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A general lass of onformal Toda theories assoiated with integral grad-ings of the simple Lie algebras is investigated. These generalized Toda theoriesare obtained by reduing the Wess-Zumino-Novikov-Witten (WZNW) theoryby �rst lass onstraints, and thus they inherite extended onformal symme-try algebras, generalizedW-algebras, and urrent dependent Ka-Moody (KM)symmetries from the WZNW theory, whih are analysed in detail in a non-degenerate ase. We unover an sl(2) struture underlying the generalizedW-algebras, whih allows for identifying the primary �elds, and give a sim-ple algorithm for implementing the W-symmetries by urrent dependent KMtransformations, whih an be used to ompute the ation of the W-algebraon any quantity. We establish how the Lax pair of Toda theory arises in theWZNW framework, and show that a reent result of Mans�eld and Spene,whih interprets the W-symmetry of the Toda theory by means of non-Abelianform preserving gauge transformations of the Lax pair, arises immediately as aonsequene of the KM interpretation.* On leave from Bolyai Institute, Szeged, Hungary.1



I. IntrodutionConformally invariant and aÆne Toda type systems are important bothin the theory of integrable non-linear equations [1-7℄ and in two-dimensionalonformal �eld theory [8-17℄. One of the key features of the onformal Todatheories is that they possess [3, 4, 10, 11, 13-17℄ interesting non-linear symmetryalgebras, whih are polynomial extensions of the Virasoro algebra by hiralonformal primary �elds. The theory of suh extended onformal algebras,alled W-algebras following A. B. Zamolodhikov who initiated their study in[18℄, is of great urrent interest, see [19℄ for a review, and, for example, refs.[20-23℄.The traditional approah to Toda systems is the formalism of the Lax pair[1-8℄. On the other hand, it has beome lear reently [12-16, 24℄ that Todatheories are really nothing but redued Wess-Zumino-Novikov-Witten (WZNW)theories.In this paper we shall investigate a ertain lass of generalized onformalToda theories, given by equation (2.2), whih is assoiated with the integralgradings of the simple Lie algebras, see refs. [3, 4, 14-16℄ for earlier work ongeneralized Toda theories. We shall treat these theories by using the WZNWframework, whih in our opinion is the natural setting for onformal Toda the-ories. In fat, the results of [13℄ demonstrate that the WZNW setting amountsto a linearization (in the sense that WZNW is a free theory) of the Toda theorywhih at the same time resolves the apparent singularities. Moreover, it is alsolear from [13℄ that the WZNW setting is espeially well suited for desribingthe W-algebra symmetries of the onformal Toda theories.It appears to us that the relationship between the WZNW and the Laxpair formalisms of Toda theory has not yet been properly eluidated, and the�rst purpose of the present paper is to larify exatly this point. The seondpurpose of the paper is to make use of this relationship and the advantagesof the WZNW approah for obtaining a desription of the symmetries of theonformal Toda systems in both settings. Our results and methods using theWZNW formulation omplement and generalize the ones given in [13℄, wherethe speial ase of the standard Toda theory, given by equation (2.5), wasonsidered.The outline of the paper is as follows. In Setion II. we show how theLax pair formalism arises in a natural way in the WZNW framework. We thenanalyse the W-algebra of the Toda models in Setion III. From this setion2



on, we onsider a ertain non-degenerate ase, de�ned by equation (3.3). Thenon-degeneray ondition ensures the existene of the Drinfeld-Sokolov gauges[5, 13℄, whih are very onvenient for analysing the W-algebra. An importantresult we obtain is that, in this non-degenerate ase, the W-algebra of thegeneralized Toda theory is isomorphi to one from the list of W-algebras whihan be assoiated with the non-equivalent embeddings of sl(2) into the simpleLie algebras [15, 25℄.Setion IV. is devoted to desribing all the hiral, urrent dependent, lo-al Ka-Moody (KM) type symmetry transformations of the WZNW theorysurviving the redution to Toda theory, and establishing an algorithm for im-plementing the W-transformations by urrent dependent KM transformations.We also make lear that the W-transformations are only a subset of the formertransformations, namely the anonial ones.In Setion V. we relate our KM interpretation of the W-symmetry to theone given reently in [17℄, where the authors interprete the W-symmetry of thestandard Toda theory in terms of the `non-Abelian form preserving gauge trans-formations' of the Lax pair. We show that this interpretation arises immediatelyas a translation of the KM interpretation. This way we generalize the result of[17℄ from the standard ase to our general situation, and also obtain a ertainlari�ation. Namely, our results provide a general method for identifying theW-transformations among the general `form preserving gauge transformations'of the Lax pair.We end the paper by giving our onlusions and ommenting on some openproblems.
II. WZNW versus Lax pairFirst we de�ne the Toda system we are going to investigate. To this weonsider a real, maximally non-ompat simple Lie algebra G together withan integral grading de�ned by some element H of a splitting (diagonalizable)Cartan subalgebra H. This means that we haveG = G+ + G0 + G� ; G� = NXn=1G�n ; (2:1)where G0 and G�n are eigenspaes of adH with eigenvalues 0 and �n, respe-tively. The generalized Toda equation we onsider is an integrable non-linear3



equation for a �eld g0 taking its values in G0, the little group of H in theonneted real Lie group G with Lie algebra G. It is given as��(�+g0 � g�10 ) = [M� ; g0M+g�10 ℄ ; (2:2)where M� are some arbitrary but non-zero generators hosen from G�1. It iseasy to hek that (2.2) is equivalent to the zero urvature ondition[�+ �A+ ; �� �A�℄ = 0 (2:3)of the following `Lax potential':A+ = �+g0 � g�10 +M� ; A� = �g0M+g�10 : (2:4)A partiular ase of the above Toda system is obtained by onsidering an integralembedding of the Lie algebra sl(2) into G and taking the standard generators ofthis sl(2) subalgebra for H and M�. This ase has been investigated by usingthe Lax pair formalism in [3, 4℄, and by using the WZNW formulation in [15,16℄. It is well known that, by substituting g0 = exp[Pi 'iHi℄, (2.2) redues tothe standard Toda equation�+��'i + exp[ lXj=1Kij'j ℄ = 0 (2:5)in the ase of the so alled prinipal sl(2) subalgebra, whih is haraterized[26℄ by the ondition that [H ; E�℄ = E� (2:6)for any root � from some system of simple positive roots of G. Note that inequation (2.5) Kij is the Cartan matrix of G.Another, more general, sublass of Toda systems was investigated by usingthe WZNW piture in [14℄. This lass is obtained by assuming that (2.6) holdsfor a subset of the simple roots and that H ommutes with the step operatorsassoiated to the rest of the simple roots.Now we reall how the redution of the WZNW theory, onsidered for thegroupG, to the Toda theory (2.2) omes about [12, 14℄, by using a method whihbrings out learly the onnetion between the WZNW and Lax pair formalisms.The left and right KM urrents, J and �J , are given* asJ = �+g � g�1 ; �J = �g�1��g ; (2:7)* The KM level k an be reovered by sustituting �� �! ��� , � = � k4� ,everywhere below. We have hosen � = 1 to simplify the notation.4



and the �eld equation an be written equivalently as��J = 0 or �+ �J = 0 : (2:8)We identify the phase spae of the WZNW theory with the spae of solutions,given by the formula g(x+; x�) = gL(x+) � gR(x�) : (2:9)To desribe the onstraints of the WZNW �! Toda redution we shall usethe projetion operators ��;0 projeting G onto G�;0, respetively, and the on-neted subgroups G� of G obtained by exponentiating G�. The onstraints arethen given by ��(J) =M� and �+( �J) = �M+ : (2:10)The gauge group generated by this �rst lass system of onstraints is the diretprodut of the left loop-group of G+ and the right loop-group of G�. Of ourse,this gauge group ats on the WZNW phase spae aording tog(x+; x�) �! A(x+) � g(x+; x�) �C�1(x�) ; (2:11)for any A(x+) 2 G+, C(x�) 2 G�, and the onstraint surfae (2.10) is leftinvariant under this ation. To see what is the gauge invariant ontent of theonstrained WZNW theory we onsider the `setor' where the generalized Gaussdeompositiong(x+; x�) = g+(x+; x�) � g0(x+; x�) � g�(x+; x�) ; g�;0 2 G�;0 (2:12)is valid. By substituting this Gauss deomposition into (2.7) it is easy to seethat (2.10) is equivalent tog�1+ � ��g+ = g0M+g�10 ; and �+g� � g�1� = g�10 M�g0 ; (2:13)that is the onstrained urrents an be written asJ = g+[�+g0 � g�10 +M�℄g�1+ + �+g+ � g�1+ (2:14a)and �J = �g�1� [g�10 ��g0 +M+℄g� � g�1� ��g� : (2:14b)We see from (2.13) that the G0 valued gauge invariant �eld g0 represents thefull gauge invariant ontent of the onstrained WZNW �eld g, sine g� an bedetermined from (2.13) in terms of g0, up to gauge transformationsg+(x+; x�) �! A(x+)�g+(x+; x�) ; g�(x+; x�) �! g�(x+; x�)�C�1(x�) :(2:15)5



To obtain the gauge invariant dynamis, we have to projet the WZNW �eldequation to the redued theory. To this �rst we observe the obvious fat thatthe WZNW �eld equation is a zero urvature ondition, namely[�+ � J ; �� � 0℄ = 0 : (2:16)Conjugating this equation by the �eld g�1+ (x+; x�) in (2.12) and using theonstraints expressed by (2.13) and (2.14), we see that (2.16) is equivalent tothe zero urvature ondition of the following gauge invariant Lax pair:A+ = g�1+ Jg+ + �+g�1+ � g+ = �+g0 � g�10 +M� ;A� = ��g�1+ � g+ = �g0M+g�10 ; (2:17)whih is nothing but the usual Lax pair of Toda theory (2.4). Plainly, theLax potential A� is a pure gauge for solutions of the Toda �eld equation,A� = ��ĝ � ĝ�1 for some G valued �eld ĝ. In terms of the WZNW variables wehave ĝ(x+; x�) = g�1+ (x+; x�) � gL(x+) : (2:18)Naturally, ĝ is gauge invariant. For ompleteness we note that the above anal-ysis ould have been arried out by starting with the seond equation in (2.8),the result would be an alternative form of the Toda Lax pair.In summary, we have shown that the usual Lax pair of Toda theory isobtained by onjugation by a non-hiral, G+-valued �eld from the trivial, hiralLax `pair' of the onstrained WZNW theory. The Lax pair formalism providesa very onvenient tool for investigating the Toda theory [1, 3℄. Nevertheless,the WZNW formulation of Toda theory is the more fundamental one. The basireason is that the Gauss deomposition (2.12) is valid only loally on G. Thisleads to the appearane of apparently singular but physially regular solutionsin the traditional setting of Toda theory [12, 13℄. Another reason is that inthe WZNW framework the full power of the KM algebra beomes immediatelyavailable for desribing the Toda theory.
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III. The W-algebraThe fundamental ingredient of the WZNW model is its KM symmetry,therefore it is natural to ask what part of this symmetry survives the redutionleading to Toda theory. This way we are led to searhing for those hiralquantities formed out of the KM urrents whih are onstant along the gaugeorbits on the onstraint surfae (2.10). On general grounds, loally there shouldexist dimG � 2dimG+ = dimG0 independent gauge invariant hiral quantities.The speial feature of our system is that here one an �nd a omplete set ofgauge invariant objets whih are globally well de�ned, �nite polynomials inthe urrents and their derivatives. The gauge invariant di�erential polynomialsform a losed algebra under the KM Poisson braket. This polynomial Poissonbraket algebra an be alled a lassialW-algebra sine it ontains the Virasorosubalgebra generated by the gauge invariant polynomialLH = 12Tr(J2)� Tr (H � �+J) ; (3:1)whih an be used to de�ne a onformal automorphism of the Toda system(2.2).Conentrating on the left moving setor, now we analyse the redued hiralalgebra. The gauge transformations at on the onstrained urrent, J , aordingto J �! AdjA (J) � AJA�1 + �+A �A�1 ; A(x+) 2 G+ ; (3:2)and we are looking for di�erential polynomials W (J) invariant under this a-tion. The existene of a omplete set of suh gauge invariant quantities an bededued from the existene of the so alled Drinfeld-Sokolov (DS) gauges [5,13℄. The existene of the DS gauges is ensured by the non-degeneray onditionKer(adM�) \ G+ = f0g ; (3:3)whih we assume to be satis�ed from now on.One an always hoose a system of simple roots in suh a way that theorresponding step operators have non-negative integral grades. If in this basisthere ours a simple root � suh that [H ; E� ℄ = n�E� with n� � 2 thena non-degenerate M� annot exist. In fat, it is easily seen that in this ase[E� ; G�1℄ = 0. On the other hand, we onjeture that if the grades of thestep operators orresponding to some system of simple roots are all from theset f0 ; 1g then there exists at least one non-degenerate M�. This was true in7



all the examples we onsidered so far [14℄, and, moreover, in these examplesthe non-degenerate M� was found to be unique up to onjugation by the littlegroup of H.The onstrution of the DS gauges proeeds as follows. First we hoose adiret sum deompositionGi = Ii + Vi for i = 0; 1; : : : ; N ; (3:4)where Ii = [M� ; Gi+1℄ (3:5)and Vi is some omplementary subspae. Note that di = dim (Vi) an be zerofor some i, and PNi=0 di = dim(G0). By onsidering the diret sumsI = NXi=0 Ii = [M� ; G+℄ ; V = NXi=0 Vi ; (3:6)we have G = G� + I + V : (3:7)Thus an arbitrary KM urrent J an be written asJ = ��(J) + �I(J) + �V(J) ; (3:8)where ��, �I and �V are the projetion operators orresponding to (3.7). Wede�ne the Drinfeld-Sokolov gauge orresponding to the subspae V by supple-menting the �rst lass onstraints ��(J) =M� with the gauge ondition�I(J) = 0 : (3:9)One has to investigate whether the general onstrained urrentJ =M� + NXi=0 Ji ; Ji 2 Gi (3:10)an be brought to the DS formJDS =M� + NXi=0 JDSi ; JDSi 2 Vi (3:11)by a gauge transformation. To answer this question one inserts the aboveexpressions andA = ea1 � ea2 � � � eaN ; ak(x+) 2 Gk ; k = 1; 2; : : : ; N (3:12)8



into the equation JDS = AdjA (J) ; (3:13)and onsiders this equation grade by grade, starting from grade 0, in termsof the deomposition (3.4). At every grade one tries to gauge away the Iiomponent of J by hoosing ai+1 appropriately. One sees that this is indeedpossible as a onsequene of the nondegeneray ondition (3.3), whih impliesthat adM� maps Gi+1 onto Ii in a one-to-one manner, for any i � 0. Moreover,one also sees from (3.13) that the omponents of the gauge representative JDSand those of the ak are uniquely determined di�erential polynomials in terms ofthe omponents of J . This property of the DS gauges guarantees the polynomialharater of the redued hiral algebra.Indeed, let us introdue some basis Fi;ni in Vi and write the unique inter-setion point of the DS gauge setion with the gauge orbit passing through Jas AdjA(J) (J) =M� +Xi;ni W i;ni(J)Fi;ni : (3:14)It immediately follows from the above that the W i;ni(J) are gauge invariantdi�erential polynomials, whih an be used as oordinates in the hiral setorof the redued WZNW theory. In partiular, the W i;ni(J) orresponding toa DS gauge in the above manner always form a basis of the W-algebra. Notethat, of ourse, any unique gauge �xing an be used to de�ne gauge invariantquantities, but they are in general not polynomial, not even loal in J .Plainly, a di�erential polynomialW (J) redues to a di�erential polynomialof the omponents of the gauge �xed urrent in an arbitrary gauge de�ned byputting a linear gauge �xing ondition on the omponents of J . The Poissonbrakets of the W 's an then be omputed in that gauge by using the Dirabrakets of the urrent omponents surviving the gauge �xing.From this point of view, the main advantage of the DS gauge is that in thisgauge the W i;ni beome linear funtions of the urrent. In fat, writing�V(J) =Xi;ni U i;ni Fi;ni ; (3:15)we have U i;nijDS = W i;nijDS : (3:16)We all the urrent omponents U i;ni DS urrents. Their Dira braket algebrarepresents the basi Poisson brakets in the DS gauge. As a onsequene of9



(3.16) and the gauge invariane of the W i;ni , the W-algebra an be interpretedas the Dira braket algebra of the DS urrents:fU i;ni ; Uk;nkg�jDS = fW i;ni ; W k;nkgjDS : (3:17)We shall use this interpretation to show that our W-algebra is isomorphi toone from the set of W-algebras assoiated to the inequivalent embeddings ofsl(2) into the simple Lie algebras [15, 25℄.Let (I� ; I0 ; I+ ) be the standard generators of an sl(2) subalgebra, S, ofG. One an put a set of seond lass onstraints on the KM phase spae byrequiring the onstrained urrent to be of the formJS(x) � I� + jS(x) ; jS(x) 2 Ker (adI+) ; (3:18)that is jS(x) is a linear ombination of the highest weight states of S in theadjoint representation of G. One an prove (see [15, 25℄) that the omponentsof jS(x) form aW-algebra, denoted asWGS , under Dira braket. The anonialVirasoro subalgebra is generated by the I+-omponent of jS . The omponentsorresponding to the other highest weight states in Ker (adI+) are onformalprimary �elds with respet to this Virasoro algebra, their onformal weight is(1 + l), where l is the sl(2) spin. This onstrution is motivated by our earlierresult [13℄ that in the usual Toda theory one �nds the primary �elds by goingto the highest weight DS gauge of the prinipal sl(2) subalgebra of G.By the method desribed previously, we onstruted aW-algebra by start-ing with the data (H ; M�), where H is an integral grading operator of G andM� is a non-degenerate generator of grade �1. On the other hand, we havethe following mathematial result.Lemma: Let G = G0 +PNn=1 G�n be the deomposition of G de�ned by theintegral grading operator H, and let M� be an element of G�1, whih is non-degenerate with respet to this grading in the sense of (3.3). Then there existsan sl(2) subalgebra S of G with standard generators (I� ; I0 ; I+) satisfyingI� =M� ; I0 2 G0 ; I+ 2 G+1 : (3:19)The generator I+ here is always non-degenerate, that is Ker (adI+)\G� = f0g.The onjugay lass of the sl(2) subalgebra depends only on the onjugay lassof M� in G.This result is an easy onsequene of some powerful theorems by Morozov,Jaobson and Kostant on sl(2) embeddings [27℄, as explained in detail in [25℄.10



It follows from the lemma that we an onstrut a highest weight DS gauge byhoosing the omplement of Ii in (3.4) aording toVi � Gi \Ker (adI+) : (3:20)Let us remember that every DS gauge de�nes a basis of the W-algebra, andthat by using this basis the W-algebra an be identi�ed with the Dira braketalgebra of the DS urrents. This fat and the existene of the highest weightgauge imply that our W-algebra is isomorphi to WGS with S provided by thelemma. We also see that the equivalene lass of the W-algebra depends onlyon the onjugay lass of the nilpotent element M� in G.The Virasoro generator assoiated to the I+-omponent of the highestweight gauge an be identi�ed with the gauge invariant di�erential polynomialLI0 = 12Tr(J2)� Tr (I0 � �+J) : (3:21)The generators of the W-algebra orresponding to the other highest weightomponents are primary �elds with respet to the onformal ation generatedby this Virasoro density. It should be noted that the spetrum of I0, and thusthe spetrum of onformal weights, is in general half-integral. We also remarkthat in general there is no basis of the W-algebra onsisting of the Virasorodensity LH in (3.1) and primary �elds with respet to the onformal ationgenerated by LH [14℄.Besides the highest weight gauge one has another partiularly importantgauge, namely the `diagonal gauge' for whih the gauge �xed urrent is givenas Jdiag = M� + j0 ; j0 2 G0 : (3:22)The advantage of this gauge is that the Dira brakets of the omponents ofj0 oinide with their original Poisson brakets, given by the G0 KM algebra.We denote the di�erential polynomial representing an element, W (J), of theW-algebra in the diagonal gauge as W0, W0(j0) �W (Jdiag). In the ase of theusual Toda theory G0 is the Cartan subalgebra and W0 is the Miura transformof W .In the WZNW framework, we identi�ed the left moving hiral algebra ofthe Toda system as the algebra of gauge invariant di�erential polynomials inthe urrent J . On the other hand, in the `Gauss deomposable setor' of theonstrained WZNW theory a omplete set of gauge invariant quantities is pro-vided by the Toda �eld g0. In partiular, J an be expressed in terms of g0 up11



to gauge transformations. It follows that for any W (J) there exists a uniquefuntion WToda(g0) suh thatWToda(g0) =W (J) : (3:23)To �nd the expliit form of the funtion WToda let us �rst point out that, byonstrution, W (J) is a di�erential polynomial whose form is invariant underany hange of variables of the formJ �! Adj�(J) ; � 2 G+ : (3:24)The point is that here � an depend on the dynamial variables in an arbitraryway and is not even restrited to be hiral. (Of ourse, (3.24) then does notneessarily represent a gauge transformation in the sense of (3.2).) Equation(2.17) tells us that J and the Lax potential A+ are related by a transformationof the form (3.24), with � = g�1+ (x+; x�). Therefore we see thatWToda dependson g0 only through A+ and that WToda(A+) is obtained by simply substitutingA+ for the argument of the di�erential polynomial W . In other words, takingalso into aount that the form of A+ is the same as that of Jdiag, we haveWToda(g0) =W (A+) =W0(j0 ! �+g0 � g�10 ) : (3:25)Thus the hiral W 's depend on the non-hiral `Toda urrent' �+g0 � g�10 in thesame way as on the hiral variable j0. We note that in their Lax pair approahto Toda theory Leznov and Savaliev [3, 4℄ onstruted the onserved urrentsby diretly solving the `harateristi equation'��WToda(g0) = 0 (3:26)for WToda. The above arguments, essentially due to Palla [28℄ who observed(3.25) in the ase of the usual Toda theory, provide the translation between theLax pair [4, 11, 17℄ and the onstrained KM desriptions of the W-algebra ofthe Toda system (2.2), for non-degenerate M�.
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IV. Loal symmetry transformations of KM type and W-transformationsIn this setion we set up a sheme for desribing all the loal KM typesymmetry transformations of the WZNW theory surviving the redution toToda theory. In partiular, we shall give a natural generalization of the resultsof [13℄ about the KM implementation of the W-symmetry.In the WZNW theory, we all a transformation of the formÆKg = K � g (4:1)a (left, urrent dependent, loal) KM transformation if the G-valued funtionK is a di�erential polynomial in the omponents of J and their derivatives.(For simpliity, we shall often refer to these transformations simply as KMtransformations. This is an abuse of terminology sine the standard KM trans-formations are urrent independent.) The KM transformations are symmetries,i.e. they at on the spae of solutions of the theory. Their ation on the leftmoving �eld gL(x+) and on the urrent J(x+) is given asÆKgL = K(J) � gL (4:2)and ÆKJ = DJK = �+K + [K ; J ℄ : (4:3)A KM type symmetry is an in�nitesimal anonial transformation if and onlyif it an be written asK = ÆQÆJ ; Q = Z 2�0 dx+ q(J; J 0; :::) ; (4:4)where q is some di�erential polynomial in the omponents of J , possibly de-pending on some test funtions too. Indeed, as follows easily from the form ofthe KM Poisson braket, we have ÆQ = ÆK for K in (4.4), where, by de�nition,ÆQ ats on any quantity via Poisson braket, ÆQ( � ) � �fQ ; � g.We are looking for those KM transformations whih preserve the onstraintsurfae and projet to transformations on the spae of gauge orbits in a wellde�ned way. Taking into aount the form of the onstrained urrent, denotedfrom now on as J, J = M� + j ; j 2 (G0 + G+) ; (4:5)the �rst ondition is equivalent to��(ÆKJ) = 0 : (4:6)13



The seond ondition requires ÆK to be invariant under gauge transformations,up to in�nitesimal gauge transformations, whih projets to zero when going tothe spae of gauge orbits. To see the meaning of this ondition, let us observethat under a gauge transformation, A(x+) 2 G+, K transforms aording tothe rule K �! KA ; KA(J) � A �K(AdjA�1(J)) �A�1 ; (4:7)sine ÆK(J) is a vetor �eld on the onstraint surfae. Thus ÆK(J) projets toa well de�ned vetor �eld on the spae of gauge orbits if and only if��0(KA �K) = 0 : (4:8)Here we introdued the notation ��0 for (�� + �0), operating aording to thedeomposition (2.1).Combining our previous equations, we onlude that the `residual' KMtype symmetries, i.e. the ones surviving the redution, an be determined asthe loal solutions K(J) of the following two onditions:��(�+K + [K ; M�℄ + [K ; j℄) = 0 ; (4:9)and��0(K(J)) = ��0(A �K(AdjA�1(J)) �A�1) ; 8A(x+) 2 G+ : (4:10)It is easy to see that K solves these equations if and only if its `lower triangularpart' ��0(K) does, and thatK and ��0(K) give rise to the same transformationon the spae of gauge orbits. For this reason, without loss of generality, it isenough to onsider those solutions whih are lower triangular, �+(K) = 0, forwhih (4.10) beomesK(J) = ��0(A �K(AdjA�1(J)) �A�1) ; 8A(x+) 2 G+ : (4:11)The anonial transformations generated by the elements of theW-algebraare implemented by those residual urrent dependent KM transformationswhih are given by means of equation (4.4), where q is some extension of agauge invariant di�erential polynomial from the onstraint surfae to the KMphase spae. Note that if one takes the trivial extension for whih q dependsonly on ��0(J) then K is lower triangular. It should be noted that not everyresidual KM transformation is a W-transformation, for the same reason thatnot every urrent dependent KM transformation is anonial in WZNW theory.14



Namely, a urrent dependent KM transformation is anonial in WZNW theoryprovided K an be written as a gradient, eq. (4.4).Every residual KM transformationK indues a transformation on the spaeof gauge orbits. Representing the orbits by a gauge setion, the indued trans-formations beome gauge preserving KM transformations. From this point ofview, as we shall see below, the advantage of the DS gauge is that there isa one-to-one orrespondene between loal KM transformations preserving theDS gauge and loal KM transformations preserving the onstraint surfae andsatisfying (4.11). Moreover, we shall give an e�etive algorithm whih allows for�nding all the KM transformations preserving the DS gauge, and for identifyingthe subset of indued W-transformations.In some �xed DS gauge, a gauge preserving KM transformation KDS is aloal solution of the equationÆJDS = �+KDS + [KDS ; M�℄ + [KDS ; jDS℄ : (4:12)Here the ondition is that this variation preserves the form of JDS =M�+ jDS,that is one must have ÆJDS 2 V, where V is the omplementary spae in (3.7)de�ning the DS gauge in question. Any residual KM transformation K(J)gives rise to a gauge preserving variation de�ned byKDS(JDS) = K(JDS) + k(JDS) ; k 2 G+ ; (4:13)where k is a uniquely determined loal in�nitesimal gauge transformation om-pensating for the fat that ÆK does not neessarily preserve the DS gauge. Con-versely, any di�erential polynomial solution of (4.12) an be uniquely extendedto a di�erential polynomial K(J) de�ning a residual KM transformation onthe full onstraint surfae. To this it is enough to take (4.13) as the de�nitionof K(JDS) and then use (4.11).We note that, of ourse, there is a natural one-to-one relationship betweengauge preserving KM transformations and solutions of (4.9), (4.11) for anyunique gauge �xing. The speial feature of the DS gauge is that K(J) is loalin J if and only if the orresponding KDS(JDS) is loal in JDS. This followsfrom (4.11) and (4.13) and the fat that J an be brought to the DS gauge bya gauge transformation whih is loal in J.Next we give a tehnial result about equations (4.9) and (4.12), whihplays a ruial role in our analysis. These linear equations determine the allowedset of KM transformations K(J) and KDS(JDS), whih de�ne form preservingvariations of J and JDS, respetively. Here we shall establish the struture of15



their general solution. We start by observing that the non-degeneray ondition(3.3) is equivalent to the fat that the mapadM� : G�i �! G�i�1 ; i = 0; 1; : : : ; N ; (4:14)is always onto. This is easily proven by using the invariane of the Cartan-Killing form and the fat that under this salar produt the dual spae to Giis G�i. Thus, by using the non-degeneray assumption, we an hoose a diretsum deompositionG�i = P�i + Z�i ; i = 0; 1; : : : ; N ; (4:15)in suh a way that adM� maps Z�i onto G�i�1 in a one-to-one manner. Forexample, a possible, in some sense anonial, hoie is to take P �PNi=0 P�i tobe Ker(adM�), and Z �PNi=0 Z�i to be some omplement to P in (G� + G0).We remark that one always has Z�N = f0g for the lowest grade �N . Itturns out to be useful to deompose any lower triangular solution of (4.9) and,respetively, any solution of (4.12) in the following manner:K(J) = p(J) + z(J) ; p 2 P; z 2 Z ; (4:16)andKDS(JDS) = p(JDS)+z(JDS)+k(JDS); p 2 P; z 2 Z; k 2 G+ : (4:17)Substituting (4.16) into (4.9), one an prove that the omponents of p(J) anbe arbitrarily given and then the omponents of z are uniquely determined interms of p and J by this equation. Moreover, one sees by inspetion thatthe omponents of z are di�erential polynomials in J and linear di�erentialpolynomials in the omponents of p. Similarly, equation (4.12) determines z andk as unique di�erential polynomials linear in the arbitrarily given omponentsof p and in general non-linear in JDS.To prove that the general solutions of (4.9) and (4.12) are parametrizedby arbitrary P-valued funtions in the above manner one has to onsider theseequations grade by grade, starting from the lowest grade, and at every gradeuse the non-degeneray ondition and the deompositions (4.15), and also thedeomposition (3.4) when onsidering (4.12). The ruial property of these de-ompositions to be used in this analysis is that adM� maps Z�i onto G�i�1and Gi+1 onto Ii in a one-to-one manner, for any i = 0; 1; : : : ; N . The iterativeproedure of solving (4.9) and (4.12) grade by grade provides one with an algo-rithm for omputing K and KDS in terms of the parameters p(J) and p(JDS).16



This algorithm is very onvenient, e.g. sine one obtains ÆKJ (resp. ÆKDSJDS)essentially by means of the same omputation whih produes K (resp. KDS).A partiular onsequene of the above result is that K(J) and KDS(JDS)are loal funtions if and only if the parameter funtions p(J) and p(JDS)are loal. Equation (4.11) imposes a further ondition on p(J) whih is hardto handle pratially. On the other hand, any loal p(JDS) de�nes a gaugepreserving KM transformation implementing a residual KM symmetry. In on-lusion, we see that the set of residual, loal, urrent dependent KM symmetrytransformations is parametrized, in a one-to-one manner, by dim(P) = dim(G0)arbitrary but loal funtions of JDS. (Note that the equality dim(P) = dim(G0)is a onsequene of the non-degeneray ondition of M�, eq. (3.3).)Now we establish the KM implementation of the induedW-transformationÆ�QJDS(x+) = �fQ ; JDS(x+)g� ; Q = Z 2�0 dx+ q(W i;ni) ; (4:18)where q is an arbitrary element of theW-algebra, that is an arbitrary di�erentialpolynomial in the W-basis W i;ni assoiated with the DS gauge. We note thatunder the Dira braket one an substitute the DS urrents U i;ni forW i;ni , andthat we allow q to depend on some test funtions as well. Our purpose is to�nd the funtion KDS(JDS) for whihÆ�QJDS = ÆKDS(JDS)JDS : (4:19)By the meaning of the Dira braket, Æ�Q is nothing but the gauge preservingKM transformation indued by the W-transformationÆQJ(x+) = �fQ ; J(x+)g ; (4:20a)for whih ÆQJ = ÆK(J)J (4:20b)with K(J) given by (4.4).We have seen that any gauge preserving KM transformation an be om-puted from (4.12) if its omponents in P are known, so our problem boils downto establishing how the `parameter funtion' p(JDS) of KDS in (4.19) dependson Q. To formulate the solution of this problem, �rst we note that, as a onse-quene of their de�nition, the spae of parameters P � (G�+ G0) is neessarilydual with respet to the Cartan-Killing form to the spae V � (G0+G+) de�ningthe DS gauge. (This is trivial to see in the speial ase of the highest weight17



gauge and P = Ker(adM�). The general ase is onveniently treated as a mod-i�ation of this situation.) This allows us to introdue a basis F̂m;nm in P insuh a way that < F̂m;nm ; Fi;ni >= Æmi Ænmni ; (4:21)where Fi;ni is the basis of V, whih we used to de�ne the W i;ni , and < ; > isthe Cartan-Killing form. Furthermore, we hoose the spae Z � (G� + G0) tobe the annihilator of V with respet to the salar produt, that is Z onsists ofall the elements z 2 (G� + G0) satisfying< z ; v >= 0 ; 8v 2 V : (4:22)We an now write the general solution of (4.12) asKDS(JDS) =Xi;ni pi;ni F̂ i;ni + z(JDS) + k(JDS); (4:23)where z(JDS) 2 Z and k(JDS) 2 G+ are uniquely determined by the parameterfuntions pi;ni . Then we have the followingTheorem: The parameters of KDS(JDS) satisfying (4.19) are the funtionalderivatives of Q with respet to the W i;ni , that ispi;ni(x+) = ÆQÆW i;ni(x+) (JDS) : (4:24)This is one of our main results. Before explaining how to prove this theo-rem, we mention some of its onsequenes. An important speial ase is obtainedby taking Q to be a moment of the W i;ni , that is by onsideringQa = Z 2�0 dx+ Xi;ni ai;ni(x+)W i;ni(x+) ; (4:25)for arbitrary test funtions ai;ni(x+). It follows from (4.24) that in this par-tiular ase the parameters are just the test funtions themselves. Speializingfurther, we denote by Kk;nky+ the solution of equation (4.12) belonging to thefollowing hoie of parameters:pi;ni(x+) � Æi;kÆni;nkÆ(x+ � y+) ; (4:26)for any �xed k; nk and y+. By ombining our previous results, it then followsthatfUk;nk(y+) ; JDS(x+)g� = � ��x+Kk;nky+ (x+)� [Kk;nky+ (x+) ; JDS(x+)℄ ; (4:27)18



where Uk;nk is the DS urrent omponent introdued in (3.15). This gives us analgorithm for omputing the W-algebra itself by solving equation (4.12), whihis a simple linear problem. This is a diret generalization of the algorithm givenin [13℄. This algorithm provides one with an e�etive tool for working out non-trivial examples [13℄, and it is also useful for studying the qualitative features,e.g. the sub-algebra struture [15℄, of the W-algebras.To sketh the proof of the above theorem we �rst point out that it anbe redued to (4.27) by using the Leibniz rule. On the other hand, (4.27)an be obtained by onsidering the problem for Qa with test funtions hosenas ai;ni = pi;ni in (4.26). The point then is that for Qa, with arbitrary testfuntions, (4.24) follows from (4.4) and (4.13) by taking into aount thatW i;nibeomes the urrent omponent U i;ni in the DS gauge. Alternatively, the proofsgiven in [13℄ for the speial ase of (4.25) in the ontext of the usual Toda theoryan also be easily adapted to our general situation.
V. On a Lax pair interpretation of the W-symmetryIn a reent paper Mans�eld and Spene [17℄ proposed a new interpretationof the W-symmetry of the Toda system (2.2). Their interpretation, developedin [17℄ for the ase of the standard Toda theory given by (2.5), is that the W-symmetry orresponds to `non-Abelian gauge transformations' preserving theform of the Lax pair (2.4). More exatly, they onsider variations of A� of thetype ÆKA� = ��K + [K ; A�℄ ; (5:1)where K is a G-valued funtion. They �nd that, upon requiring the abovevariation to respet the form of A�, this equation determines the allowed setof K's in terms of dim(G0) independent hiral parameter funtions. They arethen able to interpret these form preserving variations as the ones underlyingthe W-symmetry, and also �nd some nie expliit formulae.Our aim now is to understand how the above interpretation of the W-symmetry relates to the KM interpretation, given in [13℄ for the ase of thestandard Toda theory and generalized in this paper. In fat, originally thisquestion provided our motivation for investigating the relationship between theWZNW and Lax pair desriptions of Toda theory.Let us onsider a residual KM type symmetry transformation ÆK of the19



onstrained WZNW theory, given by some loal solution K(J) of equations(4.9) and (4.11). We know that ÆK gives a well de�ned variation of any gaugeinvariant quantity, beause of (4.11). We would like to ompute the variationof the Lax pair. To this �rst we reall that a KM transformation ats on theWZNW �eld g(x+; x�) and on its hiral part gL(x+) aording to (4.1) and(4.2). Seond, supposing that we are in the Gauss deomposable setor, theation of ÆK on the upper triangular �eld g+(x+; x�) in (2.12) is also �xed inpriniple by (4.1), sine g+ is a unique funtion of g. Combining these, we getthat the variation of the gauge invariant �eld ĝ de�ned by (2.18) reads asÆK ĝ = K � ĝ ; (5:2)where, from (4.2), K = g�1+ �K(J) � g+ � g�1+ � ÆKg+ : (5:3)It then follows from A� = ��ĝ � ĝ�1+ that the variation of the Lax pair under theresidual KM transformation is given by equation (5.1) with K determined byformula (5.3). Sine ÆK preserves the onstraints reduing the WZNW theoryto Toda theory, it is obvious that any variation arising in the above mannerpreserves the form of the Lax pair. Moreover, sine we have seen that theW-transformations are implemented by ertain residual KM transformations,namely by those whih are loal in J and anonial, it follows that the W-algebra indeed ats on the Lax pair by form preserving transformations of thetype (5.1). On the other hand, it is also lear that not every form preservingvariation of A� is aW-transformation, simply beause not all of them are evenanonial transformations. This is an obvious onsequene of the fat that forW-transformations one has a non-trivial gradient ondition orresponding to(4.24).The funtion K given by (5.3) desribes the transformation of the gaugeinvariant objets ĝ and A� under the residual KM symmetry, and therefore itan be expressed as some funtion of the Toda �eld g0(x+; x�), K = KToda(g0).Below we establish the funtional form of KToda.To this �rst we introdue the notation K0 for the restrition of K(J)to the diagonal gauge (3.22), K0(j0) � K(Jdiag). We assumed that K is lowertriangular and from this it follows that ÆK preserves the diagonal gauge. Indeed,ÆKJdiag has only grade zero omponents beause of (4.3) and (4.9). This meansthat the lower triangular matrix K0 implements the residual KM symmetry inthe diagonal gauge. 20



The result we prove is that KToda depends on g0 only through A+ and thatKToda(A+) an be obtained by simply substituting A+ for the argument of K.In other words, analogously to (3.25), we haveKToda(g0) = K(A+) = K0(j0 ! �+g0 � g�10 ) : (5:4)For W-transformations this follows from (3.25) by taking into aount thatJdiag and A+ not only have the same form, but the form of the Poisson braketrelations of their omponents is the same as well. This then implies (5.4) forgeneral residual KM transformations too, simply beause (5.3) is an algebraiformula.In summary, we see that the Lax pair interpretation of the W-symmetryproposed in [17℄ arises immediately as a translation of our KM interpretation.This way we not only generalized the result of [17℄ to the ase of the generalToda system (2.2), but also obtained a ertain lari�ation, namely we have ageneral method allowing us to single out the W-transformations amongst thegeneral `form preserving gauge transformations' of the Lax pair.
VI. ConlusionsIn this paper we analysed the struture of the generalized onformal Todatheories assoiated with the integral gradings of the simple Lie algebras. Ourmain results are the following.First, we established the relationship between the onstrained WZNW andthe Lax pair desriptions of the Toda theories. Seond, in the non-degeneratease, we set up a general framework for analysing the extended onformalsymmetry algebras and the urrent dependent, residual KM type symmetriespresent in these models as a onsequene of their WZNW origin. In partiular,by exhibiting the highest weight gauge, we unovered the sl(2) struture under-lying the W-algebras onsidered and found their onformal primary �eld basis.Furthermore, we have given an algorithm for �nding the KM implementation ofthe symmetry transformations generated by the W-algebra, whih an be used,for example, to ompute the W-algebra itself. Our results on the W-algebrageneralize and omplement the ones given in [13℄, where the speial ase of thestandard Toda theory was onsidered. Here we have also shown how to expressthese results in terms of the Lax pair framework. In partiular, we reovered21



the interpretation of theW-symmetry given in [17℄ as a onsequene of our KMinterpretation.This paper is a ontinuation of the series [12-14, 29℄, and most of the otherresults obtained in those papers an be generalized to the ase onsidered here.This is also true for the ase of the onformal Toda theories assoiated with thehalf-integral embeddings of sl(2) into the simple Lie algebras [15, 25℄.In addition to the outstanding problem of �nding the quantum analoguesof our W-algebras, the following `lassial' problems would deserve further in-vestigation. The onformal redutions of the KM phase spae leading to hiralalgebras of polynomial nature should be lassi�ed. We think that the WGS alge-bras mentioned in Setion III. onstitute an important lass of W-algebras andtheir struture should be analysed in detail. Furthermore, it would be impor-tant to explore the KdV like hierarhies of integrable equations whih shouldorrespond to the generalized W-algebras (see also [15, 16, 30℄). Finally, the(aÆne) WZNW framework [24℄ of desribing aÆne Toda theories should alsobe further developed. We hope to be able to report on some of these issues ina future publiation.
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