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We consider the two-dimensional N = (2,2) WessZumino model with a aubic superpotential at wegk and
intermediate cougings. Refined algorithms alow for the extradion o reliable masss in a region where per-
turbation theory no longer applies. We scrutinize the Nicolal i mprovement program which is suppcsed to guar-
anteelattice supersymmetry and compare the results for ordinary and nonstandard Wil son fermions with thase
for SLAC derivatives. It turns out that this improvement completely fails to enhance simulations for Wilson
fermions and orly leals to better results for SLAC fermions. Furthermore, even without improvement terms
the models with all threefermion spedes reproduce the corred values for the fermion masses in the continuum

limit.
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I. INTRODUCTION

Supersymmetric models have drawn much attention ower the
past decales. In particular, supersymmetric extensions of the
standard model have become a primary reseach topic for
model building. The alditional symmetry of these models
proves to be avery useful tod for the study o their pertur-
bative and nonperturbative aspeds. It is notoriously compli-
caed to chedk and extend the predictions made by supersym-
metry in astrongcoupingregimewhere standard perturbation
nolonger applies.

At the same time, lattice smulations of quantum field the-
ories have been very succesdul in an incressing number of
applicdions. In sometheories, it is possbleto match numeric
results at week coupingto perturbative continuum results; at
stronger cougding, lattice simulations are often the only vi-
able way to investigate non-perturbative properties of the the-
ories. As nonperturbative ef eds are automaticaly taken into
acour, it is desirable to apply the lattice gproach also to
supersymmetric theories. This has been the subjed of anum-
ber of pubicaions, seg e.g., [1, 2] and references therein.
There ae anumber of challenges with resped to this goal
sinceit iswell known that full supersymmetry can na be re-
alized in a generic lattice model. The reason for this can be
traced badk to the fail ure of the Leibniz rule onthe lattice[3].
The full supersymmetry can only be recovered in the limit of
vanishing lattice spadng (continuum limit); but only in some
cases, the condtions for such a restoration are under control.
E.g., it has been shown that even in supersymmetric quantum
mechanics the naive discretization dces not lead to a super-
symmetric continuum limit [4]; genericdly, such alimit can
at best be adieved by finetuning the bare coefficients of all
supersymmetry-breskingcournterterms[5]. This, however, re-
quires much knowledge of the theory in advance. In some
cases the relevant operators can be determined perturbatively,
cf. [6]. A posshle way beyond perturbation theory is the
application o a blocking transfromation as in [7] for a free
theory. This may leal to a solution similar to the Ginsparg-
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Wilsonrelationfor the chiral symmetry [8].

It is posgble to reduce the number of relevant operatorsin
the continuum limit if some symmetries of the cntinuum the-
ory are drealy redized in thelattice a¢ion. The standard lore
is that it is aufficient to redize just a part of the supersym-
metry onthe latticein order to ensure the crred continuum
limit. There have been many suggestions and numericd in-
vestigations with resped to such a partial redization o the
supersymmetry algebra on the lattice, e.g. [9] and [10]. An
elegant suggestion uses a Nicolai map [1]] to crede lattice
improvement terms that guarantee apartial redizaion o su-
persymmetry, cf. e.g. [12].

Numericd simulations of supersymmetric theoriesfacethe
further difficulty that bosons and fermions on the lattice
shoud be treaged on equal footing. This demands for dy-
namicd fermions; however, such ssimulations are notoriously
numericdly involved. Therefore, it is advisable to start with
low-dimensional theories in order to gain information about
the performance of the diff erent supersymmetric lattice for-
mulations. On the other hand, such dynamicd fermion sim-
ulations in low dimensions are interesting in their own right
becaise they alow for an explicit i nvestigation and improve-
ment of the correspondng knovn agorithms.

We have started the analysis of such low-dimensional mod-
elsin aprevious paper [13] with investigations of various|at-
ticeformulations of supersymmetric quantum medanics and
first tests of the two-dimensional WessZuminomodel at weak
couping. Herewe will extendthe analysis of the latter theory
using far more daborate numericd techniquesto read inter-
mediate to strong \alues of the couping. We ae ale to sim-
ulate the Wess Zumino model for amuch larger parameter re-
gionasinrelated previousworks[12] and[14]. Startingfrom
the standard hykrid Monte Carlo algorithm [15] we employ
a novel combination o algorithms involving bah a higher-
order [16] integration scheme and Fourier acceeration [17].
This entail s much better statistics in combination with larger
lattice sizes. These improvementslead to reliable new results
even at stronger coupingwhere considerable deviations from
perturbative predictions, e.g., for the masses of the supersym-
metric partners can be observed.

A further goal was a systematic study o the dfeds of the
above-mentioned improvement termsintroduced by the Nico-
lai map [12]. In this paper, we present the first explicit com-



parison o the models with and without such terms. It may
come as asurprisethat for Wilsonfermionsthe “improvement
term” even fail sto improvethe properties of the latticemodel.
Moreover, such terms introduce new complicaions and can
lead to urreliable numericd results.

In previous works [13, 18] it has been demonstrated that
lattice models based onthe SLAC derivative [19] and onthe
twisted Wilson formulation (as introduced in [13]) are par-
ticularly well-behaved as far as the continuum limit is con-
cerned. Even at large lattice spadng the continuum result is
approximated very well. In the aurrent simulation the SLAC
derivative again provesto be the best choicebecauseit allows
for much larger values of the mupging constant, and ory a
comparably coarse latticeis needed to extrad the corred con-
tinuum results. It isinteresting to nate that contrary to ared-
ization with Wil son fermions the improvement terms for the
SLAC derivativein fad lead to better numericd results.

The paper is organized as follows. We start out with a
short introduction o the different lattice redizations of the
two-dimensional N = 2 WessZumino model and the corre-
spondng improvement terms with their respedive lattice and
continuun symmetries. Then, we present the numericd re-
sults of our simulations; in particular, we compare the masses
of the supersymmetric partners as a measure for how well su-
persymmetry is redized onthe lattice A comparison o the
various models with the perturbative continuum prediction at
small er values of the dimensionlesscougingis the subjed of
Sedion Il C. At last, we turn spedal attention to the regime
of intermediate cougings where the measured masses differ
considerably from the one-loopresults.

Il. LATTICE MODELS
A. Supersymmetrically improved lattice actions

Thelatticemodelsunder consideration have been discussed at
lengthin [13]. Therefore, we shall only briefly recdl the def-
initions of the correspondnglattice ations. In terms of com-
plex coordinates z and z for the two-dimensional Euclidean
spacdime together with the correspondng hdomorphic and
anti-holomorphic differentials 9 and 0 the continuum adion
of the V' = 2 WessZumino model reads

Seont = / 2z (20000 + 5 W (@) + 9My) . (1)

The bosonic potential is given by the ésolute square of the
derivative of the holomorphic superpotential W () w.r.t. its
argument ¢ = @1 +ips. Apart from the standard kinetic term
for the (two-comporent) Dirac spinors, the Dirac operator M
contains a Yukawa acouging,

M =~*0+~0+W"P, +W P_. )

In (2) we have introdwced chiral projedors Py = (1 & ~3)
whichintheWeyl basiswith ! = 01,72 = —09, v3 = iy1y?
projed onto the upper and lower comporents of . In the
form (1) the adionis invariant under four red supercharges.

Taken together they satisfy the V' = (2, 2) superalgebra, and
it has been argued that at most one supersymmetry can be
preserved on the lattice [12]. With the help of the explic-
itly known form of the Nicolai map it is possble to construct
such alattice model straightforwardly. In terms of the Nico-
lai variable &, = 2(0p). + W, onthelattice, the discretized
WessZumino adion reads

S=13 L&+ veMuythy. ©)
T x,y

Here, W, istaken to be the lattice murterpart of the contin-
uum operator W' (y), i.e. W, = W'(p,). The matrix M is

given by
5 06, 0%,
M,, = (W”” 28"“’”) = | %% %% @)
vy = w ) e o |-
20, W) "\ %2 2

Werequire dl | atticediff erenceoperatorsto be antisymmetric,
Ozy = —0y.. From the seoondequeality in (4) we can read off
that W, := 0W, /0yp,.

One eaily chedksthat (3) is invariant under the following
(supersymmetry) variation,

61;1,.1 = _%
67])2@ = 7%5&057

In terms of the origina fields, (3) takes the form

z€, 51/}1,73 - O’ (Sa)
0o =0. (50
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&ﬁw = 51/12735,

5= (2(09), 09)s + 4W.* + We00)s + Wa(07).)
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This supersymmetricaly improved lattice at¢ion dffers from
astraightforward discretization o (1) by

AS =3 (Wal09)s +TW.(99). ) ™

a discretizaion o a surfaceterm in the continuum theory
(which is therefore expeaed to vanish in the continuum limit
for suitably chosen boundry condtions). For the freetheory
(Wo = mep,) AS = 0 redily followsfrom the antisymmetry
of the difference operator 9,,, while for interading theories
(7) guarantees the invariance of the adion under (5) without
the need of the Leibniz rule. To study the impad of SUSY
improvement we will compare dso the improved adion with
the unimproved straightforward discretization of (1) (withou
AS).

B. Latticefermions

For the symmetric diff erence operator

(07) 4y = 3Oty — 0oy, ®)



douHers are inevitably introduced into bah the bosonic and
fermionic sector. In order to get rid of them a Wilson term
may be added to the superpotential so as to maintain the in-
variance of the adion uncer (5). Within this context two dif-
ferent choices have been discussed previously [13],

We = W'(g2) = 5(80) ©
and
W= W (p0) + 2 (Ag).. (10

We stressthat for Wil sonfermions, the derivative of the super-
potential is now shifted as compared to the situation after (3).
From thefirst expressonwe recover the standard Wil sonterm
for thefermions,i.e. W,,, = W" (5 )0z, — 5A4y. Theopera-
tor A, isthe usual two-dimensional (lattice) Lapladan 200.
The second pashility (10) leas to W, = W (¢y)0zy +
13504y. Here, the gpeaance of 3 motivates the name
twisted Wilson fermions (not be confused with the recently
introduced twisted massformulation o lattice QCD). It was
arealy shown for the free theory [13] that twisted Wilson
fermions wffer far lessfrom lattice atifads than their stan-
dard Wilson cousins. Here we will show that they remain su-
perior even for (strondy) interading theories.

Besidesthesetwo (ultra-)locd diff erenceoperatorswe have
previously suggested to reconsider the nontlocd SLAC lattice
derivative in the context of lattice WessZumino models. The
matrix elements of the SLAC derivative ae most conveniently
given for a one-dimensional lattice with an odd number of
lattice points L,

/L
sin(m(x —y)/L)’

The generalization to higher dimensions is draightforward
and amourtsto forming suitable tensor products of (11).* For
SLAC fermions no further modifications to the superpoten-
tial are necessry. It is due to thisfad that they constitute an
interesting alternative to Wilson fermions.

Oy = (1) Ope =0. (12

C. Discrete symmetries

For the numericd analysis of Sec Il we have chosen the su-
perpotential

W(p) = imep?® + Lg¢° (12

which coincides with that in ealier simulations of the Wess
Zumino model [12, 14]. We will assume the mugding con
stantsm and g to bered and paitive. The superpotential (12)

1 The reason for an odd number of lattice points originates from a redity
condtion onthe matrix elements (11). As such it is amere technicdity in
order to ease numerica simulations.

m m
-z _m 0
FIG. 1: Classca bosonic patential V(o) = 3|W'(¢)|* from (12)
shown for vanishing imaginary part (p2 = 0). In the freetheory
limit (¢ — 0) the left minimum is pushed towards minus infinity.

alows for discrete symmetries ZR x ZS which ad as reflec
tions interchanging the two vaaua and as complex conjuga-
tionsonthe complex scdar field:

Zg:ngf@fcp and ZS: o — @, (13
g

so that also the potential |1’ (¢)[? is invariant under both
transformations, cf. Fig. 1.

From the explicit form of the fermion matrix M and its
adjoint M

M = ~4"0, + m + 2g(p1 + iv302), (14a)
M = =49, +m+2g(p1 —insps)  (14b)

onefinds that
Z5: M v —ysMys, Z§5: M v3Mys, 19

which shows the invariance of the determinant.?

Apart from Lorentz transformation, the continuum model is
(irrespedively of the concrete form of the superpotential) also
invariant under time reversal and perity transformations

Zg: (2,2) = (=2, —2), Zg: (2,2) — (z, 2). (16)
Barring passgble Wil sonterms, the unimproved | attice models
obviously inherit all discrete symmetriesfrom the continuum.
By contrast, the supersymmetricaly improved lattice models
areinvariant only under a combination o al symmetries. We
find

ZZR: W;(G‘P)z — —W;(&p)m,
7S : W)y > W o (09)..

(173)
(17b)

2 This is true & least up to an irrelevant sign. On the lattice the fermion
matrix M aways has an even number of rows and columns, hence this
phase does nat appea.



TABLE |: Comparison o various latticemodels w.r.t. their symmetries. All statements refer to to the interadingtheory, i.e. g # 0. The nation
7Z5C denates the combined adion o afield and parity transformation as discussed in the text.

@ @

©) 4 ©)

Wilsonimpr. Wilson urimpr. twisted Wil sor? SLAC impr. SLAC unimpr.
|attice derivative locd locd locd nonlocd nontlocd
lattice atifads O(a) O(a) O(a)® ‘perfed’ ‘ perfed’®
modifications to superpat. yes yes yes no no
discrete symmetries 75 7y x 75 x 7S 7R ZIR % 75¢ 7Y x 75 x 7% x 7S
supersymmetries one nore one one nore

a0nly improved considered.

bIn the interading case the good scaing properties are lost. However the
overal sizeof lattice atifads is ill much smaller when compared to Wil son
fermions.

¢The dispersion relation is up to the aut-off the same & in the continuum.

Thus, for theimproved models (with SLAC fermions) the con-
tinuum symmetry is reduced,

75 x 78 x I8 x 7§

ZaR X Z5C .= diag(Z3 x 25 x ZR) x diag(Z5 x Z5).

—

(19

Here, the diagoral subgroup diag(Z5 x ZS) is a group Z5©
generated by the product of the generatorsof Z5 and Z$ (anal-
ogous notations are used for the other groups). It readily fol-
lows that the improvement term must have avanishing expec
tation value in the original ensemble withou improvement.
We have chedked this with a large numericd predsion. For
Wilson and twisted Wilson fermions with improvement the
r.h.s. of (18) iseven further broken dovn due to the presence
of the (twisted) Wil sonterm in the superpotential. For Wil son
fermions, the basonic adion can beread off from (6) and (9),

S5 =302 W - 500 a9

Since A, is invariant under both time reversal and perity,
(17) canna be preserved; the Wil son term inevitably changes
sign. Conversely, from the bosonic adionwith twisted Wil son
fermions

S5 =43 |02 + WL+ 5(A0L[ . (20

only (¢ — —m/g — @, & — —0) can be shown to yield a
symmetry. In either case the bre&ing o the other symme-
triesisinduced by a higher-dimensional operator and may be
expeded to be & most O(a) [12, 20]. Nevertheless at finite
|attice spadng, the physics might be &feded sincethe overall
size of the bre&king termsis a dynamicd question. By con-
trast, SLAC fermions with the larger symmetry (17) are again
favored.

In Tab. | we summarize dl | attice models to be dedt with
in the next sedion.

I11. NUMERICAL RESULTS

As outlined in the introduction we have employed the stan-
dard hyhkrid Monte Carlo algorithm for our numericd sim-
ulations. The fermion determinant was estimated stochasti-
cdly utilizing red pseudo-fermionfields. The reasonfor red
pseudo-fermions derives from the presence of only a single
flavor such that the square root of the pseuddfermionic kernel
Q' = (MMT)~! isadually needed. We note in passng
that the pseudo fermion adion remains red with this choice
since dso thefermionmatrix isred for Mgoranabasisis cho-
sen. Hencethe latter was adopted for al our simulations. A
significant gain was acdhieved by combining higher order in-
tegrators with Fourier acceeration techniques. With the help
of the former one can avoid the requirement for ever small er
time-step sizes duringthe MD step of the HMC while a cae-
ful tuning o the latter allows for autocorrelationtimes = < 5
over the whole range of parametersanalysed. In particular for
small | attice spadngs, i.e. at large lattice sizes this was en
to reduce significantly criticd slowing davn as also reported
in [21]. A detailed acourt of the dgorithm employed here
will be pullished separately at alater time.

A. Dynamical propertiesof improved lattice actions

Before discussng measurements of physicd observables in
the next sedion we will first focus on the improvement
term (7). The dm is to understand the diff erence between
improved and urimproved lattice models w.r.t. predictions of
supersymmetry. One posdble test is a measurement of the
bosonic adion itself. With the help of the Nicolai map ap-
peaingin (3) one can show that
(S8) = N. (21
Here, N = N; x Ng denotesthe total number of lattice points,
and (21) isonly expeded to hdd when fermions are included
dynamicdly. Then, however, this prediction hdds irrespec
tively of the concrete value of the couping constants. With a
dightly different argument the same was also foundin [12].
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FIG. 3: Same asin Fig. 2 bu for SLAC fermions.

Equation (21) provides a test ohservable distingushing im-
proved from unimproved lattice models as well as quenched
from dynamicd fermion simulations. To acamplish this, we
have run ssimulations with bah (standard) Wilson and SLAC
fermions. The results are shown as a function o the bare lat-
ticemassparameter miz = m/Ns. Sincethe continuum limit
for this theory is obtained from mya — 0, smaller values
of myx likewise mean a finer lattice spadng (and for fixed
N asmaller spacdime volume). The dimensionlesscouging
strength A = ¢g/m was €t to A = 1. The lattice sizes
we used for our numericd simulationswere N = 16 x 16
for Wilsonand N = 15 x 15 for SLAC fermions. For the
quenched simulations 500,000 (independent) configurations
were evaluated, and 30000 configurations with dyramicd
fermions were analysed. The results are shown in Fig. 2 for
Wilson and in Fig. 3 for SLAC fermions. One dealy ob-
serves that the quenched data significantly deviate from the
predicted value which ill ustrates the necessty of dynamicd
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FIG. 4: MC history of thelatticemean @1 = N™' Y~ 1., andsize
of the improvement term for Wilson fermions (N = 16 x 16, A =
0.6, MmMiatt — 0.3).

fermion contributions in order to retain supersymmetry. Us-
ing an unmproved adion with dynamicd fermions we find
much small er deviationswhich in case of the Wil sonfermions
are drealy hard to distinguish from the improved results. For
SLAC fermionsthe deviations are somewhat more systematic
and remain also clealy distingushable from other dynami-
cd fermionsimulations. A second dff erencebetween Wil son
and SLAC fermions may be infered from Fig. 4. Namely,
thereis adistinct correlation between the groundstate aound
which the field ¢, fluctuates on the one hand and size and
variance of the improvement term on the other hand. This
may be taken as dired manifestation of the additionally bro-
ken ZI™R-symmetry due to the Wil son term which will also
play arole when discussng the fail ure of improvement in the
next paragraphs.

Limitations of improved lattice actions

Studying the improvement term AS for models with either
Wilson a SLAC fermions we have foundthat the system is
ultimately pushed into an unphysicd region o configuration
space at least for strong couging. Our simulations have re-
veded that this instability is controlled by the adua size of
the bare mass parameter and the cuging strength . Simu-
lations tend to fall more often as either of them grows. The
study o this phenomenonwith Wil son fermions turns out to
be dumsy sincethereisnoclea correlation between thevalue
of the couping and the number of configurations where the
instability occurs. Hence we prefer to present our analysis
fromthe smulationswith SLAC fermions. However, it shoud
be emphasized again that for either Wilson o twisted Wil son
fermions the qualitative picture is the same & described be-
low.

It isto be expeded that the improvement term grows with
the couging strength A and vanishes continuowsly in the con-
tinuum limit (at myg = 0). We observe agoodscding be-
havior w.r.t. the lattice size, see @so Fig. 5. For al cougings
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A and myz the improvement term is foundto be smaller than
14% of the total bosonic adion. Depending onthe couding
strength ), thisratio is readed soorer or later. Actualy, this
represents a threshold above which the simulation fails. The
situation is depicted in Figs. 6 and 7. At some instant, the
improvement term blows up and settles again at avalue eout
40times the size of the basonic adion. At the same time dso
the fermion determinant grows drasticaly and so hinders the
system from returning into the original (and desired) region
of configuration space A reason for this instability may be
found byrecnsidering the improved adion

Sg = % 3 )2(&;))1. Ll 22)

In thisform the adionallowsfor two distinct behaviors of the
fluctuating fields. The physicdly expeded behavior consists
of small fluctuations aroundthe dasscd minima of the po-
tential. Alternatively, (22) allows for large fluctuations of ¢
to be compensated by large values of TW,.. The latter would
be dominated by UV contributions, and this is what we ac
tually observe, cf. Fig. 8. In this stuation, it is definitely no
longer possble to extrad meaningful physics. Ancther view
on this “broken” phase is taken in Fig. 7. While the ensem-
ble with A = 1.4 exhibits the expeded behavior at the only
dightly larger value of A = 1.7 the smulation bre&ks down
after abou 5,000 configurations and for A = 1.9 the simula-
tionisinstantly foundin the broken phase.

To sum up, we have observed that theimproved | atticemod-
els may beme unstable & any finite mg and hence ay fi-
nite lattice spadng. If and when this happens depends on sev-
eral fadors. Wilson fermions are dfeded in a stronger way
while SLAC fermions remain stable for a much wider range
of couping constants. Apart from that, one shoud ensure by
monitoringthe improvement term or any other observabledis-
cus=d abowe explicitly that a simulationis not subjed to this
phenomenon For the praditi oner thisis of course amajor nui-
sance and passhiliti es to avoid this matter are dready under
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tion for the moduus of the lattice momentum averaged over 25,000
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investigation. Provided that oneis confined to lattices amall er
than 64 x 64 but demands the ebsence of finite-size dfeds,
improved lattice models with Wilson fermions can be used
for the continuum extrapaolation of massesonly upto A < 0.4.
SLAC fermions can be used in the greder range of A < 1.5;
the correspondng results will be presented further below.

B. Setting the stage

In Monte-Carlo simulations, importance sampling is
only meaingful with resped to a positive measure.
However, including dyramicd fermions the measure is
det(M) exp(—Sg). While the exporential fador is grictly
pasitive (Sg is red), the positivity of the determinant cannat
be guarantead for an interading theory and a possbly
emergingsign problem has to be addressed. In order to make
sensible comparisons with continuum cdculations (which
are most conveniently performed in an infinite spacdime)
one furthermore must make sure that physicd observables
extraded from lattice simulations are free of finite-size
effeds. In order to chedk this, all simulationsin this ®dion
are repeaed in pations of fradiona volume /2 of a fixed
physicd unit volume (with various values for I = Nga on
a square lattice with N = N; x Ng lattice points). In the
followingwe consider both isauesin more detail .

1. Negativefermion determinarts

The Nicolal map in a supersymmetric theory is a change of
basonic variables which renders the bosonic part of the adion
Gaussan; at the same time, the Jacobian of this change of
variableshasto cancd the fermion determinant. In our model,
this means

det(M) = det (%(2(8@) + W’)) . (23

In thislight, an indefinite fermion determinant obviously cor-
respondsto a nonrinvertible change of variablesin the contin-
uum,

o & =200+ W' (24)

This map is only globally invertible if the superpotential is
of degreel (the Nicolai map in this case has winding num-
ber 1), i.e,, for the freetheory [22]. For our choice W’ () =
mep + gp? the map is nat globaly invertible, and there exists
at least one point where det (M) vanishesiff g # 0. By this
line of argument (for the continuum formulation of the model)
negative determinants canna be ruled ou.

One way to cope with thisin pradicd simulationsisto use
|det(M)| exp(—Sg) for the generation o configurations in-
stead and to reweigh with the sign afterwards. Unfortunately,
cdculatingthe sign o det M is as costly as the computation
of the whole determinant. Hence, this method becomes un-
feasible for large lattices. A way ot is to avoid reweighing
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FIG. 9: Probability for negative determinants (Wil son urimproved,
N =14 x 14, Miatt = 043)
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FIG. 10: Probability for negative determinants at diff erent box sizes
with varying lattice size (Wil son urimproved, m = 6, A = 2.0).

within certain bound for the parameters in which the ensu-
ing systematic erors are negligible. Thus, we have to es-
timate the frequency of occurrence of negative determinants
as a function o the parameters. To oltain more reliable re-
sults we have studied this subjed with anaiveinversionago-
rithm which computes the determinant from a LU decompo-
sition and takes its contributions exadly into acourt. Thisis
numericaly much more involved than the standard pseudo
fermion agorithm, thus, this method is only applicable to
small | attice sizes with upto 16 x 16 lattice sites. For fixed
physicd massm it can be gleaned from Fig. 9 that configu-
rations with a negative sign o the determinant show up orly
for A > 1.0. Furthermore, in order to uncerstand the depen-
denceonthe lattice size and the lattice spadng we have fixed
the oouglingto A = 2.0 and runsimulations onfradionsi? of
aunit physicd volume (I € {3/6,4/6,5/6,6/6}) and dffer-
ent lattice spadngs. The results displayed in Fig. 10 clealy
show that the problem dissolves in the continuum limit but
bemmesworse & every finite lattice spadng when the physi-
cd volumeisincreased. For both figures, for ead data point



about 50,000 configurations were evaluated. Eventualy, to
estimate the impad on actual measurements we have mea
sured the bosonic adionwith m = 5, A = 2onal2 x 12
lattice and oltained abou 7% configurations with a nega-
tive sign for the fermion determinant. The expedation val-
ues considered here ae (Sg)nonreneigned = 149-94(12) and
(5B ) reweighed = 149.49(10). Hence even at large coupling (far
larger than what we target at in the next sedion) effeds may
be asaumed to be & most of marginal relevancefor adua mea
surements.

2. Finitesize dfeds

For these models the bare mass m 4 aso sets the scde for
the overall spacdime volume. As with all | attice smulations
we have to balance finite-size and dscretization errors. If
the lattice spadng is chosen too large, lattice atifads may
grow; on the other hand if, say, the Compton wavelength of
a particle is larger than the spacdime volume the extradion
of masses may suffer from finite-size dfeds. One way to
test for the presence of such finite-size violations is to study
the model at different spacdime volumes. Comparing the
fermion spedes introduced ealier Wilson fermions may be
expeded to be most affeded. Here, lattice atifads further in-
creese the correlationlengths o that measurements are much
more sensitive to the finite box size. Our setup for this anal-
ysis is as follows. At first we have ssimulated the improved
lattice model using Wil son fermions at fixed couging param-
etersm = 15 and A = 0.3 for five different lattices with
Ny = Ns € {20,24,32,48,64} lattice paints in ead di-
redion (N = Ny x Ns). In the following we assume that
with this choice of couping constants the spaceime volume
islarge enoughso asto al ow for asufficiently goodidentifica:
tionwith the thermodynamic limit. The masses obtained from
these simulations were extrapalated to the continuum as de-
scribed in App. B. Thisisaso shownin Fig. 11 wherethere-
sulting fit (and its uncertainty) is depicted with a gray shaded
area The next step is to dearease the volume to fradions /2
(with I € {9/15,7/15,5/15,3/15}) of afixed physicd unit
volume. Aslongasnofinite-size dfeds are visible we exped
to find the masses extradted at these small er and smaller vol-
umes to lie ontop o the fit from the original lattice (of unit
volume). Up to avolume lessthan half the size of the origi-
nal onethis <ding may be eaily infered from Fig. 11 which
justifies a posteriori the corrednessof our ealier assumption.

However, since by perturbation theory the physicd masss
deaease for growing couping (see next sedion), we exped
growing Comptonwavelengths and therefore stick to unt vol-
ume (I = 1) for al further measurements 2 as to exclude
finite-size dfeds.

C. Weak coupling

An interesting olservable for comparing lattice results with
continuum physicsisthe massof the lightest excited state, i.e.
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FIG. 11: Lattice masses for m = 15, A = 0.3 on boxsizes! €
[0.2, 0.6]. We see asystematic deviationfrom the ! = 1 result below
[~ 0.5.

the energy gap. Since unbroken supersymmetry in the con-
tinuum predicts that bosonic and fermionic masses coincide it
also provides a posshility to chedk the supersymmetric prop-
erties of the lattice prescription. The rrespondng values
can be extrapolated from the lattice masses in the continuum
limit. In the weak cougingit will be possble to match these
results to predictions of perturbationtheory. This providesan
important test for the numericd results and ensures that also
the results at intermediate cougding are reliable.

For a description o our prescription for the boson and
fermion massextradion from correlators on the lattice we re-
fer the interested reader to App. A. With these methods we
are daming at a test of the lattice results against perturbation
theory for A < 0.3.

The reference value is given by a one-loop cdculation o
the renormali zed mass

M2y =m (1 - %) + OO (25)

in the continuum valid for A <« 1 with the bare massm as
used in Eq. (12). To oktain this result one first must cacu-
late contributions of the loop dagrams to the propagator. An
expansionin \ then yields the above result.®

As will be show below the fermionic masses have lower
statisticd errors than the bosonic ones. Therefore we com-
pare only the extrapalations for fermionic mass to the per-
turbative results. This procedure gets justified by the fad
that bosonic and fermionic masss coincide even on a finite
lattice for the wea couping regime as described below in
Sec Il C3.

3 Wewill eaborate onthe analyticd side and the determination o the efec
tive potential of this theory in aforthcoming puli cation.
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FIG. 122 The continuum extrapdation o massesfor A = 0.3 for the
improved Wil son and twisted Wilson model. Here, the SLAC result
is given for one single lattice size. For comparison the exad results
for the freetheory are dso shown.

1. Continuum limit

The methods to extrapalate to the continuum given in App. B
are based onthe freetheory with A = 0. Since we aein-
terested in the interading case we must first make sure that
the continuum extrapolation of massesremains gable evenfor
A=0.3.

To that purpose we consider the masss in the improved
model with standard Wil son and twisted Wil son fermions at
A = 0.3 a different lattice spadngs a. In the perturbative
coupding regime we use throughou square lattices of sizes
Ny = Ns € {20,24,32,48,64}. These correspondto lattice
spadngsof about a € [0.015625, 0.05]. A statistics of 10,000
independent configurations puts usin a positionto extrapolate
to the continuum.

Usingthesemasssm(a) at finitelatticespadngthe extrap-
olationis shownin Fig. 12. For comparisonwe dso mark the
massfor SLAC fermionsat afinite latticesize Ny = Ng = 45
(correspondngto a =~ 0.022). All these results indicae that
even a A = 0.3 the continuum extrapolated masses coin-
cide within error bounds. Even better, the masses of SLAC
fermionsat finite latticespadng can na be distinguished from
the continuum resullt.

2. Comparisonwith perturbation theory

As described above we extrapolate masses for Wilson (im-
proved and urimproved) and twisted Wilson (improved)
fermionsfor A € [0,0.3] to the continuum values, cf. Fig. 13.
The masses coincide within error bars althoughthe twisted
Wilson masses are systematicaly small er. This diff erencehas
to beinterpreted asa systematic error in the continuum extrap-
olationfor themassesbut its eff ed is almost overshadowed by
the statisticd errorsin our case. However this result indicates
that for areliable extrapolationat larger statistics finer lattices
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FIG. 13 Continuum masses for the wealy couded regime in com-
parison to the perturbative result. The shaded area @rresponds to
the extrapdation provided by the continuum results according to
Eq. (26) withm = 15 and b = 1.35(13).

TABLE I1: Continuum extrapal ations of fermionic masses for Wil son
and twisted Wil son fermions in the we&k cougding regime.

A Wilson urimp. Wilsonimp. tw. Wilson
0.02 14.999(2) 14.997(2) 14.999(1)
0.04 14.992(4) 14.993(4) 14.993(3)
0.06 14.982(6) 14.999(7) 14.977(4)
0.08 14.974(8) 14.963(8) 14.963(5)
0.10 14.95(1) 14.96(1) 14.935(6)
0.12 14.94(1) 14.91(1) 14.905(9)
0.14 14.91(1) 14.87(2) 14.871(9)
0.16 14.86(2) 14.87(2) 14.83(1)
0.18 14.82(2) 14.85(2) 14.82(1)
0.20 14.80(2) 14.79(2) 14.75(2)
0.22 14.76(3) 14.72(3) 14.71(2)
0.24 14.70(3) 14.73(3) 14.63(2)
0.26 14.64(3) 14.60(3) 14.60(2)
0.28 14.57(4) 14.60(4) 14.53(2)
0.30 14.50(4) 14.45(4) 14.45(3)

can be necessary to yield a better continuum limit.
As afurther test we use these results to reproducethe per-
turbative formula

m()\)wmowlf%Q. (26)

Taken thisfunctional form for granted, the parametersm, and
b can be extraded from a least-sgquare fit to the given data.
For this fit we can use our knowledge eéou the free theory
(mo = 15) asafixed inpu or, aternatively, al ow for both my
and b as freeparameters. The mrrespondngresults are given
inTab. Il

The extrapolated results for mq confirm that the extrapola-
tion to the freetheory works reliably and that we can exped



TABLE IlI : Fit for the perturbative massformulawith O(\?) correc
tions to be compared with the one-loop results. For comparison the
one-loopresult isb = 1.2990.

derivative b mo

Wil sonimproved 1.34(6) 15.007(6)
Wil son urimproved 1.39(7) 15.008(6)
twisted Wil sonimproved 1.26(4) 14.996(4)
Wil sonimproved 1.37(5) fixed to 15
Wilson urimproved 1.42(6) fixed to 15
twisted Wil sonimproved 1.25(3) fixed to 15

to oltain meaningful results for . Furthermore the results
obtained for improved and urimproved Wil son fermions co-
incide very well andtherefore both providethe corred contin-
uum limit.

Additionally the results for standard Wilson and twisted
Wilson fermions lead to compatible results when taking sys-
tematic uncertainties of the continuum extrapolation into ac
court.

Asan important result of these observations, all threemod-
els considered in the we& couging case tend towards the
same continuum limit for A > 0. The perturbative results can
be recovered where the largest error bars (including passble
systematic erors) yield b = 1.35(13) in agreement with the
one-loopresult of bopeloop ~ 1.2990.

3. Sgns of supersymnetry at finite lattice spacing

Apart from al results lely based on fermions, we ae pri-
marily interested in the restoration of supersymmetry on the
lattice. For this reason we better also chedk the demand from
supersymmetry that the masses of bosonic and fermionic su-
perpartners match. Thisis going to be chedked by comput-
ing basonic and fermionic masses at cougdings A = 0.2 and
A = 0.4 with m = 15 for all the models on dfferent lattice
Sizes.

As we have seen in the whole we& couging regime the
fermionic masses do nad suffer from statisticd noise. This
behavior derives from the fad that the fermionic correlator
for the freetheory (A = 0) isindependent of the bosonic field
© and is obtained by a pure matrix inversion. At small (and
finite) )\, corredionsto the freepropagator are of O(A\?), and
thefluctuationsof ¢ duringthe simulationare suppressed with
A\2; adatistics of only 10* is needed to get reliable results.

On the other hand the basonic correlator even for the free
theory is given by the correlations of the fluctuating field .
Therefore amuch higher statistics is necessary to sample the
basonic two-point function. Here, problemsarise by the expo-
nentially growingrelative eror of the two-point function C'(t)
with resped to t.

Only with the use of an algorithm combining Fourier accé-
eration with higher order integrators it was possble to simu-
late 105 to 107 configurations for ead parameter set (m, \)
with an autocorrelation time of the two-point function o
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TABLE 1V: For different models and lattice sizes we computed
bosonic and fermionic masses with bare massm = 15.

model Ns A my mp,1 M2
Wilsonimpr. 24 0.2 11.592(2) 11.53(4) 11.59(4)
24 0.4 11.375(4) 11.39(3) 11.34(3)
32 0.2 12.224(2) 12.20(3) 12.15(4)
32 0.4 11.945(5) 11.95(3) 11.88(4)
48 0.2 12.941(5) 12.87(5) 13.02(5)
48 0.4 12.548(13) 12.47(4) 12.53(4)
64 0.2 13.349(10) 13.45(9) 13.32(9)
64 0.4 12.89(3) 12.73(9) 12.83(9)
Wilson urimpr. 24 0.2 11.591(2) 11.58(2) 11.63(3)
24 0.4 11.400(4) 11.44(2) 11.39(3)
32 0.2 12.221(2) 12.20(3) 12.15(4)
32 0.4 11.965(5) 11.97(3) 11.87(4)
48 0.2 12.942(5) 12.92(6) 13.00(7)
48 0.4 12.572(14) 12.54(4) 12.49(4)
64 0.2 13.347(7) 13.45(9) 13.32(9)
64 0.4 12.91(2) 12.82(9) 12.79(9)
tw. Wilson(impr.) 24 0.2 14.811(7) 14.94(11) 14.91(12)
24 0.4 14.13(1) 14.21(9) 14.06(8)
32 0.2 14.788(6) 14.61(14) 14.94(12)
32 0.4 14.08(1) 14.39(14) 13.68(13)
48 0.2 14.789(6) 14.74(11) 14.61(11)
48 0.4 14.04(1) 14.16(16) 13.98(15)
SLAC impr. 45 0.2 14.768(4) 14.87(10) 14.83(9)
45 0.4 13.997(13) 14.08(11) 13.92(10)
SLAC unimpr. 45 0.2 14.769(4) 14.75(6) 14.57(6)
45 0.4 14.047(16) 13.74(8) 13.75(7)
T <2.

The results of these numericd efforts are summarized in
Tab. 1V. They show that independently of the model even for
A € {0.2,0.4} bosonic and fermionic masses correspondto
eat other and lattice-induced supersymmetry bregking can
not be observed.

Finally in Figs. 14and 15the derived basonic andfermionic
masses are shown for the improved (and urimproved) model
with Wilson fermions. Even these high statistics do na al-
low for a dea cut distinction between the extrapolated con-
tinuum masses of basons and fermions for the improved and
the unimproved models. This provesthat even at A = 0.4 the
improvement is not necessry even on a finite lattice Eacd
model tends towards the supersymmetric continuum li mit.

D. Intermediate coupling results

Earlier attempts to go keyond the perturbative regime could
nat reliably determine the mass pedrum. Namely, this was
hindered by instabiliti es introduced by improvement terms.
For Wilson fermions, this renders smulations at intermedi-
ate cougingsinvalid. For our analysis of couging constants
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FIG. 14: Bosonic and fermionic masss for the weekly couped
regime for the improved Wil son model.
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FIG. 15 Bosonic and fermionic masss for the weekly couped
regime for the unimproved Wil son model.

in the intermediate regime (0.3 < A < 1.2) we have there-
fore only considered adions with twisted Wilson and SLAC
fermions (which are anyhowv expeded to give better results
at finite lattice spadng). For twisted Wilson fermions we
have runsimulationswith theimproved adion onlattices with
Ns € {32,40,48,56,64} lattice paints in the spatial direc
tion. For the temporal diredionwe have used 1.25 - N lattice
pointsin order to be &bleto assesswhether contributionsfrom
higher excited states are redly absent. At the chosen value
of mm = 15 in al simulations, the respedive bare lattice mass
parameter myg confines the atainable couging strengths to
A < 0.7.% For even larger coupling strengths A only SLAC
fermionshave been foundto yield sensibleresults. In our ssim-
ulations we used for this gpedes both theimproved and urim-
proved latticemodels on afixed lattice sizeof N = 45 x 45.

4 For A = 0.7 we drealy observed that the simulation failed onthe carsest
lattice and hed to be excluded.
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TABLE V: Fermionic masss for the intermediate couding case.
Twisted Wilson results are continuum extrapolations whereas the
SLAC dataisfroma4b x 45 lattice

A tw. Wilson SLAC unimp. SLAC imp.
0.20 14.80(2) 14.769(4) 14.768(4)
0.35 14.23(2)

0.40 13.99(3) 14.05(2) 14.00(1)
0.45 13.62(5)

0.50 13.30(6)

0.55 12.8(1)

0.60 12.2(1) 12.81(4) 12.44(6)
0.65 11.9(2)

0.70 10.4(5)

0.80 11.49(9) 10.2(3)
1.00 10.2(2) 9.4(2)
1.20 10.1(3) 9.1(3)

Apart from that, one further runwas doneona63 x 63 lattice
with A = 0.8. Squarelatticesturned ou to be more convenient
with SLAC fermions and to be sufficient to clealy read off
(within statisticd errors) the masses. As for the simulations
with twisted Wilson fermions we have determined orly the
mas<es from the fermionic correlators Sncewith the statistics
(50,000 trgjedories) achieved so far the bosonic correlators
arefar too nasy to yield reliable resullts.

Our results may be foundin Tab. V and are depicted graph-
icdly in Fig. 16. From the comparisonwith perturbation the-
ory first deviations are seen as ©onas A > 0.4 where the
(extrapolated) | atticeresults are slightly stronger curved. Also
clea deviations between the improved and urimproved model
using SLAC fermions become gparent for A > 0.6. It is
worthwhile to nde that the result from the improved lattice
model is closer to the continuum limit which may be infered
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FIG. 16: Masses of theimproved and urimproved model with SLAC
fermionsona45 x 45 lattice and continuum extrapolated results for
twisted Wil sonfermions are compared with the perturbative one-loop
result in the continuum.



TABLE VI: Fermionic masses for the SLAC derivative on two dif-
ferent latticesizesfor A = 0.8.

Ns improved unmproved
45 10.22(26) 11.49(9)
63 10.54(15) 10.70(19)

from Tab. V1. Whil e the | attice data from the improved model
almost coincide for both lattice spadngs the data from the
unimproved model is likely to approach the same value if in-
creasingly finer grained lattices are used.

Larger values of \ are dtainable however the numericd ef-
fort becomes more involved and some technicditi es need to
be addressd. Once this is under control we ae confident
to investigate the strong couping regime with the improved
modelsupto A = 2.0 onthe same lattice sizes. The interest-
ing question whether the masses of superpartners dill agree
can then be satisfadorily answered.

IV. CONCLUSIONSAND OUTLOOK

In this article we have presented a detail ed numericd anaysis
of thetwo-dimensional N = (2, 2) WessZuminomodel. Due
to algorithmic improvements we were éle to study lattice
modelsat much larger latticesizes, i.e. small er latticespadngs
and more importantly at stronger coupings. For a compari-
son with analyticd results from perturbation theory we have
chedked explicitly for finite-size dfeds and ather systematic
errors auch as sgn changes of the fermion determinant. Both
were seen to be under control for the scrutinized parameter
range. We could confirm ealier weak coupingresultsandfor
the first time resolve deviations from perturbation theory. All
threekinds of fermions, Wilson, twisted Wilson, and SLAC
fermions, approach the same continuum results. It turned out
that lattice atifads were largest for Wilson and small est for
SLAC fermions. At intermediate cougding we observed that
the supersymmetricdly improved lattice at¢ion using Wilson
fermions leal to unstable simulations that eventually fail to
produce reliable results unlessvery large lattices are chosen.
Simulationswith SLAC fermionsproved to be much more sta-
ble; they allow for improvement terms for a wider parameter
range. At finite lattice spadng and we& couping nosignif-
icant differences in the measured spedrum between simula-
tionsusingtheimproved or unimproved adionscould be seen.
Itisonly at larger coupingthat deviationsbemmevisible, and
the improved lattice at¢ionin fad suppresses lattice atifads.
Itis ill an open problem to goto even stronger cougings.
Pradicd simulations become considerably moreinvolved due
to stronger fluctuationsin the sign o the fermion determinant.
Further refinements of our algorithm are dready uncer inves-
tigation, and we hope to report of our progressin the nea
future. Apart from that, the dtainable large statistics allow
for the determination d the (constrained) effedive potential
for this theory; this might serve a an independent ched of
the nonrenormali zationtheorem for this particular supersym-
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metric model.

We believe that a generalizaion of our numericd methods
to all supersymmetric theorieswithou gauge fields can be ac
complished. In particular, the N’ = 1 model in bath two and
four dimensions as well as supersymmetric non-linea sigma
models are within read. At least the experience gained in
two-dimensional models suggeststhat SLAC andtwisted Wil -
son fermions might be goodcandidatesfor the formulation of
four-dimensional supersymmetric latticetheories.
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APPENDIX A: DETERMINATION OF MASSES FROM
TWO-POINT CORRELATORS

One important observable of a quantum field theory isthe en-
ergy gap between the groundstate and the first excited state.
This energy gap corresponds to the massof the lightest parti-
clein the spedrum.

To ofhtain the masses in the WessZumino model one has
to consider the propagators of fermions and basons. At van-
ishing spatial momentum p; = 0, the freebosonic continuum
propagator in momentum spacereals

1

Gboson _ .
(p) 77'l2 + pg

(A1)

The red and imaginary parts p; and ¢, of ¢ demupe (the
propagator isdiagoral andeven equal for 1, v2). TheFourier
transform of GP*"(p) shows the well known exporential de-

cay

CP%N (1) o exp(—m |t]), (A2)
where m is the ebove mentioned mass of the lightest parti-
cle. (The space oordinates correspondngto p; and py are
cdled z andt, respedively.) In the interading case this quan-
tity can be obtained onthe lattice by measuring the two-point
function. The projedion orto p; = 0 can be adieved by av-
eraging ower the spatial | attice sites,

CO(1) = - D (a0 0)ps(t.)) . (A

with «, 3 labeling comporents of the basonic field.
The freefermionic continuum correlator for p; = 0is

m — ng sPo

A4
E a0

(Yaths) = Gz (po) =



Using the representation o the v matrices as described after
(4) one can read off adirea conredionwith the bosonic cor-
relator using

2m
m? + p2’
(A5)
Asinthebosonic case onthelattice asummation over the spa-
tial | attice sites yields the projedion orto p; = 0. Cfe™on(¢)
defines the Fourier transform of this objed.

G N o) 1= GIE™M(pg) + G (o) =

1. Fermion masses

The fermionic propagator C'(x) is given by
(Yathp) = <M(§ﬁ1(¢1,¢2)> :

where M isthe fermion matrix. The cdculation o this quan-
tity requires a high numericd effort for the inversion o large
matrices. Fortunately in the wea&k-couginglimit the fermion
matrix is approximately the same asthat of the freetheory and
the statisticd fluctuations are rather small. Therefore the nec
essry statistics to real off a reasonable fermionic correlator
is much smaller than for bosons.

After thefermionic correlator in pasition spaceis computed
the masses can be determined from its long range behavior.
Inspired by the continuum conredion between fermionic and
bosonic correlators, (A5), and the behavior at large distances,
(A2), one can consider

(A6)

Cfermion(t) > (A7)

et = In (Cfermion(t + 1)

with ¢ in aregion between zero and N;/2. The masscan then
be determined from the average of meg.

A more daborate way is a least square fit of the fermionic
correlator C&™ion(¢) with the function

Ja,mi(t) = a - cosh(ms(t — Nt/2)) (A8)

One better nat take the full range of ¢ into acourt for thisfit
becaiseitisvalid ony for large distances (for periodic bound
ary condtions, from both boundries of the lattice). One
shoud therefore constrain ¢t to bein {1 + tsip, ..., Ny — 1 —
tsip}- The choice of tgip is determined by the fringe of the
plateau in aplot of the fitting result vs. tgqp.

The differences of the different methods to determine the
masss areill ustrated in Fig. 17. One dealy observesthat the
effedive masses determined acording to (A7) do nd show
a plateau from which the masscan be real off. By contrast,
the masses obtained from acosh fit clealy show this behavior
at large tsip. As mentioned abowe, the dfedive massof the
basonic correlator is aubjed to much larger statisticd errors.

2. Boson masses

In order to cdculate the basonic correlatorsfor the determina-
tion o the masses the cnneded two-point functionis consid-
ered. At large distances, where the masses can be extraded,
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FIG. 17: Bosonic and fermionic masses obtained via acosh-fit (A8)
andthe df edive massdefinition (A7) for the improved Wil sonmodel
with A = 0.4 ona64 x 64 lattice The fermionic masses with a
statisticsof about 5,000independent configurations are much sharper
and more reliable than the bosonic efedive masses obtained from
about 10° independent corfigurations.

the relative statisticd error of the correlator grows exporen-
tialy. Therefore, one must achieve a balance between this
statisticd error and the systematicd errors due to the evalua-
tionat small distances.

We have fitted In(CP®"(¢)) against the function A +
In(cosh(mp/Ns(t — Nt/2))) to determine A and the dfec
tive massmy,. In order to exclude the points with the largest
statisticd and systematicd errors from this fit, we have taken
only the paintsin theinterval ([tsuip, tst] U [Nt — tst, Nt — tskip])
into acourt. tgip is determined as in the fermionic cese and
t& such that the statistica error becomes comparably small.

If the SLAC derivative is used an oscill atory behavior of
mp as a function d tgp can be observed. In the bosonic
case it is dightly smaller than the statisticd error. There-
fore, it is aufficient to measure a “smeaed” mass ms.ac =
0-5mb(tskip7 ts) —|—0.25mb(tskip—|— 1,tg) —|—0.25mb(tskip— 1,tg),
wherethe eror of the oscill ationsis negli gible as compared to
the statisticd one.

APPENDIX B: CONTINUUM EXTRAPOLATION

For the continuum extrapolation we focus on the fermionic
masses because of their much smaller statisticd error. The ex-
plicit extrapalation procedureis guided by analytic resultsand
observationsfor thefreetheory. Thethreediff erent discretiza-
tions investigated in this work require diff erent strategies for
this procedure.

1. Wilson derivative

Compared with the continuum formula, (A5), the free mo-
mentum space orrelation function for the Wilson derivative



gets amomentum dependent mass

Miar + 1 — cos(po)
sin(po) + (muax + 1 — cos(po))?2

Gfermion(po) _ (Bl)

The paleof thiscorrelator coincideswith the ebove mentioned
cosh-fit within the aror bars.

To extrapolate the continuum limit an expansionin powers
of the lattice spadng is used. Exad results for the freethe-
ory were derived to chedk this extrapolation. In this case an
expansion upto a linea order in a is not enoughto ohtain
the known result within the high predsion o the numericd
measurements at weak couping. Therefore we first tried to
extended the expansion to a quadratic order which yields a
better result; but till the aror isto large for our purposes.

The functional behavior of the masses, m;, obtained by the
fit asafunction o thelattice spadngis well approximated by

mf(a)mmcom—ﬁ—A-a—ﬁ—B-a% (B2)
forall a € [0, 0.05]. Thedeviationfrom thisbehavior is negli-
giblewith resped to the statisticd errorsin the weak couding
case. In addition the expeaed continuum result is achieved
with the necessary predsion. Motivated by these results this
formulais also used in the interading case.

2. Twisted Wilson derivative

A Wilson perameter of » = /4 for the twisted Wilson
fermions in the free theory leals to discretizaion errors of
O(a*) as discussed in [13]. For the weakly couped regime
(A < 0.3) we exped these arors to dominate the lattice a-
tifads. Neverthelessfor an intermediate couping corredions
of O(a) arise. Taking this into acournt we extrapdate the
masses to continuum asauming a functional behavior of

mf(a):7ncom+A-a+B~a4. (B3)
For A > 0.3 the O(a) terms dominate. Therefore alinea
extrapolationis aufficient.

3. SLAC derivative

As we have seen in our previous investigations, [13], the
SLAC-derivative shows an amost perfed behavior. That
means the extrapolated masses coincide with their continuum
counterparts already at finite lattice spadngs. On the other
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hand we have observed an oscill atory behavior of the corre-
lationfunction. Thiswas hown to be mnreded with the ex-
ad reproduction o the continuum dispersion relation by the
SLAC derivative. To handle this problem we have again stud-
ied the freetheory first. Asin the bosonic cese the plot of m;
Versus tsip does not show a dea plateau but rather oscill ates
aroundthe expeded continuum value, cf. Fig. 18.

Guided by these observation o the freetheory a suitable
averaging can leal to the extradion o the corred continuum
results at finite lattice spadng. Starting with the ansatz

m(Ns, ¢) := comy(tsip) + cims(tsaip — 1) + comi(tsip — 2).
(B4)
we minimizethe diff erenceform the known continuum result
of the freetheory
A(Ns, ¢) = |m(Ns, ¢) — meor| (B5)
for lattice sizesof Ns = Ny € {35,37,...,75} and tgip =
|0.4Ns]. A least squarefit yields
co =0.11791, ¢; = 0.47877, ¢o =0.40332, (B6)
leading to max A(Ns,¢) = 5.282 x 1074 A smaller tgip
does not change this result considerably. Using this approx-
imation scheme the systematic error based onthe oscill atory
behavior of the SLAC derivative can be negleded compared
to the statisticd errorsat least for the week couping case.

15.15 . : , I | ‘
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FIG. 18 Masss obtained via acosh-fit for the freetheory using the
SLAC derivative. At larger lattices the oscill ation amplitude around
the continuum value gets smaller.
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