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1 IntrodutionDespite of the onsiderable amount of work devoted to the subjet of hiralsymmetry breaking in gauge theories and in partiularQCD, the understand-ing of this non-perturbative phenomenon is still unsatisfatory [1℄. Also thebehaviour of quantum systems in a hot and dense enviroment (eg. in neu-tron stars or in the early universe) are still under ative investigation [1℄. Onanother front there has been muh e�ort on the apparently di�erent problemof quantizing self-interating theories in a bakground gravitational �eld [2℄.Rather than seeking new partial results for realisti 4-dimensional theo-ries we analyse a family of interating theories of harged fermions, salars,pseudo-salars and photons propagating in 2-dimensional urved spaetimein detail. These models are de�ned by the ationS = R p�g h � i�(D� � ig1���+ ig2� �� ���) +g��(������+ ������)� g3R�� 14F��F ��i; (1)where F�� is the eletromagneti �eld strength and D� = r� � ieA� thegenerally- and gauge ovariant derivative. This family ontains in partiularthe Shwinger model (gi = 0; i = 1; ::; 3)[3℄ and the gauged Thirring model(g21=�g22=g2; g3=0)[4, 5℄ in urved spaetimeSTh = Z p�gh � i�D� � g24 j�j� � 14F��F ��i:The oupling onstant g3 has been introdued in order to test the e�et ofnon-minimal oupling to the gravitational �eld. Finite temperature e�etsare then inluded by quantizing the system on an eulidean torus1 [0; �℄ �[0; L℄ with arbitrary metri. We hoose oordinates suh thatg�� = e2�(x) � j� j 00 1� ; where � = i�L:� is the inverse temperature and L is the infrared ut-o� whih will beremoved after the orrelation have been alulated. Furthermore, �nite tem-perature boundary onditions are imposed on the quantum �elds [6℄.1hoosing a torus rather than a ylinder provides us with an infrared regularization [6℄.1



On the torus a general gauge potential with non-vanishing ux an bedeomposed as A� = Ak� + t� + ���� �����';where the last 3 terms are reognized as Hodge deomposition of the singlevalued part of A and Ak is an instanton potential giving rise to a quantizedux e R F = 2� k: As a onsequene the orresponding Dira operator hasjkj zero modes [6℄ of hirality signfkg. These zero modes are responsiblefor a non vanishing hiral ondensate h �  i as an be seen by inspeting thefermioni generating funtional [6℄ in the external �elds2A; �; �; h and soures�; ��ZF [Ak; �; �; h�; �; ��℄ = jkjYp=1(��;  0p)( y0p; �)det0(i =D) e�R pg��(x)Se(x;y)�(y): (2)Here  0p(x); p=1; :::; jkj, are the jkj zero modes in the topologial setor kand det0(i =D) denotes the zero mode trunated determinant. Se(x; y) is theexited fermioni Green's funtion. We shall restrit ourselves to the setorsk = 0 and k = 1, sine these ontribute to the partition funtion and thehiral ondensate, respetively. Finally we introdue a hemial potential forthe onserved eletri harge. In the eulidean forumlation this is done byshifting the zero omponent of the gauge potential by an imaginary onstant[7℄.2 Partition funtionAs a �rst step in analyzing struture of the quantum theory we evaluate thepartition funtion formally de�ned byZ0 = Z D(A; �; �; h)ZF [A; �; �; h℄e�SB(A;�;�;h); (3)where SB(A; �; �; h) = � Z pg�4�+ �4�� h�h� � 14F��F ��:2the harmoni �eld h is needed for a onsistent quantization on the torus, analogousto the harmoni part t� of the gauge �eld. On the torus the ation (1) is hanged toS ! S + R pg[g2h�j� + h�h�℄ 2



After a ovariant gauge �xing (3) is promoted to a well de�ned quantity.From (2) it is lear that only the trivial topologial setor ontributes to thepartition funtion. Then ZF [A; �; �; h℄ equals the determinant of the Diraoperator =D whih is related by onformal- and hiral transformations toi =̂D � ̂�(�� � 2�iL a�); where 2�L a� = et� + g2h� � ��Æ0;�:Hatted quantities refer to at metri and onstant gauge potentials. Thehemial potential is ontained in the last term in a�. Integrating the hiral-and onformal anomalies [8℄ we �nddet(i =D) = det(i =̂D) exp [ 124�SL + 12� Z pgG 14G℄; (4)where SL = 14 Z R 14Ris the Liouville ation and G = g2'+ e�. One must be areful in omputingthe hatted determinant sine the gauge potential is omplex. This has beendone in [9℄ with the resultdet(i =̂D) = 1j�(�)j2�h a1�a0 i(0; �) ��h �a1��a0 i(0; �): (5)The remaining funtional integrals in (3) turn out to be of iterative Gaussiantype and yield after substitution of (5)Z0 = p2�V em L�j�(�)j4 1det0 12 (�4+m2) exp �( 112� + g23)SL� (6)where V =R pg and m2 = e2� 2�2� + g22is the dynamially generated "photon" mass. This result already indiatesthat in the trivial topologial setor the theory (1) should be equivalent to afree, massive, neutral, boson even in urved spae-time. Note that the massdepends on g2. In partiular (6) shows that only the transversal part of theurrent-urrent interation ontributes to the mass renormalization in the3



Thirring model. Note also that the hemial potential does not appear inthe �nal result for the partition funtion. This may not ome as a surprise,beause of the equivalene to a unharged boson. Also ��Z[�℄ = 0 is theonly result onsistent with Gauss's law. We onsider this onsisteny as aon�rmation of our de�nition of the fermioni determinant whih di�ers fromprevious ones in the literature [10℄. The non-minimal oupling to gravity (forg3 6= 0) ontributes to the gravitational anomaly and therefore a�ets theintensity of the Hawking radiation3 Chiral CondensateThe hiral ondensate h �  i is the order parameter for the hiral symmetrybreaking, responsible for the mass term in (6). Here we evaluate the depen-dene of the order parameter on temperature and urvature. Realling (2)we see that only on�gurations within the topologial setors k = �1 anontribute to this expetation value. More preielyh � (x)P+ (x)i = 1Z0 Z D(: : :) y01(x) 01(x)det0(i =D) e�SB[A1;�;�;h℄jk=1; (7)where P+ = 12(1 + 5) is the projetor on states with positive hirality. Z0has been omputed in the previous setion (6). The generalization of (4) tonon-zero k readsdet0(i =D) = det N N̂ det0(i =̂D) exp ( 124�SL)� exp ( 12� Z pgG 14G+ 2kV Z pgG+ 2�k2V̂ Z qĝ�); (8)where the hatted determinant now also ontains the instanton potential. Nis the normmatrix of the zero modes p0+(x) = eiF�5(G+2k��)� 12� ̂p0+(x)and �(x) satis�es the di�erential equationpg4� = pg2�V �qĝ2�̂V :4



All information about the harmonis and the hemial potential is ontainedin the zero modes. However,Z d2t det0(i =̂D) y01 01 = 1p2�Land heneh yP+ i = s�i�V̂ j�(�)j2e�2�2=e2V+2�=V̂ R pĝ�De�2(g�+e')(x)��(x)E�'; (9)where the expetation value is evaluated withSeff = Z pgh12'(42 � e2�4)'� e2�m2 �4�� eg2� �4'i:A formal alulation of the resulting Gaussian integrals yieldsh yP+ i = s�i�V̂ j�(�)j2e�2�2=e2V+2�=V̂ R pĝ� e��(x)�4��(x)� exp [2�2m4e2 K(x; x)℄ exp [ 2�g222� + g22 G0(x; x)℄; (10)where K(x; y) = hxj 142 �m24jyi = 1m2 (G0(x; y)�Gm (x; y)) (11)and Gm; G0 are the massive and massless Green's funtions respetively.As it stands (10) is still a formal expression sine G0(x; y) is logarith-mially divergent when x tends to y. To extrat a �nite answer we needto renormalize the operator exp(��). This wave funtion renormalization isequivalent to the renormalization of the fermion �eld in the Thirring modeland thus is very muh expeted already in at spae time [11℄. Its general-ization to urved spae-time is found to beGreg0 (x; x) = � 12� log [2�j�(�)j2Lm ℄:To determine the hiral ondensate we also need to determine K(x; y) on thediagonal. In a �rst step we shall obtain it for the at torus. Its urvaturedependene is then determined in a seond step.5



For �=0 the Green's funtion K has been omputed in [6℄. Substitutionof this Green's funtion leads, after removing the infrared ut-o�, to thefollowing exat formula for the hiral ondensate on at spaeh yP+ i� = �T� m2�T � g222�+g22 exp h� �2me2 T + 2�2� + g22F i; (12)where F (�) = Xn>0 h 1n � 1qn2 + (�m=2�)2 i:For arbitrary values of the temperature and g2 the in�nite sum F is evaluatedon a omputer (Fig.1). It is however interesting to disuss some limitingases.For low temperatures, ompared to m we haveF (�)!  + log �m4� + ��m ; (13)where  = 0:57721 : : : is the Euler onstant. Substitution of (13) yields thezero temperature resulth yP+ i = �m4� 2g22=(2�+g22) exp � 2�2� + g22 � for T ! 0: (14)On the other hand for temperatures large ompared to the indued photonmass F vanishes. Thus we obtain the high temperature behaviourh yP+ iT = �T� m2�T � g222�+g22 exp �� �2me2 T� for T !1: (15)Hene the hiral ondensate deays exponentially for high temperatures ap-proahing zero assymptotially. The oupling to the pseudosalars � weakensthe e�et of the temperature while the salar �eld � has no e�et. For thegauged Thirring model this result implies that only the transversal part of theurrent-urrent oupling a�ets the hiral ondensate. Finally note that, asthe partition funtion, the hiral ondensate does not depend on the hemialpotential.How does the gravitational �eld a�et the hiral ondensate? To answerthis question we need to know the massive Green's funtion, entering in (11),6



for non-trivial gravitational �elds (for simpliity we assume T = 0). Let us�rst onsider a spae with onstant positive urvature. Then Gm has beenomputed expliitely [13℄. Here we only need the short distane expansion,given byGm (x; y) = � 14�f2 + log (s2R8 ) +  (12 + �) +  (12 � �) +O(s2)g; (16)where �2= 14� 2m2R and  (z) is the Digamma funtion. Substituting (16) into(11) we end up with the exat formula for the hiral ondensate for onstanturvatureh yP+ iR = h yP+ iR=0 � exp h �2e2m2f log ( R2m2 ) + (12 +�) + (12 � �)gi:(17)The assymptoti expansions for large-and small urvatures are easily workedout inserting the orresponding expansions for the Digamma funtion [14℄.We �nd h yP+ iR = h yP+ iR=0 � exp h� �12e2Ri for Rm ! 0 (18)andh yP+ iR = h yP+ iR=0 �( R2m2 ) �2�+g22 exp h� �4e2R��m24e2 i for Rm !1:(19)Hene the hiral ondensate deays exponentially for large urvature analo-gous to the high temperature behaviour. However, the pseudo-salars do notsupress the e�et of the urvature in ontrast to (15). Comparing the expo-nentials in (19) to (15) we are lead to de�ne the urvature indued e�etivetemperature as Teff = R4�m : (20)In passing we note that if we ompare the prefators, rather than the expo-nentials, we would write Teff = R 124�p2 : (21)7



The latteridenti�ation atually oinides (up to fator of 2) with the Hawk-ing temperature of free salars in de Sitter spae [15℄. The orret iden-ti�ation involves the (dynamial) mass of the gauge �eld and is thereforenot universal. From this observation we learn that the temperature assoi-ated with urvature depends on the matter ontent. Note �nally that thenon-minimal oupling (g3) has no e�et on the hiral ondensate. In Fig.2 we have plotted the hiral ondensate for arbitrary onstant values of theurvature.For gravitational bakgrounds with non-onstant urvature we have torefer to perturbative methods for the alulation of the massive Green's fun-tion. Again we only need the short distane expansion of Gm . For geodesidistanes s small ompared to m�1 the massive Green's funtion may beapproximated by the Seeley DeWitt expansion [16℄Gm(x; y) � 14i 1Xj=0 aj(x; y)(� ��m2 )j H(2)0 (ms); (22)where H(2)0 is the Hankel funtion of the seond kind and order zero. Inpartiular H(2)0 (z)! 2i� [ log z2 + ℄ for z ! 0:Inserting (22) into (11) we end up with the following expansion for the hiralondensate in an arbitrary bakgroundh yP+ iR = h yP+ iR=0 � exp h� �2 (me )2 1X1 aj(x)(j � 1)!m2j i; (23)where we have used that a0(x) = 1. The �rst order ontribution involvesa1(x) = 16R and reprodues the assymptoti behaviour (18). Higher orderontributions must be taken into aount to unover the e�et of variableurvature. For this one has to substitute is the orresponding Seeley DeWittoeÆients aj into (23). These have been omputed up to j=5 [17℄.4 SummaryWe have omputed the partition funtion and the order parameter of thehiral symmetry breaking for a Thirring-like gauge theory. In partiular we8
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