may say that (2r~h) 3/2 ~/(x,  a, t) is the Green's function for the free 
Schr6dinger operator. 

Perhaps the most interesting feature of this result is that it generalizes 
to the nonfree case V # 0 in the WKB approximation. The point is that for 
any (smooth, etc.) potential V it is consistent to let S,.(x, a, t) be of the 
form 

m 
So(x, a, t) = ~ [(x - a) 2 + O(t)] (29) 

for small t, because in the Hamilton-Jacobi equation this So(x, a, t) will be 
of order t -z, and so will dominate the potential term for small t. On 
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choosing this initial condition the special solution p~< will still take the 
form (M/t) 3 for small t, and the WKB Schr6dinger wave function 

~F(x, a, t)=(2rch) -3/2 nl/2t~',- s< ,~- a, t)exP [h Sc(x,a, t)] (30) 

will still tend to 63(x-  a) as t-~ 0. In other words, the effect of the poten- 
tial will only be felt at later times. Thus the quantity (30) which satisfies the 
Schr6dinger equation in the WKB approximation and tends to 63(x-  a) as 
t ~ 0  must be the WKB approximation to the Green's function for the 
Schr6dinger operator for V4: 0. 

Note incidentally that the "spread in the wave packet" of a free 
particle comes from the exponential (classical) part of the wave function in 
(26), the WKB part (m/t) -3/z acting only as a normalizing factor. Thus the 
classical spread ps, l(x,a,t)=det(SxffOpj(O)) discussed in the previous 
section is not the spread of the wave packet but the additional spread 
introduced by the existence of the potential. 

6. FUNCTIONAL INTEGRAL APPROACH 

In the following sections we wish to compare our previous results with 
those obtained using the functional integral approach, partly because the 
functional integral approach is interesting in its own right and gives an 
alternative derivation of the central formula (7), and partly because it will 
relate the previous results directly to the partition function. In particular, it 
wilt help to bring out clearly the essentially classical nature of the WKB 
(one-loop) approximation to the partition function. 

We start from the standard Dirac-Feynman-Kac functional integral 
expression (2) for the wave function, namely, 

s; t ~(x, a, t, V) = N ~12 d[y] exp S(y, t) (31) 

where N is a universal (V-independent) normalizing factor, d[y] denotes 
integration over all paths, and S(y, t) denotes the classical action function 

, m  @ s(Y, t)= [o N)- v(y)} =,  (32)  

If S(y, t) is expanded around its classical value Sc(y, t), where y(t) is the 
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classical path from a to x in the potential V(x), the terms linear in ( y - y c )  
drop out because y~ is extremal and one obtains 

mh ~t 
S(y, t)= So(y, t ) + - ~  Jo [(6;9, 6:9)- (6y, O(r) 6y)] dr + O(h 3/2) (33) 

where y - y .  = h 1/2 6y and U(r) is the matrix 

U(r ) = Ujk(r ) = m \ \ / y  = y~ (34) 

From this one sees that the WKB approximation to T(x, t) is 

TWK.(X,t)=[ND(X~.)]-l/2exp[~S~.(x,t, V)] (35) 

where the exponential term is the zero-order (classical) approximation and 

;: (7)fo D-'/a(S.) = d[y] exp (6y, +~3~ + U(r) 6y) dr 

= [deft + #2 + U(z))]-  1/2 (36) 

is the first-order correction. Note that the paths in (36) are closed loops 
(from 0 to 0) and that a partial integration has been used in order to 
express the kinetic term in operator form. The quantity D(S.), which we 
shall call the WKB determinant, is a dosed expression for the WKB 
correction for any potential V(x), and, as we shall see, it reduces to the 
expression p~.. of the previous sections. It has the nice property that since 
the time interval [0, t] is finite, and the boundary conditions are 6y(O)= 
6y(t)=O, the spectrum of the operator - 0 2 - U ( r )  is discrete. If, in 
addition, one assumes that the potential is such that there is a one-to-one 
correspondence between the eigenvalues ~. of this operator and the eigen- 
values Q =  rc2rZ/t 2 of -02,  and that the indicated products converge, we 
may write the ratio of the corresponding WKB determinants as 

D(Sc)/D(S~) = FI (e.r) /1-I (~,-)= I-I (37) 

For example, for the harmonic oscillator in one dimension, 

V(X) = (D2X2/2, U(T~) = ( D 2 / m ,  ~'r ~-" ~r - -  ( ' 02 /m (38) 

and hence 

= 
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For a general potential, it is not to be expected, of course, that the entire 
spectrum er can be computed explicitly, but since the WKB determinant 
D(Sc) depends only on a single combination of the er (namely their 
product), one might expect to be able to compute D(Sc) even when the 
individual er are not computable. One method (11) of computing D(Sc) is the 
following: Consider the related differential equation 

with boundary conditions 

fi(0, z)--0,  (~-~fi( , z))~ =o = c (41) 

where z is any complex number and ci is any real nonzero vector. One sees 
by inspection that the fi(r, z) are entire functions of z. Furthermore, one 
sees that the f,.(r, z) are eigenvectors of the operator - 0 ~ - U ( T )  whenever 
z is such that f~(t, z ) =  0, since then both boundary conditions fi(0, z ) =  0 
and ft(t, z ) =  0 are satisfied. Since the converse is also true, it follows that if 
fl~(~, z), k =  1 . . . n  denote the n linearly independent solutions of (40), 
(41) then the n x n determinant det f}~)(t, z) must be of the form 

det fl~)(t, z) = g(t, z) I-I (er - z) (42) 
r 

where g(t, z) is an entire function without zeros. Letting subscript zero 
denote the corresponding quantities for U(~)= 0, one sees that 

G(t,z) ~(t ,z) detf~k)(t,z) (er- -z~ (43) 
= g(t, z-----~ = det f}k)(t, z)" ~ \g~ - z /  

is an entire function. On the other hand, for any smooth (even bounded) 
potential U(r) in the interval [0, t], Eq. (40) becomes independent of U(~) 
for large Izl. Hence, if the same matrix e~ k) is used in the boundary 
condition for f}k) and J~l k), these functions must approach each other 
asymptotically, and the ratio of the determinants in (43) must tend to 
unity, as ]z] --, oo. Similarly, if one assumes that the spectrum er is such that 
the order of the limits in forming the product 1-I and letting [zJ ~ oe can be 
interchanged, the YI term in (43) tends to unity for large ]zl. Under these 
circumstances, one sees that G(z) ~ 1 as ]z[ ~ oo and hence by Liouville's 
theorem G(z)= 1 for all z. Thus 

(e~--z~ = det f ( t ,  z) (44) 
1~ \ e r -  z~ det f(t, z) 
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Setting z = 0 one then sees that, finally, the WKB determinant (37) is given 
by 

D(S~) ( ~ )  det flk)(t, 0) (45) 
D ( ~ )  = H ~ = det j~k)(t, 0) 

where flJ)(z, 0) are the n linearly independent solutions of the zero-mode 
equation 

(02+U(T))~f~ ' ( z )=O,  f~k)(0) = 0, ( d  fj(k))(0)= c ~  (46) 

and f ~ ) =  C~k)T are the corresponding solutions for U(r)=0. Thus from 
(45) and (46) one sees that in order to compute D in (37) one need only 
solve the system (46), which is actually simpler than any of the eigenvalue 
equations for the individual ~,  and is the simplest case of (40). In fact, as 
we shall see in the next section, the solutions of (46) are provided by the 
classical equations of motion! 

7, DERIVATION OF THE WKB DETERMINANT FROM 
THE CLASSICAL EQUATION OF MOTION 

In this section we wish to derive the solutions of the system (46) from 
the classical equations of motion 

d 2 ~V(x  ~') 
m ~ x;('r) = ~x~ (47) 

The reason that this can be done is that Eq. (46) is just the equation that 
one obtains on making an infinitesimal variation of xC(t) in (47). That is, if 
one assumes that both xc and x~ + fix~ satisfy (47), then 

d2 O2V(xC) 6x~ ~ (48) 
: 

which is just (46). However, since both x ~" and xC+ 6x c satisfy the classical 
equations of motion, they can only differ in their initial conditions, and 
thus 

6x~('c) = ~ ' , , :  6xj(O)+ Mcj(O) (49) 
vxjt u ) 

But since we wish to identify the solutions ~(t) with 6x~(t), and 6x;(t) 
satisfies the boundary condition 6x~(O)=fi(0)=0 only if the first term on 
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the right-hand side of (49) is zero, one must choose 6:9(0)= 0. Thus the 
solutions with the required boundary conditions are 

&;(~ ) c! ~ = m & c ( ~ )  ~tk~ (50) 

where in the last equation we have used the second equation in (20). 
[Another interpretation of (49) may be obtained by noting that the 

classical Hamiltonian 

1 /ax ax) 
~q=~mm [ ~ '  ~ + V(xc) (55) 

for (47) is invariant with respect to variations of x c which respect to the 
equations of motion, that any particular solution #(t) spontaneously 
breaks this symmetry, and that the 6x~(t) in (49) are just the Goldstone ~2) 
modes for this breaking!] 

In any case, Eq. (50) provides the required solutions of the system 
(46), and thus the WKB determinant D(S~) is given by 

D(£) \apj(0)/ aEK~# (52) 

Hence if one chooses the universal constant N to be (mD(~)/t), one sees 
that finally the WKB approximation to the wave function (31) is just 

{ ( c~zSc)~m isa~'t'v) 
~WK,(X, t )=  det O x ~ j J J  e~ (53) 

in agreement with the result obtained directly from the Schr6dinger 
equation in Section 3. 

8. QUADRATIC LAGRANGIANS AND THEIR REDUCTION 

Since for quadratic Lagrangians the WKB approximation becomes 
exact, and quadratic Lagrangians are physically important, it may be 
worthwhile to consider them in detail. The most general quadratic 
Lagrangian in three dimensions is 

s(:Y)= ' ~, ~( , ~ ) -  }(Y, ~o2Y) - (2; o i 3 -  (;. Y) (54) 

where the variable Y and the parameter 2 are 3-vectors, ( , ) denotes the 
three-dimensional Euclidean inner product, and co 2 and a are real sym- 
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metric and real antisymmetric matrices respectively. Note that an antisym- 
metric part of o)2 would automatically drop out, and a symmetric part of 
and a term linear in I > would be total time derivatives. This is why such 
terms have been omitted. We shall call Lagrangians for which o)2 and 
commute "abelian" quadratic Lagrangians and shall show that all such 
Lagrangians can be reduced to an "effective" harmonic oscillator 
Lagrangian. 

The first stage in the reduction is to eliminate the linear term (2, Y). If 
o)2 is not singular, this is easily achieved by making the linear transfor- 
mation Y ~ y =  Y+o) -22  and using y as the new variable. However, o)2 
(and a) may be singular, so the general transformation needed to eliminate 
the linear term is more complicated, namely, 

t 1 t2 
Y ~ y - = Y - l ( t ) ,  where l(t)=o) 22coAcS_o-- 2~-{--~20 (55) 

the vectors 2o and 2~ are those parts of 2 which are annihilated by (both 
o)2 and a) and by (o)2 but not a) respectively, and m 2 and _a are the restric- 
tions of o)2 and a to the subspaces on which they are not singular. In other 
words, 

2 -- 2o~ + 2~ + 2 o, where o)2~ = O, a2~ ¢ O, o)2 o = a2 o = 0 (56) 

On making the transformation (55), the Lagrangian (54) becomes 

d 
~ ( y )  = L(y )  - L(I(t)) - - ~  (y, l+ al) (57) 

where L(y)  is the Lagrangian 

L(y)  = 1(~, ;9) - ½(y, o)2y) _ (y, ~)~) (58) 

i.e., the original Lagrangian (54) without the linear term. It is easy to see 
that L(l) depends only on 2, o), o-, and t, i.e., does not depend on the initial 
and final values of y, and indeed is just 

1 1 t 2 -L(l(t))=-~(~_-~X~ol2--~(a 1~.¢)2 -- 2 X2 (59) 

Thus this term and the total time derivative can be discarded and we can 
concentrate on the purely quadratic Lagrangian (58). In this Lagrangian 
the o) 2 term describes the three-dimensional harmonic oscillator and the ~r 
term (which can be strictly nonzero only on two-dimensional spaces) 
describes the interaction of the particle with a constant magnetic field. 

Although the o)2 and ~ terms have different physical meanings, it is 
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convenient for computations to convert the a term into an effective co 2 
term, and this conversion constitutes the second stage of the reduction. In 
fact, if one makes the transformation 

y ---, q = e"'y (60) 

which is actually orthogonal since (7 is real antisymmetric, one finds that 
(58) reduces to 

L(y) A(q)=  1 " (61) = ~(q, q) - l(q, (22q), where ~ 12 = (2) 2 - -  (7 2 

(and we note that -(72 is positive). The Lagrangian A(q) is the "effective" 
harmonic oscillator Lagrangian referred to earlier. Note incidentally that 
the inverse conversion of an co 2 term into a (7 term is possible only if the 
spectrum of 0) 2 is proportional to (0, 1, 1). 

9. C O M P U T A T I O N  OF THE CLASSICAL ACTION AND 
F U N C T I O N A L  INTEGRAL FOR QUADRATIC LAGRANGIANS 

In this section we carry out the computation of the functional integral 
for all quadratic Lagrangians by computing the classical action for the 
"effective" harmonic oscillator Lagrangian (61) and recovering the result 
for the general quadratic Lagrangian (58) by making the inverse transfor- 
mation to (60). 

For  the "effective" harmonic oscillator Lagrangian the classical 
equations of motion and their solutions are evidently 

, , / s i n Q z \  . /'sin g2( t -  r ) \  
gl=(-O2)q  and qt~=[si--~-~)x+ [ s~-Ot-)a (62) 

where the vectors a and x are the initial and final positions and the 3 x 3 
matrix f22 acts on these vectors. One then sees by inspection that the 
Lagrangian A(q) is given by 

2A(q) = (q, q ) -  (q, ~,-~2q) 

( o cos o, ) 
= x, sin 2 0 t  x 

2 (x ,  (22 
- ( 6 3 )  

f2 2 cos 2f2(t -- z) a) 
+ a, sin 2 £2t 

cos f2 ( t -  2z) \ 
sin 2 g?t a ) 

825/18/3 6 
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and hence, after a simple integration, that the classical action Sc(x, a, t) is 
given by 

f~ 1 (  f2cosf2t ) 1 (  f2cosf2t , 
Sc(x,a,t)= A(q)&=~ x, sint2t x +-~ a, s ~  a) 

- ( x ,  ~ a) (64) 

This is the usual expression for the harmonic oscillator, but expressed in 
matrix form. 

Having computed the classical action for the "effective" harmonic 
oscillator in this simple manner, one may now obtain the classical action 
for the general quadratic Lagrangian (58) by making the inverse transfor- 
mation to (60), However, it is only necessary to apply this transformation 
to the boundary values a and x of q, for which it reduces to 

a ~ a, x-~ (e-°t) x (65) 

On account of the orthogonality of a and the fact that it commutes with 
f22, only the last term on the right-hand side of (64) changes under (65), 
and one obtains 

1 ( ~2cosf2t '~ 
So(x, a, t, L)=~.x ,  s ~  x) 

1 (  QCOSf2t ) (  f2e °' ) 
+~  a, sinf2t a -- x , ~ a  (66) 

Note that this expression can also be written as 

1 ( f2 cos f~t 
S,+(x, a, t, L) = ~ ,x  - a, sin Qt x - a) 

( f2 (e°' f2t) a) - -  X ,  ~ - -  COS (67) 

Having computed the classical action, we are now ready to compute 
the functional integral, since for quadratic Lagrangians the WKB 
approximation becomes exact, and for the WKB approximation we need, 
in addition to St,, only the WKB determinant 

D(Sc) =det { Oa c~x) (68) 
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From (66) we see that the required second derivative of Sc is simply 

8:Sc_( ~2 )e_~, (69) 
0-2-2x 

and is independent of x and a. Furthermore, since 0- is orthogonal, 
det(exp at) is unity, so actually, 

(°)  D(Sc) = det (70) 

It follows that the final expression for the functional integral, or wave 
function, of the purely quadratic Lagrangian (58) is 

7Jo(x,t)= d e t \ ~ j j  exp (x-a,(g2cotf2t)x-a) 

- x, sin ~2t ] J  (71) 

where, of course, ~-~2 = 602 __ 0.2 (and if one or more of the eigenvalues ~o i of 
£2 is zero, one takes the limit cojsin coit -~ l/t). In particular, for the pure 
harmonic oscillator (0- = 0), one has 

{ ( )}1j2 (i){ 
7 to (x , t )=  det ~ exp ~-~ ( x -  a, (co cot cot) x -  a) 

(72) 

and for the pure magnetic field (co=0), restricted to two of the three 
dimensions, 

~u (x, t) = {de t a ~1/2 ~ J  

(i) 
xexp  ~-~ {(x-a,(0-coth0-t) x-a)+(x, aa)} (73) 

Note that a/sinh at and coth at are even in 0-, so (a, ax) is the only odd 
term. Note also that this term, and hence the whole classical action, 
vanishes for x = a, corresponding to the fact that, according to the Lorentz 
equation, the classical path from a to a in a magnetic field is the rest 
position q = a. 
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10. THE CLASSICAL NATURE OF T H E  WKB 
PARTITION FUNCTION 

As is well known, the quantum-mechanical partition function Z(t)= 
tr exp(-Ht/h) ,  where H is the Hamiltonian, may be expressed in terms of 
the Green's function for the Schr6dinger operator as follows: Let ~bn denote 
any orthonormal basis. Then 

Z(t) = tr(e -~) = ~ (~bn, e (,t/h) ~bn) 
n 

= ~ f d3x q~*(x) e -(nt/h) On(x) 
n 

= E f d3x d3a O*(x) O(x, a, --it) O~,,(a) 
n 

= f d3x d3a 63(x - a) G(x, a, - i t )  

= f d3a G(a, a, - i t )  (74) 

Furthermore, if for G(x, a, t) one uses the Schr6dinger wave function with 
appropriate initial conditions as discussed in Section 5, then 

Z(t) = 27ch) 3/2 f d3a ~(a, a, - i t )  (75) 

In the WKB approximation 
becomes 

Zw~B(t)=(2~h)-3/2f d3a fdet ( -  - -  

where So(x, a, t) is the classical action. 

the partition function (75) evidently 

~ 2 S c  
~a-~xjx=a} '/2exP (h) Sc(a, a, - i t )  

(76) 

For quadratic Lagrangians the WKB approximation becomes exact, 
the determinant becomes independent of a, and the exponential term 
becomes a Gaussian. In fact, from (67) one sees that So(a, a, - i t )  reduces 
to 

Sc(a,a,-it)=-~(a,N(t)a), where N( t )=  ~ ( c o s h ~ t - c o s a t )  

(77) 
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Hence by letting b = N1/2a and using the identity 

(2~rh)--3/2 f d3b ej(b,b)= 1 (78) 

one obtains [for N(t) ¢ 0] 

~¢~ ~ 3/2 
Za(t)= det ~ )  {det N(t)}-3/2 

= {det(cosh f2t - cos at)} -3/2 (79) 

In particular, in the case of a pure harmonic oscillator, one obtains 

(80) 

In the special case N(t)---0, which actually corresponds to the case of a 
magnetic field (~o = 0, Q2= _a:) ,  one obtains instead the product 

L )--1/2 
where Z}l)(t)= 2 - ~  z (t) = z } ' ) ( t )  

and (81) 

Z~2)(t) = {det a ~1/2 sin a t ) ( ~ - - - ~ ) - B / 2  

Z} 1) being the (free) partition function for the one-dimensional space L 
parallel to the magnetic field B, and Z~2)(t) the partition function for the 
two-dimensional space V orthogonal to B. Thus the pure magnetic field 
case is really two-dimensional (or, more generally, even dimensional). The 
magnitude B of B is only half the magnitude of a because the Lorentz force 
equation corresponding to (58) is ~ = - 2 a y .  An independent, direct, 
derivation of the pure magnetic field case is given in the next section. 

Note that the Planck constant h does not appear in any of the above 
expressions [-except (81), where it appears only as a factor for the volume] 
and that the WKB contribution det(.Q/sinh g?t) (which is nominally of 
order one) is cancelled by part of the classical contribution [det N(t)]-1/2 
(which is nominally of order h 1), a result which shows that both 
contributions must be of the same order and therefore be classical. A closer 
examination, of course, shows that what has actually happened is that the 
nominal factor h -1 for the classical action is absorbed by the volume 



326 O'Raifeartaigh and Wipf 

integration [see (78)], thus reducing the classical contribution to order 
one. Since Z(t) can also be written as 

Z( t )=tr (e  m ) = ~ e  e., (82) 
n 

one sees that h is not completely lost, but reappears when Z(t) is expanded 
in terms of the energy levels. 

11. DIRECT DERIVATION FOR THE CASE 
OF A PURE MAGNETIC FIELD 

In view of the importance of the pure magnetic case for anomalies, it is 
perhaps worthwhile to give a simple, direct, derivation of the formula (81) 
for that case. 

For a pure magnetic field B in two dimensions, the classical 
Lagrangian is 

(0 
L -  ~ " (83) -~ (y ,  f , ) - ( y ,  ag) , where a = ~ ,  ~/= 

1 

This leads to the classical Hamiltonian 

H,. = ½(p - ay) 2, where p = ~ + ay (84) 

with corresponding quantum mechanical Hamiltonian 

l ( h ~  2 
Hq=~\ 7 y-~ry) (85) 

Now from (83) the classical field equations are evidently 

j),, = -2o3",c = --gr/~ (86) 

which integrates to 

and thence to 

L(t) = e-"B%(O) (87) 

1:1 ( e _ r l B  t yc(t) =-~ - 1) ~9c(0) + yc(0) (88) 

Now it is clear from either (83) or (87) that the classical path from 
y, . (0)=a to a itself is the trivial path yc(t)= a ()~c(0)=0) and thus the 



WKB Properties of Schr/klinger's Equation 327 

classical action So(a, a, t) is zero. On the other hand, for classical paths 
with neighboring momenta, one has from (84) and (88), 

and thus 

Bye(t) = Oyc(t) _ ~ (e.~.Bt_ 1) (89) 
Opt(O) o?c(o) 15 

{ detf@'(t)~\~,.(O)jJ=-~ldet(e-~B'-l)=(sinBt/2~2\ -B-~ J 

Hence finally, for the WKB partition function, one has 

(2rch)-lfd2a{ det(oy(t)~\~z(O)) -uJ~-llZexp[ hSC(a' 

B/2 r 2 
=(2rch) -1 - - - -  i d a  

sinh Bt/2 

sinh Bt/2 

which agrees with the result (81) obtained earlier. 

(90) 

a, -- it)] 

(91) 

12. CLASSICAL NATURE OF ANOMALIES 

As mentioned in the Introduction, the result that the WKB 
approximation to the quantum-mechanical partition function is essential 
classical (h-independent) is related to the paradox that "anomalies" in 
quantum field theory seem to be at the same time quantum-mechanical and 
classical. In this section we wish to make the relationship precise by 
showing how QFT anomalies may be expressed as QM partition functions, 
and to resolve the paradox for the simplest anomaly. 

The starting point for our considerations is the Schwinger action (13) 
functional for the Dirac operator without sources (in any number of 
dimensions), namely, 

e w= N -1 f d (~ )  e ¢(0+~")~ 
(92) 

l 

where m is a small mass-term, N is a normalization constant, and A is a 
Yang-MiUs potential. By the usual QFT arguments, 

W= In det(D + im) - I n  N (93) 
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and the anomaly A, which is defined to be the variation of W under the 
transformation m ~ m + i'/5 3m in the limit m ~ 0, is 

] A =  l im( im) t r [ (O+im)  -~ "/5]= lim trY- ff---275 (94) 
m=0 m=O I_m + O  

It is well known (~4~ that if the expression (94) is expanded in powers of A, 
then only a single one-loop term survives, and this term represents the 
QFT version of the anomaly. When the spectrum of 0 ~ is discrete, A is 
evidently also the index of 0.  

On the other hand, one may also write the expression (94) in the form 

fo o A = lim m 2 tr 7'5 e (°~+"2)~ dt = lira m 2 e-'~2~ Zs(2ht) = Zs(O) (95) 
r n ~ O  m = O  

where Zs(t) is the ~5-weighted partition function 

Zs(t) = tr(e- °~'/2~75) = Z+(t)  - Z_( t )  = tr[(e -~+t/2h) - (e -- ~- '/2h)] (96) 

and 0 ~  are the chiral projections of 0 2, i.e., (1 + ~5)02/2. Thus Zs(t), and 
hence the anomaly A, is seen to be the difference of two ordinary QM 
partition functions, namely those for the Hamiltonians 02~/2 and 0~/2 .  
This is the required relationship between the anomalies and the partition 
functions. 

In order to illustrate how this relationship exhibits the essentially 
classical nature of anomalies, let us consider the simplest possible anomaly, 
namely that arising from the electromagnetic potential A -  a - ~B(y, - x )  for a 
constant magnetic field B in two dimensions. In this simple case 

- 0 2  = - D  2 +_hB (97) 

and the partition functions Z+(t)  are then easily seen to be 

Z+(2t)  = tr(e -D2~/h +- ~') = e --+- B~ tr(e D2~/h) = e+_~,Z~(2t) (98) 

where Z~(t) is the partition function for the pure magnetic field discussed 
in Section 10. It follows from (96) that 

Zs(Zt) = (e n ' -  e m) Z~(2t) 

= (2 sinh Bt) ~ ~ =~-~h = 45 (99) 

where ~ is the total flux [normalized so that it is an integer (the index of 
0 )  whenever 0 ~ is discrete and 05 quantized]. Thus, in particular, the 
anomaly A = Z5(0) is equal to the total flux. 
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Of course, it is well known (~5) that for the two-dimensional magnetic 
field the anomaly is equal to the flux, but the point to be noticed here is 
how the result is obtained via the quantum-mechanical partition function 
and thus by essentially classical arguments. It should also be emphasized 
that, although this example is very simple, it is nevertheless typical, in that 
anomalies are always determined by one-loop graphs, or equivalently by 
WKB determinants, and are thus always related to WKB partition 
functions, which are essentially classical. 
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