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tA new formulation of Toda theories is proposed by showing that they 
an be re-garded as 
ertain gauged WZNW models. It is argued that the WZNW variables arethe proper ones for Toda theory, sin
e all the physi
ally permitted Toda solutionsare regular when expressed in these variables. A detailed study of 
lassi
al Todatheories and their W-algebras is 
arried out from this uni�ed WZNW point of view.We 
onstru
t a primary �eld basis for the W-algebra for any group, we obtain anew method for 
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tion on the Toda �elds by 
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-Moody implementation, and we analyse the relationship betweenW-algebras and Casimir algebras. The W-algebra of G2 and the Casimir algebrasfor the 
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I. Introdu
tionTwo dimensional 
onformally invariant soluble �eld theories are based on var-ious extensions of the 
hiral Virasoro algebras. The best known extension is theKa
-Moody (KM) extension [1℄, whose most prominent Lagrangean realization is theWess-Zumino-Novikov-Witten (WZNW) model [2℄. There are various indi
ationsthat the KM algebra may even underlie all the rational 
onformal �eld theories. Forexample, the Goddard-Kent-Olive (GKO) 
onstru
tion [3℄ generates a huge 
lass ofrational 
onformal �eld theories. Another extension is the so-
alled W-extension,whi
h is a polynomial extension of the Virasoro algebra by higher spin �elds. Thestudy of polynomial extensions of the Virasoro algebra was initiated by Zamolod-
hikov [4℄. Later it was realized [5,6℄ that a large 
lass of polynomial extensions ofthe Virasoro algebra 
an be 
onstru
ted by quantizing the se
ond Gelfand-Di
keyPoisson bra
ket stru
ture of Lax operators, used in the theory of integrable systems.These W-algebras proved very fruitful to analyse 
onformal �eld theories and theybe
ome the subje
t of intense studies [5-8℄. Re
ently it has been found by Gervaisand Bilal that Toda theories provide a realization of W-algebras [8,9℄. Toda theoriesare important in the theory of integrable systems and in
lude the ubiquitous Liouvilletheory, whi
h, among other things, des
ribes two dimensional indu
ed gravity in the
onformal gauge.There are a number of results suggesting that Toda theories must be 
loselyrelated to WZNW models. First, in both 
ases the �elds 
an be re
overed fromthe generators of the respe
tive extended Virasoro algebras (KM and W-algebras)by means of linear di�erential equations [8℄. Se
ond, the Gelfand-Di
key Poissonbra
ket stru
ture 
an be obtained by a Hamiltonian redu
tion from a KM phasespa
e [10℄. Finally, it has been shown by Polyakov [11℄ that two dimensional indu
edgravity (in the light 
one gauge) exhibits (left-moving) SL(2; R) KM symmetry.



In a re
ent letter [12℄ we have shown that the exa
t relationship is that Todatheories may be regarded as WZNW models (based on maximally non-
ompa
t, sim-ple real Lie groups) redu
ed by 
ertain 
onformally invariant 
onstraints. To be morepre
ise, Toda theory 
an be identi�ed as the 
onstrained WZNW model, modulo theleft-moving upper triangular and right-moving lower triangular KM transformations,whi
h are gauge transformations generated by the 
onstraints. The advantages oftreating Toda theory as a gauge theory embedded into a WZNW model are the fol-lowing: First, the 
oordinate singularities of Toda theory disappear by using theWZNW variables. Se
ond, the W-algebra of Toda theory arises immediately as thealgebra formed by the gauge invariant polynomials of the 
onstrained KM 
urrentsand their derivatives. Third, the general solution of the Toda �eld equations is easilyobtained from the very simple WZNW solution. Finally, there are natural gaugeswhi
h fa
ilitate the analysis of the theory. In this paper we exploit the embedding ofToda theory into the WZNW model to obtain a number of new insights and resultsabout the stru
ture of Toda theory and W-algebra. All our 
onsiderations are 
las-si
al. We hope that their quantum generalizations will provide new 
onstru
tions ofquantum Toda theories [13℄ and W-algebras.We �rst set up a Lagrangean framework for the WZNW-Toda redu
tion, namelywe establish that Toda theories 
an be identi�ed as the gauge invariant 
ontent of
ertain gauged WZNW models. Our gauged WZNW models di�er from the usualgauged WZNW models [14℄ used in the path integral realization of the GKO 
on-stru
tion not only in the non-
ompa
tness of our groups, but also in that instead ofa single diagonal subgroup we gauge two subgroups of the left� right WZNW group,the upper triangular maximal nilpotent subgroup on the left and the lower triangularone on the right hand side. The nilpoten
y of the triangular subgroups is 
ru
ial tothis ambidextrous generalization of the usual ve
tor gauged WZNW models, and infa
t the nilpoten
y of the gauge group is the reason for the appearan
e of the simplepolynomial stru
tures in Toda theory. The 
onstrained WZNW model is re
overedin this framework by an appropriate partial gauge �xing whi
h leaves the left andright moving triangular gauge transformations mentioned earlier as a residual gauge



symmetry.In most of our 
onsiderations we rely heavily on the use of a 
lass of naturalgauges used in studying the gauge invariant di�erential polynomials in the reviewpaper [10℄ by Drinfeld and Sokolov. The basi
 property whi
h makes the DS gauges
onvenient is that in ea
h DS gauge the surviving 
omponents of the KM 
urrentserve as a basis for the W-algebra.Working in the DS gauges, we give a simple algorithm to �nd the KM transfor-mations whi
h implement the 
anoni
al transformations generated by theW-algebra.This provides us with a new method both for 
omputing the W-algebra and for de-termining the a
tion of the W-algebra on the Toda �elds. Our method 
ru
iallydepends on using the embedding WZNW theory and its full, non-
onstrained KMalgebra. We illustrate the method on the examples of A2 and B2 and demonstrateits power by 
omputing the 
omplete W-algebra relations for the rather nontrivialexample of G2.We �nd a DS gauge whi
h enables us to 
onstru
t a primary �eld basis of theW-algebra. As far as we know a general algoritm for 
onstru
ting primaryW-generatorshas not been known before, although su
h generators have been found in low dimen-sional examples [6℄. We note that even the existen
e of a primary �eld basis is not
ompletely trivial, sin
e su
h a basis is 
onstru
ted by a non-linear transformation[6℄ even if one starts from W-generators transforming in a linear (inhomogeneous)manner under the Virasoro algebra. Our 
onstru
tion of the primaryW-generators isbased on a spe
ial SL(2; R) subgroup of the WZNW group, whi
h plays an importantrole throughout the theory. The primary W-generators are asso
iated in a naturalway to the highest weight states of this SL(2; R) in the adjoint representation of theWZNW group.There have been attempts [15℄ at 
onstru
ting polynomial extensions of the Vi-rasoro algebra from a KM algebra by using the higher Casimirs of the underlyingLie algebra similarly as the se
ond order Casimir is used in the Sugawara 
onstru
-tion. On the quantum level these Casimir algebras 
lose only under very restri
tive
onditions on the KM representation. We show that the leading terms (i. e. terms



without derivatives) of the W-generators are always Casimirs, and that the Poissonbra
ket version of the Casimir algebras always 
lose. In fa
t, we prove that these
lassi
al Casimir algebras are obtained from the 
orresponding W-algebras by a 
er-tain trun
ation, and thus the Casimir algebras 
an be used to investigate the leadingterms of the W-algebras. For the 
lassi
al Lie algebras Al, Bl and Cl we give theexpli
it form of the Casimir algebra.We also 
onsider the existen
e of quadrati
 relations for the W-algebras. In the
ase of the Al, Bl and Cl Lie algebras it is easy to displayW-generators with quadrati
relations. The above mentioned relation between the Casimir and W-algebras showsthat for the other Lie algebras the W-relations are ne
essarily of higher order.Finally, we investigate how the Toda �elds 
an be re
onstru
ted from the W-generators. This re
onstru
tion is a redu
ed version of the re
onstru
tion of thegroup valued WZNW �eld from the KM 
urrents, and this tells us that every Todasolution with regular W-generators 
an be represented by a regular WZNW solu-tion. The re
onstru
tion problem leads us to studying the di�erential equationssatis�ed by the gauge invariant 
omponents of the 
onstrained WZNW �eld. Thisway we re
over the Lax operators studied in [10℄, whi
h also appear in the generalizedS
hr�odinger equations of [8℄. For Al, Bl, Cl and G2 the re
onstru
tion problem 
anbe redu
ed to solving a single ordinary di�erential equation of the order of the de�n-ing representation of the 
orresponding algebra, in all other 
ases one inevitably hasa pseudo-di�erential equation. We will see that one has a single ordinary di�erentialequation exa
tly when the representation in whi
h the group valued WZNW �eld istaken is irredu
ible under the SL(2; R) subgroup mentioned earlier, and that in gen-eral the stru
ture of the pseudo-di�erential operator depends on the de
ompositionof this representation under the SL(2; R) subgroup.The plan of the paper is the following: In Chapter II we present a short re-view of the redu
tion of the WZNW model to Toda theory and des
ribe the gaugedWZNW framework. We elaborate on the role of the residual gauge invarian
e andon the gauge invariant quantities in Se
tion II.2. The longest and most important
hapter is III. We start it with the de�nition of the W-algebras. In III.1 we present



the 
onstru
tion of the Drinfeld-Sokolov gauges and observe that in these gauges theW-algebra redu
es to the Dira
 bra
ket algebra of the surviving KM 
urrent 
om-ponents. In III.2 we exhibit a primary �eld basis of the W-algebra and illustrate itwith B2. In III.3 we give an algorithm to implement the a
tion of the W-algebra bymeans of KM transformations and illustrate the pro
edure with A2 and B2. In III.4�rst we display a sub
lass of Drinfeld-Sokolov gauges where the W-algebra relationsare quadrati
 for Al, Bl and Cl. Then we introdu
e the `diagonal' gauge, whi
h isfrequently used in Chapter IV., and brie
y dis
uss the related Miura-transformation.Chapter IV. 
ontains a detailed analysis of the relation between the Casimir Poissonbra
ket algebras and theW-algebras. In IV.2 we present the expli
it Poisson bra
ketalgebra of the Casimir operators of the 
lassi
al Lie algebras Al, Bl and Cl. In thelast 
hapter, V., we study the di�erential and pseudo-di�erential operators appear-ing when re
onstru
ting the Toda-�elds from the W-generators (or the 
onstrainedWZNW �elds from the KM 
urrents). There are three appendi
es; Appendix A 
on-taining our 
onventions and some important group theoreti
al results, Appendix Bwith the 
ompleteW(G2) algebra and Appendix C with the details of the 
al
ulationsof the Casimir algebras.



II. Toda Field Theory as a Gauge TheoryIn this 
hapter �rst we summarize the main points of the redu
tion of WZNWmodels to Toda theories. Then we show how to set up a Lagrangean frameworkfor the redu
tion, using an ambidextrous generalization of the usual ve
tor gaugedWZNW models. Then we elaborate on the 
on
ept of residual gauge transformationsand on the 
orresponding gauge invariant quantities. In parti
ular, we point outthat in the WZNW framework W-algebras appear naturally as symmetry algebrasof Toda theory.II.1. Toda Theory as a Gauged WZNW ModelThe so 
alled Toda �eld equations 
onstitute a rather interesting set of inte-grable (soluble) equations. These equations appear naturally in various problems(
ylindri
ally symmetri
 instantons [16℄, et
.) and they 
an also be thought of as ageneralization of the ubiquitous Liouville equation:�+���+Me� = 0 ; where M = 
onst: : (2:1)Now the Toda equations are given as:�+���� + 12 j�j2M� expf12 X�2�K����g = 0 ; (2:2)where K�� is the Cartan matrix* of a simple Lie algebra, � denotes the set of simpleroots and the M�'s are (positive) 
onstants. The 
orresponding Lagrangean is:L = �2� X�;�2� 12j�j2K���+�� ���� � X�2�M� expf12 X�2�K�� ��g�; (2:3)where � is the 
oupling 
onstant of the theory. Clearly (2.2) redu
es to the Liouvilleequation (2.1) by making the simplest 
hoi
e for K��, namely when it is just anumber (
orresponding to a rank one algebra). In fa
t Toda �eld theories are also* Our 
onventions are 
olle
ted in Appendix A.



distinguished by being the only two dimensional, nontrivial 
onformally invariantmodels whi
h are soluble [8,16℄, in the 
lass of s
alar theories without derivative
ouplings.These theories possess an improved energy-momentum tensor��� = �2� X�;�2� 1j�j2K���������� � 4 X�2� 1j�j2 �2� ��� (2:4)with vanishing tra
e, �+� = 0, on shell. Interestingly, the general solution of (2.2)
an be written in 
losed form [16℄.Let us re
all �rst, how Toda theories 
an be regarded as 
onstrained WZNWmodels. We start with the WZNW a
tion based on a 
onne
ted real Lie group G(with maximally non-
ompa
t simple real Lie algebra G)S(g) = � k8� Z d2x ���Trn(g�1��g)(g�1��g)o+ k12� ZB3 Trn(g�1dg)3o ; (2:5)where g is a group-valued �eld and B3 is a three-dimensional manifold whose bound-ary is Minkowski spa
e-time. We 
hoose the 
oupling 
onstants � and k to be relatedby the equality k = �4��.This a
tion possesses left and right KM symmetries. Their Noether 
urrentsasso
iated to some Lie algebra element, �, are given as follows:J(�) = Tr(� � J) ; J = �(�+g)g�1~J(�) = Tr(� � ~J) ; ~J = ��g�1(��g) : (2:6)The �eld equations are equivalent to the 
onservation of the left and right 
urrents:��J = 0 �+ ~J = 0: (2:7)Let now �� and �� (� 2 �) be arbitrary positive numbers and denote the set ofpositive roots by �+. The main result of ref. [12℄ was that by imposing the following
onstraints: J(E�) = ���J(E') = 0 ~J(E��) = ����~J(E�') = 0 � 2 �' 2 �+ n� (2:8)



the equations of motion of the WZNW theory (2.7) redu
e to the Toda �eld equations(2.2). To prove this result we start with the (lo
al) Gauss de
ompositiong = ABC (2:9a)of the group valued �eld g, whereA = expn X'2�+ a'E'o C = expn X'2�+ 
'E�'o ;B = expn12 X�2���H�o : (2:9b)This group-valued Gauss de
omposition is lo
ally unique for Lie groups G with max-imally non-
ompa
t Lie algebras.Now exploiting the fa
t that �� and �� are zero for all but the simple roots, the
onstraints (2.8) 
an be re-written as:A�1��A = X�2� 12 j�j2��E� exp f12 X�2�K����g(�+C)C�1 = X�2� 12 j�j2��E�� exp f12 X�2�K����g : (2:10)Substituting (2.10) into the �eld equations (2.7) one indeed re
overs the Toda equa-tions (2.2) (withM� = j�j2����). It 
an be shown that this redu
tion is 
anoni
al inthe sense that the Poisson bra
kets of the Toda variables � and _� 
an be 
al
ulatedeither from the Toda or from the WZNW a
tion (as a requirement, this �xes therelationship between the 
oupling 
onstants).We remark that the famous Leznov-Savaliev general solution of the Toda �eldequations [16℄ 
an be derived e�ortlessly from the general solution of the WZNW�eld equations (2.7): g(x+; x�) = gL(x+) � gR(x�) ; (2:11)where gL and gR are arbitrary group valued fun
tions 
onstrained only by the bound-ary 
onditions and there is an obvious 
onstant-matrix ambiguity in the de�nition ofgL and gR. The general solution of the Toda equations 
an be obtained from (2.11)



by �rst imposing the 
onstraints (2.8) and then de
omposing it a

ording to (2.9)[12℄. In Chapter V we shall show that it is equally easy to re
over the solution of theToda �eld equations in the form re
ently found by Gervais and Bilal [8℄ from (2.11).As the quantization of Liouville and Toda theories is expe
ted to be simplerin the WZNW formulation, it is worthwile to �nd a Lagrangean realization of theredu
tion of the WZNW model to Toda theory. In the following we wish to showthat an ambidextrous generalization of gauged WZNW models [14℄ provide a naturalframework to 
arry out this redu
tion. For example, gauged WZNW models turnedout to be useful in the Lagrangean des
ription of the Goddard-Kent-Olive 
oset
onstru
tion (GKO) [3℄.We shall need the Polyakov-Wiegmann identity [17℄ expressing the WZNW a
-tion for the produ
t of three matri
es A, B, C as the sum of the respe
tive a
tionsfor A, B and C, modulo lo
al terms:S(ABC) = S(A) + S(B) + S(C)+ � Z d2x Tr�(A�1��A)(�+B)B�1+ (B�1��B)(�+C)C�1 + (A�1��A)B(�+C)C�1B�1	: (2:12)Next we want to 
onsider the gauged version of the WZNW theory, i.e. we are lookingfor an a
tion invariant under the transformations:g ! �g��1 � 2 H; � 2 ~H; (2:13)where �, � are fun
tions of both x+ and x�, and H; ~H are two isomorphi
 subgroupsof G.Let us �rst re
all the `usual' gauged WZNW models [14℄. In the standard 
aseone gauges a diagonal (ve
tor) subgroup, H, of the Ka
-Moody group GL�GR. Nowthe transformation of g under the ve
tor subgroup is given as:g ! 
g
�1 
(x+; x�) 2 H: (2:14a)It is easy to see that the a
tion fun
tionalI(g; h;~h) = S(hg~h�1)� S(h~h�1) h; ~h 2 H



is gauge invariant, provided (2:14a) is supplemented withh! h
�1 ~h! ~h
�1: (2:14b)Using (2.12) I(g; h;~h) 
an be re-written asI(g; A�; A+) = S(g) + � Z d2� Tr�(A�(�+g)g�1 + (g�1��g)A++ A�gA+g�1 �A�A+	 (2:15)where S(g) is the WZNW a
tion (2.5) andA� = h�1��h A+ = (�+~h�1)~h : (2:16)In the a
tion fun
tional (2.15) A�, A+ are regarded as the light-
one 
omponents ofsome `gauge �eld' belonging to the adjoint representation of H, transforming a

ord-ing to (2.16), and its gauge invarian
e is obvious from the above 
onstru
tion. Thevariation of this a
tion with respe
t to the non-propagating gauge �elds A� provides
onstraints whi
h 
lassi
ally set the 
urrents of H to zero. It has been demonstrated[14℄ that a 
areful quantization of (2.15) yields the GKO 
oset 
onstru
tion.At �rst sight it seems impossible to generalize (2.15) to be invariant under themore general transformations (2.13), sin
e now the only obvious 
andidate for aninvariant a
tion is just S(hg~h�1) whi
h is non-lo
al in the gauge �elds. However,in the rather degenerate 
ase when H and ~H are the subgroups of G generated bythe step operators asso
iated to the positive and negative roots, and denoted by Nand ~N respe
tively, their Lie algebras are nilpotent, and hen
e one has the 
ru
ialproperty that: S(h) = S(~h) � 0 : (2:17)So S(hg~h�1)�S(g) is lo
al, therefore the gauge �elds A�, A+ in eq. (2.16) (wherenow h 2 N and ~h 2 ~N) 
an be used in this 
ase in the same way as for the 
ase ofa diagonal subgroup to set the 
orresponding N and ~N 
urrents to zero. Sin
e the
onstraints we want to implement set 
ertain 
urrents to 
onstants rather than tozero, we 
onsider the following a
tion:I(g; A�; A+) = S(g) + � Z d2x Tr�(A�(�+g)g�1 + (g�1��g)A++ A�gA+g�1 � A���A+�	 (2:18)



where �, � are spe
ial (
onstant) matri
es, given by:� = X�2� 12 j�j2��E� � = X�2� 12 j�j2��E�� :A+, A� are now independent gauge �elds in the adjoint representation of the sub-groups N and ~N so they are nilpotent matri
es. The invarian
e of the a
tion (2.18)under the gauge transformationsg ! �g��1; A� ! �A���1 + ��� ��1; A+ ! �A+��1 + (�+�)��1 (2:19a)where � = �(x+; x�) 2 N and � = �(x+; x�) 2 ~N (2:19b)is now not 
ompletely obvious be
ause of the non-gauge-invariant looking terms,Tr(A+� + A��). However, these terms 
hange by a total derivative under gaugetransformations be
ause of the spe
ial form of A+, A� and that the matrix � (resp.�) 
ontains only step operators 
orresponding to simple positive (resp. negative)roots. For example under the transformation (2.19) with�(x+; x�) = exp � X'2�+  'E�'�we have Tr f� � (�+�)��1g = X'2� �'�+ ';and the term TrA+� indeed 
hanges only by a total derivative. The equations ofmotion following from (2.18) are:�+(g�1��g + g�1A�g)� [A+; g�1��g + g�1A�g℄ + ��A+ = 0 (2:20a)��(�+gg�1 + gA+g�1) + [A�; �+gg�1 + gA+g�1℄ + �+A� = 0 (2:20b)Tr [E��(g�1��g + g�1A�g � �)℄ = 0 (2:20
)Tr [E�(�+gg�1 + gA+g�1 � �)℄ = 0: (2:20d)Now making use of gauge invarian
e, A+ and A� 
an be set equal to zero simul-taneously and then we re
over from (2.20) the equations of motion of the WZNW



model (2.7) together with the 
onstraints (2.8). Note however, that setting A+; A�to zero is not a 
omplete gauge �xing. Indeed, it is 
lear that the 
ondition A� = 0 isinvariant under 
hiral gauge transformations � = �(x+) and � = �(x�) whi
h are inthe interse
tion of the gauge group and the KM symmetry group of the theory. Sin
ein the A� = 0 gauge (2.20) redu
es to (2.7) and (2.8), it follows that the residualgauge transformationsg ! �g��1 where � = �(x+) 2 N; and � = �(x�) 2 ~N (2:21)must leave (2.8) invariant. This 
an also be veri�ed by using the standard transfor-mation property of the 
urrents J and ~J under KM transformations:J ! �J��1 + �(�+�)��1 and ~J ! � ~J��1 + �(���)��1: (2:22)Note that these 
hiral gauge transformations (2.21) form the 
omplete residual gaugegroup of the gauge A� = 0.From now on we stay in this gauge. Here we point out how the residual gaugetransformations (2.21) arise from the Hamiltonian point of view. To this and in therest of the paper we take the spa
e of solutions, given by (2.11), of the WZNW theoryas our phase spa
e. This is 
onvenient here be
ause of the left-right fa
torized form ofthe general solution. The translation to the equivalent equal time 
anoni
al formalism
ould be made by parametrizing the solutions by their initial data and expressing theinitial data in terms of the 
anoni
al varibles. To make this translation as easy aspossible, in this paper we use equal time Poisson bra
kets on the spa
e of solutions.After these remarks, let us observe that the KM Poisson bra
kets of those 
urrent
omponents whi
h are to be 
onstrained a

ording to (2.8) vanish on the submanifoldof the phase spa
e de�ned by (2.8) (
onstraint-surfa
e), i.e. we are dealing with�rst 
lass 
onstraints. Now �rst 
lass 
onstraints always generate su
h 
anoni
altransformations whi
h leave the 
onstraint-surfa
e invariant, and it is easy to see thatin our 
ase these are naturally identi�ed with the residual gauge transformations.



II.2. Gauge Invariant QuantitiesClearly the Toda �elds, �� in (2:9b), are not a�e
ted by the residual gaugetransformations (2.21). Assuming the validity of the Gauss de
omposition, (2.9), theToda �elds 
onstitute a 
omplete system of independent invariants with respe
t tothese transformations on the `
onstraint-surfa
e'. In other words, Toda theory 
an beidenti�ed, at least lo
ally, with the 
onstrained WZNW model modulo residual gaugetransformations. From now on we shall refer to the residual gauge transformations(2.21-22) simply as gauge transformations.It is important to note, that (2.9) is valid only in a neighbourhood of the identityof G. As a 
onsequen
e of this non-global nature of the Gauss de
omposition, ourredu
tion 
an generate singular Toda solutions from perfe
tly regular WZNW ones.This is the basis of one of the most important properties of the WZNW setting of Todatheory, namely, that the physi
ally allowed singularities of the Toda solutions arepre
isely those whi
h disappear by using the WZNW variables. We have shown thisin [12℄ in the spe
ial 
ase of SL(2; R), by proving that the requirement that a Liouvillesolution be obtained from a regular solution of the WZNW theory, is equivalent todemanding that the asso
iated energy-momentum tensor (2.4) be regular.In Chapter V we shall show that this generalizes for a rank l algebra where besidesthe energy-momentum tensor there are l � 1 additional `W-densities'. In that 
asethe Toda solutions with regular W-densities 
an be represented by regular WZNWsolutions, even if they appear singular in terms of the original lo
al Toda variables��. It 
an be argued that the singular 
lassi
al solutions with regular W-densities
orrespond to an important se
tor of the quantized Toda theory. In the WZNW
ontext these solutions are 
learly on the same footing as the manifestly regularsolutions. Thus the WZNW variables are the proper ones for Toda theories. However,sin
e we must still identify gauge-related WZNW �elds, we are lead to study thegauge-invariant quantities in the 
onstrained WZNW theory.The Toda �elds �� are invariant, but they are only well-de�ned for WZNWsolutions in that neighbourhood of the identity where the Gauss-de
omposition (2.9)



is valid. Of 
ourse one 
ould 
over G with a �nite number of pat
hes and introdu
elo
ally regular Toda �elds on them. These lo
al �elds would be related by somegroup transformations on the interse
tions of these pat
hes and together they wouldde�ne a global Toda �eld.Fortunately there is a simpler and more dire
t way to �nd globally well-de�nedquantities whi
h redu
e to the lo
al Toda �elds in the neighbourhood of the identity.Consider some (d-dimensional) representation of G and 
hoose a basis su
h that theCartan subalgebra is represented by diagonal matri
es, and the Lie algebras of Nand ~N are represented by upper and lower triangular matri
es, respe
tively. Then,be
ause � and � in (2.21) are upper and lower triangular matri
es respe
tively, with1's in their diagonals, it follows that the lower-right sub-determinantsDi � det0B� gii : : : gid... ...gdi : : : gdd1CA (2:23)of the matrix (gij) are all gauge invariant quantities. It is also easy to see that in theGauss de
omposable 
ase the Toda �elds �� 
an be re
overed as linear 
ombinationsof logarithms of the Di.For example, let us 
onsider Al and take G = SL(l + 1; R) in the de�ning repre-sentation. Using the standard 
onvention, in whi
h H�i has 1 in its ii-slot, �1 inits (i+ 1)(i+ 1)-slot and 0's elsewhere, for a Gauss de
omposable g one obtains thesimple formula: Di = e� 12�i�1 where �k � ��k : (2:24)The lo
al Toda �eld � indeed be
omes singular where the Gauss-de
omposition 
easesto be valid, that is where one of the sub-determinants Di 
hanges sign.In general the globally well-de�ned sub-determinants (2.23) yield an over
om-plete system of invariants, but in ea
h 
on
rete 
ase one 
an single out l independentones. For example, for the de�ning representations of the 
lassi
al groups, the last lsub-determinants starting from gdd suÆ
e. They 
an be used as global variables forthe Toda theory, after imposing the 
onstraints (2.8). Sin
e these sub-determinantsare polynomial in the 
omponents of the basi
 WZNW �eld, g, they appear better



suited for quantizing Toda theories than the original Toda �elds themselves.For later use we note that beside the sub-determinants, whi
h are fully gauge-invariant polynomial quantities, there are other important quantities, whi
h are linearin g, but invariant under left (or right) gauge transformations only. These are simplythe elements of the last row (
olumn) of g (and of gL and gR in (2.11), respe
tively).As the KM algebra plays a 
entral role in WZNW theories, it is 
lear that gaugeinvariant quantities formed out of the KM 
urrent J (and ~J) will also be importantin the Toda theories. To illustrate this, we re
all how the 
onformal invarian
e ofthe Toda theory appears in the WZNW framework. Here we restri
t ourselves to theleft-moving se
tor. It 
an be shown that there is a unique Virasoro algebra in thesemidire
t produ
t formed by the KM algebra and its asso
iated Sugawara Virasoroalgebra, weakly 
ommuting with the 
onstraints (2.8). Sin
e the residual gaugetransformations are generated by these 
onstraints, the energy-momentum densityL = LS � Tr (J 0 �̂) where LS = 12� Tr(J2) ; �̂ = 12 X�2�+H� (2:25)giving rise to this Virasoro algebra, be
omes gauge invariant on the 
onstraint-surfa
e.It follows that L must generate the 
onformal symmetry of the 
onstrained WZNW,i.e. of Toda theory. (One 
an verify that, after imposing (2.8) and using the lo
al 
o-ordinates de�ned by the Gauss de
omposition (2.9), L indeed redu
es to the improvedenergy-momentum tensor �++ (2.4).) Note that �̂ in (2.25) has the property:[�̂; E�℄ = E� when � 2 � ; (2:26)and that the 
lassi
al 
entre of the (Toda) Virasoro algebra is:
 = �12kTr(�̂2) ; (2:27)where k is the level of the underlying KM algebra.We will see in Chapter III that, besides L, there are other gauge invariant polyno-mial quantities formed out of the 
onstrained KM 
urrent and its derivatives. Theseobje
ts will be referred to as gauge invariant di�erential polynomials.



A 
ru
ial property (we elaborate on this in Chapter III) of the gauge invariant di�er-ential polynomials is that they form a 
losed algebra under the KM Poisson bra
ketoperation. That is, the Poisson bra
ket of two gauge invariant di�erential polyno-mials is again expressible in terms of gauge invariant di�erential polynomials andÆ-distributions. This means that if the quantities W i form a basis in the ring ofgauge invariant di�erential polynomials then we have:fW i(x);W j(y)g =Xk P ijk (W )Æ(k)(x1 � y1) ; (2:28)where the P ijk are polynomials of the W i's and their derivatives. These Poissonbra
ket relations generate a nonlinear algebra, reminis
ent of a universal envelopingalgebra.This nonlinear algebra of the gauge invariant di�erential polynomials always 
ontainsthe Virasoro algebra, hen
e it is a polynomial extension of it. This way one asso
iatesan extended 
onformal algebra to every Ka
-Moody algebra based on maximally non-
ompa
t simple real Lie-algebras, for any level k. It turns out that this polynomialalgebra is always �nitely generated, by l=rank(G) elements. In the literature thesealgebras are referred to as 
lassi
al W-algebras.The quantum analogues of these Poisson bra
ket algebras play an importantrole in 
onformal �eld theory [4-9℄. It has re
ently been realized [5-6℄ that quantumW-algebras 
an be 
onstru
ted by quantizing the so-
alled se
ond Gelfand-Di
keyPoisson bra
ket algebra of pseudo-di�erential operators, whi
h has been studied ear-lier in the theory of integrable systems and is known to be isomorphi
 to the algebraof gauge invariariant di�erential polynomials [10℄ mentioned above.It is worth noting that the di�erential operators whi
h provide the bridge be-tween the original Gelfand-Di
key 
onstru
tion and the KM approa
h to W-algebras[10℄ (also 
onstru
ted by an independent reasoning in [8℄) appear naturally in ourframework. They are nothing but the operators de�ning the di�erential equationssatis�ed by those (last row) 
omponents of gL whi
h are invariant under left gaugetransformations. These di�erential equations 
an be obtained as a 
onsequen
e of



the obvious relation (��+ � J)gL = 0 ; (2:29)where (2.29) is taken in the de�ning representation of the 
orresponding maximallynon-
ompa
t real Lie-algebra G (see Chapter V for more details).In their review paper [10℄ Drinfeld and Sokolov studied the algebra of gaugeinvariant di�erential polynomials by making use of the 
onstrained KM algebra. Weshall see that exploiting the full (un
onstrained) embedding KM algebra yields furtherinsight into the stru
ture of 
lassi
al W-algebras and leads to new results.



III. The W-AlgebraIn this 
hapter we undertake a detailed analysis of the W-algebra introdu
ed inChapter II. We �rst make the de�nition of the W-algebra more expli
it. The basi
obje
ts we are dealing with are gauge invariant di�erential polynomials, W i, de�nedon the spa
e P of the 
onstrained KM 
urrents (i. e. 
urrents J satisfying (2.8)). ThePoisson bra
kets of the W i are obtained by �rst extending their domain to the wholeKM phase spa
e, K, 
omputing the Poisson bra
kets on K and then restri
ting toP . The Poisson bra
kets on K depend on the 
hosen extension of the W i's (denotedby ~W i), but their restri
tions to P , whi
h are again gauge invariant, do not. Thisfollows by using the standard properties of the Poisson bra
ket from the the �rst 
lassnature of the 
onstraints, from the fa
t that the W i's are invariant under the gaugetransformations generated by the 
onstraints (and the assumption that the ~W i arereal analyti
 in a neighbourhood of P ).There is no reason to expe
t that a generi
 extension of theW i's 
loses under thePoisson bra
ket on K, but there is a trivial extension, whi
h has the property thatthe Poisson bra
kets of the ~W i's not only 
lose but have the same formal stru
tureon K as on P , i.e. f ~W i(x); ~W j(y)g =Xk P ijk ( ~W ) Æ(k)(x1 � y1) ;where the P ijk 's are the `stru
ture di�erential-polynomials' (2.28) of the W-algebra.This parti
ular extension is 
onstru
ted as follows. First one expands the generalKM 
urrent J 2 K in the Cartan-Weyl basis and noti
es that in P the upper trian-gular and Cartan 
omponents vary freely, while the lower triangular 
omponents are
ompletely �xed by (2.8). The trivial extension ~W i of W i is then de�ned to be theone whi
h simply does not depend on the lower triangular 
urrent 
omponents.Every element W of the W-algebra generates 
anoni
al transformations on theKM phase spa
e by the formulaJ ! J + Æ ~WJ Æ ~WJ = � Z 2�0 dx1 a(x)n ~W (x) ; Jo ;



where ~W (x) is any extension and a(x) is an arbitrary test fun
tion.(Note that our equal-time Poisson bra
kets and spatial Æ's are in fa
t equivalent tolight-
one bra
kets and Æ's. Prime everywhere means, even on Æ's, `twi
e spatial-derivative' and this redu
es to �+ on quantities, J(x), W i(x) and our test fun
tions,whi
h depend on x = (x0; x1) through x+ only.)Sin
e the transformation Æ ~W is 
anoni
al (preserves the KM-stru
ture and hen
ethe 
o-adjoint orbits in K), it follows that it 
an be represented as a �eld dependentKM transformation, i.e. Æ ~WJ = ÆRJ � [R; J ℄ + �R0 ;where R(J) is some (J -dependent) element of the KM algebra. The transformationÆ ~W transforms P into itself, and it in fa
t indu
es a transformation Æ�W on the spa
eM of the gauge-orbits in P . The transformations Æ ~W 
orresponding to di�erentextensions ~W ofW di�er on P only by (�eld dependent) gauge trans formations, andthus the indu
ed transformation Æ�W do not depend on the extension (only on W ).Of 
ourse, the redu
ed phase spa
e M 
arries its own Poisson bra
ket stru
turewhi
h is inherited from the Poisson bra
ket stru
ture of K, and is des
ribed bythe standard Dira
 bra
ket formula if one parametrizes M with some se
tion of thegauge orbits in P (gauge 
hoi
e). The indu
ed W-transformations Æ�W are 
anoni
altransformations on M with respe
t to this indu
ed (Dira
) Poisson bra
ket.In Se
tion III.1. we introdu
e some 
onvenient gauges (
alled DS gauges), whi
hwill be used to show that the W-algebra has a �nite (l-dimensional) basis and toexhibit some parti
ular bases W i (i = 1 : : : l). The parti
ular W-generators W i willbe the gauge invariant extensions (from the gauge se
tion to P ) of those 
urrent
omponents (
alled DS 
urrents) whi
h survive the gauge �xing. Thus, in thesegauges the W-algebra appears as the Dira
 bra
ket algebra of the DS 
urrents. Thisis the basi
 fa
t on whi
h most of our results are based.In Se
tion III.2. we exhibit a 
onformal �eld basis of the W-algebra. In Se
tionIII.3., working in a DS gauge, we shall present an algorithm for �nding the �elddependent KM transformations whi
h implement the indu
edW-transformations Æ�W .



This algorithm is our main result sin
e it enables us to 
al
ulate the a
tion of theW-algebra on any gauge invariant quantity. In the last se
tion we deal with someparti
ular gauges whi
h fa
ilitate the study of some properties of the W-algebra.III.1. Drinfeld-Sokolov GaugesIn this se
tion we re
all the 
onstru
tion of a 
lass of parti
ularly 
onvenientgauges in whi
h the properties of the W-algebra be
ome apparent. This 
lass ofgauges has been introdu
ed �rst by Drinfeld and Sokolov [10℄, so we 
all them DSgauges.First we 
onsider a spe
ial sl(2; R) subalgebra of G, S, whi
h will play an im-portant role in what follows. This subalgebra is spanned by the Cartan element �̂ in(2.25) and nilpotent generators I� su
h that[I+; I�℄ = 2�̂ [�̂; I�℄ = � I� : (3:1)The step operators are expli
itly given byI� = lXi=1 �iE��i I+ = lXi=1 ni�i E�i (3:2a)where �i = 12��ij�ij2 ni = 2 lXj=1(K�1)ij : (3:2b)Note that sin
e Tr(I�E�i) = ��i any element of P , i.e. any 
urrent ful�lling the
onstraints (2.8) (with ��i = �i), has the formJ(x) = I� + X�2� ��(x)H� + X'2�+ �'(x)E': (3:3)The adjoint representation of G de
omposes into S multiplets. Sin
e �̂ is an elementof the Cartan subalgebra of G the step operators are �̂-eigenstates,[�̂; E'℄ = h(')E'; (3:4a)



where h(') is the height of the root ', i.e.h(') � lXi=1mi if ' = lXi=1mi�i: (3:4b)Let Gh be the eigensubspa
e of �̂ of eigenvalue h. If h 6= 0, thendim Gh = number of roots of height h: (3:5)It 
an be shown [18, 10℄ that, if for 1 � h � h (h : height of the highest root  )nh = dim Gh � dim Gh+1 ; (Xh nh = l); (3:6)is not zero, then h is an exponent of G with multipli
ity nh.We re
all the meaning of the exponents and their multipli
ities [18℄: The ring ofgroup invariant polynomial fun
tions on G is generated by l homogeneous elementswhose degrees are determined by the exponents, h. More pre
isely, there are exa
tlynh independent generators of order h + 1. In other words, these generators de�nea 
omplete set of independent Casimir operators. We note that h = 1 and h = h are always exponents. The multipli
ity of the exponents is always 1, ex
ept for D2l,where there are 2 independent Casimirs of order 2l.Note that for (h � �1) I� maps Gh+1 into Gh inje
tively, that isdim I�(Gh+1) = dim Gh+1; (3:7)where I�(Gh+1) = [I�;Gh+1℄. For any exponent, h, let Vh be a linear 
omplement ofI�(Gh+1) in Gh (dim Vh = nh) and let us also introdu
e the dire
t sumV �Mh Vh (dim V = l): (3:8)We 
hoose a basis Fi (i = 1 : : : l) in V in su
h a way that[�̂; Fi℄ = hiFi (3:9a)holds, where 1 = h1 � h2 � � � � � hl = h (3:9b)



is the list of the exponents with possible multipli
ities in
luded (see Appendix A).The basi
 fa
t we need is that any 
onstrained 
urrent of the form (3.3) 
an beuniquely gauge transformed into a 
urrent Ĵ(x) of the formĴ(x) = A(x)J(x)A�1(x) + �A0(x)A�1(x) � I� + lXi=1W i(x)Fi ; (3:10)and that the W i(x) and the parameters a'(x) of the gauge transformationA(x) = exp � X'2�+ a'(x)E'�are di�erential polynomials in the 
omponents of J(x). The proof of this statement[10℄ is a
tually easy. Using the fa
t that the gauge transformations are generated byupper triangular matri
es, the inspe
tion of (3.10) reveals that it is uniquely solublein purely algebrai
 steps for both W i(x) and a'(x) in terms of J(x).Denote now by MV the spa
e, whose `points' are 
urrents of the form (3.10).The previous statement tells us that MV de�nes a 
omplete gauge �xing. Moreover,it also follows immediately that the 
omponents, W i(x), of the unique interse
tionpoint of MV with the gauge orbit passing through J 2 P de�ne gauge invariantdi�erential polynomials on P , whi
h freely generate the W-algebra. In other words,the W i's form a basis in the algebra of gauge invariant di�erential polynomials.On the other hand, a 
ompletely general element of the KM algebra K 
an beexpanded asJ(x) = lXi=1 U i(x)Fi + X'2�+ ��'(x)E�' + X'2�+ �'(x)[I�; E'℄ (3:11)and MV is obtained by �rst 
onstraining the ��'(x) by imposing (2.8) and then also�xing the residual gauge freedom by setting the �'(x) to zero. The 
urrent 
ompo-nents, U i(x), whi
h are not a�e
ted by this two step restri
tion and the 
orrespondinggauge invariant di�erential polynomials, W i(x), are related byU i(x)jMV =W i(x)jMV : (3:12)



However, it should be stressed that 
on
eptually the U i(x) (linear fun
tions on K)and the W i(x) (gauge invariant di�erential polynomials on P ) are very di�erentobje
ts and must be 
arefully distinguished. To make this distin
tion even 
learerwe introdu
e a separate name for the U i. From now on we shall refer to them as DS
urrents. It will turn out that most of our results are a 
onsequen
e of (3.12). Forexample, this relation immediately implies that ea
h di�erential polynomial W i(x)
ontains a leading term, i.e. a term without derivatives. In Se
tion IV.1. we shallprove that the leading terms of any W-basis are obtained by restri
ting Casimirsfrom K to P .Now we dis
uss how the W-algebra appears in a DS gauge. ClearlyMV inheritsa Poisson bra
ket stru
ture from the embedding KM algebra. This indu
ed Poissonbra
ket stru
ture is given by the familiar Dira
 bra
ket formula [19℄nf; go� = nf; go� X�;�2�Z 2�0 Z 2�0 dx1 dy1nf; ��(x)oD��(x; y)n��(y); go ; (3:13)whi
h is valid for two arbitrary phase spa
e fun
tions (f and g are fun
tions on theKM phase spa
e but only their restri
tion toMV really matters). In this formula the�� are the 
urrent 
omponents to be 
onstrained (
f. (3.11)), and D��(x; y) is theinverse of C��(x; y) � n��(x); ��(y)o ; (3:14)whi
h satis�es X�2� Z 2�0 dy1C��(x; y)D�
(y; z) = Æ�
 Æ(x1�z1) ; (3:15)for arbitrary �; 
 2 �. (Observe that the matrix-elements C�� , where �; � 2 �� ,vanish on P , while the submatrix C��� (�; � 2 �+ ) is regular on MV . Hen
e C��is also regular on MV .)Now the DS 
urrents, U i(x), whi
h survive the 
omplete gauge �xing provide us with
oordinates for the phase spa
e MV . Thus the indu
ed Poisson stru
ture of MV 
anbe des
ribed by spe
ifying the Dira
 bra
kets of the U i(x). The 
ru
ial point is thatthe Dira
 bra
kets of the DS 
urrents satisfynU i(x); U j(y)o� = nW i(x);W j(y)o on MV ; (3:16)



as a 
onsequen
e of (3.12). As dis
ussed earlier the Poisson bra
kets of the W i's arein prin
iple 
al
ulated by �rst extending them to K and then restri
ting the Poissonbra
kets 
al
ulated on K to P . Be
ause of the gauge invarian
e of the W i's, this isequivalent to 
al
ulating the Dira
 bra
kets of the DS 
urrents.To summarize, we see that if the spa
e of gauge orbits M is parametrized by thegauge se
tionMV , then its Poisson bra
ket stru
ture is naturally des
ribed by meansof the Dira
 bra
kets of the DS 
urrents, and that the W-algebra 
an in fa
t beregarded as the Dira
 bra
ket algebra of the DS 
urrents. It will be demonstratedin the rest of this 
hapter that the properties of the W-algebra are most e�e
tivelystudied by making use of the DS gauges.The family of DS gauges is parametrized by the possible 
hoi
es of the linearspa
e V in (3.8). It is easy to see that U1(x) � L(x) on MV and therefore W 1(x) �L(x) on the 
onstraint-surfa
e P , for any DS gauge.III.2. Conformal W-GeneratorsThe energy-momentum density of the Toda theory, L in (2.25), generates thea
tion of the 
onformal group on the KM phase spa
e. This 
onformal a
tion operatesas J ! J + ÆLJÆLJ = � Z 2�0 dx1 a(x)nL(x) ; Jo = (aJ)0 + � a00�̂+ a0 [�̂; J ℄ ; (3:17)where J 2 K and a(x) is any test fun
tion. The main point of this se
tion is theobservation that the W-generators asso
iated to a 
ertain DS gauge (highest weightgauge) are primary �elds with respe
t to this 
onformal a
tion.To demonstrate this it will be useful to des
ribe the 
onformal a
tion in termsof �eld dependent KM transformations. Let R(J) be a KM algebra valued fun
tionde�ned on the KM phase spa
e. Then it generates an in�nitesimal (�eld dependent)KM transformation: J ! J + ÆRJ ÆRJ � [R; J ℄ + �R0 : (3:18)



Now it is not diÆ
ult to verify that the 
onformal a
tion ÆL is implemented by the�eld dependent KM transformation generated by the parti
ular KM valued fun
tionR0(a; J) = 1�aJ + a0�̂ ; (3:19a)that is one has ÆLJ = ÆR0J for any J : (3:19b)The 
onformal a
tion (3.17) transforms the set of 
onstrained KM 
urrents, P ,into itself. Another 
ru
ial property of ÆL is that on P it 
ommutes (modulo gaugetransformations) with the a
tion of the gauge transformations (2.22). Therefore(3.17) indu
es a 
onformal a
tion on the gauge equivalen
e 
lasses of the 
onstrained
urrents, whi
h amounts to an a
tion on the set of gauge �xed 
urrents, MV , rep-resenting those equivalen
e 
lasses, for any 
hoi
e of V . Our purpose below is todes
ribe this indu
ed 
onformal a
tionJ ! J + Æ�LJ ; (J 2MV ) (3:20)operating on MV .In general J + ÆLJ =2 MV , and therefore to determine Æ�LJ we must �nd the
ompensating (unique) gauge transformation, r = r(a; J), su
h thatJ + ÆLJ + ÆrJ 2MV ; for any J 2MV ; (3:21a)and then we haveÆ�LJ = ÆLJ + ÆrJ = ÆRJ with R = R(a; J) = R0(a; J) + r(a; J) : (3:21b)Before trying to determine r(a; J) let us re
all that Æ�L is a 
anoni
al trans-formation on the redu
ed phase spa
e MV , generated by L by means of the Dira
bra
ket:Æ�LJ = � Z 2�0 dx1 a(x)nL(x); Jo� = � Z 2�0 dx1 a(x)nU1(x); Jo� (3:21
)



on MV . Here the se
ond equality holds provided we normalize the DS 
urrent U1a

ording to U1(x) = L(x) on MV ; (3:22a)whi
h 
orresponds to the following normalization of the basis ve
tor F1 :TrF1I� = � : (3:22b)With this normalization, as an obvious 
onsequen
e of (3.16) and (3.21
), we have :Æ�L U1 = a(U1)0 + 2a0U1 � �Tr(�̂2) a000: (3:23)Next we want to determine the indu
ed 
onformal transformation of the U i fori � 2. First, for an arbitrary gauge �xed 
urrentJ(x) = I� + lXi=1 U i(x)Fi (3:24)one easily sees that :ÆR0J = lXi=1[a(U i)0 + (hi + 1)a0U i℄Fi + �a00 �̂ ; (3:25)where hi is the height of the Lie algebra element Fi a

ording to (3:9a). The lastterm is `out of gauge' so one indeed needs a `
ompensating' gauge transformation.In prin
iple it is a purely algebrai
 problem to �nd r(a; J), but in pra
ti
e it is quitehard to produ
e an expli
it formula for the solution in an arbitrary DS gauge for anarbitrary Lie algebra.However, one 
an �nd a spe
ial gauge in whi
h the form of r(a; J) is parti
ularlysimple and the DS 
urrents are primary with respe
t to the indu
ed 
onformal a
tion(3.21). The 
onstru
tion is based on the sl(2; R) subalgebra S introdu
ed in theprevious se
tion. Sin
e the adjoint representation of G de
omposes into S multiplets,it is natural to 
onsider the 
orresponding highest weight states, i.e those Lie algebraelements whi
h 
ommute with I+. It is easy to see that the highest weight states inGh span a natural 
omplement of I�(Gh+1). Chosing this parti
ular 
omplement in



the 
onstru
tion presented in III.1. we obtain a parti
ular DS gauge, whi
h we 
allthe highest weight gauge. By using the fa
t that the basis ve
tors Fi of V in (3.8)now satisfy the 
onditionF1 � I+; [I+; Fi℄ = 0; i = 2 : : : l ; (3:26a)one easily proves that in the 
ase of the highest weight gauge the 
ompensating gaugetransformation r(a; J) is given by the simple formular(a; J) = �12�a00I+: (3:26b)The 
orresponding 
onformal variation of the DS 
urrents U i then turns out to beÆ�L U i = a(U i)0 + (hi + 1)a0 U i for i = 2 : : : l ; (3:27)i. e. they are indeed primary with respe
t to the indu
ed 
onformal a
tion (3.21).Equivalently, one 
an say that the 
orresponding gauge invariant di�erential polyno-mials,W i, are primary with respe
t to the original 
onformal a
tion (3.17) (restri
tedto P ). The 
onformal weights of the W i's (U i's) are (hi+1), i.e. they are in one-to-one 
orresponden
e with the orders of the independent Casimirs of G.To summarize, we have proven that the generators W i (i = 2 : : : l) de�ned bythe highest weight gauge, together with L = W 1, 
onstitute a natural, 
onformal�eld basis of the W-algebra. This is one of our main results. As far as we know,an algorithm to �nd a 
onformal W-basis has not been known before in the general
ase, although 
onformal W-generators were expli
itly exhibited for some parti
ularlow dimensional examples [6℄ .We now illustrate the idea of both the DS and the highest weight gauges onthe example of B2 = o(3; 2). We use the 
onvention [20℄ in whi
h this Lie algebra
onsists of (5� 5) matri
es whi
h are antisymmetri
 under re
e
tion with respe
t tothe `se
ond diagonal'. The Cartan subalgebra is spanned by the diagonal matri
esin B2. In this 
onvention the Lie algebras of N and ~N are represented by upper andlower triangular matri
es, respe
tively. In parti
ular, the E� for � 2 � have non-zero



entries only in the �rst slanted row above the diagonal. The Cartan element �̂ in(2.25) is then easily found to be�̂ = diag (2; 1; 0;�1;�2) : (3:28a)By a 
onvenient 
hoi
e of the parameters �i in (3.2) we 
an 
hoose the step operatorsof S asI+ = 0BBB� 0 4 0 0 00 0 6 0 00 0 0 �6 00 0 0 0 �40 0 0 0 0
1CCCA ; I� = 0BBB� 0 0 0 0 01 0 0 0 00 1 0 0 00 0 �1 0 00 0 0 �1 0

1CCCA : (3:28b)(Note that the value of the parameters �i is irrelevant sin
e they 
an be rede�ned byres
aling the simple step-operators.) The elements of Gh are now those matri
es inB2 that have non-zero entries h steps above the diagonal only. Before des
ribing thegeneral DS gauge, we need to know the image I�(G2). In fa
t, an easy 
al
ulationyields that I�(G2) is the set of matri
es of the form0BBB� 0 x 0 0 00 0 �x 0 00 0 0 x 00 0 0 0 �x0 0 0 0 0
1CCCA : (3:29)Sin
e dimG1 = 2, there is now a one parameter family of (one dimensional) linearsub-spa
es V1 of G1 whi
h are 
omplementary to I�(G2) in G1. These are nothingbut the `lines' spanned by the ve
tors of the formF1 = F1(p) = 0BBB� 0 p 0 0 00 0 �� p 0 00 0 0 p� � 00 0 0 0 �p0 0 0 0 0

1CCCA ; (3:30)for any real p. Note that F1 has been normalized a

ording to (3:22b). (For the Blalgebras Tr means half of ordinary matrix tra
e in the de�ning representation.) Thegeneral 
urrent in the `DS gauge of parameter p' is written asJ(x) = I� + U1(x)F1 + U2(x)F2 = 0BBB� 0 pU1 0 U2 01 0 qU1 0 �U20 1 0 �qU1 00 0 �1 0 �pU10 0 0 �1 0
1CCCA ; (3:31)



where q � ��p. We designate this set of gauge �xed 
urrents as Mp. Observe thatfor 5p = 2� the matrix F1 is proportional to I+, so that this value of p 
orrespondsto the highest weight gauge.It is not hard to 
al
ulate the 
ompensating gauge transformation r(a; J) in(3.21) whi
h 
an
els the last term in (3.25). The reader 
an 
he
k that the result isr(a; J) = �12�a00I+ +0BBB� 0 0 y2 y3 00 0 0 0 �y30 0 0 0 �y20 0 0 0 00 0 0 0 0
1CCCA ; (3:32a)with y2 = � a000; y3 = �[�a0000 � a00U1℄ ; � = �(2�� 5p); (3:32b)whi
h redu
es to (3:26b) in the 
ase of the highest weight gauge, as it should. The
orresponding 
onformal variation of U2 on Mp is given by:Æ�L U2 = 4a0U2 + a(U2)0 � ��(��p)a000U1 + �(a00U1)0 � �2a00000�: (3:33)Sin
e U1 generates the indu
ed 
onformal a
tion on Mp through the Dira
 bra
ket,from (3.33), taking (3.16) also into a

ount, we 
an read o� the Poisson bra
ket ofW 1 with W 2 (restri
ted to P ), whi
h is now given as:fW 1(x);W 2(y)g =3W 2(x)0Æ(x1 � y1) + 4W 2(x)Æ0(x1 � y1)+ ��(p��)(W 1Æ)000 � �(W 1Æ0)00 + �2Æ00000�: (3:34)For �=0, that is for the heighest weight gauge, the 
orresponding W-generator,W 2, is a 
onformal primary �eld of weight 4. The generator W 2 = W 2(p) asso
iatedto any other DS gauge (of parameter p) transforms in a 
ompli
ated, inhomogeneousmanner under the 
onformal a
tion.III.3. KM Implementation of W-TransformationsHere our purpose is to study the 
anoni
al transformations de�ned (as dis
ussedat the beginning of the 
hapter) by the W-algebra on the spa
e of gauge orbits



M . For this we 
onsider the transformation Æ�W indu
ed on M by the followingW-transformation Æ ~W (a
ting originally on K) :J ! J + Æ ~WJ Æ ~WJ = � lXi=1 Z 2�0 dx1 ai(x)n ~W i(x) ; J o ; (3:35)where the ~W i(x) are some arbitrary extensions from P to K of the W-generatorsW i(x) asso
iated to some DS gauge with gauge se
tion MV , and the ai(x) are ar-bitrary test fun
tions. We parametrize M by MV and in this parametrization thetransformation Æ�W is generated by means of the Dira
 bra
ket a

ording toJ ! J + Æ�WJ Æ�WJ = �nQ(a; J) ; J o� ; (3:36a)with Q(a; J) = lXi=1 Z 2�0 dx1 ai(x)U i(x) ; (3:36b)where the U i(x) are the 
orresponding DS 
urrents. Similarly to the spe
ial 
aseof the indu
ed 
onformal transformation Æ�L dis
ussed in the pre
eeding se
tion, theindu
ed W-transformation Æ�W 
an be implemented by some �eld dependent KMtransformation R(a; J).Of 
ourse, this KM implementation is in prin
iple possible in any gauge, buthere we show that in the DS gauges there exists a simple, e�e
tive algorithm fora
tually 
omputing the KM valued fun
tion R(a; J) whi
h implements Æ�W , i. e.whi
h satis�es Æ�WJ = ÆRJ for any J 2MV : (3:37)This is immediately translated into the a
tion of theW-algebra on itself, sin
e in theDS gauge the W i(x) redu
e to the 
urrent 
omponents U i(x). An extra bonus of theKM implementation is that the KM algebra a
ts also on the G-valued WZNW �eldg(x+; x�) and from that a
tion we get:Æ�W g = ÆRg that is nQ(a; J) ; go� = �R(a; J) � g ; (3:38)where `dot' means ordinary matrix produ
t. From this equation we 
an read o� thea
tion of the W-algebra on the Toda �elds, whi
h are the sub-determinants of g.



In order to make the presentation more 
on
rete, we 
onsider as examples theW-algebras of the rank 2 Lie algebras A2, B2 and G2. The A2 example, whi
h is thesimplest non-trivial 
ase, is in
luded for the purpose of illustration. The B2 examplehas some non-trivial features whi
h will motivate some developments in subsequentse
tions. Finally, G2 (in Appendix B) illustrates the power of the method, sin
e itenables us to 
ompute the very non-trivial stru
ture polynomials of this W-algebra.We start by presenting a general 
hara
terization of the tangential (gauge pre-serving) KM transformations for an arbitrary DS gauge. First we pi
k a point,J0 2 MV , and 
onsider the tangential KM transformations at J0. In other words,we want to des
ribe all elements R(J0) of the KM algebra, whi
h map J0 2MV intoMV , i. e. we want to solve the 
ondition thatJ0 + ÆRJ0 � J0 + [R; J0℄ + �R0 is in MV : (3:39)To give the general solution of this 
ondition, it turns out to be useful to supplementthe de
ompositions introdu
ed in se
tion III.1,Gh = Vh � I�(Gh+1) ; h � 1 (3:40)by similar ones for the subspa
es G�h of G 
orresponding to the negative roots (
f.(3.4)). Indeed, the de
omposition we 
onsider is indu
ed by (3.40) as follows:G�h = V�h � U�h ; for h � 1 ; (3:41)where V�h is the transpose of Vh:V�h = nvt j v 2 Vho ; (3:42a)and U�h is the annihilator of Vh in G�h with respe
t to the s
alar produ
t Tr :U�h � nu 2 G�h j Truv = 0 8 v 2 Vho : (3:42b)(The transpose in (3:42a) 
an be de�ned abstra
tly by means of the Cartan-Weylbasis as Et' = E�', Ht' = H', but in 
onvenient 
onventions [20℄ it is the ordinary



matrix transpose.)Having introdu
ed the ne
essary de�nitions now we return to the study of (3.39) andde
ompose the quantities entering this 
ondition as follows:R(x) =Xh�1�u�h(x) + v�h(x)�+Xh�0 yh(x) ; (3:43a)where u�h; v�h and yh are in the subspa
es U�h, V�h and Gh, respe
tively, andJ0(x) = I� +Xh�1 v0h(x) ÆRJ0(x) =Xh�1 vh(x) ; (3:43b)where both v0h and vh must be in Vh. By analysing equation (3.39), one �nds thatif J0 and all the v�h(x) are given, then the remaining 
omponents of R are uniquelydetermined di�erential polynomials in terms of these. Furthermore, it follows thatthe 
omponents of ÆRJ0 are di�erential polynomials of J0 and v�h as well. In fa
t,the di�erential polynomials, R and ÆRJ0, are linear in v�h(x), but in general non-linear in J0.The above result provides us with a 
omplete 
hara
terization of the tangential KMtransformations at the arbitrarily 
hosen gauge-�xed 
urrent J0. To a
tually provethis, one has to 
onsider equation (3.39) height by height, starting from below, anduse the following two properties of our Lie algebra de
omposition:First, for h � 0, I� maps Gh into Gh�1 in a one-to-one manner and this map is infa
t onto for those h whi
h are not exponents. Se
ond, for 1 � h � (h � 1), I�maps U�h onto G�h�1 also in a one-to-one manner.By using these properties of I�, it is not diÆ
ult to verify that 
ondition (3.39)is indeed uniquely soluble for R(J0) and ÆRJ0 by purely algebrai
 means at everyheight, on
e J0 and the v�h are given, and that the solution is linear in v�h.Let us 
hoose a basis fF�ig in Lh V�h dual to the basis fFig in Lh VhF�i � F tiTrFi F ti : (3:44a)Sin
e we assume that Fi 2 Vhi , the duality property (whi
h we shall need later on)TrFiF�j = Æ ji ; (3:44b)



is automati
 in almost all 
ases, i.e. for those basis ve
tors whi
h 
orrespond toexponents hi 6= hj of multipli
ity 1, and we 
an also ensure this by a 
hoi
e in the 
aseof those 2 basis ve
tors whi
h 
orrespond to that ex
eptional exponent h = (2l � 1)of D2l whose multipli
ity is 2. Using this basis, we 
an now write R in (3.43) asR = R(a; J0) = lXi=1 ai(x)F�i +Xh�1u�h(x) +Xh�0 yh(x) ; (3:45)where the ai(x) are arbitrary fun
tions and the u�h and yh are di�erential polyno-mials linear in the ai, but not ne
essarily in J0.It is important to emphasize that, sin
e J0 was arbitrary in the 
onstru
tion, thisequation de�nes an element R(a; J) of the KM algebra for any J and ai. A

ordingto its 
onstru
tion, at any �xed J 2MV this KM valued fun
tion R(a; J) provides aparametrization of the set of tangential KM transformations at J , by the l arbitraryreal fun
tions ai(x). Hen
e it is 
lear that by varying J and at the same time pro-moting the parameters ai to fun
tionals of J one 
an write in the form R(a(J); J)the most general �eld dependent, gauge-preserving KM transformation on MV . So,in parti
ular, the �eld dependent KM transformation implementing the indu
ed W-transformation Æ�W (3.37) 
an also be written in this form with some fun
tionalsai(J).The result we prove is that the above 
onstru
ted KM valued fun
tion R(a; J)when 
onsidered for �xed (J -independent) ai and varying J is the one whi
h imple-ments the indu
ed W-transformation Æ�W a

ording to (3.37) and (3.38).This result means that we in e�e
t repla
ed the task of �nding the inverse ofthe matrix C��(x; y) (3.14) whi
h enters the standard formula (3.13) of the Dira
bra
ket, by the mu
h easier (as will be 
lear from the examples) task of solvingequation (3.39).To justify our 
laim we now show that(ÆRf)(J0) = nf;Qo�(J0) (3:46)holds for an arbitrary real fun
tion f(J), where R = R(a; J) is given by the above
onstru
tion, Q = Q(a; J) is the moment of the DS 
urrents de�ned in (3:36b) and



J0 2MV is arbitrary.To this �rst we re
all that any element R0 of the KM algebra de�nes a parti
ular(�eld independent) KM transformation ÆR0 on the full KM phase spa
e K, whi
h isan (in�nitesimal) 
anoni
al transformation generated by means of the KM Poissonbra
ket by the fun
tion: Q0(J) = 2�Z0 dx1TrR0(x)J(x) : (3:47)This means that the relation ÆR0 F (J) = nF;Q0o(J) (3:48)is satis�ed on the full KM phase spa
e K, for any real fun
tion F (J). The tri
k isthat now we take R0 to be R(a; J0) in (3.45) for �xed J0 and a. In this 
ase weknow that at J0 the variation ÆR0 respe
ts the 
onstraints de�ning MV (R(a; J0) was
onstru
ted by requiring this) and therefore at J0 the 
onstraint-
ontributions dropout from the Dira
-bra
ket of Q0 (3.47) with any quantity. This way we derivenF;Q0o(J0) = nF;Q0o�(J0) : (3:49)On the other hand, it is easy to see that for R0 = R(a; J0) the fun
tions Q0(J) (3.47)and Q(a; J) (3:36b) di�er on MV only by a 
onstant. This implies that they 
an beinter
hanged on MV under Dira
-bra
ket. Taking this into a

ount we immediatelyobtain (3.46) by 
ombining (3.48) and (3.49) and by taking FjMV = fjMV . This�nishes the proof.We now illustrate on the simplest non-trivial example, A2 = sl(3; R), how to
al
ulate the W-algebra by our algorithm. The W(A2)-algebra is well known but itis worth re
onsidering it in the present framework as an illustration. We use againthe 
onventions of [20℄. The Cartan element of the spe
ial sl(2; R) is represented by:�̂ = diag(1; 0;�1): (3:50a)



Choosing �1=�2=1 in (3.2) the remaining generators of S are given by:I+ = 0� 0 2 00 0 20 0 01A and I� = 0� 0 0 01 0 00 1 01A : (3:50b)As in the B2 example, there is a one parameter family of DS gauges, and thegauge �xed 
urrent in the `DS gauge of parameter p' is written asJ(x) = I� + U1(x)F1 + U2(x)F2 ; (3:51)where we 
an takeF1 = F1(p) = 0� 0 p 00 0 ��p0 0 0 1A and F2 = 0� 0 0 10 0 00 0 01A : (3:52)Here F1 is normalized a

ording to (3:22b). The highest weight gauge 
orrespondsto 2p=�, but here we 
hoose to work in the `Wronskian gauge' p= �, whi
h is thegauge usually 
onsidered in the literature [5-9℄ (the origin of the name `Wronskiangauge' will be
ome 
lear in Chapter V).Our aim is to �nd the expli
it form of R(a; J) in (3.45) in the Wronskian gauge.In this 
ase F�1 = 0� 0 0 01� 0 00 0 01A and F�2 = 0� 0 0 00 0 01 0 01A ; (3:53)and U�1 in (3:42b) now 
onsists of matri
es for whi
h only a32 is non-zero, while U�2is trivial. The expli
it form of R in (3.45) reads then asR = R(a1; a2; J) = 0� y0 y1 y2a1� (~y0 � y0) ~y1a2 u�1 �~y01A ; (3:54)where the ai are arbitrary fun
tions and the other entries are to be determined bythe 
ondition that the variation ÆRJ must leave J `form invariant'. In our 
ase thismeans that ÆRJ must be of the formÆRJ = [R; J ℄ + �R0 � 0� 0 �ÆU1 ÆU20 0 00 0 0 1A ; (3:55)



sin
e in the Wronskian gauge J = 0� 0 �U1 U21 0 00 1 0 1A : (3:56)As it follows from our general result, substituting (3.54) and (3.56) into (3.55) oneobtains a system of equations whi
h is uniquely soluble in purely algebrai
 steps forboth the 
omponent fun
tions u�1 : : : y2 of R and for the 
orresponding variationof J . One has to 
onsider (3.55) height by height, starting from below, and easilyobtains the following formulae for the 
omponents of R(a; J):u�1 = a1� � �a02 ;y0 = a01 + �3 [a2U1 � �a002 ℄ ;~y0 = 2y0 � a01 ; y1 = a1U1 + a2U2 � �y00 ;~y1 = a2U2 � �~y00 ;y2 = a1� U2 + �~y01: (3:57)Before pro
eeding let us note that R(a2=0) implements the indu
ed 
onformala
tion in the Wronskian gauge, and in fa
t one 
an rewrite the above formula asR(a1; a2=0; J) = [ 1�a1J + a01�̂℄� �[ 12a001I+ + � a0001 F2℄ ; (3:58)whi
h is 
onsistent with (3.21) and (3:19a) des
ribing the 
onformal a
tion in general.The variation of J under the KM transformation ÆR is found to be :ÆU1 =[a1(U1)0 + 2a01U1 � 2�a0001 ℄+ [2a2(U2)0 + 3a02U2 � �2(a2U1)00 + �3a00002 ℄ (3:59)and ÆU2 =[a1(U2)0 + 3a01U2 + �2a001U1 � �3a00001 ℄+ a2[�2(U2)00 + 23�3U1(U1)0 � 23�4(U1)000℄+ a02[ 23�3(U1)2 + 2�2(U2)0 � 2�4(U1)00℄� 2�4a002(U1)0 � 43�4a0002 U1 + 23�5a000002 : (3:60)
Now by 
ombining equations (3.36) and (3.37), it follows thatÆU i(x) = Xj=1;2Z 2�0 dy1 aj(y)nU i(x); U j(y)o� (3:61)



holds, so from (3.59) and (3.60) one 
an read o� the Dira
 bra
kets of the DS 
urrents,yielding immediately the Poisson bra
kets of W 1 and W 2 a

ording to (3.16). (Seese
tion IV.1.)Observe that the W 2 generator asso
iated to the Wronskian gauge is not aprimary �eld with respe
t toW 1 = L. However, it is easy to see that the 
ombinationW 2 � �22 (W 1)0 (3:62)de�nes a primary �eld of weight 3. By investigating the transformation rules be-tween the W-bases 
orresponding to di�erent DS gauges one 
an prove that (3.62) ispre
isely the W-generator asso
iated to the highest weight gauge.Note also that in this example the 
omponents of R(a; J) in (3.57) are only linearfun
tions of the 
urrent 
omponents, and as a 
onsequen
e ÆRJ is at most quadrati
in J , whi
h implies that the Poisson bra
kets of the W-generators are also (at most)quadrati
 polynomials. This is not always the 
ase, as 
an be seen e.g. in the exampleof B2.We now illustrate the a
tion of the W-generators on the 
omponents of thematrix-valued �eld g(x+; x�) on this example. All we have to do is to use the results(3.57) for (3.54) and substitute it into (3.38).Let us dis
uss the 
onformal transformations �rst. For this 
ase, we �nd:Æ1g1i = a1g1i + (a1U1 � �a001)g2i + (a1� U2 � �2a001)g3i (3:63a)Æ1g2i = a1� g1i � �a001g3i (3:63b)Æ1g3i = a1� g2i � a01g3i : (3:63
)To simplify (3.63) we 
an make use of the relation between the 
urrents and thematrix-valued �elds, (2.6). In this example this givesg2i = �� i g1i = �2�2 i ; (3:64)where  i = g3i and � = �=�x+. (2.6) also gives a di�erential equation satis�ed by  i(see Chapter V), whi
h we will not expli
itly use here. Using (3.64), (3:63
) simpli�esto Æ1 i = a1� i � a01 i ; (3:65)



whi
h tells us that  i is a primary �eld with 
onformal spin�1, whereas the remainingequations in (3.63) des
ribe the 
onformal transformation properties of the se
ondary�elds (3.64).We now turn to the genuine W-transformation generated by U2. Using (3.64)again, we �nd Æ2 i = a2(�2�2 � 2�3 U1) i � �2a02� i + 2�23 a002 i : (3:66)(3.66) 
an be thought of as the transformation rule for a `W-primary' �eld under theW 2-transformation (for the A2 W-algebra).For the algebra B2 we have derived the 
onformal a
tion in Se
tion III.2. Thusit only remains to determine the 
anoni
al transformation generated by W 2 to knowthe 
omplete set of transformations generated by the W-algebra in this 
ase, fromwhi
h we 
an of 
ourse again (as for A2) read o� the W-relations themselves. Byapplying the algorithm presented above one �nds after lengthy but straightforward
al
ulations thatfU2(x); U2(y)g� = 12 2Xi=0[F2i+1(x) + F2i+1(y)℄ Æ(2i+1)(x1 � y1)� �5P Æ(7)(x1 � y1)(3:67)on Mp, where F1 =Q11(U2)00 +Q12U1U2 +Q13(U1)0000 +Q14U1(U1)00+Q15((U1)0)2 +Q16(U1)3F3 =Q31U2 +Q32(U1)00 +Q33(U1)2 ; F5 = Q5U1 ;P =p2 + (p� q)2 and q = �� p : (3:68)
Here Q5, Qjk are polynomials of the parameter p, given expli
itly as follows:Q11 =� 2�2pQ31 =2�2(3p� q) Q12 =8p2 � 16�p+ 4�2Q32 =� 2�4[2P + 3pq℄ Q13 =2�4[P + 2pq℄Q16 =2(q + �)pq2 (3:69a)Q33 =� �(q + �)2P � 2�2(2q + �)pqQ5 =2�3[(q + �)P + �pq℄Q14 =2�2(q + �)P + 2�2(q + 2�)pqQ15 =�[3q2 + 4�q + 2�2℄P + 2�2(q + 2�)pq (3:69b)



Observe that unlike for the A2-model, there is now also a 
ubi
 term, (U1)3 in F1.The 
oeÆ
ient Q16 of this single 
ubi
 term vanishes in the spe
ial 
ases when p = 0,� or p = 2�. In other words, the B2 W-algebra is given by quadrati
 relations inthat W-bases whi
h are asso
iated to the parti
ular DS gauges of parameter p = 0,� or p = 2�. These `quadrati
 gauges' 
ould be useful in the quantization of the W-algebra, sin
e normal ordering is more 
ompli
ated when the order of the polynomialsinvolved gets larger. In 
ontrast, the 
onformal properties are hidden in these gaugesand are not as transparent as in the highest weight gauge (whi
h belongs to 5p = 2�in the B2 example ). III.4. Other Convenient GaugesIn the previous se
tions we have dis
ussed the DS type gauges and have shownthat 
hoosing a DS gauge naturally leads to a 
orresponding 
hoi
e of basis for theW-algebra, by relating theW-generators to the non-vanishing 
urrent 
omponents inthat gauge. The highest weight gauge plays a parti
ular role be
ause the 
orrespond-ing W-generators are 
onformal primary �elds (with the ex
eption of the 
onformalgenerator W 1). In the examples of A2 and B2 (C2) we have shown that it is pos-sible to 
hoose su
h DS gauges in whi
h the generating relations of the W-algebraare quadrati
. These gauges are also important be
ause the quadrati
 
losure of thealgebra simpli�es the quantization. In this se
tion we show that su
h gauges existfor the algebras Al; Bl and Cl. We will see in the next 
hapter that they are notavailable for the rest of the Lie algebras.We start by 
onsidering Al, i.e. sl(l + 1; R) and will use the de�ning represen-tation. Here (and also for Bl, Cl and Dl later) we shall use the 
onventions [20℄ inwhi
h the positive and negative step-operators are upper and lower triangular matri-
es, respe
tively, and the elements of the Cartan subalgebra are diagonal matri
es.For simpli
ity, now we 
hoose all �i in (3.2) to be equal to 1, and then the matrix I�



reads I� = 0BBBBBB� 0 0 0 : : : 0 01 0 0 : : : 0 00 1 0 : : : 0 0... . . . ...0 0 0 : : : 0 00 0 0 : : : 1 0
1CCCCCCA : (3:70)The elements of Gh are matri
es with non-zero entries only in the slanted row h stepsabove the diagonal. The image I�(Gh+1) (for h � 0) 
onsists of those matri
es in Ghfor whi
h the sum of the matrix elements is zero. Fixing a DS gauge means 
hosinga single matrix in Gh for whi
h the sum of the matrix elements is di�erent from zero.The simplest 
hoi
e yields the `Wronskian' gauge de�ned byJ = I� +0BB� 0 U1 : : : U l0 0 : : : 0... ... : : : ...0 0 : : : 0 1CCA : (3:71)This gauge is a spe
ial example of the more general blo
k gauges for whi
hJ = I� + j = I� + � 0 U0 0 � (3:72)and U is a p� q blo
k (p+ q = l+1) 
ontaining the l DS 
urrents. The `Wronskian'gauge is the spe
ial 
ase when p=1 and q= l. In general these `blo
k' gauges are notunique: we are still free to distribute the DS 
urrents in a number of di�erent waysalong the interse
tions of the slanted rows with the blo
k.Now we are going to show that the W-algebra 
loses quadrati
ally in any ofthese `blo
k' gauges. A

ording to the results developed in the previous se
tion, we
an derive the W-relations by determining the �eld dependent KM transformationR(a; J) in (3.45) whi
h implements the indu
ed W-transformations on MV . To this�rst we rewrite the de�ning equation (3.39) of R(a; J) in the form[R; I�℄ + �R0 = ÆJ + [j; R℄: (3:73)Now, sin
e we know that the unique solution of (3.73) for R = R(a; J) and ÆJ islinear in the in�nitesimal parameters of the transformation, i.e. in the fun
tions ai



introdu
ed in (3.45), and polynomial in the given gauge �xed 
urrent I�+ j, we 
anexpand both R and ÆJ in powers of the DS 
urrents (j):R = R0 +R1 +R2 + � � �ÆJ = (ÆJ)0 + (ÆJ)1 + (ÆJ)2 + � � � (3:74)and solve (3.73) perturbatively:[Rm; I�℄ + �R0m = (ÆJ)m + [j; Rm�1℄ m = 0; 1; 2 : : : (3:75)Sin
e in the `blo
k' gauge both J and ÆJ are upper triangular in the blo
k sense:j = � 0 U0 0 � Æj = � 0 ÆU0 0 � ; (3:76)if we write out (3.73) in `blo
k' 
omponents it is not diÆ
ult to see that the �rstorder solution must be of the formR1 = �A B0 C � ; (3:77)where the p� p blo
k A and the q � q blo
k C are further restri
ted byApi = 0 for i � p� 1 and Ci1 = 0 for i � 2 (3:78)and that the se
ond order solution is of the formR2 = � 0 D0 0 � with Di1 = Dpj = 0 ; i = 1; 2 : : : p ; j = 1; 2 : : : q : (3:79)For the `blo
k' gauges the expansion stops here and, by the results of III.3., thisimplies that the algebra of the W-generators 
orresponding to any DS gauge fromthe family of blo
k gauges 
loses quadrati
ally indeed.Note that the `Wronskian' gauge is spe
ial sin
e D = 0 in this 
ase and thus theKM transformation R = R(a; j) is only linear in the DS 
urrents. The algebra is stillquadrati
, sin
e (ÆJ)2 = [R1; j℄: (3:80)For the other matrix algebras, Bl and Cl, one 
an de�ne analogous `blo
k' gaugesby embedding them into appropriate A-type algebras.



For Cl � sp(2l; R) we 
an use the 2l-dimensional de�ning representation. Wewrite the Cl matri
es in terms of four l � l square blo
ks. In this notation thesymple
ti
 metri
 is given by G = � 0 "�" 0� ; (3:81)where the only nonvanishing entries of " are in the se
ond diagonal (the diagonal frombottom-left to top-right), and these entries are all 1. The elements of the Lie-algebraare represented by matri
es of the formK = �A BC � ~A� where ~B = B ~C = C (3:82)and ~ means re
e
tion with respe
t to the se
ond diagonal.Positive (negative) step-operators are again upper (lower) triangular matri
esand elements of the Cartan subalgebra are diagonal. By a 
onvenient 
hoi
e of the(irrelevant) parameters �i, I� is now given by the 2l � 2l matrix:
I� = 0BBBBBB� 0 0 0 : : : 0 01 0 0 : : : 0 00 1 0 : : : 0 0... . . . ...0 0 0 : : : 0 00 0 0 : : : �1 0

1CCCCCCA : (3:83)
It has l 1 entries and (l � 1) (�1)'s.The `blo
k' gauges, in whi
h the algebra 
loses quadrati
ally are 
hara
terized byJ = I� + � 0 U0 0 � ; (3:84)where ~U = U and it has non-vanishing 
omponents along every se
ond slanted row,
orresponding to the exponents of this algebra.Finally, for Bl � so(l+1; l) we take the (2l+1)-dimensional ve
tor representation.In a 3�3 blo
k matrix notation 
orresponding to the partition l+1+l the Lorentzianmetri
 is G = 0� 0 0 "0 1 0" 0 01A (3:85)



and the elements of the Lie-algebra are of the formK = 0� A X BY t 0 �XtC �Y � ~A 1A where ~B = �B; ~C = �C: (3:86)The matrix I� is again similar to (3.83) but it is now a (2l+1)� (2l+1) matrixand has l upper entries 1 and l lower entries (�1). The `blo
k' gauges for this algebraare de�ned by J = I� +0� 0 x b0 0 �xt0 0 0 1A ; (3:87)where ~b = �b and the DS 
urrents are again distributed along every se
ond slantedrow.An other 
onvenient gauge is what we will 
all the diagonal gauge. It is de�nedby J(x) = I� + lXi=1 �i(x)Hi: (3:88)(Here we 
hoose the fHig to form an orthonormal basis for the Cartan subalgebra.)Note that this is a new type of gauge �xing, not a member of the family of the DSgauges, but it will turn out to be very useful in appli
ations and it is most useful inthe quantum theory. Before we start dis
ussing the gauge 
hoi
e (3.88) in detail, wemention two diÆ
ulties 
onne
ted with it. We will illustrate these diÆ
ulties on thesimplest example, sl(2; R).In this 
ase the gauged �xed 
urrent in the diagonal gauge is parametrized by asingle real �eld �(x): Jdiag = � � 01 ��� (3:89)and it is easy to see that the transformation from the `Wronskian' gaugeJWron = � 0 U(x)1 0 � (3:90)to the diagonal gauge amounts to solving the Ri

ati equation�2 � ��0 = U: (3:91)



Now, if we require all �elds to be periodi
 and integrate the Ri

ati equation over theperiod, the derivative term drops out and we see that (3.91) has no solution unless2�Z0 U(x)dx1 � 0: (3:92)In other words, the diagonal gauge 
an only be rea
hed from that part of the phasespa
e where (3.92) is satis�ed.A related diÆ
ulty is that when the Ri

ati equation 
an be solved, its solutionis not unique, it in fa
t has two independent solutions. (For an arbitrary Lie algebra,the number of independent solutions of the analogous equations is equal to the orderof the Weyl-group.)However, note that when available the diagonal gauge is lo
ally well-de�ned(the ambiguities mentioned above 
orrespond to �nite gauge transformations) andtherefore the 
orresponding Dira
 bra
kets are also well-de�ned. Sin
e theW-algebrais determined by polynomial relations, its stru
ture 
an be analysed by restri
ting the
onsiderations to that part of the phase spa
e where the diagonal gauge is availableand we will see that this is often 
onvenient.Expanding the general KM 
urrent, J , in the Cartan-Weyl basis asJ = X'2�+ ��'E�' + lXi=1 �iHi + X'2�+ �'E' ; (3:93)the set of 
onstraints de�ning the diagonal gauge 
an naturally be divided into twoparts: � = � �� � : (3:94)The diagonal gauge is de�ned by 
onstraining the ��' by imposing the original
onstraints (2.8) and, in addition, setting the �' to 0. Sin
e on the 
orresponding
onstraint surfa
e f�; �g = 0 and f�; �g = 0; (3:95)the C operator, whose inverse enters the formula for the Dira
 bra
ket 
an s
hemat-i
ally be written as C = f�; �g � � 0 B�B 0 � ; (3:96)



where B = f�; �g. Now the Dira
 bra
ket of any two quantities u and v takes theform fu; vg� = fu; vg+ fu; �gB�1f�; vg � fu; �gB�1f�; vg: (3:97)The important property of the diagonal �elds �i(x) that makes the diagonal gaugeextremely simple is that they (weakly) 
ommute with the additional 
onstraints �' :f�i(x); �g � 0: (3:98)Be
ause of (3.98), the Dira
 bra
ket of two diagonal 
urrents is the same as theiroriginal KM Poisson bra
ket:f�i(x); �j(y)g� � f�i(x); �j(y)g = �ÆijÆ0(x1 � y1): (3:99)In other words, the diagonal 
omponents of the 
urrent are a set of free �elds. There-fore in the diagonal gauge the W-generators are given as di�erential polynomials infree �elds and these di�erential polynomials are simply obtained by restri
ting thefull (gauge-invariant) di�erential polynomials to the `diagonal 
urrents' of the form(3.88). This free-�eld representation of the W-generators is 
alled the Miura trans-formation and has been used to quantize the theory [5℄.



IV.1. Leading Terms and Casimir AlgebraWe have already seen that any DS gauge de�nes a basis of the W-algebra, andthat there is a one-to-one 
orresponden
e between the 
onformal weights of the W-generators asso
iated to the highest weight gauge (or the s
ale dimensions of the W-generators asso
iated to any DS gauge) and the orders of the independent Casimirs ofthe underlying simple Lie algebra. In this se
tion we shall elaborate on this 
onne
tionfurther, by showing that the leading terms of the W-generators (i.e. terms withoutany derivatives) are always Casimirs (restri
ted to P ). Then we demonstrate thatthe Casimirs themselves form a polynomial algebra under the Poisson bra
ket, whi
his a trun
ated version of the full W-algebra. This Casimir algebra, in its quantumversion, has been studied in [15℄.We shall denote the leading terms of the W-generators, W j , by W j0 . Sin
e theseleading terms 
ontain no derivatives, they are invariant under rigid gauge transfor-mations, that isW j0 (JA) =W j0 (J) for A 2 N ; where JA = AJA�1for any 
onstrained 
urrent (J 2 P ). On the other hand, an arbitrary Casimir Cj isa group-invariant polynomial, that is for any KM 
urrent J and an arbitrary B 2 Gone has Cj(JB) = Cj(J) where JB = BJB�1 :First we want to show that the leading terms of the W-generators are restri
tedCasimirs, or in other words thatW j0 (J) = Cj(J) J 2 P (4:1)for some Cj .To this we shall use the theorem of Chevalley from the theory of invariant poly-nomials [18℄, whi
h we now re
all. This theorem states that there is a one-to-one
orresponden
e between the Casimirs and the Weyl-invariant polynomials on theCartan subalgebra, and that the 
orresponden
e is simply given by restri
tion. That



is, �rst, if Cj(J) is an arbitrary group invariant polynomial (Casimir) on G, then itsrestri
tion to the Cartan subalgebra, �Cj(H), is a Weyl-invariant polynomial. (Weshall denote the Cartan subalgebra by H and the restri
tion of any fun
tion to H byan overbar.) Conversely, from any given Weyl-invariant polynomial on H, a 
orre-sponding full group invariant 
an be re
onstru
ted in a unique way.For later use we also re
all that the uniqueness of the re
onstru
tion is provenby `diagonalization'. First note that for any Lie algebra element J in the 
ompa
tform of G there exists a group element g 2 G that `diagonalizes' J :Jg = gJg�1 = H(J) 2 H :(The use of the 
ompa
t form is justi�ed here sin
e the problem is purely algebrai
.)Using the group invarian
e of the Casimir Cj we see thatCj(J) = Cj(Jg) = Cj(H(J)) = �Cj(H(J))so �Cj determines the full Casimir Cj uniquely indeed.By using Chevalley's theorem (4.1) will follow if we 
an prove that the restri
-tion of W j0 (J) to 
urrents J in the diagonal gauge (
f. (3.88)) is a Weyl-invariantpolynomial of the Cartan 
omponents of J . To this we only have to show that for any`diagonal' 
onstrained 
urrent J it is possible to �nd su
h rigid gauge transformationsA 2 N , whose a
tion on the Cartan 
omponents �i of J 
oin
ides with the a
tion ofthe Weyl-group on the �i.To show this, let us 
hoose a simple root �k and 
onsider the a
tion of thefollowing �nite gauge transformation:A = ea with a = !E�k (4:2a)on a 
onstrained 
urrent J 2 P :J �! J (a) = eaJe�a = J + [a; J ℄ + 12 [a; [a; J ℄℄ + � � � ; (4:2b)where ! is an arbitrary real parameter. Parametrizing the 
onstrained 
urrent J 2 Pin the following way:J = I� + lXi=1 �iH�i + lXi=1 �iE�i +X' �'E';



where ' runs over the set of positive non-simple roots, we �nd (remember that I� isgiven by (3.2)) that the 
omponents of J transform under (4.2) as�(a)i = �i + !Æik�k�(a)i = �i � 2!j�kj2 ÆikXj (�j; �k)�j � !2Æik�k�(a)' = �' +Xj 	'j(!)�j +X'0 �''0(!)�'0 ;where the pre
ise form of the 
oeÆ
ients 	'j and �''0 is irrelevant for our purpose.Now we �x J 2 P and 
hoose the parameter ! to be! = � 2�kj�kj2 Xj (�j; �k)�j ;so that the set of 
omponents (�i; �') transforms homogeneously:�(a)i = �i ; �(a)' = �' +Xj 	'j�j +X'0 �''0�'0 ;whi
h implies that the transformation (4.2) applied to the `diagonal' 
urrentJdiag = I� + lXi=1 �iH�itakes it into another 
urrent whi
h is also in the diagonal gauge. Moreover, with this
hoi
e of ! the a
tion of the gauge transformation A = ea (4:2a) on the the Cartan
omponents �i of this parti
ular diagonal 
urrent is:�(a)i = �i � 2j�kj2 ÆikXj (�j; �k)�j ;whi
h is pre
isely the same as the e�e
t of the Weyl-re
e
tion 
orresponding to thesimple root �k on the Cartan 
omponents �i would be. This implies that everyWeyl-transformation of the Cartan 
omponents of the diagonal 
urrents 
an indeedbe implemented by rigid gauge transformations. (Sin
e the Weyl-group is not asubgroup of N , the parti
ular rigid gauge transformation A whi
h `implements' agiven Weyl-transformation on the 
omponents �i of a `diagonal' 
urrent Jdiag must



depend on the parti
ular 
urrent on whi
h it a
ts, and it is really �eld-dependenta

ording to the above 
onstru
tion.) Sin
e the leading term W j0 is invariant underrigid gauge transformations, it follows that its restri
tion �W j0 to the diagonal gauge isa Weyl-invariant polynomial of the 
urrent 
omponents �i. Chevalley's theorem thentells us that �W j0 is the restri
tion of a uniquely determined Casimir Cj to the diagonal
urrents (note that I� has no 
ontribution in Cj(Jdiag) be
ause of the neutrality ofthe group invariant Cj). To �nish the proof of (4.1) one has to show that the leadingterm W j0 itself is the restri
tion of the same Casimir Cj to P . This last step followsfrom the fa
t that W j0 and the restri
tion of Cj to P are the same (namely �W j0 )when restri
ted to `diagonal' 
urrents, sin
e an N -invariant on P 
an uniquely bere
onstru
ted from its Weyl-invariant restri
tion to the spa
e of diagonal 
urrents.(The uniqueness of this re
onstru
tion 
an be shown by an argument similar to theone that was used in the 
ase of the Chevalley theorem.)It is not hard to see that the Casimirs fCjg 
orresponding to the leading termsof a W-basis fW jg form a basis in the ring of group-invariant polynomials. (It isenough to prove this for a W-basis 
onstru
ted by means of some DS gauge, butin this 
ase these l Casimirs are independent even if restri
ted to the gauge se
tionMV , where they simply 
oin
ide with the l DS 
urrents fU jg.) So we 
an asso
iatea Casimir basis to any W-basis. On the other hand, it is also possible to 
hoosesome 
onvenient basis for the Casimirs �rst, and then 
onstru
t a W-basis in su
h away that the leading terms of the W-generators are the given set of Casimirs. Forexample, for the 
ase of Al we 
an 
hoose the Casimirs as:Cj = 1j + 1TrJ j+1 ; j = 1; 2 : : : l: (4:3)Then we 
an de�ne W-generators 
orresponding to these Casimirs by the formula:W j = 1j + 1Tr Ĵ j+1 ;where Ĵ = AJA�1 + �A0A�1



is the representative of the gauge orbit of the 
onstrained 
urrent J 2 P in someparti
ular DS gauge. (Remember that both Ĵ 2 MV and the gauge transformationA are uniquely determined by J 2 P .) It follows that we haveW j = 1j + 1 Tr Ĵ j+1 = 1j + 1 Tr(J + �A�1A0)j+1 = 1j + 1 Tr J j+1 + � � � ; (4:4)that is the leading terms of the W j are indeed the Casimirs Cj . It is also easy tosee that the fW jg asso
iated by this method to a set of independent Casimirs forma basis of W-algebra. (The W-generators asso
iated to a given Casimir by means ofdi�erent DS gauges di�er in their derivative, non-leading terms.)In the SL(3; R) example, 
hoosing the `Wronskian' gaugeĴ = 0� 0 W 1 W 21 0 00 1 0 1Awe have W 1 = 12Tr Ĵ2 and W 2 = 13Tr Ĵ3: (4:5)By using the results of Se
tion III.3 on the A2 example we 
an derive the relationsfW 1(x);W 1(y)g =�(W 1)0(x)Æ + 2�W 1(x)Æ0 � 2�3Æ000fW 1(x);W 2(y)g =2�(W 2)0(x)Æ + 3�W 2(x)Æ0� �2[W 1(x)Æ℄00 + �4Æ0000fW 2(x);W 2(y)g =�[ 23 (W 1)0W 1 + �(W 2)00 � 23�2(W 1)000℄(x)Æ+ �[ 23 (W 1)2 + 2�(W 2)0 � 2�2(W 1)00℄(x)Æ0� 2�3(W 1)0(x)Æ00 � 43�3W 1(x)Æ000 + 23�5Æ00000 ;
(4:6)

where Æ = Æ(x1 � y1) and x0 = y0. On the other hand, it is not diÆ
ult to verifythat the 
orresponding CasimirsC1 = 12Tr J2 and C2 = 13TrJ3 (4:7)satisfy the following algebra under Poisson bra
ket:fC1(x); C1(y)g = �(C1)0(x)Æ + 2�C1(x)Æ0fC1(x); C2(y)g = 2�(C2)0(x)Æ + 3�C2(x)Æ0fC2(x); C2(y)g = �[ 23(C1)0C1℄(x)Æ + �[ 23 (C1)2℄(x)Æ0 ; (4:8)



whi
h is nothing but the leading term (in �) of the full W-algebra for SL(3; R).In fa
t we will show that in general, if the W-generators W i and W j satisfyfW i(x);W j(y)g =XA fA(W )(x)Æ(A)(x1 � y1)where the `stru
ture fun
tions' fA(W ) are di�erential polynomials in fW jg, then the
orresponding Casimirs Ci and Cj satisfy the simpli�ed (trun
ated) algebrafCi(x); Cj(y)g = f10 (C)(x)Æ0 + f01 (C)(x)Æ (4:9a)where f10 and f01 are the leading terms of f1 and f0 in the number of derivatives,whi
h are 0 and 1 respe
tively.To show this, let us �rst note that from the form of the KM Poisson bra
ketsand group invarian
e of the Casimirs it already follows that the 
ommutator (4:9a)must be of the form fCi(x); Cj(y)g = g10(J)(x)Æ0 + g01(J; J 0)(x)Æ (4:9b)with some group-invariant fun
tions g10 and g01. (g01 is polynomial in J , but linear inJ 0.) Now we have to demonstrate thatg10(J) = f10 (C(J)) and g01(J; J 0) = f01 (C(J)): (4:10)We will make use of the diagonal gauge and the Chevalley theorem on
e more. Inthe diagonal gauge the leading terms of W i and Ci 
oin
ide and therefore we have�g10(H) = f10 ( �C(H)) and �g01(H;H 0) = f01 ( �C(H)): (4:11)Now applying the Chevalley theorem to g10, the �rst equation in (4.10) follows fromthe �rst one in (4.11). Before one is able to apply the theorem also to g01, one �rst hasto generalize it for the 
ase of operators 
ontaining one derivative. This is possibleand the proof is basi
ally the same as for operators without any derivatives. Let usde�ne the group invariant Æ01(J; J 0) byg01(J; J 0) = f01 (C(J)) + Æ01(J; J 0):



From the se
ond equation in (4.11) we see that �Æ01(H;H 0) vanishes, but then the fullÆ01(J; J 0) must vanish too sin
eÆ01(J; J 0) = Æ01(H(J); (J 0)g) = Æ01(H(J); (H 0)g) = �Æ01(H(J); (H 0)g) = 0where the se
ond step follows from the neutrality of the group-invariant Æ01.This way we have shown that the set of Casimirs 
loses to form a polynomialalgebra under the Poisson bra
ket and that this algebra is a trun
ated version of a
orrespondingW-algebra. Sin
e the 
ompletely lo
al Casimirs fCig are more elemen-tary obje
ts than the fW ig whi
h 
ontain derivatives as well, one 
an ask whetherthe 
losure of the Casimir algebra 
an be shown without any referen
e to the more
ompli
atedW-algebra. In other words, one has to show that (4:9a) holds with somefun
tions f10 and f01 . It is trivial that g10 in (4:9b) depends on J only through theCasimirs, sin
e this merely expresses the fa
t that the fCig form a basis for the
ompletely lo
al group-invariants.To show that g01 is also a fun
tion of the Casimirs we go to the diagonal gaugeagain. In this gauge the restri
tion of g01 must be of the form�g01(H;H 0) = lXi=1 Ai�0i; (4:12)where the f�ig are 
oordinates with respe
t to some basis in the Cartan subalgebraand the 
oeÆ
ients fAig 
an be 
onsidered as an l-
omponent ve
tor in the Cartansubalgebra and 
an be expanded asAi =Xj Bj � �Cj(H)��i (4:13)simply be
ause the l ve
tors f� �Cj=��ig are linearly independent. (This is the analyti
expression of the fa
t that the l invariants f �Cjg are fun
tionally independent.)Substituting (4.13) into (4.12) we �nd�g01(H;H 0) =Xj Bj � �Cj(H)��i �0i =Xj 1hj + 1Bj[ �Cj(H)℄0



and we see that the 
oeÆ
ients Bj must be Weyl-invariants:�g01(H;H 0) =Xj 1hj + 1Bj( �C(H))[ �Cj(H)℄0:Now using the generalized Chevalley theorem for g01 again we haveg01(J; J 0) =Xj 1hj + 1Bj(C(J))[Cj(J)℄0:After this digression we return to the question of the quadrati
 
losure of theW-algebra. We have shown in the previous se
tion that the W-algebras for Al, Bl andCl are quadrati
 in a suitable 
hosen basis. As an appli
ation of the relation betweenthe W-algebras and the algebras of the 
orresponding Casimirs we now prove thatno su
h basis exists for Dl and the ex
eptional algebras. In fa
t we show this for theCasimir algebras, from whi
h the analogous result for the W-algebras immediatelyfollows.Let CH be the highest order Casimir, of order H (see Appendix A), and let us
onsider the Poisson bra
ket of CH with itself:fCH(x); CH(y)g = �2H�2(C)(x)Æ0 + 12�02H�2(C)(x)Æ: (4:14)(Here the two stru
ture fun
tions are not independent of ea
h other due to theantisymmetry of the Poisson bra
ket.) The stru
ture fun
tion �2H�2(C) is a Casimirof order (2H � 2) and by inspe
ting the list of group-invariants for the 
ase of theex
eptional groups it is easy to see that it 
an never be expressed as a quadrati
fun
tion of the basi
 Casimirs fCjg for these groups.The situation for Dl is more 
ompli
ated. Here we 
an show that the set ofCasimirs fC1; C2; : : : ; Clg de�ned bydet(1�p�J) = 1� lXn=1�n Cn (4:15)where the determinant is taken in the 2l-dimensional ve
tor representation of Dl,form a quadrati
 algebra under Poisson bra
ket. (This is a
tually the same algebra



as formed by the 
orresponding Casimirs of the Bl and Cl groups.) However, as is wellknown, (4.15) is not a 
orre
t 
hoi
e of basi
 Casimirs for Dl, the latter is given bythe set fC1; C2; : : : ; Cl�1;C� = pClg. By introdu
ing the `spinorial' invariant C�,we destroy the quadrati
 property of the algebra. We �nd that �4l�6, the stru
turefun
tion in the 
ommutator of two highest Casimirs Cl�1 is given by (see AppendixC) �4l�6 = �12�(C�)2Cl�3 � 4�Cl�1Cl�2 (4:16)whi
h is indeed 
ubi
 for l > 3.IV.2. Expli
it Casimir AlgebrasIn IV.1 we have shown that the Casimir operators, Cn, form a 
losed, polynomialalgebra under Poisson bra
ket, whi
h is a trun
ated version of the W-algebra. TheseCasimir algebras are interesting in their own right and they are also useful for studyingthe related W-algebras. In this subse
tion we exhibit their stru
ture in some detail.First, it is obvious that the Casimirs are 
onformal primary �elds with respe
t tothe Sugawara energy-momentum tensor. Next we want to determine the non-trivialPoisson bra
ket relations des
ribing this algebra. What we are a
tually going to
al
ulate is the Poisson bra
ket of the generating polynomialsA(�; x) = det �1� �J(x)� = 1� lXn=1 �n+1Cn(x) (4:17a)and B(�; x) = det �1�p�J(x)� = 1� lXn=1 �nCn(x) (4:17b)for the l independent Casimirs C1; :::; Cl of the Al and Bl (Cl) algebras respe
tively.One �rst observes that the over
omplete set of group invariant polynomialsQn(x) = 1n Tr Jn(x) n = 2; 3; : : : (4:18)



whi
h are related to the l independent Casimirs Cn viaCn�1 = � 1n! dnd�n exp�� 1Xr=2�rQr�j�=0 ; for Al;Cn = � 1n! dnd�n exp�� 2 1Xr=1 �rQ2r�j�=0 ; for Bl; Cl;satisfy the Poisson bra
kets (see Appendix C)fQn(x); Qm(y)g =�h(p� 2)Qp�2 � qN Qn�1 Qm�1i(x) Æ0+ �h(m� 1) (Qp�2)0 � qN Qn�1 (Qm�1)0i(x) Æ (4:19)where Æ stands for Æ(x1 � y1) as before, p = n+m, q = (n�1)(m�1) and Nis the dimension of the de�ning representation. Note in parti
ular that for the Band C algebras both n and m must be even integers (sin
e for odd n the Qn vanishidenti
ally) and as a 
onsequen
e the quadrati
 terms on the right hand side of (4.19)are automati
ally absent.However, formula (4.19) is only the �rst step in �nding the expli
it Casimiralgebras. For example, in the 
ase of A2 one obtainsfQ3(x); Q3(y)g = ��4Q4 � 43Q2Q2� Æ0 + �2�4Q4 � 43Q2Q2�0 Æand only after expressing Q4 in terms of the independent Casimirs Q2 and Q3 via2Q4 = (Q2)2 does one �nd the result (4.8) (note that Q2 = C1 and Q3 = C2 there).More generally, if one 
omputes the Poisson bra
kets of the highest Casimirs foran algebra of rank l, one has to use the 
hara
teristi
 polynomial O(l=2) times toexpress the right hand side of (4.19) in terms of the independent Casimirs. Clearlythis method be
omes soon 
umbersome and another algorithm is needed.As a �rst step to 
al
ulate the Poisson bra
ket of the generating polynomial(with itself) we expand its logarithm:log det �1� �J(x)� = � 1Xn=2�nQn(x) (4:20)and use (4.19) to 
al
ulate the Poisson bra
ket of log det(1� �J). This allows thenfor the 
omputation of the Poisson bra
kets of the determinant. After some algebra



one �nds that this Poisson bra
ket 
an be reexpressed in terms of the determinantand its derivatives. For the details of the derivation we refer the reader to AppendixC. The �nal results are:Al algebras:fA(�; x); A(�; y)g=��2�2� 1�� � (�� � ��)� 1l+ 1�����A(�; x)A(�; x) Æ0+ ��2�2�(�� � ��) 1�� � � 1l + 1�����A(�; x)�xA(�; x) Æ+ ��2�2(�� �)2�A(�; x)�xA(�; x)�A(�; x)�xA(�; x)� Æ; (4:21)Bl; Cl algebras:fB(�; x); B(�; y)g=4��� 1�� � (��� � ���)B(�; x)B(�; x) Æ0+ 4���(��� � ���) 1�� � �B(�; x)�xB(�; x)� Æ+ 2��� �+ �(�� �)2 �B(�; x)�xB(�; x)� B(�; x)�xB(�; x)� Æ:(4:22)The algebra of the Casimirs 
an now be 
omputed by inserting the expansions (4.17)into both sides of (4.21) resp. (4.22) and 
omparing 
oeÆ
ients in the resultingpolynomials in � and �. One sees, in parti
ular, that with respe
t to the Casimirsde�ned by the determinant the algebras 
lose always quadrati
ally.For example, for the highest Casimirs of Al; l � 2 one obtainsfCl(x); Cl(y)g = �al(x)Æ0 + �2 a0l(x)Æal = �2ClCl�2�(l� 3) + ll+ 1(Cl�1)2 (4:23)and for the highest Casimirs of Bl and Cl with l � 2 one �ndsfCl(x); Cl(y)g = �4�ClCl�1Æ0 � 2��ClCl�1�0Æ: (4:24)The 
orresponding results for the lower Casimirs are presented in Appendix C.



V. Di�erential and Pseudo-Di�erential Operators and Toda FieldsThe aim of this last 
hapter is to demonstrate that the di�erential and pseudo-di�erential operators studied in [10℄, and taken as a starting point for the quantizationof W-algebra in [5℄, arise naturally in our framework. These operators appear in thedi�erential equations satis�ed by the gauge-invariant 
omponents of the WZNW �eld.Let us re
all that the solution of the �eld equations for the group-valued �eld gis g(x+; x�) = gL(x+) � gR(x�) (5:1)with g0Lg�1L = J and g�1R g0R = ~J (5:2)and where the 
urrents J and ~J are subje
t to the 
onstraints (2.8). (In this 
hapterprime means 2��=�x1.) We will 
onsider the simplest 
ase, SL(n;R) �rst, and
on
entrate on the left-moving part of the theory. (We omit the subs
ript L.)In order to re
onstru
t the group-valued �eld g(x+) from the 
urrent J(x+) (sat-isfying the 
onstraints (2.8)), one has to solve the set of linear di�erential equationsg0 = Jg : (5:3)Obviously this is a separate set of equations for ea
h 
olumn-ve
tor of the matrix g,whi
h are of the form 0BB� g01ig02i...g0ni1CCA = (I� + j)0BB� g1ig2i...gni1CCA : (5:4)Solving (5.4) is the simplest in the `Wronskian' gauge, (3.71). In this gauge one 
aneasily express all 
omponents of g in terms of the bottom 
omponents, gni, denotedby  i: g(n�1)i =  0ig(n�2)i =  00i...g1i =  (n�1)i (5:5)



leading to a single nth-order di�erential equation satis�ed by  i: (n)i = n�1Xj=1 U j (n�j�1)i : (5:6)The group-valued �eld g 
an now be built from the n independent solutions of (5.6):g = 0BBB� (n�1)1  (n�1)2 : : :  (n�1)n... ... ... 01  02 : : :  0n 1  2 : : :  n
1CCCA ; (5:7)where the set of solutions f ig must satisfy the Wronskian 
onstraint (hen
e thename of the gauge): det g = 1 (5:8)in order that the matrix g be an element of the group SL(n;R).We note that if the DS 
urrents fU jg are regular fun
tions then so are the solu-tions f ig of the generalized S
hr�odinger equation (5.6). By 
ombining gL given by(5.7) with the similarly 
onstru
ted right-moving solution gR, the resulting WZNW�eld g(x+; x�) is also regular, as are the globally de�ned Toda �elds, being sub-determinants of the latter (a

ording to (2.23)). Furthermore, if the W-generators
orresponding to a given (say, the `Wronskian') DS gauge are given by regular fun
-tions for a Toda solution, then by this pro
edure one 
an always 
onstru
t a regularWZNW representative of that Toda solution, whether or not the solution appears tobe regular in terms of the traditional lo
al Toda variables, ��.We also remark that on
e the solutions of the `right handed' analogue of (5.6),f�ig, are known, then as a 
onsequen
e of (2.24) and (5.1), the Toda �elds 
an beexpressed in terms of the f g's and the f�g's as follows:e� 12�n�1 = Dn =  � �e� 12�n�2 = Dn�1 = det� 0 � �0  0 � � � �0  � � �= ( 0 � �0)( � �)� ( 0 � �)( � �0)e� 12�n�3 = Dn�2 = det0� 00 � �00  00 � �0  00 � � 0 � �00  0 � �0  0 � � � �00  � �0  � � 1A= ( 00 � �00)( 0 � �0)( � �) + � � �

(5:9)



where  � � =Xi  i � �i ;  0 � � =Xi  0i � �i ; (5:10)and so on. In fa
t equation (5.9) was the starting point of the analysis of Todatheory in [8℄. Without going into details we note that the above results 
an easily begeneralized for the Bl and Cl series.So far we have studied (5.4) in a de�nite DS gauge. Let us now try to solveit for g without gauge-�xing the 
urrent J . It is easy to see that starting from thebottom row, it is always possible to eliminate all higher 
omponents of g su

esively,even without any gauge �xing. This elimination leads to a di�erential equation ofthe form: D(A)n  i = �n i � n�1Xj=1W j [J(x+)℄�n�j�1 i = 0: (5:11)Here � = ��=�x+ and the 
oeÆ
ient fun
tions fW jg are automati
ally obtained assome di�erential polynomials in the 
urrent 
omponents. Moreover, they are gaugeinvariant, sin
e the original equation (5.3) was gauge-
ovariant and the bottom 
om-ponents gni =  i are gauge-invariant (with respe
t to left-moving upper triangulargauge transformations). This implies that the W j 's in (5.11) are nothing but the W-generators asso
iated to the `Wronskian' gauge, sin
e they redu
e to the DS 
urrentsfU jg in this gauge.To summarize, if theW-densities asso
iated to a DS gauge (here the `Wronskian'gauge) are known, then one 
an re
onstru
t the 
orresponding WZNW solution bysolving (5.2) for g = gL �gR in that DS gauge. In the re
onstru
tion pro
edure one ob-tains a higher order di�erential equation (here (5.6)) satis�ed by the gauge-invariant(bottom row) 
omponents of gL (and an analogous equation for the last 
olumn ofgR). The same equation 
an also be derived from (5.4) by elimination without anygauge �xing. Sin
e the resulting di�erential equation is gauge-invariant, one 
an reado� the expli
it formula of the W-generators 
orresponding to the given DS gauge by
omparing the 
oeÆ
ients in the di�erential equations obtained with and withoutgauge-�xing. By a similar argument, one 
an also establish the transformation rulesrelating the W-bases 
orresponding to di�erent DS gauges.



The elimination is also simple in the diagonal gauge. In this gaugej = 0BB� �1 0 : : : 00 �2 : : : 0... ... . . . ...0 0 : : : �n1CCA ; (5:12)and the di�erential operator takes the formD(A)n = (� � �1)(� � �2) : : : (� � �n): (5:13)By rearranging this produ
t as a sum 
orresponding to (5.11), one 
an read o� theexpression of the W-generators in this gauge. Note that the diagonal �elds (5.12)are not independent, be
ause �1 + �2 + � � � + �n = 0. This is the original form ofthe Miura transformation [21℄ and the operator (5.13) is the starting point for theLukyanov-Fateev free-�eld 
onstru
tion of quantized W-algebra [5℄.The derivation of the gauge-invariant higher order di�erential operators and there
onstru
tion of the matrix valued �eld g from the 
onstrained 
urrents (or fromW-generators) pro
eeds analogously for the Lie-algebras Bn and Cn. The resultinggauge-invariant di�erential operators are of order (2n + 1) and (2n), respe
tively,a

ording to the dimensions of the de�ning representations. Due to the restri
-tions (3.86) and (3.82), the di�erential operators D(B)n and D(C)n are (formally) anti-selfadjoint and selfadjoint, respe
tively. Without going into details, we give theseoperators in the fa
torized form 
orresponding to the diagonal gauge:D(B)n = (� � �1)(� � �2) : : : (� � �n)�(� + �n) : : : (� + �2)(� + �1) (5:14a)D(C)n = (� � �1)(� � �2) : : : (� � �n)(� + �n) : : : (� + �2)(� + �1) (5:14b)Here the �i's are independent free �elds.The 
ase of the algebras Dn is more 
ompli
ated. As an example, let us 
onsiderD3 �rst. We use the 6-dimensional ve
tor representation and go to the diagonalgauge, where (with a 
onvenient 
hoi
e of the �i)J = I� + j = 0BBBBB� �1 0 0 0 0 01 �2 0 0 0 00 1 �3 0 0 00 1 0 ��3 0 00 0 �1 �1 ��2 00 0 0 0 �1 ��1
1CCCCCA : (5:15)



If we write out (5.4) in 
omponents we have (suppressing the index i):g5 = �(� + �1)g6 (5:16a)g3 + g4 = �(� + �2)g5 (5:16b)g2 = (� + �3)g4 (5:16
)g2 = (� � �3)g3 (5:16d)g1 = (� � �2)g2 (5:16e)0 = (� � �1)g1 (5:16f)From (5.16) we see that the elimination is blo
ked here after the se
ond step, sin
ethe 
ombination g3 � g4 never o

urs on the left hand side. On the other hand, itsderivative 
an be expressed, 
ombining (5:16
) and (5:16d):�(g3 � g4) = �3(g3 + g4): (5:17)One 
an go on with the elimination by integrating (5.17) (formally) using the `anti-derivation' symbol ��1: (g3 � g4) = ��1�3(g3 + g4): (5:18)One then �nds:D(D)3 = (� � �1)(� � �2)(� � �3��1�3)(� + �2)(� + �1)= (� � �1)(� � �2)(� � �3)��1(� + �3)(� + �2)(� + �1): (5:19)Similarly, by performing the elimination in the (2n)-dimensional ve
tor representa-tion, one 
an asso
iate a pseudo-di�erential operator to any Dn algebra:D(D)n = (� � �1)(� � �2) : : : (� � �n)��1(� + �n) : : : (� + �2)(� + �1): (5:20)This not only shows that it is impossible to obtain a di�erential operator for Dn inthe ve
tor representation, but from the example of D3 � A3 we also see that the typeof pseudo-di�erential operator depends on the representation in whi
h (5.4) is taken.(For D3 there is an ordinary di�erential operator 
orresponding to the 4-dimensionalrepresentation, but this is the spinor of D3.)



For the 
ase of An, Bn and Cn what makes the elimination simple is that thematrix I� (see (3.70) and (3.83)) has non-zero entries immediately below the diagonaland only there. Sin
e I� is the negative step-operator of the spe
ial sl(2; R) subal-gebra S introdu
ed in se
tion III.1, this fa
t means that the de�ning representationsof these algebras are still irredu
ible with respe
t to this sl(2; R) subalgebra.For Dn, the ve
tor representation is redu
ible with respe
t to S with bran
hing2n = (2n� 1) + 1. This is why one has a pseudo-di�erential, rather than a di�eren-tial, operator after eliminating the higher 
omponents from the system of �rst orderdi�erential equations (5.4). (The spinor representations of Dn are even worse fromthis point of view, ex
ept for n = 3.)Turning to the ex
eptional algebras, we �nd that the 7-dimensional represen-tation of G2 is irredu
ible with respe
t to S and therefore the elimination for G2will result in a 7th order di�erential operator (see Appendix B). The 
orrespondingbran
hing rule for F4 is [22℄ 26=17+9, so in this 
ase we have a pseudo-di�erentialoperator, 
ontaining one integration.Finally, for E6, E7 and E8 the bran
hing rules are [22℄:E6 :E7 :E8 : 27 = 17 + 9 + 156 = 28 + 18 + 10248 = 59 + 47 + 39 + 35 + 27 + 23 + 15 + 3 (5:21)and therefore in these 
ases the elimination leads to pseudo-di�erential operators,
ontaining 2, 2 and 7 integrations, respe
tively.



VI. Con
lusionsIn this paper we have shown that extended 
onformal algebras,W-algebras arisenaturally in the 
onstrained WZNW formulation of Toda �eld theories. Our mainresults are the following:We have given an ambidextrous generalization of the usual gauged WZNW mod-els to derive Toda theories. Using the embedding WZNW phase spa
e, we have shownhow to implement the a
tion of the W-algebra generators as 
ertain �eld dependentKa
-Moody transformations. This led us to a powerful algorithm to 
al
ulate theW-algebra relations. Using this algorithm we 
al
ulated the so far unknown Poissonbra
ket algebra of W(G2) expli
itly.We exhibited a parti
ular basis where all the W-generators are 
onformal pri-mary �elds. We have also shown that for the A, B, C series there is always a basis inwhi
h theW-algebra 
loses quadrati
ally, and that is not true for the rest of the sim-ple Lie-algebras. Finally we have proved that the leading terms of the W-generators(i.e. terms without derivatives) are restri
ted Casimir operators. We exhibited theCasimir algebra relations in detail for the A, B and C series and have given a generalproof of 
losure of their Poisson bra
ket algebra for any simple Lie algebra.As found in [15℄ the quantum version of the Casimir algebra does not 
losein general (it has been shown to 
lose for SU(3) only when the level is equal toone) hen
e it is natural to ask whether an extension of the W-generators to the fullKa
-Moody phase spa
e (in the sense dis
ussed in the introdu
tion of Chapter III)exists, with the full, unrestri
ted Casimirs as leading terms. If one 
ould �nd su
han extension it would make possible to asso
iate a representation of the W-algebrain terms of unrestri
ted Ka
-Moody generators to any Ka
-Moody algebra. As su
han extension would also be a deformation of the Casimir algebra, it 
ould possiblysurvive quantization. This problem is 
ertainly very interesting as it would also
larify the origin of W-algebras, without making referen
e to any parti
ular model.A detailed investigation of su
h deformations of the Casimir algebras is outside thes
ope of this paper. After some preliminary investigation of the problem we found



that at least for A2 one 
annot extend the W-algebra to the whole phase spa
e ofthe (
hiral) Ka
-Moody 
urrents, at least with the assumption of the W i's beingdi�erential polynomials with unresti
ted Casimirs as leading terms.However by giving up the polynomial nature of the W i's we have found su
han extension of the generators of the W-algebra for A2. In fa
t this result 
an begeneralized for an arbitrary An algebra. This problem is under investigation.
A
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Appendix A: ConventionsHere we give our 
onventions and present some formulae whi
h are used in the paper.Spa
e-time and Poisson bra
kets:�00 = ��11 = 1; x� = 12(x0 � x1); �� = �0 � �1 : (A:1)We use equal time Poisson bra
kets and spatial Æ-distributions. At �xed x0 all quanti-ties are supposed to be periodi
 with period 2�. Prime means `twi
e spatial derivative'everywhere, even on Dira
 Æ's. Note that this is equal to �+ on quantities dependingon x through x+ only.Conformal primary �elds:The left-moving 
onformal transformations are generated by the 
onserved momentsQa = Z 2�0 dx1a(x)L(x) (A:2)of the Virasoro density L(x) = �++(x), for any periodi
 test fun
tion a(x) for whi
h��a(x) = 0. A 
onformal primary �eld 	 of left 
onformal weight � transforms as(ÆL	)(y) = �fQa;	(y)g = a(y)�+	(y) + � �	(y) �+a(y) : (A:3)If ��	 = 0 then this is eqivalent tofL(x);	(y)gjx0=y0 = � �	(x) Æ0(x1 � y1) + (�� 1) � (�+	(x)) Æ(x1 � y1): (A:4)Lie algebras:Let G
 be a 
omplex simple Lie algebra, � the set of roots with respe
t to some Cartansubalgebra, and � a set of simple roots. There is a Cartan element H' asso
iated toevery ' 2 � and the Cartan matrix K�� is given asK�� = �(H�) = 2� � �j�j2 = j�j22 Tr (H� �H�) �; � 2 � ; (A:5)where Tr is the usual matrix tra
e multiplied by an appropriate normalization 
on-stant, whi
h ensures that j�longj2 = 2. For example, for the de�ning representations



of the orthogonal Lie algebras Bl and Dl this normalization 
onstant is 12 , and it is1 for the de�ning representations of Al and Cl. For any positive root � 2 �+ we
hoose step operators E�� so that we haveH� = [E�; E��℄ Tr (E� �E�) = 2j�j2 Æ�;�� Tr (E� �H�) = 0 (A:6)for �; � 2 �, and also[H�; E�℄ = K��E� ; for � ; � 2 � : (A:7)In our Cartan-Weyl basis H� (� 2 �), E�' (' 2 �+) all the stru
ture 
onstants ofG
 are real numbers. Throughout the paper we use the maximally non-
ompa
t realform G of G
 for whi
h the Cartan de
omposition is valid without 
omplexi�
ation.We in fa
t take G to be the real span of the Cartan-Weyl basis of G
. The maximallynon-
ompa
t real forms of Al, Bl, Cl and Dl are (up to isomorphism) sl(l + 1; R),so(l; l+ 1; R), sp(2l; R) and so(l; l; R), respe
tively.The exponents of the simple Lie algebras are listed in the following table:Algebra ExponentsAl 1; 2 : : : ; lBl 1; 3; : : : ; 2l� 1Cl 1; 3; : : : ; 2l� 1Dl 1; 3 : : : ; 2l� 3; l� 1G2 1; 5F4 1; 5; 7; 11E6 1; 4; 5; 7; 8; 11E7 1; 5; 7; 9; 11; 13; 17E8 1; 7; 11; 13; 17; 19; 23; 29Ka
-Moody algebras:We denote the spa
e of G-valued left-moving 
urrents byK. The KM Poisson bra
ketsof the 
omponents of J(x) = Ja(x)Ta are given as:fJa(x); Jb(y)gjx0=y0 = fab
J
(x)Æ(x1 � y1) + �gabÆ0(x1 � y1) (A:8)where the fab
 are the stru
ture 
onstants, the KM level k is �4��, and Lie algebraindi
es are raised and lowered by using the metri
gab = Tr(Ta � Tb) : (A:9)



Appendix B: G2 W-algebraIn this Appendix, as a nontrivial example, we 
ompute the Poisson-bra
ket re-lations of the W-algebra 
orresponding to G2 expli
itly, using the tangential Ka
-Moody method introdu
ed in III.3.We will work in the 7-dimensional representation of G2 and 
hoose the followingmatrix representation for the two simple step operators:
E� = 0BBBBBBB�

0 0 0 0 0 0 00 0 1 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 �1 00 0 0 0 0 0 00 0 0 0 0 0 0
1CCCCCCCA E� = 0BBBBBBB�

0 1 0 0 0 0 00 0 0 0 0 0 00 0 0 p2 0 0 00 0 0 0 �p2 0 00 0 0 0 0 0 00 0 0 0 0 0 �10 0 0 0 0 0 0
1CCCCCCCA : (B:1)

Choosing �1 = �2 = 1, the generators of the spe
ial sl(2; R) subalgebra areI� = Et� + Et� I+ = 10E� + 6E� �̂ = 12[I+; I�℄ (B:2)where �̂ is a diagonal matrix with diagonal elements 3; 2; 1; 0;�1;�2;�3, respe
tively.Sin
e there is no `quadrati
' gauge for G2, the only distinguished gauge is the`highest weight' DS gauge and we will work in this gauge. We denote the two DS�elds by L and Z, whi
h are the 
oeÆ
ients of 12I+ and the step operator for thehighest root, respe
tively:
J = 0BBBBBBB�

0 3L 0 0 0 Z 01 0 5L 0 0 0 �Z0 1 0 3p2L 0 0 00 0 p2 0 �3p2L 0 00 0 0 �p2 0 �5L 00 0 0 0 �1 0 �3L0 0 0 0 0 �1 0
1CCCCCCCA : (B:3)

On the other hand, a general Lie algebra element 
an be parametrized as
R = 0BBBBBBB�

H1 A1 B p2C D E 0a1 H2 A2 �p2B C 0 �Eb a2 H3 p2A1 0 �C �Dp2
 �p2b p2a1 0 �p2A1 p2B �p2Cd 
 0 �p2a1 �H3 �A2 �Be 0 �
 p2b �a2 �H2 �A10 �e �d �p2
 �b �a1 �H1
1CCCCCCCA ; (B:4)



where H1 = H2 +H3.Now we have to solve the equationÆJ = [R; J ℄ + �R0 (B:5)for the variations ÆL, ÆZ parametrizing ÆJ in terms of the independent parametersof R, whi
h are the parameter e and a 
ertain linear 
ombination of a1 and a2, whi
h
orrespond to the variations generated by Z and L, respe
tively.Let us dis
uss the 
onformal variation �rst. Using (3:22b), we see that theproperly normalized 
onformal generator is� = 14� L: (B:6)The 
onformal variations, generated by the 
onformal `
harge'Q� = Z 2�0 dx1�(x)�(x) (B:7)(through Dira
-bra
kets) are obtained by solving (B:5) withe = 0 and a1 = a2 = 1��: (B:8)We �nd: f�; Q�g� = Æ�� = ��0 + 2�0�� 14��000fZ;Q�g� = Æ�Z = �Z 0 + 6�0Z: (B:9)From (B:9) we see that the 
entral 
harge of the Virasoro algebra is
 = �168k (B:10)and that the �eld Z is a 
onformal primary �eld with 
onformal spin 6.The only nontrivial W-transformation is generated byQe = Z 2�0 dx1e(x)Z(x): (B:11)The 
orresponding variations 
an be found by solving (B:5) now withe 6= 0 and 9a1 + 5a2 = 0: (B:12)



After a lengthy 
omputation we �ndfZ;Qeg� = ÆeZ= 1168�� �11e(11) + 4Xi=0 �2i+1[(eQ2i+1)(2i+1) + e(2i+1)Q2i+1℄	; (B:13)whereQ1 = �4576L2Z � 756�2L00Z � 1850�2L0Z 0 � 860�2LZ 00 � 74�4Z 0000+ 230400L5 + 407392�2L3L00 + 1514056�2L2(L0)2 + 111956�4L2L0000+ 1010254�4LL0L000 + 797637�4L(L00)2 + 1648812�4(L0)2L00 + 21196�6LL(6)+ 138201�6L0L00000 + 364431�6L00L0000 + 4951172 �6(L000)2 + 2073�8L(8);Q3 = 1240LZ + 120�2Z 00 � 168608L4 � 184316�2L2L00 � 457655�2L(L0)2� 34870�4LL0000 � 157520�4L0L000 � 124443�4(L00)2 � 3410�6L(6);Q5 = �52Z + 30580L3 + 17226�2LL00 + 428672 �2(L0)2 + 1683�4L0000;Q7 = �2046L2 � 396�2L00;Q9 = 55L:Note that it is a nontrivial 
he
k on our result for ÆeZ that it 
an be written inthe form (B:13), whi
h follows from the antisymmetry of the fZ;Zg� Dira
-bra
kethidden in fZ;Qeg�.Finally, by introdu
ing an orthonormal basis fH1; H2g in the Cartan subalgebrade�ned by[E�; Et�℄ = p2H1 [E�; Et�℄ = � 3p2H1 + 3p6H2 (B:14)and going to the diagonal gauge whereJ = I� + �1H1 + �2H2 (B:15)we 
an easily write down the 7th-order di�erential operator dis
ussed in Chapter V:D(G)2 = (�� � 2p6�2)(�� � 1p6�2 � 1p2�1)(�� � 1p6�2 + 1p2�1)�(��)(�� + 1p6�2 � 1p2�1)(�� + 1p6�2 + 1p2�1)(�� + 2p6�2): (B:16)



Appendix C: Expli
it Casimir Cal
ulationsIn this appendix we present the arguments leading to the Poisson bra
kets (4.21)and (4.22). We then use these results to derive expli
it formulae for the Poissonbra
kets of the Casimirs Cn as de�ned in (4.17).First we need the Poisson bra
kets of the group invariant obje
ts, Qn, de�ned in(4.18). We observe that due to the invarian
e of the tra
e under 
y
li
 permutationsfab
JaTr (JnT 
) = Tr�Jn [J; Tb℄� = Tr�Jn+1Tb � JnTbJ� = 0; (C:1)the Poisson bra
kets of the Qn's are given byfQn(x); Qm(y)g = �gabTr(Jn�1T a)�Tr(Jm�1T b)(x) Æ0 + Tr(Jm�1T b)0(x)Æ�; (C:2)where the argument of Æ and Æ0 is (x1 � y1). Now by using the identityJn = Tr(JnTa)T a + nN Qn; (C:3)valid for the A;B and C series, we �ndgabTr(JnT a) Tr(JmT b) = (n+m)Qn+m � nmN QnQmgabTr(JnT a) Tr(JmT b)0 = m(Qn+m)0 � nmN Qn(Qm)0 :Together with (C.2) this leads to the Poisson bra
kets (4.19).Now we are ready to 
al
ulate the Poisson bra
kets for the generating fun
tionfor the Al algebras f(�; x) = log det�1� �J(x)�: (C:4)By using the power expansion (4.20) and the Poisson bra
kets (4.19) one arrives atff(�; x); f(�; y)g= � Xm;n�2�n�m�(p�2)Qp�2 � qN Qn�1Qm�1�(x)Æ0+ � Xn;m�2�n�m�(m�1)(Qp�2)0� qN Qn�1(Qm�1)0�(x)Æ (C:5)where p = m+n and q = (n�1)(m�1).



The sums quadrati
 in the Qn are readily expressed in terms of f and its derivativesand we turn to the more diÆ
ult task of expressing the two remaining sums linearin the Qn in terms of f .In the �rst sumXn;m�2(p� 2)�n�mQp�2 =Xp�4(p� 2)(��) p2 Qp�2 Xm+n=p(�=�)n�m2we insert the identity Xn+m=p�n�m = �p�3 � �3�p�� 1=�and then the remaining sum over p 
an be written in terms of f and its derivativesas X(p� 2)�n�mQp�2 = �2�2�� � ���f � ��f�: (C:6)In the se
ond nontrivial sum in (C.5)X(m� 1)�n�m (Qp�2)0 =X(��) p2 (Qp�2)0 Xm+n=p(m� 1)(�=�)n�m2we insert X(m� 1)�n�m = �p�2 � �2�p(�� 1=�)2 � (p� 2) �3�p�� 1=�and the remaining sum over p 
an again be written in terms of f and its derivativesas X(m� 1)�n�m (Qp�2)0 = �2�2�� � �x��f + �2�2(�� �)2 �x�f(�)� f(�)�: (C:7)Finally, using (C.6) and (C.7) in (C.5) yieldsff(�; x);f(y; �)g = ��2�2� 1�� � [��f � ��f ℄� 1N ��f��f�Æ0+ ��2�2� 1�� � �x��f + 1(�� �)2 �x[f(�)� f(�)℄� 1N ��f�x��f�Æ:(C:8)From this equation one immediately obtains the Poisson bra
kets (4.21) of the gen-erating polynomial A(�; x) = exp(f(�; x)) for the A-series.



The Poisson bra
kets for the generating polynomial of the B and C series 
anbe 
al
ulated in a similar manner. The only di�eren
e is that instead of formulae(C.6) and (C.7) one needs the identitiesXn;m�1 2(p� 1)�n�mQ2(p�1) = ���� � ����g � ���g� (C:9)andXn;m�1 (2m� 1)�n�mQ2(p�1) = 12�� �+ �(�� �)2�g(�)� g(�)�+ ���� � ���g (C:10)to derive the Poisson bra
kets (4.22). (Here g(�; x) = logB(�; x).)The Poisson bra
kets of the generating polynomials 
ontain all information aboutthe Casimir algebra. For example, by using the expansion (4:17a) in (4.21) oneobtains for AlfCk(x); Ck(y)g = �ak(x)Æ0(x1 � y1) + 12�a0k(x)Æ(x1 � y1) ; k = 1; 2:::l ; (C:11)where ak = 2k�(l+ 1� 2k)C2k�1 + �(k � 2) � k(1� kl + 1)(Ck�1)2� 2�(k � 3) k�3Xi=0 �(l� i� k)(i+ 1)Ck+iCk�i�2 ;and by using the expansion (4:17b) in (4.22) one obtains for the Bl and Cl algebrasfCk(x); Ck(y)g = �bk(x)Æ0(x1 � y1) + 12�b0k(x)Æ(x1 � y1) ; k = 1; 2:::l ; (C:12)wherebk = 4(2k � 1)�(l+ 1� 2k)C2k�1 � 4�(k � 2) k�2Xi=0 �(l� i� k)(2i+ 1)Ck+iCk�i�1:In parti
ular, for the highest Casimirs the Poisson bra
kets simplify to (4.23) and(4.24).
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