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We review some recent developments about strongly interacting relativistic Fermi
theories in three spacetime dimensions. These models realize the asymptotic safety
scenario and are used to describe the low-energy properties of Dirac materials in
condensed matter physics. We begin with a general discussion of the symmetries of
multi-flavor Fermi systems in arbitrary dimensions. Then we review known results
about the critical flavor number Ncrit of Thirring models in three dimensions. Only
models with flavor number below Ncrit show a phase transition from a symmetry-
broken strong-coupling phase to a symmetric weak-coupling phase. Recent simula-
tions with chiral fermions show that Ncrit is smaller than previously extracted with
various non-perturbative methods. Our simulations with chiral SLAC fermions re-
veal that for four-component flavors Ncrit = 0.80(4). This means that all reducible
Thirring models with Nr = 1, 2, 3, . . . show no phase transition with order param-
eter. Instead we discover footprints of phase transitions without order parameter.
These new transitions are probably smooth and could be used to relate the lattice
Thirring models to Thirring models in the continuum. For a single irreducible fla-
vor, we provide previously unpublished values for the critical couplings and critical
exponents.

Keywords— Model field theory, chiral symmetry breaking, parity breaking, dynamical fermions, four-
Fermi theories, Thirring model

1 Introduction
The Thirring model is a relativistic field theory for interacting fermions ψ̄, ψ. Its vector-vector interaction

Lint = g2

2 (ψ̄γµψ)2 = g2

2 J
µJµ, (1)

establishes (after bosonization) a close relation to QED but it is also studied in various other contexts,
e.g. as a test bed for non-perturbative methods, as an example of asymptotic safety or as a toy model for
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chirally symmetric fermions. The coupling constant g2 has length-dimension (d− 2) and is dimensionless
in 2 dimensions.

The 2-dimensional massless model was introduced and investigated by Walter Thirring in 1958 [1]
and represents an exactly solvable conformal field theory with analytically known n-point correlation
functions [2, 3]. The massive model can be solved with the Bethe ansatz which yields the mass spectrum
and scattering matrix elements. In higher dimensions the model in not soluble and not renormalizable
in perturbation theory. But it is renormalizable beyond perturbation theory – above 2 and below 4
dimensions it is the prototype of an asymptotically safe theory [4].

We begin with discussing the symmetries of Thirring models with Lagrangian

L = Lm + g2

2Nf
JµJµ, Lm =

∑
a

ψ̄a(/∂ +m)ψa . (2)

for Nf flavors of fermions ψ1, . . . , ψNf in arbitrary dimensions. Then we shall discretize the models on
a (euclidean) spacetime lattice with chiral fermions keeping all continuum symmetries besides Poincare
invariance. Finally we shall focus on the lattice models in 3 dimensions and discuss the possible breaking
of symmetries, depending on the number of flavors and the interaction strength. Finally we summarize the
present status concerning the critical flavor number Ncrit

f which separates the systems with spontaneous
parity breaking from those without symmetry breaking.

An irreducible spinor in d-dimensions has ds = 2bd/2c components, where bac is the largest integer
less or equal to a. In euclidean space we can and will always choose hermitian γµ matrices. In even
dimensions there exists one irreducible representation of the Clifford algebra, whereas in odd dimensions
there are two. The hermitean matrix

γ∗ = −ibd/2cγ0 · · · γd−1, γ2
∗ = 1 (3)

generalizes γ5 to arbitrary dimensions. In even dimensions it anticommutes with the γµ and in odd
dimensions it commutes with the γµ and is 1 in one irreducible representation and −1 in the other
irreducible representation. The bilinear fields

S =
Nf∑
a=1

ψ̄aψa, P = i
Nf∑
a=1

ψ̄aγ∗ψa, Jµ =
Nf∑
a=1

ψ̄aγ
µψa (4)

are of particular interest here: the current density Jµ enters the Lagrangian of the Thirring models and
S, P may or may not condense in an equilibrium state. One should note that S and P are not independent
in odd dimensions because γ∗ ∝ 1 is trivial.

2 Symmetries of Fermi systems
The symmetries of Thirring models with Lagrangians (2) are the usual (Euclidean) spacetime symmetries
(including parity), chiral rotations and charge conjugation.

Charge conjugation: The transformation of spinor fields and γµ-matrices under charge conjugation

ψc = Cψ∗, γTµ = ηc C−1γµC, ηc ∈ {−1, 1} , (5)

are used to investigate the sign problem in four-Fermi theories. Actually there are two matrices C with
ηc = ±1 in even dimensions, one C with ηc = −1 in 3 + 4n dimensions and one C with ηc = 1 in 1 + 4n
dimensions for n ∈ N0 [5].

Parity: A parity transformation flips the sign of a spatial coordinate, e.g.

x 7→ x′ = Px, P = (Pµν) = diag(1, 1, . . . , 1,−1) . (6)

Scalar and pseudo-scalar fields have even and odd parity, respectively. A spinor and its conjugate trans-
form according to

ψ(x) 7→ ψP (x′) = Pψ(x), ψ̄(x) 7→ ψ̄P (x′) = αψ̄(x)P−1 , (7)
where the parity matrix P satisfies

P−1γµP = αPµνγν =⇒ P−1γ∗P = −αdγ∗, α2 = 1 . (8)
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The density Lm=0 is parity invariant, Jµ is a vector and P is a pseudoscalar,

PP (x′) = −P (x) . (9)

The transformation properties of S depend on the dimension, i.e.

SP (x′) = αS(x), (10)

such that S is a scalar in even dimensions while S ∝ P is pseudoscalar in odd dimensions as detailed
below.

2.1 Even dimension
In even dimensions there is only one irreducible representation of the Clifford algebra and there exists
a canonical choice for the free Lagrangian Lm with the same /∂ acting on all flavors. For a vanishing
mass the Dirac operator /∂ anti-commutes with γ∗ and we may rotate the chiral (left- and right-handed)
fermions

ψ± = P±ψ = 1
2(1± γ∗)ψ , (11)

independently among each other,

ψ+ 7→ U+ψ+, ψ− 7→ U−ψ− U+, U− ∈ U(Nf) . (12)

These chiral rotations leave the Lagrangian of massless fermions Lm=0 invariant. The bilinear ∝ ψ̄ψ is
only invariant under the diagonal subgroup with U+ = U−. Thus, a mass term or a condensate 〈ψ̄ψ〉
break the chiral symmetry explicitly respectively spontaneously to the vector flavor symmetry UV (Nf).

In even dimensions there is a parity matrix P with α = 1 such that the bilinear S is a scalar and P a
pseudoscalar, see (9). In addition, there exist two matrices C which obey (5), one for each sign of ηc.

2.2 Odd dimensions
In odd dimensions there is no notion of chirality in an irreducible representation and there are only the
vector flavor rotations

ψ 7→ Uψ, ψ̄ → ψ̄U†, U ∈ U(Nf) , (13)
which leave Lm in (2) invariant. The bilinears (4) are singlets under these rotations. In odd dimensions
there exists a parity matrix P which fulfills (8) with α = −1 such that the bilinear S is parity-odd [5],

SP (x′) = −S(x) . (14)

Actually, the bilinears S and P are not independent, S = ±iP , since γ∗ = ±1 in the two irreducible
representations of the Clifford algebra. We see that a mass term or bilinear condensate break the Z2-parity
symmetry explicitly or spontaneously.

The last statement applies to systems with odd Nf only, as for even Nf we can build a parity invariant
massive Lagrangian. For example, for Nf = 2 one combines the two irreducible flavors to one reducible
flavor and acts with the inequivalent irreducible representations γµ and −γµ on the upper and lower
components,

Lm = Ψ̄(Γµ∂µ +m)Ψ, Ψ =
(
ψ1
ψ2

)
, Γµ = σ3 ⊗ γµ . (15)

For the reducible system P̃ = iσ2 ⊗ P is a parity matrix satisfying the defining relation (8) with Γµ and
α = 1 such that Ψ̄Ψ and hence Lm in (15) are parity even. This construction straightforwardly generalizes
to an even flavor number Nf = 2Nr. One just groups the 2Nr irreducible flavors into Nr reducible flavors
Ψ1, . . . ,ΨNr . The Lagrangian for the latter reads1

Lm =
Nr∑
a=1

Ψ̄a(Γµ∂µ +m)Ψa + g2

2Nr
JµJµ, Jµ =

∑
a

Ψ̄aΓµΨa . (16)

By construction this parity invariant reducible model is invariant under U(Nf) = U(2Nr) rotations. Lm
can be obtained by a dimensional reduction of the Thirring model in one dimension higher. The various
symmetries of reducible four-Fermi systems are well explained in [4, 6].

1we also rescale the coupling such that g2/2Nf → g2/2Nr.
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2.3 Fierz-identities
It may happen that two seemingly different looking four-Fermi theories are equivalent on account of
Fierz-identities. In 2 and 3 dimensions irreducible spinors have 2 components only and there is a direct
way to relate different one-flavor models. Indeed, for a 2-component anti-commuting ψ an arbitrary
four-Fermi term (ψ̄Aψ)2 at a fixed spacetime point must be proportional to ψ̄1ψ1ψ̄2ψ2 and

(ψ̄Aψ)2 = detA (ψ̄ψ)2, Nf = 1, d = 2, 3 . (17)

1. One-flavor models in two and three dimensions: The hermitian 2×2 matrices γµ have determinant
−1 and we conclude

g2

2 (ψ̄γµψ)2 = −d g
2

2 (ψ̄ψ)2, Nf = 1, d = 2, 3 . (18)

It follows that the one-flavor Thirring model is equivalent to the one-flavor Gross-Neveu (GN)
model. Thus the latter is not only invariant under U(1)× Z2 but also under the larger symmetry
group UV (1)×UA(1).

2. A comparable simple relation does not exist for Nf > 1 or d > 3. For example, the general Fierz
identity in 3 dimensions implies that for Nf irreducible flavors

g2

2 (ψ̄γµψ)2 = − g2

2Nf
(ψ̄ψ)2 − g2

Nf

∑
a,b

(ψ̄aψb)(ψ̄bψa), d = 3 . (19)

This means that the Thirring interaction is converted into a GN interaction plus a tensor-tensor
coupling.

2.4 Hubbard-Stratonovich transformation
It is possible to eliminate the four-Fermi terms in the Lagrangian by a Hubbard-Stratonovich transfor-
mation with the help of an auxiliary vector field vµ,

L = ψ̄Dmψ + Nf

2g2 vµv
µ . (20)

The Dirac operator contains the auxiliary field,

Dm = γµ(∂µ + ivµ) +m. (21)

The classical systems with Lagrangians (20) and (2) are equivalent as follows from the field equation for
the auxiliary vector field. The equivalence also holds for the quantized system, since vµ is non-dynamical,
enters the Lagrangian at most quadratically and thus can be integrated over explicitly in the path integral.

In passing we note that the equivalent one-flavor GN-model with interaction term (18) in d = 2, 3 can
be bosonized with a scalar field σ as

L = ψ̄(/∂ +m+ σ)ψ + 1
2dg2σ

2 . (22)

Interestingly, the fermion determinant of /∂ + σ is (generically) complex, whereas that of D0 is real. This
means that by a Fierz-reshuffling from the scalar into the vector channel one can soften or even solve the
ubiquitous sign problem.

3 Critical Flavor Number of 3d Thirring models
In the following we focus on the 3-dimensional multi-flavor Thirring model. The irreducible systems have
Lagrangian (2) for a multiplet ψ of Nf two-component spinor fields and the reducible ones have Lagrangian
(16) for a multiplet of Nr four-component reducible fields. There are several reasons for considering the
subclass of reducible Thirring models. First and most important, most applications in condensed matter
physics deal with Dirac-type materials where naturally one is lead to the parity-invariant reducible models.
The most prominent example is of course graphene, where low-energy electronic excitations exhibit a
linear dispersion around two Dirac points in the first Brillouin zone. Second, most results in the literature
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are obtained for the reducible systems, and for an ease of comparison we consider such systems as well.
The reducible systems are obtained by a torus-reduction of four-dimensional interacting Fermi systems.

The reducible models have no sign problem. For example, for one reducible flavor Ψ the fermion
determinant of Dred

m in

Lred = Ψ̄Dred
m Ψ + 1

2g2 vµv
µ, Dred

m =
(
Dm 0
0 −D−m

)
(23)

is det(m2−D2
0) > 0, since D0 = Dm=0 defined in (21) is anti-hermitean. Note that the massive reducible

model with Nr flavors is not equivalent to the irreducible model with 2Nr flavors. The two irreducible
flavors have opposite mass and this explains why there is no breaking of parity in the reducible model.
Only in the limit m → 0 are the two models equivalent. The passage from one to the other involves a
relative rotations of the two irreducible flavors which combine to a reducible flavor such that

Dred
0 7→

(
D0 0
0 D0

)
. (24)

At the same time the chiral condensate of one formulation transforms into the staggered condensate in
the other

〈Ψ̄Ψ〉 = 〈ψ̄1ψ1〉 − 〈ψ̄2ψ2〉 , (25)
and vice versa.

3.1 Small and large-Nf limit
Integrating over the fermion fields in the (euclidean) functional integral with Lagrangian (20) yields

Z =
∫
Dvµ e−NfSeff [vµ], Seff = 1

2g2

∫
d3x v2

µ −
1
2 log det(−D2

m) . (26)

In the large-Nf limit the absolute minimum of Seff dominates the path integral such that the free energy
per flavor simplifies considerably,

F = − 1
βNf

logZ Nf→∞−→ 1
β

min
vµ

Seff [vµ] . (27)

The Euler-Lagrange equation for Seff is just the gap equation which determines the minimizing field vµ.
For a translation-invariant equilibrium state the minimizing field is homogeneous and for a constant vµ
the eigenvalues of D0 come in pairs ±λ which implies

det(−D2
m) = det(Dred

m ) . (28)

This means that in the large-Nf limit the irreducible and the parity invariant reducible systems are
identical, or that the irreducible models do not break parity. This observation is supported by an explicit
calculation of the free energy density (effective potential)

Ueff = F

V
= 1

2g2
ren
vµv

µ + U free(T,m2), g2 = 4πg2
ren

4π + Λg2
ren

, (29)

where Λ is the momentum cutoff. Besides the free energy density of the free Fermi gas one only gets a
renormalization of the Thirring coupling. The parity condensate is obtained by differentiating Ueff with
respect to the trigger mass m. Since the derivative does not depend on the auxiliary field we conclude

〈ψ̄ψ〉 = ∂

∂m
Ufree

m→0−→ 0, Nf →∞ . (30)

Thus there is no parity condensate for a large number of flavors.
In the other limit Nf = 1 the Thirring model is equivalent to the 3-dimensional Gross-Neveu model,

see section 2.4, and the latter shows spontaneous breaking of parity [7]. Thus we have

〈ψ̄ψ〉 6= 0, Nf = 1 . (31)

Since parity is broken for Nf = 1 and unbroken for Nf → ∞ we must conclude that there exists a
critical flavor number Ncrit

f separating the systems with symmetry breaking from those without symmetry
breaking.
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For reasons explained above the parity invariant reducible models are of particular interest. In the
limit Nf → ∞ they are identical to the irreducible Thirring models. Since the parity breaking model
with one irreducible flavor is not in the class of reducible models - formally it has 0.5 reducible flavors –
there is no compelling argument that there must exist a critical flavor number Ncrit

r within the class of
reducible models.

First investigations of Thirring models with Schwinger-Dyson equations, partly in combination with a
large-Nf expansion, date back to the nineties of the last century. In Table 1 we collected values for the
critical flavor numbers Ncrit

f and Ncrit
r obtained with Schwinger-Dyson (SD) equations or expansions in

1/Nf , a Gaussian ansatz for the state of interest in the Schrödinger picture, the functional renormalization
group (FRG) and dedicated lattice simulations.

Table 1: Critical flavor numbers Ncrit
f and Ncrit

r . SD means Schwinger-Dyson and FRG functional
renormalization group. For example, SD-equations predicted that for Nf = 1, 2, 3
there is a parity condensate 〈ψ̄ψ〉 and simulations with staggered fermions that for
Nr = 1, 2, . . . , 6 there is a condensate 〈Ψ̄Ψ〉.

method Ncrit
f Ncrit

r references years

SD equations 6.48 3.24 [8] 1991
∞ [9] 1994

4.32 [10, 11] 1995, 1997

1/Nf -expansion 2.00 [12] 1995
< 3 [13] 1998

Gaussian approximation ∞ ∞ [14] 1994

FRG 5.1 [15] 2012
/ 2 [16] 2019

lattice (staggered) (4 . . . 6) [17, 18] 1997, 1999
6.61 [19, 20] 1999, 2007

lattice (slac) / 9 odd 0.80 [21, 22] 2017, 2019

lattice (domain wall) (1 . . . 2) [23, 24] 2018, 2020

Early lattice studies were performed with light staggered fermions to recover the chiral symmetry in
the continuum limit. With the help of an HMC algorithm, simulations with an even Nr and subsequently
with non-integer Nr have been presented in [18, 19]. In a subsequent lattice study [20] with a similar
setup, the authors concluded that the critical flavor number is Ncrit

r = 6.6(1).
More recent analytic studies as well as simulations with massless SLAC fermions yield different results

– they favor smaller values of Ncrit
r . Lattice models with these chiral fermions have the same internal

symmetries as the continuum models. It was demonstrated, that the U(2Nr) symmetry of the reducible
model is never broken for any integer number of 4-component flavors [21]. In a subsequent publication
the critical flavor number Ncrit

r = 0.80(4) has been calculated [22]. Irreducible Thirring models with an
odd number of flavors behave differently from the reducible models. The former show a parity broken
phase for Nf / 9.

Independent simulations with 4-component domain-wall fermions (DWF), in which one adds an extra
dimension to the Dirac operator, pointed to a critical flavor number Ncrit

r below 2 [23] . In a follow-up
publication with DWF it was demonstrated, that the model with Nr = 1 shows a phase transition with
order parameter [24], implying that 1 < Ncrit

r < 2. The discrepancy of the results obtained with SLAC and
DW fermions may be due to uncertainties in the extrapolation to an infinite domain-wall separation. In
[24] it was speculated that the two lattice approaches describe different continuum theories, and that the
bulk DWF formulation more closely conforms to a picture of the strong dynamics in which the auxiliary
vector field resembles a gauge field.
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4 Lattice simulations with chiral SLAC derivative
In our simulations we use the chiral and non-local SLAC-derivative on a hypercubic lattice. The SLAC
fermions have been used with great success to

1. calculate the critical coupling of φ4
2-theory to high precision [25],

2. obtain an accurate value for the step scaling function in the two-dimensional nonlinear O(3) model
[26],

3. calculate Ward-identities, the ground state structure, low-lying masses and the breaking or restora-
tion of supersymmetry in low-dimensional supersymmetric Wess-Zumino models [27, 28, 25],

4. find accurate values for the critical exponents of GN model [29, 30],

5. discover inhomogeneous structures in the multi-flavor Z2 and U(1) Gross-Neveu models [31, 32].

Lattice models with SLAC fermions have various advantages. In the present context the most relevant
one is that they inherit all global inner symmetries and discrete space-times symmetries of the contin-
uum models. For example, the reducible lattice Thirring model in three dimensions is invariant under
U(2Nr) chiral transformations and Z2-parity. The lattice derivative ∂slac

µ is anti-hermitean such that
i/∂ is hermitean. This property is used to prove that certain fermion operators have no sign problem.
Furthermore, the auxiliary field vµ in Dm is a non-compact site variable and not a link variable as in
some other lattice formulations. A further advance is that the Dirac operator has no doublers, and no
rooting is necessary to describe systems with a small flavor number. Last but not least SLAC lattice
fermions are cheap compared to local chiral fermions.

It is well-known that the non-local SLAC derivative leads to problems in lattice gauge theories [33].
Indeed, when the ordinary lattice derivative ∂ is replaced by a covariant derivative D, then one can
perform a local gauge transformation which does not change the action but sends the canonical momentum
p = i∂ to the edge of the Briolloin zone, where p jumps. In case a complete gauge fixing is available
(because of the Gribov-problem such a fixing will not be continuous) the problem with the discontinuous
dispersion relation may be overcome. This has been demonstrated in lower-dimensional supersymmetric
gauge models [34].

4.1 SLAC derivative2

To find the SLAC derivative on a finite lattice one first Fourier-transforms a wave function, multiplies the
transformed wave function with the momentum and transforms back to coordinate space. In the spatial
directions we impose periodic boundary conditions for which the momenta p` are from 2πZ/Ns. In the
time-direction we impose anti-periodic boundary conditions for which the momenta are from 2π(Z+ 1

2 )/Nt.
We choose the N momenta p` symmetric to the origin, such that the edge of the Brillouin zone has
maximal distance from the pole of the propagator. As a result we need an odd number of momenta and
hence an odd number Ns of lattice points in the spatial directions, and an even number Nt of lattice
points in the time-direction,

p ∈ {p`|` = 1, . . . , N}, p` = 2π
N

(
`− N+1

2
)
, (32)

x ∈ {xk|k = 1, . . . , N}, xk = 2π
N

(
k − N+1

2
)
, (33)

with N = Ns odd in the space-directions and N = Nt even in the time-direction. The anti-symmetric
and real lattice derivative in a given direction takes the form

〈x|∂slac|x′〉 = ∂slac
x−x′ =

{
0 x = x′ ,

π
Ns

(−)k−k
′

sin(x−x′)/2 x 6= x′ ,
(34)

where x = xk and x′ = xk′ are sites on the lattice defined in (33).
For finite-temperature systems in 2 spatial dimensions the SLAC derivatives ∂slac

µ take the form

∂slac
0,ξ = ∂slac

ξ0 δξ1δξ2 , ∂slac
1,ξ = δξ0∂

slac
ξ1 δξ2 , ∂slac

2,ξ = δξ0δξ1∂
slac
ξ2 , (35)

where we abbreviated δξ1 ≡ δ0ξ1 .
2In the published version (Symmetry 14 (2022) 333) the SLAC derivative for anti-periodic BC is incorret.

7



Below we shall present the results of simulations at low temperature on a N × (N − 1)2 lattices with
N = 8, 12, 16, 24. In the simulations we used pseudo-fermions and the rational HMC-algorithm with
operator (

det(D†0D0)Nf/2NPF
)NPF

, NPF ≈ 2Nf . (36)

The inverse of the shifted operator enters the rational approximation based on a multi-mass conjugate
gradient (CG) solver. During the CG iterations the derivative is applied many times to a pseudo-fermion
field. Thereby we make use of a special property of the SLAC derivative: It is diagonal in momentum
space, such that

(Dmψ)(x) = F−1
[
i/pF [ψ](p)

]
(x) +

(
iγµvµ(x) +m

)
ψ(x) , (37)

where F denotes the Fourier transformation. Instead of using a three-dimensional (parallelized) Fourier
transformation, we apply one-dimensional Fourier transformations that are computed in parallel.

To estimate fermion propagators we used Nest ≈ 200Nf stochastic estimators. For most measurements
we generated approximately 5000 configurations. We estimated the finite size corrections and checked
that they are under control.

For the models with Nr ∈ [0.5, 1.1] we used the parity-even extensions to non-integer Nr. More precisely,
after integrating out the fermions we arrive at the effective action (26) in which Nr is only a prefactor.
We then continue Nr ∈ N to real values. This formal procedure is similar to other studies where Nr
only appears as a parameter but we should stress that for Nr /∈ N such a definition most likely does not
describe a local quantum field theory in the continuum. In particular, reducible models with half-integer
Nr obtained via this procedure need not be equivalent to irreducible models with integer Nf = 2Nr.

5 Dual formulation and effective potentials
Similarly as in the fermion bag algorithm of Chandrasekharan [35], one can integrate out the interaction
part of the partition sum to obtain a formulation in terms of new spin like variables kabx i ∈ {0, 1}, where
i relates to the spinor degree of freedom and a, b to the flavor degree of freedom [29, 36]. For non-
local SLAC-fermions the dual formulation is a bit more involved than for ultra-local staggered fermions.
Actually, it is advantageous to use the Fierz-identity (19) and bosonize the resulting four-Fermi theory.
For m = 0 this yields the tensor-scalar formulation

L = Ψ̄(i/∂ + iT + iφ)Ψ + Nf

4g2 trT 2 + Nf

2g2φ
2, T † = T, φ ∈ R , (38)

which is equivalent to the vector formulation of the Thirring model. Differentiating the Boltzmann factor
with respect to the components of the tensor field Tab yields the Dyson-Schwinger equations

〈Tab〉 ∝ 〈ψ̄aψb〉 . (39)

Since T transforms under chiral rotations as T → UTU†, the expectation value 〈Tab〉 serves as an order
parameter for chiral symmetry. In the scalar-tensor formulation we can probe for condensates in all
channels represented by Tab. For example a parity breaking condensate, a chirality breaking condensate
or a non-time-reversal invariant Haldane-term [37]. Unfortunately this formulation has a severe sign
problem and cannot be used directly in simulations. But exploiting its dual formulation we are able to
express various quantities of interest, for example coefficients in the expansion of the effective potential,
to expectation values in the sign-problem free vector formulation.

5.1 Effective potential versus condensates
The expectation value 〈Tab〉 can be diagonalized by a chiral rotation and it suffices to calculate the
effective potential (denoted by V to distinguish it from the effective potential in the vector formulation)
on diagonal order parameters 〈T 〉 = tiH

i, where {Hi} forms a basis of the space of diagonal hermitean
matrices,

V (〈Tab〉) = V (t) = − 1
V

log
2Nf∑
n=0

Nf∑
i=1

an,i (ti)n . (40)

With the help of the dual formulation one proves that the coefficients an,i are given by expectation values
of powers of fermion bilinears and these expectation values can be calculated in the vector formulation.
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The minima of V are attained for fields

〈T 〉min = 2x
Nf

diag
(

1, . . . , 1︸ ︷︷ ︸
n+

,−1, . . . ,−1︸ ︷︷ ︸
n−

)
, n+ ≥ n− , (41)

where permutations of the diagonal elements lead to equivalent minima. The physically distinct ones are
characterized by the amplitude x and by

n = n+ − n− =
{

0, 2, 4, . . . , Nf , for Nf even ,
1, 3, 5, . . . , Nf for Nf , odd .

(42)

An order parameter (41) with x > 0 gives rise to the symmetry breaking pattern

U(Nf)⊗ Z2 → U(n+)⊗ U(n−) , (43)

which is different for an odd and an even number of irreducible flavors. For example, for three and four
flavors we find

Nf = 4 : (n, n+, n−) ∈ {(0, 2, 2), (2, 3, 1), (4, 4, 0)} , (44)
Nf = 5 : (n, n+, n−) ∈ {(1, 3, 2), (3, 4, 1), (5, 5, 0)} . (45)

Only reducible models with even Nf = 2Nr permit a symmetry breaking with n = 0, in which case
U(2Nr) breaks to U(Nr) × U(Nr). This breaking is induced by a staggered condensate

∑
(−1)aψ̄aψa,

which corresponds to a chiral condensate Ψ̄Ψ (and not the Haldane mass) in the reducible formulation,
see eq. (25). In this channel the broken system is parity invariant. In Figure 1 the potentials for Nf = 4
and the three feasible breaking patterns in (44) are depicted. The left panel shows the analytic results in
the strong coupling limit whereas the right panel shows the results of simulations on a 16×15×15-lattice
with inverse coupling λ = Nf/2g2 = 0.118.

Figure 1: Effective potential for the three channels of the Thirring model with Nr = 2 or equiv-
alently Nf = 4 flavors. Left panel: strong coupling limit. Right panel: simulation on
a lattice with N = 16 and inverse coupling λ = 0.118. Figures taken from [21] .

We see that in all three channels the minimum of the effective potential is at 〈T 〉 = 0. Thus we
do not observe spontaneous symmetry breaking (SSB) for the given λ and on the chosen lattice. With
increasing inverse coupling λ the minima at the origin get more pronounced and the only way to see SSB
is to decrease λ. We shall see below, that for all admitted values of λ we see no SSB in the reducible
models.

For an odd number of irreducible flavors the situation looks differently. Figure 2 shows the effective
potentials in the three channels (45) available for Nf = 5. Again the result in the strong coupling limit
is shown in the left panel and the simulation results for λ = 0.102 in the right panel. We observe that
a condensate 〈T 〉 with n = 5 forms. This condensate does not break the chiral symmetry U(5) but it
breaks parity. If one decreases the coupling g2 then one observes a transition into the symmetric phase.

An interesting observable in this context is the lattice filling factor

k = 1
2V Nf

2∑
i=1

Nf∑
a,b=1

V∑
x=1

kabxi ∈ [0, 1] , (46)
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Figure 2: Effective potential for the three channels of the Thirring model with Nf = 5 irreducible
flavors. Left panel: strong coupling limit. Right panel: simulation on a lattice with
N = 16 and inverse coupling λ = 0.102. Figures taken from [21].

which relates to the number of states occupied by the interaction on a lattice site – a natural variable
in the dual formulation. It counts how many fermions take part in the non-trivial interaction. In the
weak coupling limit λ → ∞ the filling factor vanishes and in the strong coupling limit λ → 0 it is one.
It cannot exceed the value k = 1 because of Pauli-blocking on every site. On the left in Figure 3 we
depicted the average lattice filling factor, given by a 4-Fermi correlation function

〈k〉 = − 1
2Nf

λ

V

Ż(λ)
Z(λ) + c = 1

4Nfλ
〈jµjµ〉+ c , (47)

for Thirring models with flavor number between 2 and 11 and lattice sizes N = 8, 12 and 16. We see
clearly that at strong couplings λ / λ∗ the systems are in a lattice-artifact phase dominated by Pauli
blocking. We also see that the average filling factor does not suffer much from finite size corrections, in
particular in the strong coupling region.

Figure 3: Left: average lattice filling factor (47) on three lattices for every flavor between 2 and
11. Right: With increasing lattice size a singularity of the susceptibility (48) builds
up, here for 2 irreducible flavors. Figures taken from [21].

The susceptibility associated with k is given by a 8-Fermi correlation function,

∂λ〈k〉 = − 1
16Nfλ3

∑
x

〈
(jµjµ)(x)(jµjµ)(0)

〉
c

+ c− 〈k〉
λ

, (48)

and its dependence on λ is seen in the right panel of Figure 3 for the model with Nf = 2 on three different
lattice sizes. The dip of the susceptibility increases with the lattice size and this points to a transition
from a strong-coupling lattice artifact phase to a phase which connects to continuum physics.
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5.2 Spontaneous symmetry breaking of parity for odd Nf ≤ Ncrit
f

For odd Nf the approximate critical coupling λ∗ on lattices with N = 8, 12 and 16 are listed in Table 2.
A critical coupling λc of a transition, where a condensate forms, must be larger than λ∗ to stay away

Table 2: The critical couplings λ∗ separating the artifact phase and physical phase for three
lattice sizes and the Thirring lattice models with an odd number of flavors.

N Nf = 3 5 7 9 11

8 λ∗ = 0.158(4) 0.098(2) 0.073(2) 0.058(2) 0.048(2)
12 λ∗ = 0.149(4) 0.094(3) 0.068(2) 0.054(2) 0.046(2)
16 λ∗ = 0.146(4) 0.091(2) 0.068(2) 0.054(2) 0.046(2)

from the artifact phase. We have seen earlier that if a condensate forms, then it is the parity-breaking
condensate with n = Nf . This means that for odd Nf the system is either in the symmetric phase
or develops a condensate which does not break chiral symmetry but only parity. Figure 4 shows the
curvature κ of the effective potential in the direction with n = Nf as function of the inverse coupling.
The bars show the estimated infinite volume extrapolation of λ∗, such that only values to the right to
these bars are in the phase which connects to continuum physics. For example, for Nf = 3 the effective
potential becomes unstable against condensation of 〈ψ̄aψb〉 ∝ δab at the inverse coupling λc ≈ 0.172, well
outside of the lattice artifact phase at strong couplings λ / λ∗ ≈ 0.145.

Figure 4: The curvature κ of the effective potentials at the origin is shown for odd Nf . The
curvature is taken in the channel with n = 0, since in the other channels the curvature
is larger. Figure taken from [21].

We observe a similar instability against condensation for all odd flavor numbers between 1 ≤ Nf ≤ 9.
Actually we are not sure that parity is broken for Nf = 9, since the critical couplings λ∗ = 0.51 and
λc = 0.53, measured on a lattice with N = 20, are almost identical. But our simulations clearly reveal
that there is no broken phase for Nf ≥ 11 and there is a broken phase for Nf ≤ 7. The critical flavor
number Ncrit

f ≈ 9 for two-component flavors corresponds to a critical flavor number Ncrit
r ≈ 4.5 for

four-component flavors and thus is in good agreement with some of the earlier results in Table 1.

5.3 Special case: Nf = 1
While the models with even Nf have no sign problem, we found numerically that a possible sign problem
for odd Nf is extremely mild (not observed in our ensembles) for all Nf ≥ 3. Only the irreducible
single-flavor Thirring model has a severe sign problem that hinders a direct simulation.

In order to still perform simulations, we formulated a fermion-bag-like algorithm: Starting from the
bosonized Fierz-transformed formulation (22), one expands the Boltzmann factor in powers of the Yukawa

11



interaction

Z =
∫
DσDψDψ̄ e−S0[ψ]−λ

∑
σ2
x

∏
x,i

1∑
kxi=0

(
−σxψ̄ixψix

)kxi
kxi!

, (49)

where S0 is the lattice action of free SLAC fermions and for simplicity we already set m = 0. The
coefficient λ = 1/6g2 of σ2 is different from the coefficient λ of vµvµ in subsections 5.1 and 5.2. The
product and sum combine into one large sum over sets of occupation number variables kxi which only
assume the values 0 and 1 due to the Grassmann nature of ψ and ψ̄. Now, one can see that whenever
kxi = 1 the Berezin integrals over ψix and ψ̄ix are saturated by the Yukawa term. The kinetic term must,
hence, contribute trivially which is equivalent to removing the rows and columns (x, i) from /∂. The
remaining fermionic and bosonic integrals decouple leaving a fermion determinant and a bosonic weight
factor

Z =
∑
{kx}

(−1)kV w(k) det i/∂[{kx}] , (50)

where /∂[{kx}] denotes the reduced fermion operator, the lattice filling factor k has been defined in (46)
and

w(k) =
(√

λ

π

∫
dσ σ2e−λσ

2

)kV
. (51)

One should note that the bosonic integral over σx vanishes whenever kx1 6= kx2. Thus, we used the
notation kx ≡ kx1 = kx2. This result is similar to the fermion bag algorithm [35] with the notable
difference that we do not find ”bags” in the sense of connected clusters due to the non-local nature of
chiral SLAC fermions.3

In order to generate the Markov chain, we use simple Metropolis updates starting from the completely
filled lattice with det i/∂[{1, . . . , 1}] = 1. However, we found that flipping a single kx often yields config-
urations of vanishing weight such that we also propose simultaneous flips of two kx. To speed up the
updates of the fermion determinant, we employ a combination of matrix determinant lemmas and the
Sherman-Morrison-Woodbury formula.

While we can prove that det i/∂[{kx}] is real and positive [36], the sign factor (−1)kV remains problem-
atic. But we found numerically that

〈k〉 = 1
Z

∑
{kx}

k (−1)kV w(k) det i/∂[{kx}] (52)

does not suffer the usual increase in variance and instead yields a reliable signal. This expectation
value enters the expression for the local effective potential Vloc. The latter characterized the distribution
function exp(−Vloc) of σx and yields the partition function,

Z =
∫

dσx e−Vloc(σx) (53)

for an arbitrary x. Due to translational symmetry we assume that the distribution of σx is independent
of x. The potential has the form

Vloc(σx) = λσ2
x + ln

(
a0 + a2σ

2
x

)
, (54)

wherein the coefficients are related in a straightforward way to expectation values of moments of k. One
should stress that Vloc is not quite the standard constraint effective potential. But as it describes the
statistics of the local order parameter, we expect it to accurately describe the physics of the system.

Using the (positive) position of the minimum of the local effective potential as an order parameter,
a detailed study of the system was performed in [36]. Here, we collect the main results: The critical
coupling was found to be

λc =
{

0.3804(3) from the condensate,
0.3813(3) from the susceptibility.

(55)

The condensate and susceptibility critical exponents are given as

β = 0.406(8), γ = 1.1(3). (56)
3A much more detailed derivation of these formulae can be found in [36].
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The transition to the lattice artifact phase was also analyzed. It occurred at

λ∗ = 0.32838(9). (57)

There, the data was consistent with a second order phase transition which is different from the behavior
of even flavors. However, one should note that its equivalence to the single-flavor GN model might render
the Nf = 1 Thirring model a special case.

5.4 No spontaneous symmetry breaking for any even Nf or Nr ≥ 1
For Thirring models with even Nf – these are equivalent to reducible models with Nr = 1

2Nf – the
situation is quite different. Figure 5 shows the curvature κ of the effective potential V at the origin in the
different channels for 2 and 4 irreducible flavors. We see that for all λ ≥ λ∗ the curvatures are positive
such that no condensate can form in the phase which connects to continuum physics. This striking result
will be further substantiated in the following sections.
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Figure 5: The curvatures κ of the effective potentials in the channels labelled by the integer
n defined in (42). Left: Thirring model with Nf = 2. Right: Thirring model with
Nf = 4. The horizontal lines are the results of the strong coupling limits.

6 Banks-Casher relations
The effective action of the massive reducible Thirring models with Nf = 2Nr reads

Seff = 1
2g2

∫
d3x vµvµ − ln det

(
m2 −D2

0
)
, (58)

where D0 has been introduced below (23). It is used to investigate the parity-invariant condensate of the
reducible models in the channel with n = 0, in which the symmetry U(2Nr) breaks to U(Nr)×U(Nr) and
in which the effective potential has minimal curvature. The parity-even condensate is

Σ = 1
V

1
Z

∫
Dvµ tr

(
m

m2 −D2
0

)
e−NfSeff(v)

= 2m
V

∫ ∞
0

dE
m2 + E2 ρ̄(E) (59)

and it contains the average spectral density ρ̄, defined by

ρ̄(E) = 1
Z

∫
Dvµ e−NfSeff(v)ρv(E) . (60)

The spectral density of the Dirac operator iD0 for a fixed vµ is defined by

tr f(iD0) =
∫ ∞
−∞

dE f(E)ρv(E) . (61)
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The relation (59) implies that the condensate Σ vanishes for m→ 0 in case the integral over E is finite.
A condensate forms for small m if the integral is proportional to 1/m. This happens when for a typical
configuration there is an abundance of low-lying eigenvalues of −D2

0. This is the content of the celebrated
Banks-Casher relation which states that in the infinite volume limit the condensate is proportional to
ρ̄(0). Figure 6 shows the average spectral densities for Nr = 1 (left panel) and for Nr = 0.8 (right
panel). Whereas small eigenvalues accumulate for the smaller flavor number this does not happen for one
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Figure 6: The average spectral density ρ̄ of the Dirac operator for 1 reducible flavor (left panel)
and for 0.8 reducible flavors (right panel) [22].

reducible flavor. This clearly indicates that there is no spontaneous breaking of the chiral symmetry in
all reducible Thirring models with Nr ≥ 1, in contrast to many previous studies. It also shows that there
is a condensation of small eigenvalues for Nr = 0.8.

The next step beyond using the Banks–Casher relation could be to exploit the (for non-Abelian gauge
theories) well-established link between chiral properties and chiral random matrix theory (cRMT) which
describes universal statistical properties of low-lying eigenvalues of the Dirac operator [38]. The con-
straints imposed by chiral symmetry and its spontaneous breaking determine the structure of low-energy
effective partition function. The RMT allows for a determination of the chiral condensate from simula-
tions at finite volume (and nonzero lattice constant a). For SLAC fermions, the lattice Dirac operator
for SLAC fermions is hermitean and in a possible broken phase the statistical properties of the low-lying
Dirac eigenvalues would be determined by the chiral condensate. In future studies it should be interesting
to compare the distribution of individual eigenvalues or the spacing between them to RMT prediction to
arrive at more stable infinite volume extrapolations—both for the breaking of parity in the irreducible
models and the breaking of ’chirality’ in the reducible ones.

7 Spectrum of low-lying states
If the U(2Nr)-symmetry were spontaneously broken, the particle spectrum would reveal the existence of
Goldstone modes. In formulations with domain wall fermions the analysis of the spectrum indicates SSB
for Nr = 1. This is in conflict with the results obtained with the effective potential and spectral density
for chiral SLAC fermions, which clearly show that Ncrit

r < 1.
To clarify the situations for Nr ≈ 1 we study the spectrum of light mesons. The four interpolating

operators are
Oa(x) = ψ̄(x)(σa ⊗ σ0)ψ(x), Oa(t) =

∑
x

Oa(t,x ), 0 ≤ a ≤ 3 , (62)

where σ0 = 12 and σ1, σ2, σ3 are the Pauli-matrices and we use the reducible formulation (23) of the
Thirring models. Then the expectation values ofO3 andO0 are identified as chiral and parity condensates.
The latter vanishes in the parity-invariant reducible models. The correlation matrix of the interpolating
operators is diagonal, Cab(t) = 〈Oa(t)Ob(t)〉c = Ca(t)δab, and is used to extract the masses of the light
mesons. One can show that the C1 and C2 are equal. If the symmetry U(2) is not broken, then we
should see a singlet and triplet of U(2) in the spectrum. The correlation functions C1, C2, C3 belong to
this triplet. On the other hand, if U(2) is spontaneously broken to U(1)⊗ U(1), then we should detect
two Goldstone bosons, related to the interpolating operators O1 and O2.
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Figure 7: The correlation functions C0, C1, C2 and C3 of the interpolating operators for the low-
lying mesons on lattice of various sizes. On the left for Nr = 1 and on the right for
Nr = 0.8 [22].

From the correlation functions on a relatively small lattice with N = 12 and a larger lattice with
N = 16 we extracted the masses given in Table 3. We see that for Nr = 1.0 the masses extracted from
C1,2 and C3 are comparable. They belong to the expected triplet in the symmetric phase. On the other
hand, for Nf = 0.8 we do not see such a triplet. Only m1 and m2 are degenerate and they are identified
as Goldstone particles. In the broken phase the correlation function C0 falls off rapidly and we cannot
extract a reliable value for the mass on the relatively small lattices considered. Hence this mass is missing
in the broken phase in the Table. As earlier we conclude that the critical flavor number Ncrit

r is smaller
than 1. But we also conclude that it is larger than 0.8.

Table 3: Masses of the lightest mesons on two lattices for Nr = 1.0 and 0.8 reducible flavors.
C m(12) m(16) Nr Symm.

C0 0.21(2) 0.21(2) 1.0
C1,2 0.134(3) 0.128(2) 1.0 U(2)
C3 0.138(2) 0.131(2) 1.0

C1,2 0.103(2) 0.095(3) 0.8 U(1)× U(1)
C3 0.109(4) 0.127(7) 0.8

8 Estimating the critical flavor number Ncrit
r

To extract a reliable estimate for Ncrit
r we performed a detailed finite size analysis of the susceptibility,

∂λ〈k〉 in (48) on a grid of Nr-values between 0.5 and 1.0. The simulation results reveal two dips of the
susceptibility for all Nr ' 0.78. Three examples are depicted in Figure 8, left panel. The dips become
more pronounced with increasing system size, as seen in the same Figure on the right. The dip at stronger
coupling belongs to the transition into the lattice artifact phase discussed above. More interestingly, we
see a second dip at weaker coupling (larger λ). Most likely it points to a phase transition without order
parameter.

The positions of the susceptibility dips on a fine grid in the (λ,Nr)-plane near Nr ≈ 1 are calculated
with an expensive scan of the susceptibility as function of the inverse coupling λ. The resulting phase
transition lines of the (probably first order) ubiquitous lattice artifact transitions and of the (probably
smooth) new transitions for all Nr ' 0.78(4) are depicted in Figure 9. If this interpretation is correct
– further studies are needed to answer this question – then one could construct a continuum limit at a
transition without order parameter. Since there is no transition with order parameter for all reducible
lattice Thirring models with Nr ≥ 1, such an unusual transition is needed to relate the lattice models to
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continuum physics. Transitions without local order parameter have been reported previously in strongly
coupled Fermi systems [39]. For unrealistically small Nr / 0.76 there is one phase transition with order
parameter. Actually, in [22] the maximum of the parity-invariant condensate has been measured and the
results show clearly that a condensate forms at these small Nr.

9 Summary
In this paper, we reviewed our current knowledge about spontaneous symmetry breaking in 1+2D Thirring
models. For odd irreducible flavor numbers, these models spontaneously break parity symmetry below

N crit
f ≈ 9. (63)

For Nf = 1, previously unpublished values from [36] for the critical couplings and critical exponents where
given in (55) and (56).

We have collected strong evidence that the critical flavor number of the reducible Thirring models is
below Nr = 1. We calculated the spectral density, the spectrum of scalar and pseudo-scalar mesons as
function of the flavor number Nr between 0.5 and 1.0 and the maximum of the chiral condensate [21, 22].
As a result we find a critical flavor number

Ncrit
r = 0.80(4) . (64)

In particular, we spotted two Goldstone bosons only for Nr ≤ Ncrit
r . Since a non-integer value of Nr

probably does not describe a local quantum field theory, we conclude that there is no SSB in all reducible
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Thirring models. The critical value extracted from a combined analysis of all available data is a bit
higher than the value 0.78 extracted from the susceptibility alone, but the two values 0.80 and 0.78 are
compatible within the quoted statistical errors.

Simulations based on DWF with a large extra dimension spot a second order phase transition for one
reducible flavor. From a fit to the equation of state the critical exponents δ = 4.17(5) and η = 0.320(5)
have been estimated [40]. Similar values have been extracted by the same authors in a previous study [24].
With DWF a bilinear condensate forms at the transition, in contrast to the results obtained with chiral
SLAC fermions. On the other hand, in simulations with DWF no transition without order parameter,
as monitored by the fermionic 8-point function in Figure 8, is reported. With ongoing simulations this
issue will hopefully be settled in the near future.

To correctly interpret the lattice results one must stay away from the lattice-artifact phase which in
the dual formulation is well understood: as for gauge theories at large chemical potential there is Pauli-
blocking on the lattice sites if the Thirring coupling exceeds a critical value. Our results are based on
dedicated simulations with chiral SLAC fermions which respect all global inner symmetries and discrete
space-time symmetries, such that there is no doubt that the lattice models represent the Thirring models
in the continuum. One of the most pressing problem is the nature of the newly found (probably second
order) phase transition without order parameter. We hope to report on this issue in a future work.
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