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Two-Dimensional Wess-Zumino Models at Intermediate Couplings
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We consider the two-dimensional N = (2, 2) Wess-Zumino model with a cubic superpotential at weak and
intermediate couplings. Refined algorithms allow for the extraction of reliable masses in a region where per-
turbation theory no longer applies. Wescrutinizethe Nicolai improvement program which is supposed to guar-
anteelatticesupersymmetry andcompare the results for ordinary and non-standard Wilson fermions with those
for SLAC derivatives. It turns out that this improvement completely fails to enhance simulations for Wilson
fermions and only leads to better results for SLAC fermions. Furthermore, even without improvement terms
the models with all threefermion species reproducethe correct values for the fermion masses in the continuum
limit.

PACS numbers: 11.30.Pb, 12.60.Jv, 11.15.Ha, 11.10.Gh

I. INTRODUCTION

Supersymmetric models have drawn much attention over the
past decades. In particular, supersymmetric extensionsof the
standard model have become a primary research topic for
model building. The additional symmetry of these models
proves to be avery useful tool for the study of their pertur-
bative and non-perturbative aspects. It is notoriously compli -
cated to check andextend thepredictionsmadeby supersym-
metry in astrongcouplingregimewherestandard perturbation
no longer applies.

At the same time, latticesimulations of quantum field the-
ories have been very successful in an increasing number of
applications. In sometheories, it ispossibleto match numeric
results at weak coupling to perturbative continuum results; at
stronger coupling, lattice simulations are often the only vi-
ableway to investigatenon-perturbativepropertiesof the the-
ories. As nonperturbative effects are automatically taken into
account, it is desirable to apply the lattice approach also to
supersymmetric theories. Thishasbeen the subject of a num-
ber of publications, see, e.g., [1, 2] and references therein.
There are a number of challenges with respect to this goal
since it is well known that full supersymmetry can not be re-
alized in a generic lattice model. The reason for this can be
traced back to thefailureof theLeibniz ruleon the lattice[3].
The full supersymmetry can only be recovered in the limit of
vanishing latticespacing (continuum limit); but only in some
cases, the conditions for such a restoration are under control.
E.g., it has been shown that even in supersymmetric quantum
mechanics the naive discretization does not lead to a super-
symmetric continuum limit [4]; generically, such a limit can
at best be achieved by finetuning the bare coefficients of all
supersymmetry-breakingcounterterms[5]. This, however, re-
quires much knowledge of the theory in advance. In some
cases the relevant operatorscan be determined perturbatively,
cf. [6]. A possible way beyond perturbation theory is the
application of a blocking transfromation as in [7] for a free
theory. This may lead to a solution similar to the Ginsparg-
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Wilson relation for the chiral symmetry [8].
It is possible to reducethe number of relevant operators in

the continuumlimit i f somesymmetriesof the continuumthe-
ory are already realized in thelattice action. Thestandard lore
is that it is sufficient to realize just a part of the supersym-
metry on the lattice in order to ensure the correct continuum
limit. There have been many suggestions and numerical in-
vestigations with respect to such a partial realization of the
supersymmetry algebra on the lattice, e.g. [9] and [10]. An
elegant suggestion uses a Nicolai map [11] to create lattice
improvement terms that guarantee apartial realization of su-
persymmetry, cf. e.g. [12].

Numerical simulationsof supersymmetric theories facethe
further difficulty that bosons and fermions on the lattice
should be treated on equal footing. This demands for dy-
namical fermions; however, such simulations are notoriously
numerically involved. Therefore, it is advisable to start with
low-dimensional theories in order to gain information about
the performance of the different supersymmetric lattice for-
mulations. On the other hand, such dynamical fermion sim-
ulations in low dimensions are interesting in their own right
because they allow for an explicit investigationand improve-
ment of the corresponding known algorithms.

Wehavestarted the analysisof such low-dimensional mod-
els in a previouspaper [13] with investigationsof various lat-
ticeformulationsof supersymmetric quantum mechanicsand
first testsof thetwo-dimensional Wess-Zuminomodel at weak
coupling. Herewewill extendthe analysisof the latter theory
using far more elaborate numerical techniques to reach inter-
mediate to strong valuesof the coupling. We are able to sim-
ulatetheWess-Zuminomodel for amuch larger parameter re-
gionas in related previousworks[12] and [14]. Starting from
the standard hybrid Monte Carlo algorithm [15] we employ
a novel combination of algorithms involving both a higher-
order [16] integration scheme and Fourier acceleration [17].
This entails much better statistics in combination with larger
latticesizes. These improvementslead to reliablenew results
even at stronger couplingwhere considerabledeviationsfrom
perturbativepredictions, e.g., for themassesof thesupersym-
metric partnerscan beobserved.

A further goal was a systematic study of the effects of the
above-mentioned improvement termsintroduced bytheNico-
lai map [12]. In this paper, we present the first explicit com-
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parison of the models with and without such terms. It may
come asasurprisethat for Wilsonfermionsthe “improvement
term” even fails to improvethepropertiesof thelatticemodel.
Moreover, such terms introduce new complications and can
lead to unreliablenumerical results.

In previous works [13, 18] it has been demonstrated that
latticemodels based on the SLAC derivative [19] and onthe
twisted Wilson formulation (as introduced in [13]) are par-
ticularly well -behaved as far as the continuum limit is con-
cerned. Even at large lattice spacing the continuum result is
approximated very well . In the current simulation the SLAC
derivative again provesto bethebest choicebecauseit allows
for much larger values of the coupling constant, and only a
comparably coarselatticeisneeded to extract the correct con-
tinuum results. It is interesting to note that contrary to a real-
ization with Wilson fermions the improvement terms for the
SLAC derivative in fact lead to better numerical results.

The paper is organized as follows: We start out with a
short introduction of the different lattice realizations of the
two-dimensional N = 2 Wess-Zumino model and the corre-
sponding improvement terms with their respective lattice and
continuum symmetries. Then, we present the numerical re-
sultsof our simulations; in particular, we comparethemasses
of thesupersymmetric partnersasa measure for how well su-
persymmetry is realized on the lattice. A comparison of the
variousmodels with the perturbative continuum predictionat
smaller valuesof the dimensionlesscoupling is the subject of
Section III C. At last, we turn special attention to the regime
of intermediate couplings where the measured masses differ
considerably from theone-loopresults.

II. LATTICE MODELS

A. Supersymmetrically improved lattice actions

Thelatticemodelsunder consideration havebeen discussed at
length in [13]. Therefore, we shall only briefly recall the def-
initionsof the correspondinglattice actions. In termsof com-
plex coordinates z and z̄ for the two-dimensional Euclidean
spacetime together with the corresponding holomorphic and
anti-holomorphic differentials ∂ and ∂̄ the continuum action
of theN = 2 Wess-Zuminomodel reads

Scont =

∫

d2x
(

2∂̄ϕ̄∂ϕ+ 1
2 |W ′(ϕ)|2 + ψ̄Mψ

)

. (1)

The bosonic potential is given by the absolute square of the
derivative of the holomorphic superpotential W (ϕ) w.r.t. its
argumentϕ = ϕ1 + iϕ2. Apart from thestandard kinetic term
for the (two-component) Diracspinors, the Diracoperator M
containsa Yukawa coupling,

M = γz∂ + γ z̄∂̄ +W ′′P+ +W
′′
P−. (2)

In (2) we have introduced chiral projectorsP± = 1
2 (1 ± γ3)

which in theWeyl basiswithγ1 = σ1, γ2 = −σ2, γ3 = iγ1γ2

project onto the upper and lower components of ψ. In the
form (1) the action is invariant under four real supercharges.

Taken together they satisfy theN = (2, 2) superalgebra, and
it has been argued that at most one supersymmetry can be
preserved on the lattice [12]. With the help of the explic-
itly known form of the Nicolai map it is possible to construct
such a latticemodel straightforwardly. In terms of the Nico-
lai variable ξx = 2(∂̄ϕ̄)x +Wx on the lattice, the discretized
Wess-Zuminoaction reads

S = 1
2

∑

x

ξ̄xξx +
∑

x,y

ψ̄xMxyψy. (3)

Here, Wx is taken to be the lattice counterpart of the contin-
uum operator W ′(ϕ), i.e. Wx = W ′(ϕx). The matrix M is
given by

Mxy =

(

Wxy 2∂̄xy

2∂xy W xy

)

=





∂ξx

∂ϕy

∂ξx

∂ϕ̄y

∂ξ̄x

∂ϕy

∂ξ̄x

∂ϕ̄y



 . (4)

Werequire all l atticedifferenceoperatorsto be antisymmetric,
∂xy = −∂yx. From thesecondequality in (4) we can read off
that Wxy := ∂Wx/∂ϕy.

One easily checks that (3) is invariant under the following
(supersymmetry) variation,

δϕx = ε̄ψ1,x, δψ̄1,x = − 1
2 ξ̄xε̄, δψ1,x = 0, (5a)

δϕ̄x = ε̄ψ2,x, δψ̄2,x = − 1
2ξxε̄, δψ2,x = 0. (5b)

In termsof theoriginal fields, (3) takes the form

S=
∑

x

(

2
(

∂̄ϕ̄
)

x
(∂ϕ)x + 1

2

∣

∣Wx

∣

∣

2
+Wx(∂ϕ)x +Wx(∂̄ϕ̄)x

)

+
∑

x,y

(ψ̄1,x, ψ̄2,x)

(

Wxy 2∂̄xy

2∂xy W xy

)(

ψ1,y

ψ2,y

)

.
(6)

This supersymmetrically improved lattice action differs from
astraightforward discretization of (1) by

∆S =
∑

x

(

Wx(∂ϕ)x +W x(∂̄ϕ̄)x

)

(7)

a discretization of a surface term in the continuum theory
(which is therefore expected to vanish in the continuum limit
for suitably chosen boundary conditions). For the freetheory
(Wx = mϕx) ∆S = 0 readily followsfrom the antisymmetry
of the difference operator ∂xy while for interacting theories
(7) guarantees the invarianceof the action under (5) without
the need of the Leibniz rule. To study the impact of SUSY
improvement we will compare also the improved action with
the unimproved straightforward discretization of (1) (without
∆S).

B. Lattice fermions

For thesymmetric differenceoperator
(

∂S
µ

)

xy
= 1

2 (δx+µ̂,y − δx−µ̂,y), (8)
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doublers are inevitably introduced into both the bosonic and
fermionic sector. In order to get rid of them a Wilson term
may be added to the superpotential so as to maintain the in-
varianceof the action under (5). Within this context two dif-
ferent choiceshavebeen discussed previously [13],

Wx = W ′(ϕx) − r

2
(∆ϕ)x (9)

and

Wx = W ′(ϕx) +
ir

2
(∆ϕ)x. (10)

Westressthat for Wilsonfermions, thederivativeof thesuper-
potential isnow shifted as compared to thesituation after (3).
From thefirst expressionwerecover thestandard Wilsonterm
for thefermions, i.e.Wxy = W ′′(ϕx)δxy− r

2∆xy. Theopera-
tor ∆xy is theusual two-dimensional (lattice) Laplacian 2∂∂̄.
The second possibilit y (10) leads to Wxy = W ′′(ϕx)δxy +
γ3

r
2∆xy. Here, the appearance of γ3 motivates the name

twisted Wilson fermions (not be confused with the recently
introduced twisted massformulation of lattice QCD). It was
already shown for the free theory [13] that twisted Wilson
fermions suffer far less from lattice artifacts than their stan-
dard Wilson cousins. Here we will show that they remain su-
perior even for (strongly) interacting theories.

Besidesthesetwo (ultra-)local differenceoperatorswehave
previously suggested to reconsider thenon-local SLAC lattice
derivative in the context of latticeWess-Zuminomodels. The
matrix elementsof theSLAC derivative aremost conveniently
given for a one-dimensional lattice with an odd number of
latticepointsL,

∂x 6=y = (−1)x−y π/L

sin(π(x − y)/L)
, ∂xx = 0. (11)

The generalization to higher dimensions is straightforward
andamountsto formingsuitable tensor productsof (11).1 For
SLAC fermions no further modifications to the superpoten-
tial are necessary. It is due to this fact that they constitute an
interestingalternative to Wilson fermions.

C. Discrete symmetries

For the numerical analysis of Sec. III we have chosen the su-
perpotential

W (ϕ) = 1
2mϕ

2 + 1
3gϕ

3 (12)

which coincides with that in earlier simulations of the Wess-
Zumino model [12, 14]. We will assume the coupling con-
stantsm andg to bereal and positive. Thesuperpotential (12)

1 The reason for an odd number of lattice points originates from a reality
condition onthe matrix elements (11). As such it is a mere technicality in
order to ease numerical simulations.

0

m4

16g2

−m
g −m

2g 0

FIG. 1: Classical bosonic potential V (ϕ) = 1

2
|W ′(ϕ)|2 from (12)

shown for vanishing imaginary part (ϕ2 = 0). In the free theory
limit (g → 0) the left minimum ispushed towards minus infinity.

allows for discrete symmetries Z
R
2 × Z

C
2 which act as reflec-

tions interchanging the two vacua and as complex conjuga-
tionson the complex scalar field:

Z
R
2 : ϕ 7→ −m

g
− ϕ and Z

C
2 : ϕ→ ϕ̄, (13)

so that also the potential 1
2 |W ′(ϕ)|2 is invariant under both

transformations, cf. Fig. 1.
From the explicit form of the fermion matrix M and its

adjointM †

M = γµ∂µ +m+ 2g(ϕ1 + iγ3ϕ2), (14a)

M † = −γµ∂µ +m+ 2g(ϕ1 − iγ3ϕ2) (14b)

onefinds that

Z
R
2 : M 7→ − γ3Mγ3, Z

C
2 : M 7→ γ3M

†γ3, (15)

which shows the invarianceof thedeterminant.2

Apart from Lorentz transformation, the continuum model is
(irrespectively of the concreteform of thesuperpotential) also
invariant under timereversal and parity transformations

Z
T
2 : (z, z̄) 7→ (−z̄,−z), Z

P
2 : (z, z̄) 7→ (z̄, z). (16)

Barring possibleWilsonterms, theunimproved latticemodels
obviously inherit all discretesymmetriesfrom the continuum.
By contrast, the supersymmetrically improved latticemodels
are invariant only under a combination of all symmetries. We
find

Z
R
2 : W ′

x(∂ϕ)x 7→ −W ′
x(∂ϕ)x, (17a)

Z
C
2 : W ′

x(∂ϕ)x 7→W
′

x(∂ϕ̄)x. (17b)

2 This is true at least up to an irrelevant sign. On the lattice the fermion
matrix M always has an even number of rows and columns, hence this
phase does not appear.
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TABLE I: Comparison of various latticemodels w.r.t. their symmetries. All statements refer to to the interacting theory, i.e. g 6= 0. Thenotion
Z

PC
2 denotes the combined action of a field and parity transformation as discussed in the text.

(1) (2) (3) (4) (5)

Wilson impr. Wilson unimpr. twisted Wilsona SLAC impr. SLAC unimpr.

latticederivative local local local non-local non-local

lattice artifacts O(a) O(a) O(a)b ‘perfect’ ‘ perfect’ c

modifications to superpot. yes yes yes no no

discrete symmetries Z
PC
2 Z

T
2 × Z

P
2 × Z

C
2 Z

TR
2 Z

TPR
2 × Z

PC
2 Z

T
2 × Z

P
2 × Z

R
2 × Z

C
2

supersymmetries one none one one none

aOnly improved considered.
bIn the interacting case the goodscaling properties are lost. However the

overall sizeof lattice artifacts is still much smaller when compared to Wilson
fermions.

cThedispersion relation is up to the cut-off the same as in the continuum.

Thus, for theimprovedmodels(withSLACfermions) the con-
tinuum symmetry is reduced,

Z
T
2 × Z

P
2 × Z

R
2 × Z

C
2 −→

Z
TPR
2 ×Z

PC
2 := diag(ZT

2×Z
P
2×Z

R
2 ) × diag(ZP

2×Z
C
2 ). (18)

Here, the diagonal subgroupdiag(ZP
2 × Z

C
2 ) is a group Z

PC
2

generated bytheproduct of thegeneratorsof Z
P
2 andZ

C
2 (anal-

ogous notationsare used for the other groups). It readily fol-
lowsthat the improvement term must have avanishingexpec-
tation value in the original ensemble without improvement.
We have checked this with a large numerical precision. For
Wilson and twisted Wilson fermions with improvement the
r. h. s. of (18) iseven further broken down dueto thepresence
of the(twisted) Wilson term in thesuperpotential. For Wilson
fermions, thebosonic actioncan beread off fr om (6) and (9),

SB = 1
2

∑

x

∣

∣

∣(∂̄ϕ̄)x +W ′
x − r

2 (∆ϕ)x

∣

∣

∣

2

. (19)

Since ∆xy is invariant under both time reversal and parity,
(17) cannot bepreserved; the Wilson term inevitably changes
sign. Conversely, fromthebosonic actionwith twisted Wilson
fermions

SB = 1
2

∑

x

∣

∣

∣(∂̄ϕ̄)x +W ′
x + ir

2 (∆ϕ)x

∣

∣

∣

2

. (20)

only (ϕ → −m/g − ϕ̄, ∂ → −∂̄) can be shown to yield a
symmetry. In either case the breaking of the other symme-
tries is induced by a higher-dimensional operator and may be
expected to be at most O(a) [12, 20]. Nevertheless, at finite
latticespacing, thephysicsmight be affected sincetheoverall
size of the breaking terms is a dynamical question. By con-
trast, SLAC fermionswith the larger symmetry (17) are again
favored.

In Tab. I we summarize all l atticemodels to be dealt with
in the next section.

III. NUMERICAL RESULTS

As outlined in the introduction we have employed the stan-
dard hybrid Monte Carlo algorithm for our numerical sim-
ulations. The fermion determinant was estimated stochasti-
cally utili zing real pseudo-fermionfields. The reason for real
pseudo-fermions derives from the presence of only a single
flavor such that thesquare root of the pseudofermionickernel
Q−1 = (MMT )−1 is actually needed. We note in passing
that the pseudo fermion action remains real with this choice
since also thefermionmatrix isreal for Majoranabasis ischo-
sen. Hencethe latter was adopted for all our simulations. A
significant gain was achieved by combining higher order in-
tegrators with Fourier acceleration techniques. With the help
of the former one can avoid the requirement for ever smaller
time-step sizes during the MD step of the HMC while a care-
ful tuning of the latter allows for autocorrelation times τ ≤ 5
over thewholerangeof parametersanalysed. In particular for
small l attice spacings, i.e. at large lattice sizes this was seen
to reducesignificantly critical slowing down as also reported
in [21]. A detailed account of the algorithm employed here
will bepublished separately at a later time.

A. Dynamical properties of improved lattice actions

Before discussing measurements of physical observables in
the next section we will first focus on the improvement
term (7). The aim is to understand the difference between
improved and unimproved latticemodels w.r.t. predictionsof
supersymmetry. One possible test is a measurement of the
bosonic action itself. With the help of the Nicolai map ap-
pearing in (3) one can show that

〈SB〉 = N. (21)

Here,N = Nt ×Ns denotesthetotal number of latticepoints,
and (21) isonly expected to hold when fermionsare included
dynamically. Then, however, this prediction holds irrespec-
tively of the concrete value of the couplingconstants. With a
slightly different argument the same was also foundin [12].
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FIG. 2: Normalized bosonic action as a function of the bare
mass lattice parameters using Wilson fermions with the improved
(filled squares) and unimproved (empty squares) actions from ei-
ther quenched (red) or dynamical fermion (blue) simulations (N =
16 × 16).
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FIG. 3: Same as in Fig. 2 but for SLAC fermions.

Equation (21) provides a test observable distinguishing im-
proved from unimproved lattice models as well as quenched
from dynamical fermion simulations. To accomplish this, we
have run simulations with both (standard) Wilson and SLAC
fermions. The results are shown as a function of the bare lat-
ticemassparametermlatt = m/Ns. Sincethe continuum limit
for this theory is obtained from mlatt → 0, smaller values
of mlatt li kewise mean a finer lattice spacing (and for fixed
N a smaller spacetime volume). The dimensionlesscoupling
strength λ = g/m was set to λ = 1. The lattice sizes
we used for our numerical simulations were N = 16 × 16
for Wilson andN = 15 × 15 for SLAC fermions. For the
quenched simulations 500,000 (independent) configurations
were evaluated, and 30,000 configurations with dynamical
fermions were analysed. The results are shown in Fig. 2 for
Wilson and in Fig. 3 for SLAC fermions. One clearly ob-
serves that the quenched data significantly deviate from the
predicted value which ill ustrates the necessity of dynamical

-1.5

-1.0

-0.5

0.0

0.5

5000 10000 15000 20000 25000 30000

Φ
1

trajectory

-4.0

-2.0

0.0

2.0

∆
S

FIG. 4: MC history of the latticemean Φ1 = N−1
P

x
ϕ1,x andsize

of the improvement term for Wilson fermions (N = 16 × 16, λ =
0.6, mlatt = 0.3).

fermion contributions in order to retain supersymmetry. Us-
ing an unimproved action with dynamical fermions we find
much smaller deviationswhich in caseof theWilsonfermions
are already hard to distinguish from the improved results. For
SLAC fermionsthedeviationsaresomewhat moresystematic
and remain also clearly distinguishable from other dynami-
cal fermionsimulations. A second differencebetween Wilson
and SLAC fermions may be infered from Fig. 4. Namely,
there isadistinct correlation between thegroundstate around
which the field ϕ1 fluctuates on the one hand and size and
variance of the improvement term on the other hand. This
may be taken as direct manifestation of the additionally bro-
ken Z

TPR
2 -symmetry due to the Wilson term which will also

play a rolewhen discussing the failureof improvement in the
next paragraphs.

Limitationsof improved latticeactions

Studying the improvement term ∆S for models with either
Wilson or SLAC fermions we have foundthat the system is
ultimately pushed into an unphysical region of configuration
space, at least for strongcoupling. Our simulations have re-
vealed that this instabilit y is controlled by the actual size of
the bare massparameter and the coupling strength λ. Simu-
lations tend to fail more often as either of them grows. The
study of this phenomenonwith Wilson fermions turns out to
be clumsy sincethereisnoclear correlation between thevalue
of the coupling and the number of configurations where the
instabilit y occurs. Hence we prefer to present our analysis
fromthesimulationswith SLACfermions. However, it should
be emphasized again that for either Wilson or twisted Wilson
fermions the qualitative picture is the same as described be-
low.

It is to be expected that the improvement term grows with
the couplingstrength λ and vanishescontinuously in the con-
tinuum limit (at mlatt = 0). We observe agoodscaling be-
havior w.r.t. the latticesize, see also Fig. 5. For all couplings
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-14
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N
·
1
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FIG. 5: Reduced improvement term∆S/N for different latticesizes:
9 × 9 (squares), 15 × 15 (triangles) and 25 × 25 (circles). Colors
depict λ = 0.8 (red), 1.0 (green), 1.2 (blue), 1.5 (magenta).

λ andmlatt the improvement term is foundto be smaller than
14% of the total bosonic action. Depending onthe coupling
strength λ, this ratio is reached sooner or later. Actually, this
represents a threshold above which the simulation fails. The
situation is depicted in Figs. 6 and 7. At some instant, the
improvement term blowsupandsettlesagain at a value about
40 times the sizeof the bosonic action. At the same time also
the fermion determinant grows drastically and so hinders the
system from returning into the original (and desired) region
of configuration space. A reason for this instabilit y may be
found byreconsideringthe improved action

SB =
1

2

∑

x

∣

∣

∣2(∂ϕ)x +W x

∣

∣

∣

2

. (22)

In this form the actionallowsfor two distinct behaviorsof the
fluctuating fields. The physically expected behavior consists
of small fluctuations aroundthe classical minima of the po-
tential. Alternatively, (22) allows for large fluctuations of ϕ
to be compensated by large values of W x. The latter would
be dominated by UV contributions, and this is what we ac-
tually observe, cf. Fig. 8. In this situation, it is definitely no
longer possible to extract meaningful physics. Another view
on this “broken” phase is taken in Fig. 7. While the ensem-
ble with λ = 1.4 exhibits the expected behavior at the only
slightly larger value of λ = 1.7 the simulation breaks down
after about 5,000configurations and for λ = 1.9 the simula-
tion is instantly foundin thebroken phase.

To sumup, wehaveobservedthat theimprovedlatticemod-
els may become unstable at any finitemlatt and hence any fi-
nite latticespacing. If andwhen thishappensdependsonsev-
eral factors. Wilson fermions are affected in a stronger way
while SLAC fermions remain stable for a much wider range
of coupling constants. Apart from that, one should ensure by
monitoringtheimprovement term or any other observabledis-
cussed above explicitly that a simulation is not subject to this
phenomenon. For thepractitioner thisisof course amajor nui-
sance and possibiliti es to avoid this matter are already under

450
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5 10 15 20 25
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d
e
t(

M
)

103 trajectory

-55

-45

-35

-25

-15

-5

∆
S

/
N

FIG. 6: MC history of improvement term and fermion determinant
(SLAC improved, N = 15 × 15, mlatt = 0.6, λ = 1.4 (green), 1.7
(red), 1.9 (blue)).
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·
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FIG. 7: MC history of normalized latticemeanΦ1·g/m (SLAC impr.,
N = 15 × 15, mlatt = 0.6, λ = 1.4 (green), 1.7 (red), 1.9 (blue)).

π

2
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ρ
` eϕ

1
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p
|)

´
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FIG. 8: Mode analysis of ensembles in thephysical (green, λ = 1.4)
and unphysical (red, λ = 1.7) phase. Hereρ is thedistribution func-
tion for the modulus of the latticemomentum averaged over 25,000
configurations (SLAC improved, N = 15 × 15, mlatt = 0.6).
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investigation. Provided that one isconfined to lattices smaller
than 64 × 64 but demands the absence of finite-size effects,
improved lattice models with Wilson fermions can be used
for the continuum extrapolation of massesonly uptoλ < 0.4.
SLAC fermions can be used in the greater range of λ < 1.5;
the correspondingresultswill be presented further below.

B. Setting the stage

In Monte-Carlo simulations, importance sampling is
only meaningful with respect to a positive measure.
However, including dynamical fermions the measure is
det(M) exp(−SB). While the exponential factor is strictly
positive (SB is real), the positivity of the determinant cannot
be guaranteed for an interacting theory and a possibly
emergingsign problem has to be addressed. In order to make
sensible comparisons with continuum calculations (which
are most conveniently performed in an infinite spacetime)
one furthermore must make sure that physical observables
extracted from lattice simulations are free of finite-size
effects. In order to check this, all simulations in this section
are repeated in portions of fractional volume l2 of a fixed
physical unit volume (with various values for l = Nsa on
a square lattice with N = Nt × Ns lattice points). In the
followingwe consider both issues in moredetail .

1. Negativefermion determinants

The Nicolai map in a supersymmetric theory is a change of
bosonic variableswhich rendersthebosonic part of the action
Gaussian; at the same time, the Jacobian of this change of
variableshasto cancel thefermion determinant. In our model,
thismeans

det(M) = det

(

δ

δϕ

(

2(∂̄ϕ̄) +W ′
)

)

. (23)

In this light, an indefinite fermion determinant obviously cor-
respondsto anon-invertible changeof variablesin the contin-
uum,

ϕ 7→ ξ = 2∂̄ϕ̄+W ′. (24)

This map is only globally invertible if the superpotential is
of degree1 (the Nicolai map in this case has winding num-
ber 1), i.e., for the freetheory [22]. For our choiceW ′(ϕ) =
mϕ+ gϕ2 the map is not globally invertible, and there exists
at least one point where det(M) vanishes iff g 6= 0. By this
lineof argument (for the continuumformulation of themodel)
negativedeterminantscannot be ruled out.

Oneway to copewith this in practical simulations is to use
|det(M)| exp(−SB) for the generation of configurations in-
stead and to reweighwith the sign afterwards. Unfortunately,
calculating the sign of detM is as costly as the computation
of the whole determinant. Hence, this method becomes un-
feasible for large lattices. A way out is to avoid reweighing
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FIG. 9: Probabilit y for negative determinants (Wilson unimproved,
N = 14 × 14, mlatt = 0.43).
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FIG. 10: Probabilit y for negative determinants at different box sizes
with varying latticesize(Wilson unimproved, m = 6, λ = 2.0).

within certain bounds for the parameters in which the ensu-
ing systematic errors are negligible. Thus, we have to es-
timate the frequency of occurrenceof negative determinants
as a function of the parameters. To obtain more reliable re-
sultswe havestudied this subject with a naive inversionalgo-
rithm which computes the determinant from a LU decompo-
sition and takes its contributionsexactly into account. This is
numerically much more involved than the standard pseudo-
fermion algorithm, thus, this method is only applicable to
small l attice sizes with up to 16 × 16 lattice sites. For fixed
physical massm it can be gleaned from Fig. 9 that configu-
rations with a negative sign of the determinant show up only
for λ > 1.0. Furthermore, in order to understand the depen-
denceon the latticesize and the latticespacingwe havefixed
the couplingto λ = 2.0 andrunsimulationsonfractions l2 of
a unit physical volume (l ∈ {3/6, 4/6, 5/6, 6/6}) and differ-
ent lattice spacings. The results displayed in Fig. 10 clearly
show that the problem dissolves in the continuum limit but
becomesworse at every finite latticespacing when the physi-
cal volume is increased. For both figures, for each data point
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about 50,000 configurations were evaluated. Eventually, to
estimate the impact on actual measurements we have mea-
sured the bosonic action with m = 5, λ = 2 on a 12 × 12
lattice and obtained about 7% configurations with a nega-
tive sign for the fermion determinant. The expectation val-
ues considered here are 〈SB〉non-reweighed = 149.94(12) and
〈SB〉reweighed = 149.49(10). Hence even at large coupling(far
larger than what we target at in the next section) effects may
be assumed to be at most of marginal relevancefor actual mea-
surements.

2. Finitesize effects

For these models the bare massmlatt also sets the scale for
the overall spacetime volume. As with all l atticesimulations
we have to balance finite-size and discretization errors. If
the lattice spacing is chosen too large, lattice artifacts may
grow; on the other hand if, say, the Compton wavelength of
a particle is larger than the spacetime volume the extraction
of masses may suffer from finite-size effects. One way to
test for the presenceof such finite-sizeviolations is to study
the model at different spacetime volumes. Comparing the
fermion species introduced earlier Wilson fermions may be
expected to bemost affected. Here, lattice artifacts further in-
crease the correlation lengths so that measurementsare much
more sensitive to the finite box size. Our setup for this anal-
ysis is as follows. At first we have simulated the improved
latticemodel usingWilson fermionsat fixed coupling param-
eters m = 15 and λ = 0.3 for five different lattices with
Nt = Ns ∈ {20, 24, 32, 48, 64} lattice points in each di-
rection (N = Nt × Ns). In the following we assume that
with this choiceof coupling constants the spacetime volume
islarge enoughso asto allow for asufficiently goodidentifica-
tionwith thethermodynamic limit. Themassesobtained from
these simulations were extrapolated to the continuum as de-
scribed in App. B. This isalso shown in Fig. 11where the re-
sulting fit (and its uncertainty) is depicted with a gray shaded
area. The next step is to decrease the volume to fractions l2

(with l ∈ {9/15, 7/15, 5/15, 3/15}) of a fixed physical unit
volume. As longasnofinite-size effectsarevisiblewe expect
to find the masses extracted at these smaller and smaller vol-
umes to lie on top of the fit from the original lattice (of unit
volume). Up to a volume lessthan half the sizeof the origi-
nal one this scaling may be easily infered from Fig. 11which
justifiesaposteriori the correctnessof our earlier assumption.

However, sinceby perturbation theory the physical masses
decrease for growing coupling (seenext section), we expect
growingComptonwavelengthsandthereforestick to unit vol-
ume (l = 1) for all further measurements so as to exclude
finite-size effects.

C. Weak coupling

An interesting observable for comparing lattice results with
continuum physicsis themassof thelightest excited state, i.e.
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m
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l = 3/15
l = 5/15
l = 7/15
l = 9/15

FIG. 11: Lattice masses for m = 15, λ = 0.3 on box sizes l ∈
[0.2, 0.6]. Wesee asystematic deviation from the l = 1 result below
l ≈ 0.5.

the energy gap. Since unbroken supersymmetry in the con-
tinuum predictsthat bosonic andfermionic massescoincideit
also providesa possibilit y to check the supersymmetric prop-
erties of the lattice prescription. The corresponding values
can be extrapolated from the latticemasses in the continuum
limit. In the weak coupling it will be possible to match these
results to predictionsof perturbation theory. This providesan
important test for the numerical results and ensures that also
the resultsat intermediate couplingare reliable.

For a description of our prescription for the boson and
fermionmassextraction from correlatorson the latticewe re-
fer the interested reader to App. A. With these methods we
are aiming at a test of the lattice results against perturbation
theory for λ ≤ 0.3.

The reference value is given by a one-loop calculation of
the renormalized mass

m2
ren = m

(

1 − 4λ2

3
√

3

)

+ O(λ4) (25)

in the continuum valid for λ ≪ 1 with the bare massm as
used in Eq. (12). To obtain this result one first must calcu-
late contributionsof the loop diagrams to the propagator. An
expansion in λ then yields the aboveresult.3

As will be show below the fermionic masses have lower
statistical errors than the bosonic ones. Therefore we com-
pare only the extrapolations for fermionic masses to the per-
turbative results. This procedure gets justified by the fact
that bosonic and fermionic masses coincide even on a finite
lattice for the weak coupling regime as described below in
Sec. III C3.

3 Wewill elaborate on the analytical side and thedetermination of the effec-
tive potential of this theory in a forthcoming publication.
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FIG. 12: The continuum extrapolation of masses for λ = 0.3 for the
improved Wilson and twisted Wilson model. Here, the SLAC result
is given for one single latticesize. For comparison the exact results
for the freetheory are also shown.

1. Continuum limit

Themethods to extrapolate to the continuum given in App. B
are based on the freetheory with λ = 0. Since we are in-
terested in the interacting case we must first make sure that
the continuumextrapolation of massesremains stable even for
λ = 0.3.

To that purpose we consider the masses in the improved
model with standard Wilson and twisted Wilson fermions at
λ = 0.3 at different lattice spacings a. In the perturbative
coupling regime we use throughout square lattices of sizes
Nt = Ns ∈ {20, 24, 32, 48, 64}. These correspondto lattice
spacingsof about a ∈ [0.015625, 0.05]. A statisticsof 10,000
independent configurationsputsusin apositionto extrapolate
to the continuum.

Usingthesemassesm(a) at finitelatticespacingthe extrap-
olation is shown in Fig. 12. For comparisonwe also mark the
massfor SLAC fermionsat a finite latticesizeNt = Ns = 45
(corresponding to a ≈ 0.022). All these results indicate that
even at λ = 0.3 the continuum extrapolated masses coin-
cide within error bounds. Even better, the masses of SLAC
fermionsat finitelatticespacingcan not bedistinguished from
the continuum result.

2. Comparison with perturbation theory

As described above we extrapolate masses for Wilson (im-
proved and unimproved) and twisted Wilson (improved)
fermionsfor λ ∈ [0, 0.3] to the continuum values, cf. Fig. 13.
The masses coincide within error bars althoughthe twisted
Wilsonmassesaresystematically smaller. Thisdifferencehas
to beinterpretedasasystematic error in the continuumextrap-
olationfor themassesbut itseffect isalmost overshadowed by
the statistical errors in our case. However this result indicates
that for areliable extrapolationat larger statisticsfiner lattices

14.4
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15.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

m
f

λ

one-loop
Wilson impr.

Wilson unimpr.
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FIG. 13: Continuum masses for the weakly coupled regime in com-
parison to the perturbative result. The shaded area corresponds to
the extrapolation provided by the continuum results according to
Eq. (26) with m = 15 and b = 1.35(13).

TABLE II : Continuum extrapolationsof fermionic massesfor Wilson
and twisted Wilson fermions in the weak coupling regime.

λ Wilson unimp. Wilson imp. tw. Wilson

0.02 14.999(2) 14.997(2) 14.999(1)

0.04 14.992(4) 14.993(4) 14.993(3)

0.06 14.982(6) 14.999(7) 14.977(4)

0.08 14.974(8) 14.963(8) 14.963(5)

0.10 14.95(1) 14.96(1) 14.935(6)

0.12 14.94(1) 14.91(1) 14.905(9)

0.14 14.91(1) 14.87(2) 14.871(9)

0.16 14.86(2) 14.87(2) 14.83(1)

0.18 14.82(2) 14.85(2) 14.82(1)

0.20 14.80(2) 14.79(2) 14.75(2)

0.22 14.76(3) 14.72(3) 14.71(2)

0.24 14.70(3) 14.73(3) 14.63(2)

0.26 14.64(3) 14.60(3) 14.60(2)

0.28 14.57(4) 14.60(4) 14.53(2)

0.30 14.50(4) 14.45(4) 14.45(3)

can benecessary to yield a better continuum limit.
As a further test we use these results to reproducethe per-

turbativeformula

m(λ) ≈ m0

√

1 − λ2

b
. (26)

Taken thisfunctional form for granted, theparametersm0 and
b can be extracted from a least-square fit to the given data.
For this fit we can use our knowledge about the freetheory
(m0 = 15) asafixed input or, alternatively, allow for bothm0

and b as freeparameters. The correspondingresultsare given
in Tab. III .

The extrapolated results for m0 confirm that the extrapola-
tion to the freetheory works reliably and that we can expect



10

TABLE III : Fit for theperturbativemassformulawithO(λ2) correc-
tions to be compared with the one-loop results. For comparison the
one-loopresult is b ≈ 1.2990.

derivative b m0

Wilson improved 1.34(6) 15.007(6)

Wilson unimproved 1.39(7) 15.008(6)

twisted Wilson improved 1.26(4) 14.996(4)

Wilson improved 1.37(5) fixed to 15

Wilson unimproved 1.42(6) fixed to 15

twisted Wilson improved 1.25(3) fixed to 15

to obtain meaningful results for b. Furthermore the results
obtained for improved and unimproved Wilson fermions co-
incidevery well andthereforeboth providethe correct contin-
uum limit.

Additionally the results for standard Wilson and twisted
Wilson fermions lead to compatible results when taking sys-
tematic uncertainties of the continuum extrapolation into ac-
count.

Asan important result of theseobservations, all threemod-
els considered in the weak coupling case tend towards the
same continuum limit for λ > 0. Theperturbativeresults can
be recovered where the largest error bars (including possible
systematic errors) yield b = 1.35(13) in agreement with the
one-loopresult of bone-loop ≈ 1.2990.

3. Signs of supersymmetry at finite latticespacing

Apart from all results solely based on fermions, we are pri-
marily interested in the restoration of supersymmetry on the
lattice. For this reason we better also check the demand from
supersymmetry that the masses of bosonic and fermionic su-
perpartners match. This is going to be checked by comput-
ing bosonic and fermionic masses at couplingsλ = 0.2 and
λ = 0.4 with m = 15 for all the models on different lattice
sizes.

As we have seen in the whole weak coupling regime the
fermionic masses do not suffer from statistical noise. This
behavior derives from the fact that the fermionic correlator
for the freetheory (λ = 0) is independent of the bosonic field
ϕ and is obtained by a pure matrix inversion. At small (and
finite) λ, corrections to the freepropagator are of O(λ2), and
thefluctuationsof ϕ duringthesimulationaresuppressedwith
λ2; astatistics of only 104 is needed to get reliable results.

On the other hand the bosonic correlator even for the free
theory is given by the correlations of the fluctuating field ϕ.
Therefore amuch higher statistics is necessary to sample the
bosonic two-point function. Here, problemsariseby the expo-
nentially growingrelative error of thetwo-point functionC(t)
with respect to t.

Only with theuseof an algorithm combiningFourier accel-
eration with higher order integrators it was possible to simu-
late 106 to 107 configurations for each parameter set (m,λ)
with an autocorrelation time of the two-point function of

TABLE IV: For different models and lattice sizes we computed
bosonic and fermionic masses with bare massm = 15.

model Ns λ mf mb,1 mb,2

Wilson impr. 24 0.2 11.592(2) 11.53(4) 11.59(4)

24 0.4 11.375(4) 11.39(3) 11.34(3)

32 0.2 12.224(2) 12.20(3) 12.15(4)

32 0.4 11.945(5) 11.95(3) 11.88(4)

48 0.2 12.941(5) 12.87(5) 13.02(5)

48 0.4 12.548(13) 12.47(4) 12.53(4)

64 0.2 13.349(10) 13.45(9) 13.32(9)

64 0.4 12.89(3) 12.73(9) 12.83(9)

Wilson unimpr. 24 0.2 11.591(2) 11.58(2) 11.63(3)

24 0.4 11.400(4) 11.44(2) 11.39(3)

32 0.2 12.221(2) 12.20(3) 12.15(4)

32 0.4 11.965(5) 11.97(3) 11.87(4)

48 0.2 12.942(5) 12.92(6) 13.00(7)

48 0.4 12.572(14) 12.54(4) 12.49(4)

64 0.2 13.347(7) 13.45(9) 13.32(9)

64 0.4 12.91(2) 12.82(9) 12.79(9)

tw. Wilson (impr.) 24 0.2 14.811(7) 14.94(11) 14.91(12)

24 0.4 14.13(1) 14.21(9) 14.06(8)

32 0.2 14.788(6) 14.61(14) 14.94(12)

32 0.4 14.08(1) 14.39(14) 13.68(13)

48 0.2 14.789(6) 14.74(11) 14.61(11)

48 0.4 14.04(1) 14.16(16) 13.98(15)

SLAC impr. 45 0.2 14.768(4) 14.87(10) 14.83(9)

45 0.4 13.997(13) 14.08(11) 13.92(10)

SLAC unimpr. 45 0.2 14.769(4) 14.75(6) 14.57(6)

45 0.4 14.047(16) 13.74(8) 13.75(7)

τ ≤ 2.
The results of these numerical efforts are summarized in

Tab. IV. They show that independently of the model even for
λ ∈ {0.2, 0.4} bosonic and fermionic masses correspondto
each other and lattice-induced supersymmetry breaking can
not beobserved.

Finally in Figs. 14and 15thederived bosonic andfermionic
masses are shown for the improved (and unimproved) model
with Wilson fermions. Even these high statistics do not al-
low for a clear cut distinction between the extrapolated con-
tinuum masses of bosons and fermions for the improved and
the unimproved models. This proves that even at λ = 0.4 the
improvement is not necessary even on a finite lattice. Each
model tends towards thesupersymmetric continuum limit.

D. Intermediate coupling results

Earlier attempts to go beyond the perturbative regime could
not reliably determine the mass spectrum. Namely, this was
hindered by instabiliti es introduced by improvement terms.
For Wilson fermions, this renders simulations at intermedi-
ate couplings invalid. For our analysis of coupling constants
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FIG. 14: Bosonic and fermionic masses for the weakly coupled
regime for the improved Wilsonmodel.

12.0

13.0

0.005 0.015 0.025 0.035

m
f,

m
b,
1

,m
b,
2

a

λ = 0.2
λ = 0.4

FIG. 15: Bosonic and fermionic masses for the weakly coupled
regime for the unimproved Wilsonmodel.

in the intermediate regime (0.3 < λ ≤ 1.2) we have there-
fore only considered actions with twisted Wilson and SLAC
fermions (which are anyhow expected to give better results
at finite lattice spacing). For twisted Wilson fermions we
haverunsimulationswith theimprovedaction onlatticeswith
Ns ∈ {32, 40, 48, 56, 64} lattice points in the spatial direc-
tion. For the temporal directionwehaveused 1.25 ·Ns lattice
points in order to be ableto assesswhether contributionsfrom
higher excited states are really absent. At the chosen value
of m = 15 in all simulations, the respective bare latticemass
parameter mlatt confines the attainable coupling strengths to
λ ≤ 0.7.4 For even larger coupling strengths λ only SLAC
fermionshavebeen foundto yield sensibleresults. In our sim-
ulationsweused for this speciesboth theimproved and unim-
proved latticemodelson a fixed latticesizeof N = 45 × 45.

4 For λ = 0.7 we already observed that thesimulation failed onthe coarsest
lattice and had to be excluded.

TABLE V: Fermionic masses for the intermediate coupling case.
Twisted Wilson results are continuum extrapolations whereas the
SLAC data is from a45 × 45 lattice.

λ tw. Wilson SLAC unimp. SLAC imp.

0.20 14.80(2) 14.769(4) 14.768(4)

0.35 14.23(2)

0.40 13.99(3) 14.05(2) 14.00(1)

0.45 13.62(5)

0.50 13.30(6)

0.55 12.8(1)

0.60 12.2(1) 12.81(4) 12.44(6)

0.65 11.9(2)

0.70 10.4(5)

0.80 11.49(9) 10.2(3)

1.00 10.2(2) 9.4(2)

1.20 10.1(3) 9.1(3)

Apart from that, onefurther runwasdoneona63× 63 lattice
withλ = 0.8. Squarelatticesturned out to bemore convenient
with SLAC fermions and to be sufficient to clearly read off
(within statistical errors) the masses. As for the simulations
with twisted Wilson fermions we have determined only the
masses from thefermionic correlators sincewith thestatistics
(50,000 trajectories) achieved so far the bosonic correlators
are far too noisy to yield reliable results.

Our resultsmay befoundin Tab. V andaredepicted graph-
ically in Fig. 16. From the comparisonwith perturbation the-
ory first deviations are seen as soon as λ ≥ 0.4 where the
(extrapolated) latticeresultsareslightly stronger curved. Also
clear deviationsbetween theimprovedand unimprovedmodel
using SLAC fermions become apparent for λ ≥ 0.6. It is
worthwhile to note that the result from the improved lattice
model is closer to the continuum limit which may be infered
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FIG. 16: Massesof the improved and unimproved model with SLAC
fermions ona45× 45 lattice andcontinuum extrapolated results for
twistedWilsonfermionsare compared with theperturbativeone-loop
result in the continuum.



12

TABLE VI: Fermionic masses for the SLAC derivative on two dif-
ferent latticesizes for λ = 0.8.

Ns improved unimproved

45 10.22(26) 11.49(9)

63 10.54(15) 10.70(19)

from Tab. VI. While the latticedata from the improved model
almost coincide for both lattice spacings the data from the
unimproved model is likely to approach the same value if in-
creasingly finer grained latticesareused.

Larger valuesof λ are attainablehowever thenumerical ef-
fort becomes more involved and some technicaliti es need to
be addressed. Once this is under control we are confident
to investigate the strong coupling regime with the improved
models up to λ = 2.0 on the same latticesizes. The interest-
ing question whether the masses of superpartners still agree
can then besatisfactorily answered.

IV. CONCLUSIONS AND OUTLOOK

In thisarticlewehavepresented adetailed numerical analysis
of thetwo-dimensional N = (2, 2) Wess-Zuminomodel. Due
to algorithmic improvements we were able to study lattice
modelsat much larger latticesizes, i.e. smaller latticespacings
and more importantly at stronger couplings. For a compari-
son with analytical results from perturbation theory we have
checked explicitly for finite-size effects and other systematic
errors such as sign changesof the fermion determinant. Both
were seen to be under control for the scrutinized parameter
range. We could confirm earlier weak couplingresultsandfor
the first time resolve deviations from perturbation theory. All
threekinds of fermions, Wilson, twisted Wilson, and SLAC
fermions, approach the same continuum results. It turned out
that lattice artifacts were largest for Wilson and smallest for
SLAC fermions. At intermediate coupling we observed that
the supersymmetrically improved lattice action using Wilson
fermions lead to unstable simulations that eventually fail to
producereliable results unlessvery large lattices are chosen.
Simulationswith SLAC fermionsprovedto bemuchmoresta-
ble; they allow for improvement terms for a wider parameter
range. At finite latticespacing and weak coupling nosignif-
icant differences in the measured spectrum between simula-
tionsusingtheimproved or unimprovedactionscould beseen.
It isonly at larger couplingthat deviationsbecomevisible, and
the improved lattice action in fact suppresses lattice artifacts.

It is still an open problem to goto even stronger couplings.
Practical simulationsbecome considerably moreinvolved due
to stronger fluctuationsin thesign of thefermion determinant.
Further refinementsof our algorithm are already under inves-
tigation, and we hope to report of our progress in the near
future. Apart from that, the attainable large statistics allow
for the determination of the (constrained) effective potential
for this theory; this might serve as an independent check of
thenon-renormalizationtheorem for thisparticular supersym-

metric model.
We believe that a generalization of our numerical methods

to all supersymmetric theorieswithout gaugefieldscan be ac-
complished. In particular, theN = 1 model in both two and
four dimensions as well as supersymmetric non-linear sigma
models are within reach. At least the experience gained in
two-dimensional models suggeststhat SLAC andtwisted Wil -
son fermionsmight begoodcandidatesfor the formulation of
four-dimensional supersymmetric latticetheories.
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APPENDIX A: DETERMINATION OF MASSES FROM
TWO-POINT CORRELATORS

One important observableof a quantum field theory is the en-
ergy gap between the groundstate and the first excited state.
This energy gap corresponds to the massof the lightest parti-
cle in thespectrum.

To obtain the masses in the Wess-Zumino model one has
to consider the propagators of fermions and bosons. At van-
ishingspatial momentum p1 = 0, the freebosonic continuum
propagator in momentum spacereads

Gboson(p) =
1

m2 + p2
0

. (A1)

The real and imaginary parts ϕ1 and ϕ2 of ϕ decouple (the
propagator isdiagonal andevenequal forϕ1,ϕ2). TheFourier
transform of Gboson(p) shows thewell known exponential de-
cay

Cboson(t) ∝ exp(−m |t|) , (A2)

where m is the above mentioned massof the lightest parti-
cle. (The space coordinates corresponding to p1 and p0 are
called x and t, respectively.) In the interactingcase thisquan-
tity can be obtained onthe latticeby measuring the two-point
function. The projection onto p1 = 0 can be achieved by av-
eraging over the spatial latticesites,

Cboson
αβ (t) =

1

Ns

∑

x

〈ϕα(0, 0)ϕβ(t, x)〉 , (A3)

withα, β labelingcomponentsof the bosonic field.
The freefermionic continuum correlator for p1 = 0 is

〈

ψαψ̄β

〉

= Gfermion
αβ (p0) =

m− iγ0
αβp0

m2 + p2
0

. (A4)
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Using the representation of the γ matrices as described after
(4) one can read off a direct connectionwith the bosonic cor-
relator using

Gfermion(p0) := Gfermion
11 (p0) +Gfermion

22 (p0) =
2m

m2 + p2
0

.

(A5)
Asin thebosonic caseonthelattice asummation over thespa-
tial latticesites yields the projection onto p1 = 0. C fermion(t)
defines theFourier transform of thisobject.

1. Fermion masses

The fermionic propagatorC(x) is given by
〈

ψαψ̄β

〉

=
〈

M−1
αβ (ϕ1, ϕ2)

〉

, (A6)

whereM is the fermionmatrix. The calculation of thisquan-
tity requiresa high numerical effort for the inversion of large
matrices. Fortunately in the weak-coupling limit the fermion
matrix isapproximately thesame asthat of thefreetheory and
thestatistical fluctuationsare rather small . Thereforethenec-
essary statistics to read off a reasonable fermionic correlator
ismuch smaller than for bosons.

After thefermionic correlator in positionspaceiscomputed
the masses can be determined from its long range behavior.
Inspired by the continuum connection between fermionic and
bosonic correlators, (A5), and the behavior at largedistances,
(A2), one can consider

meff = ln

(

C fermion(t)

C fermion(t+ 1)

)

(A7)

with t in a region between zero andNt/2. Themasscan then
bedetermined from the averageof meff .

A more elaborate way is a least square fit of the fermionic
correlator C fermion(t) with the function

fa,mf(t) = a · cosh(mf(t−Nt/2)) (A8)

One better not take the full range of t into account for this fit
becauseit isvalid only for largedistances(for periodicbound-
ary conditions, from both boundaries of the lattice). One
should therefore constrain t to be in {1 + tskip, . . . , Nt − 1 −
tskip}. The choice of tskip is determined by the fringe of the
plateau in aplot of the fitting result vs. tskip.

The differences of the different methods to determine the
massesareill ustrated in Fig. 17. One clearly observesthat the
effective masses determined according to (A7) do not show
a plateau from which the masscan be read off . By contrast,
themassesobtained from acosh fit clearly show thisbehavior
at large tskip. As mentioned above, the effective massof the
bosonic correlator is subject to much larger statistical errors.

2. Boson masses

In order to calculatethebosonic correlatorsfor thedetermina-
tion of themassesthe connected two-point functionisconsid-
ered. At large distances, where the masses can be extracted,

11.0

11.5

12.0

12.5

13.0

13.5

14.0

5 10 15 20 25

m
f,

m
b

t, tskip

bosonic, effectivemass
fermionic, effectivemass

fermionic, cosh-fit

FIG. 17: Bosonic and fermionic masses obtained via acosh-fit (A8)
andthe effectivemassdefinition(A7) for theimproved Wilsonmodel
with λ = 0.4 on a 64 × 64 lattice. The fermionic masses with a
statisticsof about 5,000independent configurationsaremuch sharper
and more reliable than the bosonic effective masses obtained from
about 106 independent configurations.

the relative statistical error of the correlator grows exponen-
tially. Therefore, one must achieve a balance between this
statistical error and the systematical errors due to the evalua-
tionat small distances.

We have fitted ln(Cboson(t)) against the function A +
ln(cosh(mb/Ns(t − Nt/2))) to determine A and the effec-
tive massmb. In order to exclude the points with the largest
statistical and systematical errors from this fit, we have taken
only thepointsin theinterval ([tskip, tst]∪ [Nt− tst, Nt− tskip])
into account. tskip is determined as in the fermionic case and
tst such that thestatistical error becomescomparably small .

If the SLAC derivative is used an oscill atory behavior of
mb as a function of tskip can be observed. In the bosonic
case it is slightly smaller than the statistical error. There-
fore, it is sufficient to measure a “smeared” mass, mSLAC =
0.5mb(tskip, tst)+0.25mb(tskip+1, tst)+0.25mb(tskip−1, tst),
wherethe error of theoscill ationsisnegligible ascompared to
thestatistical one.

APPENDIX B: CONTINUUM EXTRAPOLATION

For the continuum extrapolation we focus on the fermionic
massesbecauseof their much smaller statistical error. The ex-
plicit extrapolation procedureisguided byanalytic resultsand
observationsfor thefreetheory. Thethreedifferent discretiza-
tions investigated in this work require different strategies for
thisprocedure.

1. Wilson derivative

Compared with the continuum formula, (A5), the free mo-
mentum space correlation function for the Wilson derivative
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getsamomentum dependent mass,

Gfermion(p0) =
mlatt + 1 − cos(p0)

sin2(p0) + (mlatt + 1 − cos(p0))2
. (B1)

Thepoleof thiscorrelator coincideswith the abovementioned
cosh-fit within the error bars.

To extrapolate the continuum limit an expansion in powers
of the lattice spacing is used. Exact results for the freethe-
ory were derived to check this extrapolation. In this case an
expansion up to a linear order in a is not enoughto obtain
the known result within the high precision of the numerical
measurements at weak coupling. Therefore we first tried to
extended the expansion to a quadratic order which yields a
better result; but still t he error is to large for our purposes.

The functional behavior of the masses,mf , obtained by the
fit asa function of the latticespacing iswell approximated by

mf (a) ≈ mcont +A · a+B · a 3

2 (B2)

for all a ∈ [0, 0.05]. Thedeviationfrom thisbehavior isnegli -
giblewith respect to thestatistical errorsin theweak coupling
case. In addition the expected continuum result is achieved
with the necessary precision. Motivated by these results this
formula isalso used in the interactingcase.

2. Twisted Wilson derivative

A Wilson parameter of r =
√

4
3 for the twisted Wilson

fermions in the free theory leads to discretization errors of
O(a4) as discussed in [13]. For the weakly coupled regime
(λ ≤ 0.3) we expect these errors to dominate the lattice ar-
tifacts. Neverthelessfor an intermediate couplingcorrections
of O(a) arise. Taking this into account we extrapolate the
masses to continuum assuminga functional behavior of

mf (a) = mcont +A · a+B · a4. (B3)

For λ > 0.3 the O(a) terms dominate. Therefore a linear
extrapolation is sufficient.

3. SLAC derivative

As we have seen in our previous investigations, [13], the
SLAC-derivative shows an almost perfect behavior. That
means the extrapolated masses coincidewith their continuum
counterparts already at finite lattice spacings. On the other

hand we have observed an oscill atory behavior of the corre-
lation function. This was shown to be connected with the ex-
act reproduction of the continuum dispersion relation by the
SLAC derivative. To handle thisproblem wehave again stud-
ied the freetheory first. As in the bosonic case the plot of mf

versus tskip does not show a clear plateau but rather oscill ates
aroundthe expected continuum value, cf. Fig. 18.

Guided by these observation of the free theory a suitable
averaging can lead to the extraction of the correct continuum
resultsat finite latticespacing. Startingwith the ansatz

m(Ns, c) := c0mf(tskip) + c1mf(tskip − 1) + c2mf(tskip − 2).
(B4)

we minimizethedifferenceform theknown continuum result
of the freetheory

∆(Ns, c) = |m(Ns, c) −mcont| (B5)

for lattice sizes of Ns = Nt ∈ {35, 37, . . . , 75} and tskip =
⌊0.4Ns⌋. A least squarefit yields

c0 = 0.11791, c1 = 0.47877, c2 = 0.40332 , (B6)

leading to max∆(Ns, c) = 5.282 × 10−4. A smaller tskip

does not change this result considerably. Using this approx-
imation scheme the systematic error based on the oscill atory
behavior of the SLAC derivative can be neglected compared
to thestatistical errorsat least for theweak couplingcase.
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FIG. 18: Masses obtained via acosh-fit for the freetheory using the
SLAC derivative. At larger lattices the oscill ation amplitude around
the continuum value gets smaller.
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