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1 Introduction

Despite its great success in the description of high energy experiments, the Standard Model of
particle physics still faces serious problems, especiallywith regard to cosmological observations,
where yet undiscovered sources of gravitation are proposedto correct the seemingly unbalanced
equation of observed matter on the one hand and gravitational attraction on the other hand [1].
Another interesting question concerns the existence of farmore matter than antimatter in our uni-
verse, and this fact is connected to the strongCP problem (see [2] and references listed therein).
Coined as the hierarchy problem is the question of scales that are involved in the fundamental the-
ory of particle physics. To address these open issues, extensions of the Standard Model have been
proposed, among them supersymmetrically extended versions, in particular the Minimal Supersym-
metric Standard Model (MSSM). It is of great interest to examine the nonperturbative properties
of this theory, but the utilization of the only ab initio method for this purpose, namely a spacetime
lattice simulation, is notoriously difficult because of themany different scales that are involved.
In the past, two-dimensional nonlinear sigma models have been applied successfully to model non-
perturbative properties of four-dimensional strongly coupled pure gauge theories [3]. Similarly
one may employ the supersymmetrized version of the nonlinear sigma model to effectively de-
scribe super-Yang-Mills theories with a strongly interacting fermionic sector. A first construction
of the supersymmetric nonlinear sigma model with O(N) target manifold is due to E. Witten [4]
and P. Di Vecchia and S. Ferrara [5], followed by a number of papers that established analytical
properties, including asymptotic safety, spontaneous breaking of chiral symmetry and the dynami-
cal generation of particle masses [6–8]. Further studies are particularly concerned with the special
case of the O(3) model, which admits an extendedN=2 supersymmetry algebra since its target
manifold is Kähler [9].
This enhanced supersymmetry has recently raised some interest with regard to the endeavor to study
supersymmetric theories by numerical simulations. Because it is an extension of the Poincaré sym-
metry, any lattice discretization of spacetime also breakssupersymmetry. This can be traced back
to the failure of the Leibniz rule on the lattice [10]. It is therefore necessary to take great care in
restoring the full symmetry in the continuum limit. In general, one needs to introduce appropriate
counter terms for each relevant supersymmetry-breaking operator that must each be fine tuned such
that the desired continuum theory is reached [11]. Depending on the number of parameters, this be-
comes practically impossible very fast due to limited computer time. In addition, much information
about the theory is needed prior to numerical investigations. For that reason alternative approaches
have been proposed in order to reduce the number of fine tuningparameters or even render the
fine tuning procedure obsolete [12]. One such approach for theories with extended supersymmetry
aims at the construction of a nilpotent charge composed fromthe supercharges such that both the
continuum as well as the discretized model are invariant under this charge. It is then expected that,
by preserving a part of the symmetry, invariance under the full supersymmetry is restored automat-
ically in the continuum limit, without the need for fine tuning. This procedure was applied to the
supersymmetric O(3) model [13, 14] and the authors conclude that the supersymmetric Ward iden-
tities are indeed fulfilled in the continuum limit, hinting at a restoration of the full supersymmetry.
However, the lattice discretization constructed in this way breaks the O(3) symmetry of the target
space explicitly at finite lattice spacing and no attempt wasmade to show that it is restored in the
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continuum limit. It is therefore unclear whether this discretization actually describes the correct
model in the continuum and we will address this question in much detail.
Expensive dynamical fermion simulations are needed in order to treat the superpartners on equal
footing and we wish to utilize the SLAC prescription for the fermionic derivative, which performed
very well in previously examined Wess-Zumino models [15], showing greatly reduced lattice ar-
tifacts in comparison to e.g. the Wilson derivative. Furthermore, the SLAC derivative allows for
a discretized action that does not break the discrete chiralsymmetry explicitly. But this comes at
the cost of having a nonlocal derivative operator and we willexplicitly check whether the SLAC
derivative is applicable in the present model. In order to compare with an alternative, the model
will also be studied by simulations based on the Wilson derivative, which is less affected by the
sign problem and enables us to investigate larger lattices.
The article is organized as follows: We introduce the supersymmetric version of the nonlinear O(3)
model along with a derivation of its stereographic projection in the superfield formalism. We then
discuss the extended supersymmetry of the model and expressthe related transformations in terms
of constrained fields. Based on the continuum theory two alternative discretizations in Euclidean
space are presented which resolve the field constraints – oneusing stereographically projected
fields and the other using elements of the orthogonal group SO(3). Thus providing the basic setup
of our lattice discretization, we go on to argue that the SLACderivative is indeed applicable here by
performing a high precision analysis of the step scaling function in the quenched model. Towards
the end of the first part we finally answer the question whethera lattice theory exists that admits
both the O(3) symmetry and at least one supersymmetry.
In the second part, which is primarily dedicated to extensive numerical investigations, we discuss
the missing target space symmetry in a previously given lattice discretization by Catterall et al.
[13] and proceed with results from our own calculations. We examine the discrete chiral symmetry
as well as supersymmetry by presenting results for the chiral condensate and the masses of the ele-
mentary excitations computed from ensembles obtained withboth SLAC and Wilson derivative. In
the second case special emphasis is put on the fine tuning of divergent operators in order to arrive
at a supersymmetric continuum limit. Before coming to our conclusions, we present our results for
a simple Ward identity based on the expectation value of the bosonic action.

2 Symmetries and possible discretizations of the O(N) nonlinear sigma model

2.1 Constrained and unconstrained formulations

The supersymmetric extension of the nonlinear O(N) sigma model in two-dimensional Euclidean
spacetime can be formulated in terms of a real superfield1,

Φ = n+ iθ̄ψ + i
2 θ̄θf , (2.1)

subject to the constraintΦΦ = 1, wheren andf areN -tuples of real scalar fields andψ is an
N -tuple of Majorana fields. We shall refer to the elements of a tupel as “flavors”. The constraint in
superspace is equivalent to the following constraints for the component fields,

n2 = 1, nψ = 0 and nf = i
2ψ̄ψ . (2.2)

1Conventions concerning the Gamma matrices and the Fierz relations are explained in appendixA.
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The O(N)-invariant Lagrangian density is defined in terms of the covariant derivativesDα =

∂θ̄α + i(γµθ)α∂µ,

L =
1

2g2
DΦDΦ|θ̄θ =

1

2g2
(

∂µn∂
µn+ iψ̄/∂ψ − f2

)

. (2.3)

The equation of motion for the auxiliary field implies thatf andn are parallel,f = i
2(ψ̄ψ)n, and

the resulting on-shell Lagrangian density contains a4-Fermi term,

L =
1

2g2
(

∂µn∂
µn + iψ̄/∂ψ + 1

4(ψ̄ψ)
2
)

. (2.4)

The action and the constraints are both invariant under global O(N) “flavor” transformations and
by construction they are also invariant under theN = 1 supersymmetry transformations

δn = iε̄ψ, δψ =
(

/∂ + i
2 ψ̄ψ

)

nε . (2.5)

Besides flavor symmetry and supersymmetry the classical theory admits a furtherZ2-symmetry
generated by the chiral transformationψ → iγ∗ψ. However, quantum fluctuations dynamically
generate a mass term and hence induce spontaneous breaking of the chiralZ2-symmetry.
Explicit constraints for the fields are sometimes difficult to handle, e.g. in numerical simulations.
Therefore, it is useful to construct a formulation of the model in terms of an unconstrained real
superfieldU(x, θ) = u(x) + iθ̄λ(x) + i

2 θ̄θg(x), which is an(N − 1)-tupel. It is related to the
superfieldΦ by a stereographic projection in superspace

(

Φ1

Φ⊥

)

=
1

1 +U2

(

1−U2

2U

)

. (2.6)

The decomposition of the projection into bosonic and fermionic fields reads:

n⊥ = 2ρu, ψ⊥ = 2ρλ− 4ρ2 (uλ)u with ρ =
1

1 + u2
. (2.7)

The expressions for the remaining componentsn1 andψ1 can be determined either from (2.6) or
from (2.7) and the constraintsn2 = 1 andnψ = 0. The inverse transformation in superspace
readsU = Φ⊥/(1 + Φ1) and leads to

u =
1

2ρ
n⊥, λ =

1

2ρ
ψ⊥ − 1

4ρ2
ψ1n⊥ with ρ =

1 + n1
2

. (2.8)

Applying the stereographic projection (2.7), the on-shell Lagrangian density can be written in terms
of the unconstrained fields as

L =
2

g2
ρ2
(

∂µu∂
µu+ iλ̄/∂λ+ 4iρ (λ̄u)γµ(∂µuλ) + ρ2(λ̄λ)2

)

. (2.9)

The action is invariant under the supersymmetry transformations

δu = iε̄λ, δλ =
(

/∂ + iρ λ̄λ
)

uε− 2iρ (λ̄u)λε . (2.10)
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2.2 Extended supersymmetry of the O(3)-model

The fieldsu andλ are unconstrained, but their target manifold has a non-trivial metric. In fact,
for N = 3 the target manifold is Kähler and the corresponding potential can be written in terms of
the complex fieldu = u1 + iu2 asK(u, ū) = ln(1 + ūu). As pointed out by Zumino a nonlinear
sigma model whose target manifold is Kähler, possesses anN=2-supersymmetric extension [9].
Hence the O(3) admits an additional supersymmetry besides (2.10) and (2.5).
In order to derive an explicit expression of this symmetry, we investigate a general ansatz in terms
of the unconstrained fields (δu = iε̄(AI)λ, etc.), and determine the constraints for the matrices
AI , etc., which follow from the supersymmetry algebra and the invariance of the action2. This
approach yields the second pair of symmetry transformations as

δu = σ2ε̄λ (2.11)

δλ = iσ2
(

/∂u− iρ (λ̄λ)u+ 2iρ (λ̄u)λ
)

ε .

Both supersymmetries (2.10,2.11) can also be obtained by deriving the complex supersymmetry
from the Kähler potential, cf. [9], and decomposing the complex fields and complex transforma-
tion parameters into real ones.
Applying (2.7) and (2.8), we can also express these transformations in terms of the constrained
fields in order to determine the second supersymmetry of (2.4). One finds the simple transforma-
tions

δn = in× ε̄ψ (2.12)

δψ = −n× ∂µn γ
µε− iε̄ψ ×ψ ,

wherea× b denotes the vector product ofa andb. A proof that the action (2.4) is invariant under
these transformations is given in appendixB. The two on-shell supersymmetries (2.5,2.12) are
generated by the supercharges

QI = i

∫

γµγ0∂µnψ , QII = −i

∫

γµγ0(n× ∂µn)ψ . (2.13)

These results are in agreement with the supercurrents constructed in [4].

2.3 Discretization and constraints

So far, sigma models in the continuum have been considered. In order to investigate the corre-
sponding lattice models one should try to discretize it in a way that maintains as many symmetries
of the continuum theory as possible. This is difficult with respect to supersymmetry, as will be
discussed in section2.5. But also the flavor symmetry must be treated with care: If onestarts with
an unconstrained formulation of the model and tries to discretize it in a straightforward way, one
generically breaks the O(N) symmetry. For the O(3) model we will illustrate this in more detail
in section3.1. Simulations demonstrate clearly that even in the continuum limit the symmetry is

2An example of this approach can be found in [16], where it is applied to the Wess-Zumino model.
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not restored in such cases. In order to avoid this problem, westart with a formulation in terms of
constrained fields, whose discretization is manifestly O(N)-invariant:

S[n,ψ] =
1

2g2

∑

x,y∈Λ

(

nT

xKxyny + iψ̄α
xM

αβ
xy ψ

β
y + 1

4(ψ̄xδxyψy)
2
)

. (2.14)

The subscriptsx, y denote lattice sites, whileα, β are spinor indices. The lattice derivativesKxy

andMαβ
xy are proportional to the identity in flavor space. The constraintsnxnx = 1 andnxψx = 0

must be fulfilled at each lattice pointx and they are implemented as delta-functions in the path
integral measure. This causes some difficulties in numerical simulations. One can cope with this
problem by either applying the stereographic projection orby introducing group valued dynamical
variables.

2.3.1 Stereographic projection and measure of path integration

The stereographic projection (2.7) resolves both constraints and leads to an unconstrained but yet
O(N)-symmetric lattice formulation:

S[u,λ] = SB + S2F + S4F, with

SB =
1

2g2

∑

x,y

4ρxu
T
xKxyuyρy + ρx(1− u2

x)Kxy(1− u2
y)ρy,

S2F =
2i

g2

∑

x,y;α,β

λ̄α
x

[

(

ρ− 2ρ2uuT
)

x
Mαβ

xy

(

ρ− 2ρ2uuT
)

y
+ 4

(

ρ2u
)

x
Mαβ

xy

(

ρ2uT
)

y

]

λβ
y ,

S4F =
2

g2

∑

x

ρ4x(λ̄xλx)
2 .

(2.15)
The change from the constrained fields(n,ψ) to the unconstrained fields(u,λ) yields a non-trivial
Jacobian which is computed in appendixC. The result is3:

∏

x∈Λ

dnx dψ
1
x dψ

2
x δ(n

2
x − 1)δ(nψ1

x)δ(nψ
2
x) −→

∏

x∈Λ

dux dλ1
x dλ

1
x

(

1 + u2
x

)N−1
. (2.16)

The four-fermion interaction can be eliminated by employing the usual Hubbard-Stratonovich
transformation [17], which introduces an auxiliary bosonic fieldσ:

S[u,λ] = SB + S2F +
1

2g2

∑

x∈Λ

(

σ2x + 4iσxρ
2
x λ̄xλx

)

(2.17)

2.3.2 Coset formulation

The constrained fieldn propagates on the unit sphereSN ′
withN ′ = N−1 which can be viewed as

coset space SO(N)/SO(N ′). To relate the constrained field to an element of the orthogonal group
SO(N) we supplement at each lattice site the unit vectorn by orthonormal vectorse1, . . . ,eN ′

3One obtains the same result if one does not eliminate the auxiliary field f at the beginning but projects it in accor-
dance to (2.6) and integrates out the unconstrained auxiliary fieldg afterwards. Following this approach, the superdeter-
minant yields only a trival factor, while the density1/ρN−1 stems from integrating w.r.t.g.
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such that{n,e1, . . . ,eN ′} forms an oriented orthonormal basis ofRN . TheN -component Majo-
rana spinor orthogonal ton is a linear combination of theei, i.e.

ψ = χ1e1 + · · ·+ χN ′eN ′ . (2.18)

TheseN basis vectors may be viewed as columns of a rotation matrixR = (n,e1, . . . ,eN ′) in
N dimensions. Therefore thex-dependent orthonormal basis is given by a spacetime-dependent
rotationR ∈ SO(N) acting on a constant (x-independent) orthonormal frame{n0,g1, . . . ,gN ′}:

n(x) = R(x)n0, ei(x) = R(x)gi , (2.19)

and the path integral in terms of new variablesR, χ andσ reads

Z =

∫

DRDσDχ e−SB−SF (2.20)

with actions

SB =
1

2g2

∑

x,y

(

nT

0R
T

xKxyRyn0 + σxδxyσy
)

, SF =
i

2g2

∑

x,y

χT

xQxyχy . (2.21)

The action for the fermions contains the real and antisymmetric matrix

Qxy,ij = g
T

i R
T

xCMxyRygj + δxyδijCσx . (2.22)

The base vectors{gi} (or {ei}) are not unique since any rotation in the plane orthogonal ton0

transforms an admissible set of base vectors into another admissible set. More precisely,

R −→ R′ = RS, χi −→ χ′
i = χkSki, with Sn0 = n0, Sij = g

T

i Sgj

are local SO(N ′) symmetries of the action (2.21). The measure of the path integral is not affected
by the change of the dynamical fields fromn to R, i.e. a distribution ofR according to the Haar
measure on SO(N) will lead to a uniform distribution ofn = Rn0 on the sphere. This renders the
structure of the lattice action rather simple. The price we pay is a local SO(N ′) symmetry in the
choice of the basis vectorsei.

2.3.3 Fermion determinant

The treatment of the fermion operator is very similar for stereographically projected or group val-
ued variables and we will only depict the second case here. Performing the Grassmannian integral
in (2.20) leads to the bosonic path integral

Z =

∫

DRDσ signPf(Q) e−SB+ln|Pf(Q)| , (2.23)

and simulations are performed in the sign quenched ensemble. This means that the configurations
are sampled according to the probability distribution defined by the exponential function. The sign
of the Pfaffian is handled by reweighting. In this formulation the invariance of the path integral
under the local SO(N ′) transformation is obvious: The bosonic action and Haar measure are both
invariant under the change of variablesR → RS with Sn0 = n0. The operatorQxy transforms
asST

xQxySy, which leaves the Pfaffian invariant sinceS = ⊗xSx cancels in the general relation
Pf(STQS) = det(S) Pf(Q). In the simulations the effective fermionic action is rewritten ac-
cording toln |Pf(Q)| = 1

2 ln det(Q) and the hybrid Monte Carlo algorithm is used, such that the
Hamiltonian evolution of the group valuedR field is similar to the quenched case.
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2.4 Lattice derivatives

Now we specify the lattice derivative for the fermionsMαβ
xy and bosonsKxy in theO(N) invariant

formulation. We will use two different implementations, the SLAC derivative and the Wilson
derivative, so that we can compare results.

2.4.1 SLAC derivative

With the help of discrete Fourier transformation on a finiteNt × Ns latticeΛ with N lattice sites
one may motivate the SLAC derivative [18],

1√
N

∑

p∈Λ∗

ipµe
ipxf̃(p) =

∑

y∈Λ

f(y)
( 1

N

∑

p∈Λ∗

ipµe
ip(x−y)

)

≡
∑

y∈Λ

(

∂SLAC
µ

)

xy
f(y) , (2.24)

wherep is from the dual LatticeΛ∗. This non-local derivative has been proven to be useful in the
context of Wess-Zumino models [15] and supersymmetric quantum mechanics [19, 20]. Because
the formulations based on the SLAC derivative show only small lattice artifacts and donot break
theZ2 chiral symmetry explicitly, we use this derivative for the supersymmetric nonlinear sigma
model:

Kxy = −
∑

µ

(

∂SLAC
µ

)2

xy
, Mxy =

(

γµ∂SLAC
µ

)

xy
. (2.25)

The SLAC-derivative leads to lattice models without doublers.

2.4.2 Wilson derivative

Another suitable choice that avoids fermion doublers is theWilson derivative which introduces an
additional momentum-dependent mass term that vanishes in the naive continuum limit,

Mαβ
xy = γαβµ

(

∂sym
µ

)

xy
+ δαβ

ra

2
∆xy , (2.26)

where∂sym
µ is the symmetric lattice derivative,a the lattice spacing and∆xy the lattice Laplacian.

We choose the bosonic derivative in a particular form that has demonstrated superior results in
Wess-Zumino models [15],

Kxy = −
∑

µ

(

∂sym
µ

)2

xy
+
(ra

2
∆xy

)2
. (2.27)

The Wilson prescription breaks chiral symmetry explicitly, but is ultralocal in contrast to the SLAC
derivative.

2.4.3 Universality and the SLAC derivative

It is not obvious that the SLAC derivative can be used for models with curved target space. To
justify its use we will first study the purely bosonic O(3)-model with this derivative and test if
the known continuum result with scaling of the finite volume mass gapm can be reproduced. A
quantity accessible at finite volumes is the step scaling function introduced by Lüscher, Weisz and
Wolff [ 21]. At finite spatial volumeL = aNs, the renormalization group invariant variablem(Ns)L
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Ns Σ(2, u0, N
−1
s ) g−2

4 1.28914(19) 1.22906(6)

6 1.27938(18) 1.31071(5)

8 1.27368(34) 1.36526(9)

10 1.27049(31) 1.40622(8)

12 1.26742(33) 1.43903(8)

16 1.26587(35) 1.48986(8)

20 1.26416(70) 1.52870(12)

Table 1. Value of the step scaling func-
tion Σ(2, u0, N

−1
s ) after interpolating to

u0 = 1.0595 for different spatial lattice
sizesNs and correspondingg−2 at which
m(Ns)L = u0 is reached.

can be computed at large temporal extent. On every fi-
nite lattice the step scaling functionΣ is then determined
according to

Σ(2, u,N−1
s ) = m(2Ns)2L|m(Ns)L=u , (2.28)

where the conditionm(Ns)L = u determines the bare
couplingg−2 that is used on both spatial volumesNs and
2Ns. One has to measure the finite volume mass gapm

twice in order to determineΣ at a givenNs. First one has
to tune the bare coupling untilmL isu on the small lattice
with Ns spatial sites. Then one goes to the larger lattice
with 2Ns sites and measuresm(2Ns)2Ls with the previ-
ously determined bare coupling. The lattice step scaling
function is expected to have a universal continuum limit

σ(2, u) = Σ(2, u, 0) = lim
Ns→∞

Σ(2, u,N−1
s )

and the high-precision results in [22, 23] demonstrate this universal behaviour. Here, the step
scaling function is computed using the SLAC derivative. Following [21] we useu0 = 1.0595

which, according to [24], leads to the continuum value

σ(2, u0) = 1.261210 . (2.29)

Using the SLAC derivative the regularized action is given by

S = − 1

2g2

∑

x,y

nT

0R
T

x (∂
SLAC
µ )2xyRyn0, (2.30)

whereR is the group valued dynamical field. Since the action is not given by nearest neighbour
interactions, a cluster algorithm is not applicable and thehybrid Monte-Carlo algorithm will be
used instead. The momenta of the ‘Hamiltonian’ used for the hybrid Monte-Carlo algorithm are
elements of the Lie algebraso(3).
The O(3) invariant correlator is naturally defined as

C(t) = N−2
s

∑

x,y

〈

n(t,x)n(0,y)

〉

(2.31)

and the mass is extracted via a fit to

C(t) ∝ cosh (ma (t−Nt/2)) (2.32)

on a logarithmic scale, so that contributions fromt’s nearNt/2 are taken into account, where the
contributions of the higher excited states are suppressed.However, reliable high-precision results
can only be obtained if systematic errors are under control.To actually see the contribution of
higher excited states, one considers the extracted mass as afunction oft0 where the fit is performed
over a ranget ∈ [t0, Nt − t0] for fixedNt andNs. This effect is analysed forNs ∈ {6, 12} and

– 9 –



Nt = 6Ns for a couplingg−2 = 1.309, which is quite close to the point of interest (2.29), with
extremely large statistics of about5 · 109 configurations, distributed over1 000 replica. The results
depicted in Fig.1 show that for larger lattices the contribution of higher excited states is well below
the usual statistical accuracy that is used for most of the results given below. For small lattices there
are two competing effects: Forsmallt0 the contribution of higher states is well visible, whereas for
large t0 the well-known fluctuations arising from the non-locality of the SLAC derivative begin to
grow. Therefore the optimal choice leading to systematic errors of the same order as the statistical
ones, is given byt0 = Ns and will be used in the following. The second possible systematic error
is due to the finiteNt. ForNt too small a thermal contribution to the mass gap will show up.This
effect is investigated by keepingt0 = Ns fixed but varyingNt, see Fig.2 for Ns ∈ {6, 12}. For
the smaller lattice the contributions at smallNt are more pronounced and become negligible for
Nt > 6Ns while for the larger latticeNt > 5Ns is sufficient. To suppress these systematic errors
Nt = 8Ns (Nt = 6Ns) is used on the smaller (larger) lattice of each step scalingcomputation.
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Figure 1. Mass gap extracted from a logarithmiccosh fit of the correlator (2.31) in a ranget ∈ [t0, Nt − t0]

for Ns = 6 (left panel) andNs = 12 (right panel) at couplingg−2 = 1.309 for fixedNt = 6Ns. The shaded
area denotes the usual accuracy of results at otherg−2.
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With the systematic errors under control it is possible to extrapolate the lattice step scaling function
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to the continuum limit. The bare coupling is tuned such thatu = m(Ns)L is nearu0 = 1.0595 on
lattices with sizesNs ∈ {4, 6, 8, 10, 12, 16, 20}. The correspondingΣ(2, u,N−1

s ) are plotted over
u for a subset of theseNs in Fig. 3 (left panel), and a linear interpolation based on seven different
couplingg−2 allows for the extraction ofΣ(2, u0, N−1

s ) at the pointu0 = 1.0595. The explicit
values are collected in Tab.1. With Symanzik’s theory of lattice artefacts it has been argued in
[22] that finitea corrections are of orderO(a2(ln a)3) and appearnearly linear for a large range
of computationally accessible lattice sizes [25]. For that reason an extrapolation toa = 0 based on
the formula

Σ(2, u0, N
−1
s ) = σ(2, u0) +A

(

B

Ns

)2(

ln
B

Ns

)3

(2.33)

is used. The results forNt = 4 have been omitted because of the large systematic errors introduced
by the fluctuations arising from the SLAC derivative for large lattice spacings. The extrapolation
is shown in Fig.3 (right panel) and a value ofσ(2, u0) = 1.2604(13) is extracted. This value is in
complete agreement with the exactly known result in the continuum limit, see eq. (2.29). Therefore
a discretisation of the (bosonic) O(3) nonlinear sigma model with the SLAC derivative is feasible
and may also be used for the supersymmetric model.
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Figure 3. Left panel: Step scaling function for lattices with spatial sizeNs ∈ {4, 6, 8, 12}. Shaded regions
indicate error bounds of a linear interpolation. Right panel: Continuum limit of the step scaling function for
u0 = 1.0595. The shaded area indicates the error bounds of a fit accordingto Eq. (2.33), where the value
for N−1

s = 0.25 has been omitted. The black dot marks the continuum value given in Eq. (2.29).

2.5 Supersymmetries on the lattice

Is it possible to discretize the supersymmetric nonlinear O(3)-model such that its characteristic
symmetries are maintained? We have seen that it is straightforward to find a manifestly O(3)-
symmetric discretization. The treatment of supersymmetryon the lattice is more difficult, because
it is an extension of the Poincaré symmetry, which is brokenby any discretization of spacetime.
However, there are some approaches to maintain at least a part of the supersymmetry on the lattice.
One of these approaches relies on a twisting of the supersymmetry in a way that provides anilpotent
superchargeQ which is used to find aQ-exact formulationS = QΛ of the lattice action. By
construction this action is invariant under supersymmetries generated byQ. This approach has
been applied to the O(3)-NLSM in [13, 14]. However, the authors employ a formulation of the
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model in terms of unconstrained fields and its discretization breaks the O(3) symmetry in such a
way that it is not restored in the continuum limit. We will demonstrate this explicitly in section3.1.
We must thus conclude that the continuum limits of these lattice constructions cannot be identified
with the two-dimensional non-linear O(3) sigma model.
Are there other ways to find a partly supersymmetric but stillO(3) symmetric discretization? A
symmetry of the model has to be a symmetry of the action (2.3), but is also has to be compatible
with the constraintsn2 = 1 andnψ = 0. Any supersymmetry has to be a combination of the
transformations given in (2.5) and (2.12). If we consider the discretization of these, we notice that
the first transformation (2.5) breaks the constraintnψ = 0 on the lattice, because

δI(nxψ
α
x ) = iε̄ψxψ

α
x +

∑

y∈Λ

nxD
αβ
xy nyε

β + i
2(ψ̄xψx)n

2
xε

α (A.4)
=

∑

y∈Λ

nxD
αβ
xy nyε

β (2.34)

does not vanish for arbitrarynx, no matter which derivativeDxy we use4. In contrast, the second
transformation respects the constraints at each point:

δII(nxψ
α
x ) = i(nx × ε̄ψx)ψ

α
x −

∑

y∈Λ

nx(nx ×Dxynyε
α)− inx(ε̄ψx ×ψα

x ) = 0

δII(n
2
x) = 2inx(nx × ε̄ψx) = 0 . (2.35)

We conclude that no nontrivial combination of the two transformationsδI andδII can be a symmetry
of the lattice theory, since the second transformation cannot restore the violation of the constraints
caused by the first one. The second transformation on its own,however, can also not be a symmetry
of the action because of{QII

α , Q̄II
β } = 2iγµαβ∂µ. The superalgebra furthermore tells us that an

approach based on a nilpotent supercharge is not possible, either, because such a nilpotent charge
would have to be a combination of both supercharges and wouldhence violate the constraints.
Could we circumvent this restriction by improving the discretiziation in some way? Comparing our
formulation with the one investigated in [13, 14], we see that the latter one contains an additional
topological term. However, such a term does not affect the supersymmetry transformations (2.5)
and (2.12) and hence cannot solve the problem. From a systematic pointof view, there are only
two modifications possible which are compatible with an O(3)-invariant continuum limit. The first
possibility is to modify the terms that are already present in the action. For example, one could
introduce non-local interaction terms like

∑

x,y,z,w Cxyzw(ψ̄xψy)(ψ̄zψw) instead of
∑

x(ψ̄xψx)
2

[26]. The second possibility could be an inclusion of additional terms in the lattice action which
vanish in the continuum limit. Any change of the action, however, does not have an impact on the
constraints and hence cannot prevent their breaking. A modification of the constraints, by contrast,
would directly alter the geometry of the target manifold andis thus no alternative. It follows that
an improvement of the discretization could only maintain a part of supersymmetry by rendering
the lattice action invariant under the second transformations. But this is not possible due to the
structure of the superalgebra.
Even though these arguments were developed for a specific choice of coordinates, on finite lattices
they also hold true for any reparametrization(n,ψ) → (n′,ψ′), because such a transformation
is a bijective mapping between field values at a certain pointx in spacetime, which commutes

4Actually, it is also not a symmetry of the discretized action, but the breaking of the constraints is more severe.
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with discretization. As a consequence, one would observe the same pattern of symmetry breaking
as depicted in (2.34) and (2.35). The single ambiguity that could arise here from the discretized
derivative of the bosonic field is irrelevant since the presented arguments do not depend on the
details of the lattice derivatives.
We conclude that it is just not possible to construct a discretization of the nonlinear O(3) model
which maintains O(3) invariance as well as an exact supersymmetry. From this point of view, the
symmetry breaking in the ansatz [13, 14] was inevitable. In this article we will work with the lattice
formulation introduced in the previous section. It maintains the important O(3) symmetry of the
model while it breaks all supersymmetries. The latter should be restored in the continuum limit.

3 Numerical results

Before we present the results which are obtained by simulations for the O(3)-symmetric lattice
models described above, we want to demonstrate how a violation of the O(3) symmetry arises in
generic lattice formulations given in terms of unconstrained fields. We shall see that the symmetry
of the continuum model is not recovered in the continuum limit.

3.1 Drawbacks of a Q-exact lattice formulation

This problem can already be illustrated by investigating the bosonic O(3)-NLSM. If we use a lattice
derivative that is based on nearest neighbour interactions, the discretization of the bosonic part of
(2.9) reads

S =
2

g2

∑

〈xy〉

ρ2xy|ux − uy|2 . (3.1)

At this point, an ambiguity in defining the densityρ2xy arises. It must interpolate betweenρ2x and
ρ2y, which coincide in the continuum limit. Naively, many interpolations are feasible, e.g. one
could use the arithmetic mean,ρ2xy = 1

2(ρ
2
x + ρ2y), or the geometric meanρ2xy = ρxρy. In order

to determine the appropriate interpolation one can apply the stereographic projection on the mani-
festly O(3) invariant discretization in terms of the constrainedn-field and finds thatρ2xy has to be
implemented as the geometric mean.
To analyze a possible symmetry breaking in the formulation based on the arithmetic mean, sim-
ulations for both lattice prescriptions have been performed5 and it was tested if〈n̄〉 = 0 for
n̄ = N−1

∑

xnx in accordance with the global O(3) symmetry, which cannot be spontaneously
broken in two spacetime dimensions [27].
Fig. 4 shows that the discretization based on the geometric mean indeed yields O(3)symmetric
results whereas for the arithmetic mean only a O(2) symmetry around the1-axis remains. This
is a direct consequence of the globalU(1) symmetryu → eiφu, whereu = u1 + iu2. In the
naive continuum limit both prescriptions are expected to coincide. In order to investigate this issue,
simulations of the model based on the arithmetic mean have been carried out with different lattice
sizesN and at different couplingsg−2. A restoration of the O(3) symmetry implies a vanishing
〈n̄3〉 in the continuum limit. For a wide range of couplings〈n̄3〉 is independent of the lattice sizes

5In the hybrid MC algorithm the factorρ2 of the path integral measure for the bosonic model, see (C.6), is absorbed
in the action.
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Figure 4. Scatter plot (projected to thēn1–n̄3 plane) of the averaged field̄n for a lattice discretisation based
on the arithmetic mean (left panel) and geometric mean (right panel) atg−2 = 1 and lattice sizeN = 10×10.

such that the vacuum expectation value is assumed to be free of finite size effects (see Fig.5, left
panel). By fitting the correlator

CB(t) = N−2
s Re

∑

x,y

〈

u(t,y)ū(0,x)
〉

(3.2)

to cosh(ma(t−Nt/2)) the massmL = maNs measured in units of the physical box length can be
extracted6. The analysis of〈n̄3〉 at fixed physical box sizemL in the continuum limit (see Fig.5,
right panel) clearly shows that〈n̄3〉 grows to a value close to1 for small lattice spacings, i.e. for
largeN and largeg−2. Therefore it isimpossibleto reach the correct O(3) symmetric continuum
limit for a regularization based on the arithmetic mean.
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Figure 5. The value of〈n̄3〉 as indicator for a broken global O(3) symmetry for three lattice volumes plotted
over the couplingg−2 (left panel) and physical box size (right panel).

Having encountered these problems in the simple bosonic case, we ought to be very careful with
a discretization of the superymmetric model and should always check the restoration of the O(3)

6Due to the U(1) symmetry〈u〉 = 0, andCB(t) is the connected2-point function.
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symmetry. Unfortunately this was not done in [13, 14] and we shall see below that this symmetry
is actually broken in the lattice models constructed by Catterall and Ghadab.
The formulation in [13, 14] is based on aQ-exact deformation of the O(3) sigma model in the
unconstrainedCP1 formulation. The authors used Wilson fermions which break supersymmetry
softly and showed that theQ-based supersymmetry is restored in the continuum limit by studying
the associated Ward identities. After performing a Hubbard-Stratonovich transformation to elimate
four-fermi terms the model contains two complex scalarsu, σ and Dirac fermionsΨ. The path
integral is

Z =

∫

DuDσDΨ ρ−2 e−SB[u,σ]−SF[u,σ,Ψ] with (3.3)

SB =
2

g2

∑

x

(

ρ2x(∂̄
symu)x(∂

symū)x + ρ2x(∆u)x(∆ū)x +
1
2σxσ̄x

)

, (3.4)

where the symmetric derivative in directionµ is the arithmetic mean of the forward and backward
derivates,∂sym

µ = 1
2(∂

+
µ + ∂−µ ). The derivative operators without lower index denote the complex

lattice derivatives∂ = ∂1− i∂2 and∂̄ = ∂1+i∂2. The lattice Laplacian∆ =
∑

µ ∂
+
µ ∂

−
µ originates

from the Wilson mass term in the fermionic action

SF =
2

g2
Ψ̄M [u, σ]Ψ (3.5)

with fermion matrix

M [u, σ] = ρ2

(

1
2∆− ρū(∆u) + h.c. ∂̄sym− 2ρū(∂̄symu) + σ

∂sym+ 2ρu(∂symū)− σ̄ 1
2∆− ρū(∆u) + h.c.

)

. (3.6)

Periodic boundary conditions are assumed forall fieldssuch that supersymmetry is not broken by
the boundary conditions. The difference to a straightforward discretization is given by animprove-
ment term

∆S =
4

g2

∑

x

ρ2x
(

∂
sym
1 u2 ∂

sym
2 u1 − ∂

sym
1 u1 ∂

sym
2 u2

)

(3.7)

which corresponds to the topological winding number and becomes irrelevant in the naive con-
tinuum limit, similar to the improvement term in theN = 2 Wess-Zumino model [15]. For the
simulation of this model on smaller lattices the HMC algorithm with an explicit calculation of the
fermionic determinant is used. This has the advantage that no instabilities arise from introducing
pseudo-fermions. Such instabilities may hide potential shortcomings of the lattice formulation.
The improvement term is analyzed for a lattice size ofN = 8 × 8 at couplingg−2 = 1.5. In our
simulations a value ofSB ≈ 2N is found (with statistical fluctuations of about10%) in agreement
with the simplest Ward identity [14], which is a consequence of the (nearly, up to the Wilson mass)
lattice supersymmetry. In Fig.6 the MC histories of̄n3 and∆S are plotted and they shed light on
the influence of the improvement term on the dynamics. At a certain point in the simulation the
value ofn̄3 freezes out and the improvement term starts growing largelynegative. Just as for the
Nicolai improved Wess-Zumino model [15] the lattice system is driven away from the continuum
physics, where∆S must vanish, into an unphysical phase7. We conclude that the known problems

7The normalized improvement term∆S/N fluctuates around zero with a width of about0.002 in the physical phase.
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Figure 6. MC history ofn̄3 (left panel) and∆S (right panel) for a simulation of the lattice model (3.3) at
couplingg−2 = 1.5 on an8× 8 lattice.

of improved actions must be taken into account also in simulations of supersymmetric sigma mod-
els – only configurations from the physical phase with nearlyvanishing improvement term should
be taken into account in measurements. Tunnel events to the unphysical phase are suppressed on
large lattices and weak couplingg, i.e. in the continuum limit, similarly as for Wess-Zumino mod-
els. Nevertheless, these observations suggest that similar problems may arise in simulations of
all lattice models with exact supersymmetry that are constructed from aQ-exact action, e.g. two
dimensionalN = 2 Super Yang-Mills [28].
But why did this instability not show up in the results of [14]? The answer may be that in the
rational HMC algorithm used in the simulations spectral bounds must be chosen to cover the spec-
trum ofM †M . Typically these are obtained by test runs with rather pessimistic bounds andsmall
statistics, such that only the physical phase with∆S ≈ 0 is present. But for the simulation that
is shown in Fig.6 the lowest eigenvalue ofM †M decreases by a factor of10−5 when entering
the unphysical phase.8 For that reason the rational hybrid Monte-Carlo algorithm with spectral
bounds that are not applicable to the whole simulation will be aninexactalgorithm and will give
an arbitrarily small acceptance rate for the unphysical configurations that dominate the path inte-
gral. Furthermoresign detM is not positive definite and adeflatedrational hybrid Monte-Carlo
algorithm is necessary to get reliable expectation values.
These results imply that for a reliable measurement of〈n̄3〉 large g−2 must be used in order to
suppress the unphysical phase. Since the continuum limit isreached forg → 0, measurements will
be affected by finite size corrections. The corrections of the observablēn3 are assumed to vanish
exponentially with growing volume,

〈n̄3〉 (Ns) = 〈n̄3〉 (∞) +Ae−BNs, (3.8)

such that a fit to this functional form forNs ∈ {10, 11, 12, 13, 14, 16} and corresponding lattice
volumesN = N2

s reveals the infinite volume value forg−2 ∈ {3.5, 4.0, 4.5, 5.0}, see Fig.7 (left
panel). Although〈n̄3〉 decreases for fixedNs and growingg−2, the infinite volume values tend to
grow for largerg−2, see Fig.7 (right panel). Therefore the O(3) symmetry will not be restored
in the infinite volume continuum limit of the lattice model (3.3). All these results have a crucial

8The largest eigenvalue ofM†M is kept at the same order of magnitude in the unphysical phase.
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implication. Although the formulation (3.3) may restore the fullN = (2, 2) supersymmetry on the
lattice, the resulting continuum model isnot the supersymmetric O(3) model, because the global
O(3) symmetry, that cannot be broken spontaneously in the continuum model [27], is not restored
in the continuum limit.

3.2 O(3) symmetric formulations

The previous studies have stressed the importance of an O(3) invariant formulation of the the-
ory. The discretizations given in section2.3 respect the global flavor symmetry and in order to
check whether the corresponding algorithms respect it as well we record the expectation value of
n. For the coset construction with group valued fieldR the expectation value vanishes and the
autocorrelation times are small. For the stereographically projected fieldsu we generate O(3)
symmetric configurations but observe large autocorrelation times for observables which depend on
the field component corresponding to the projection axis. This stems from the interplay between
stereographic projection and molecular dynamics steps which introduce two pseudo-momenta and
a pseudo-Hamiltonian foru to generate test configurations. Computing the pseudo-momenta for
the constrained variables, we see that the momentum corresponding to the projection axis used in
the HMC algorithm takes values roughly one half of the other momenta. In the language of uncon-
strained variables, evolution of configurations is glued toa hyperplane of constantu2, which can
be seen from figure8 (left panel), whereu2, v2 andw2 correspond to the three possible (canoni-
cal) projection axes, while the actual projection axis of the HMC algorithm is fixed. To circumvent
this problem, the projection axis in the molecular dynamicsstep is changed repeatedly between
successive trial and acceptance steps. While it is in principle possible to choose random projection
axes for every update, we rotate through the three canonicalaxes, saving only every third config-
uration which corresponds to a fixed projection axis. A Metropolis acceptance step is yet needed
after each change of the projection axis. The right panel of figure8 illustrates how this improved
update scheme restores the balance between the three projection axes. The configuration space is
traversed quickly and the expectation values〈ni〉 decrease with ongoing MC time.
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Figure 8. MC-histories for the lattice averages ofu2, v2 andw2 using the three different projection axes
in the usual HMC algorithm (left panel) and the improved algorithm (right panel). Note that fluctuations for
u2 which corresponds to the projection axis chosen in the HMC algorithm are severely suppressed in the left
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3.3 Fermionic masses

The classical theory has no intrinsic mass scale. But there is a relation between mass gap and bare
coupling by dimensional transmutation. In theMS scheme it is possible to compute the mass gap
[8, 29] in relation toΛMS. Investigations of theN = 1 Wess-Zumino model have revealed that
the fermionic mass is less affected by finite size effects than the bosonic mass. For that reason the
fermionic mass is used to set the physical scale of the lattice, i.e. the lattice spacing and the physical
box length. The O(3) symmetric fermionic correlator for group-valued fields is constructed as

〈

iψ̄xψy

〉

= Z−1

∫

DnDσDψ δ(nψ)δ(n2 − 1) (iψ̄xψy) e
−S

= Z−1

∫

DRDσ e−SB

∫

Dχ iχ̄xκ
TRT

xRyκχy e
−SF

= g2
〈

trf,s(RxκCQ
−1
xy κ

TRT

y )
〉

, κT =

(

0 1 0

0 0 1

)

,

(3.9)

with SF given in (2.21) and ‘trf,s’ indicates the trace over flavor and spinor indices. The corre-
sponding timeslice correlator is given byCF(t) = N−2

s
∑

xy

〈

iψ̄(t,x)ψ(0,y)

〉

. In order to measure
the mass inoneof the ground states the configurations are projected, without loss of generality,
onto the sector withΞ > 0 for aΞ = N−1

∑

x ψ̄xψx. This can be achieved by flipping the sign
of σ for configurations withΞ < 0. Using these definitions the fermionic masses are obtained by
a cosh fit to the correlator over the ranget ∈]0, Nt[. A similar procedure is utilized in the case of
stereographically projected fermions, where we have to usethe projected fermion correlator instead
of (3.9),

〈

iψ̄x,⊥ψy,⊥

〉

=
〈

4ρxiλ̄xλyρy − 8ρx(uxiλ̄x)(λyuy)ρ
2
y − 8ρ2x(uxiλ̄x)(λyuy)ρy

+ 16ρ2x(uxiλ̄x)(uxuy)(λyuy)ρ
2
y

〉

,
〈

iψ̄x,1ψy,1

〉

=
〈

16ρ2x(uxiλ̄x)(λyuy)ρ
2
y

〉

. (3.10)
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In this case non-diagonal elements contribute to the full correlator, which relate unconstrained
fields of different flavor. A comparison of the fermionic masses for different lattice sizes using the
SLAC derivative (see Figure9) reveals that finite size effects onmFa are within statistical error
bars ifmFL & 5.
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Figure 9. Fermionic masses from SLAC ensembles in units of the box length (left panel) and lattice spacing
(right panel) for different lattice volumes and bare couplingsg−2 computed using up to2·107 configurations.

3.4 Chiral symmetry breaking

Due to the orthogonality ofRx the chiral condensate in the coset formulation simplifies to

〈

iψ̄xψx

〉

= Z−1

∫

DRDσ e−SB

∫

Dχ iχ̄xχx e
−SF = g2

〈

trf,s(CQ
−1
xx )
〉

. (3.11)

Using stereographic projection, however, we have to compute the projected condensate given in
terms of unconstrained fields. This is obtained by using the trace of the correlator given in equation
(3.10). If we rewrite the action (2.17) asS = SB[u, σ] + λ

TPλ, we can replace the quadratic
fermion operator by

〈

... λ̄x,iλy,j ...
〉

=
〈

... C
(

P−1
)

xy,ij
...
〉

. (3.12)

The continuum model is invariant under a discrete chiral symmetry ψ → iγ∗ψ. It is sponta-
neously broken in the infinite volume limit and the supersymmetric ground states correspond to the
two ground states of this broken symmetry [30]. A discretization based on the SLAC derivative
maintains chiral symmetry on the lattice by the cost of having a non-local derivative. For every
finite lattice volume the expectation value

〈

iψ̄ψ
〉

will vanish and is hence not the appropriate mea-
sure to trace a broken symmetry. One should instead analyze the histograms of the volume average
aΞ = N−1

∑

x ψ̄xψx. Fig.10(left panel) clearly shows a double peak structure of the correspond-
ing distributionρ(aΞ), coinciding with the two ground states. The reweighting process reveals that
a cancellation between positive and negative Pfaffians happens mostly foraΞ ≈ 0. In the analysis
of the constrained effective potentialÛ(aΞ) = − ln(ρ(aΞ))/N for several lattice volumes at fixed
coupling (see Fig.10, right panel) no running of the two minima is visible, such that there will be
a spontaneous chiral symmetry breaking in the infinite volume limit of the lattice model.
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Figure 10. Left panel: Probability density of the volume averaged chiral condensate for lattice size9 × 9

at a bare couplingg−2 = 1 in the sign quenched and reweighted ensemble using the SLAC derivative.
Right panel: Constraint effective potential (normalised to min(aΞ) Û(aΞ) = 0) of the chiral condensate for
different lattice volumes atg−2 = 0.64 computed using up to3 ·107 configurations and the SLAC derivative.

3.5 Bosonic masses

In order to test whether the chosen discretization corresponds to a supersymmetric theory, one
should check the degeneracy of the bosonic and fermionic masses. The bosonic massesmBL are
extracted from the O(3) invariant correlator (2.31) via a cosh fit over the ranget ∈]0, Nt[. The
bosonic correlator is unaffected by a change inσ, such that no projection on one of the two ground
states is necessary. Having computed the boson masses, we can compare them with the fermionic
ones for different couplings and lattice sizes.

Simulations using SLAC fermions Calculations have been performed on lattice sizesN ∈
{52, 72, 92} over a coupling rangeg−2 ∈ [0.4, 1.2]. The direct comparison is shown in Fig.11
(left panel) and the results seem to be disappointing at firstsight. The bosonic masses lie consid-
erably below the fermionic partners and this deviation becomes even more pronounced for larger
lattices. However, this does not necessarily imply that supersymmetry will be broken in the con-
tinuum limit. Already for the simple latticeN=2 Wess-Zumino model with spontaneously broken
Z2 symmetry and one exact supersymmetry the masses split in thestrong coupling regime at finite
physical box sizes [15]. E.g. for couplings for which the one-loop perturbation theory fails and for
a box sizemFL ≈ 10, a 20% splitting with a smaller bosonic mass is observed. From thatpoint
of view the supersymmetric O(3) nonlinear sigma model could be similar to a strongly coupled
N = 2 Wess-Zumino model. The finite size effects may be even largerand a mass splitting of
much more than20% would not be surprising formFL < 10. Only an analysis of the mass ratio
mB/mF in the large volume limit can uncover a restoration of degenerate masses. This is exem-
plarily shown for the results on the5× 5 lattice in Fig.11 (right panel). Despite the fact that lattice
artefacts are sizeable the basic mechanism becomes clear. In the limit of large volumes a relation

mBL = mFL−∆M ⇒ mB

mF
= 1− ∆M

mFL
(3.13)
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with constant∆M is found, such that the ratio tends to1 and the masses will be degenerate in the
infinite volume limit.9
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Figure 11. Left panel: Direct comparison of bosonic and fermionic mass from the SLAC ensemble in units
of the box size for three different lattice sizes. The dottedline denotes the casemF = mB. Right panel:
DifferencemBL−mFL for varying box sizemFL on a5×5 lattice. The shaded area denotes a fit according
to Eq. (3.13) formFL > 6.

But the accessible physical volumes at larger lattices still do not allow for a reliable extrapolation
of the corresponding∆M and no continuum limit can be taken at the moment. It is hence an open
question if eq. (3.13) also holds true in the continuum limit and if supersymmetrywill be restored.
These questions should be resolved by computations on larger lattices. Such computations, how-
ever, become unfeasible because of the sign problem, which worsens with increasing lattice size
in case of the SLAC derivative, see appendixD. Nevertheless, further information about the su-
persymmetric features of the implementation can be obtained by studying a corresponding Ward
identity, cf. section3.7.

Simulations using Wilson fermions While the applicability of the SLAC derivative is confined
to small lattice volumes due to the strong sign problem, Wilson fermions offer the possibility to
explore larger volumes by utilizing efficiently preconditioned pseudofermion algorithms (compare
to appendixE), however at the cost of larger lattice artifacts. Bosonic masses are extracted as
explained beforehand by calculating the stereographically projected correlators

〈

nx,⊥ny,⊥

〉

= 4
〈

ρxuxuyρy
〉

,
〈

nx,1ny,1
〉

=
〈

ρx
(

1− u2
x

)(

1− u2
y

)

ρy
〉

. (3.14)
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Figure 12. Comparison of bosonic and fermionic
mass in units of the box size for three different lat-
tice sizes using Wilson fermions. The dotted line
denotes the casemF = mB.

For lattice volumes up to322 we obtain a dis-
crepancy between bosonic and fermionic masses
with lighter bosons, see Figure12. This gap in-
creases for larger lattices and there is no indication
of a degeneracy in the continuum limit, so that su-
persymmetry is seemingly not restored. This is

9For the5× 5 lattice a fit to Eq. (3.13) for mFL > 6 gives∆M = 2.56(10).
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not too surprising, though, since Wilson fermions
may break supersymmetry in a way that is not dis-
solved in the continuum limit.
In section2.5 we showed that it is not possible
to construct a discretized action which simulta-
neously respects at least one exact supersymme-
try as well as the O(3) symmetry. An improved
action thus relies on adding fine tuning terms as
a compensation for renormalized couplings that
arise from symmetry breaking terms on the lattice.

3.6 Fine tuning of the Wilson derivative

FromN=1 Super Yang-Mills theories it is known that the correct continuum limit may be achieved
by a fine tuning term that resembles an explicit fermionic mass such that the renormalized gluino
mass is zero [31]. A similar procedure will be performed in the present case by deforming the
fermionic derivative using a fine tuning massm,

Mαβ
xy = γαβµ

(

∂symµ

)

xy
+ δαβ

ra

2
∆xy + δαβmδxy, (3.15)

which enters the Hopping parameterκ = (4 + 2m)−1. Additional degrees of freedom in the fine
tuning procedure increase the numerical effort considerably, such that a careful choice of tuning
parameters is necessary in order to keep the RHMC algorithm exact and efficient. In particular, for
differentκ, we have monitored the sign of the Pfaffian determinant as well as the spectrum of the
Dirac operator, which is approximated by rational functions [32]. To guide our efforts, we measure
the chiral condensate, bosonic and fermionic masses as wellas the bosonic action for several values
of the fine tuning parameter.
The chiral condensate is extracted from the trace of the projected correlator, as described in (3.10),
while the sign of the Pfaffian is taken into account by a reweighting procedure,

〈

ψ̄ψ
〉

=

〈

sgnPf ψ̄ψ
〉

q
〈

sgnPf
〉

q

. (3.16)

Here, 〈...〉q denotes the sign-quenched ensemble. For the Wilson derivative we expect that one
of the ground state energies is raised due to the explicit breaking of chiral symmetry, so that we
get fluctuations around one of the minima in Figure10 only. Switching on the fine tuning mass,
the condensate is driven to larger values, showing a jump at some distinct point (see Figure13,
left panel). To gain a better understanding of this behaviour, we utilize histograms of the chiral
condensate to measure the distribution functionρ(aΞ), which is formally obtained by introducing
a delta function into the partition sum,

ρ(aΞ) =
1

Z

∫

DnDψ δ
(

aΞ− iψ̄ψ
)

e−S −→ 1

M

M
∑

i=1

δ
(

aΞ− i(ψ̄ψ)i
)

.

It is henceforth possible to express the expectation value for the chiral condensate using this quan-
tity as 〈iψ̄ψ〉 =

∑M
i=1 aΞiρ(aΞi)/

∑M
i=1 ρ(aΞi). Simulating the sign-quenched ensemble, we
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need to use the reweighted distribution function,

ρ(aΞ) =
1

M

M
∑

i=1

δ
(

aΞ− i(ψ̄ψ)i
) sgnPf i
〈sgnPf〉q

, (3.17)

which may no longer be interpreted as a probability distribution, sincesgnPf can be negative.
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Figure 14. Critical value of the Hopping parame-
ter for several lattice sizes.

In contrast to the case of SLAC fermions, where
no problem arises due to intactZ2-symmetry, the
Wilson prescription leads to an additive renormal-
ization, such that configurations with negative sign
yield entries corresponding to a sign-flipped renor-
malization constant. To avoid this behaviour, we
will omit the sign information when considering
histograms, seeing that the Wilson ensemble shows
frequent sign fluctuations only in the direct vicin-
ity of the critical Hopping parameter and therefore
allows to extrapolate from a region where omitting
the sign is safe. Expectation values are howeveral-
waysdetermined using the reweighting procedure
and are hence not affected by this approximation.
By an appropriate choice of the tuning parameter
we obtain the spontaneously broken signature that is expected in the continuum limit (see Figure
13, right panel), modified by the additive renormalization. The point of steep increase is identified
as a first order phase transition in the chiral condensate, which is analogous to the case of Super-
Yang-Mills theories. Using this signature, we have determined the critical value of the fine tuning
parameterκ for lattice sizes82, 162 and242 and couplingg−2 = 1 . . . 2, see Figure14.
Regarding the masses of the elementary excitations, we see that the bosonic correlator is not af-
fected by the fine tuning procedure and the bosonic mass takesa constant value within error bars.
For the fermionic mass, we observe linear scaling behaviourfor κ < κc andκ > κc, however
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in the vicinity of κ ≈ κc, the scaling breaks down (Figure15, left panel). Therefore, a reliable
extrapolation of the fermionic mass based on small values ofκ is not possible, at least for the
lattice volumes considered. We will hence utilize the bosonic mass to fix the physical box size
mBL for our investigations involving fine tuning. In contrast toe.g.N=1 Super Yang-Mills [31],
simulations at the critical point are feasible since the theory inhibits a finite mass gap even in the
continuum. In the vicinity of the phase transition, mixing between the two ground states occurs and
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Figure 15. Left Panel: Scaling behaviour of the bosonic and fermionicmass forN = 162 andg−2 = 1.4

with κc = 0.382(1), marked by the black dot. The dashed line denotes the latticecutoff of 1/16. Right
Panel: Comparison of bosonic and fermionic masses in units of the box size for three different lattice sizes
atκ = κc.

the iψ̄ψ correlator must be projected onto one of the ground states, analogously to the SLAC case
(see chapter3.3). However, since we may only determine the additive renormalization constant
from the chiral condensate distribution function up to finite precision, fermion mass extraction is
affected by a systematic error which comes from configurations with close to vanishing renormal-
ized chiral condensate that are erroneously weighted as belonging to the false ground state. This
error is negligible for large lattices andg−2 though, since these configurations are suppressed by
the finite tunneling probability between both ground states. We observe a great improvement re-
garding the degeneracy of the masses (Figure15, right panel), which is expected in the continuum
limit from supersymmetry restoration. In particular, the fermionic masses no longer ”run away”
if the volume is increased, which hints at a proper cancellation of the divergent operator causing
these problems (compare to Figure12). Nevertheless, a true proof of this conjecture may only be
provided by a study of all divergent operators based on lattice perturbation theory, which is not
pursued here. For finite box sizes ofmFL > 2 a thermal mass-splitting similar to the SLAC case
seems to emerge, however showing a slightly smaller gap. To explore this region, further large
volume simulations would be needed in order to suppress lattice artifacts.

3.7 Path integral based Ward identity

Similar to the Ward identity that is given in [14] an equivalent relation can be derived for the present
lattice model. Starting from the path integral in the continuum,Q exactness is given by the twisted
supercharge [14] in the continuum, such thatS = 1

2g2
QΛ withQ2 = 0. This implies the continuum
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Ward identity
∂ lnZ
∂(g−2)

=
〈

−1
2QΛ

〉

= 0, (3.18)

since action and measure are invariant under the symmetry transformation generated byQ. After
putting the theory on the lattice, integrating out the constrained auxiliary fieldf , and introducing
the unconstrained fieldσ to get rid of the four-fermion interaction (in that order) one is left with
the path integral,

Z = gN
∫

DRDσDλ e−S[R,σ,λ] (3.19)

with N as number of lattice sites and the action given in eq. (2.20).10 Here, the coupling dependent
part is important, so that only constant numerical factors may be dropped. The derivative of the
Schwinger functional is

∂ lnZ
∂(g−2)

= −Ng
2

2
− g2 〈SB〉+ g2

dimQF

2
, (3.20)

whereQF denotes the Dirac operator in (2.22), anddimQF is its dimension in terms of flavor and
spinor components as well as lattices sites. In our case the Ward identity (3.18) reads

〈SB〉 =
3

2
N, (3.21)

with SB defined in Eq. (2.21). The same Ward identity can be derived for the formulation based on
the stereographic projection.
In order to see a possible restoration of supersymmetry in the continuum limit, the bosonic action
has been calculated with the SLAC derivative for three lattice sizes in a coupling range where finite
size effects should be negligible, i.e. formFL > 5. The results that are shown in Fig.16(left panel)
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Figure 16. Normalized action2 〈SB〉 /3N , which will take the value1 if supersymmetry is restored in the
continuum limit as required by the Ward identity (3.21). Left panel: Measurements for different lattice sizes
with physical volumes5 < mFL < 11 in the SLAC ensemble. Right panel: Results for fixed lattice volume
N = 72 (SLAC) andN = 82 (Wilson,κ = 0.25 fixed) and couplingsg−2 ∈ [0.4, 100] that reach the regime
of small physical volumes (smallg).

10The factorgN in front of the path integral stems from the Gaussian integrals that need to be carried out forf and be
introduced forσ.
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reveal that for the smallest (5 × 5) lattice Eq. (3.21) is violated as much as10% for mFL ≈ 5 and
up to20% atmFL ≈ 10. Therefore the Ward identity violation grows for coarser lattice spacings.
However, in the continuum limit at a fixed physical volumemFL the Ward identity tends to be re-
stored, cf. Fig16 (left panel). Additionally one can explore the small volumeregime of this theory
by sendingg → 0 at fixed lattice volume to reach the continuum limit. This hasbeen performed
on a7 × 7 lattice for a large range of couplingsg−2 ∈ [0.4, 100], see Fig.16 (right panel). Here
the Ward identity is explicitly restored in the limit of large g−2, although this result has to be taken
with care since the physical box size becomes unreliably small.
The examined lattice sizes are rather small, but these observations at least imply that a supersym-
metric continuum limit can be reached and that the non-degeneracy of bosonic and fermionic mass
is a finite size effect. However, in order to obtain a definite answer simulations on larger lattices
would be necessary. For instance, one ought to verify that〈SB〉 /N does not undershoot and drop
below 1.5 in the continuum limit at fixedmFL. Using the Wilson derivative, we measured the
bosonic action in the finetuned ensemble atκ = κc and observe similar behavior, although for the
largest lattice considered we see a discrepancy of7% for fine lattice spacing (g−2 = 2) and up to
14% for a coarser lattice spacing (g−2 = 1.4), see figure17. However, unlike for SLAC fermions,
the Ward identity approaches its continuum value from abovein the limit of g−2 to infinity and
therefore is unlikely to undershoot (see Fig.16, right panel). Hence a comparison of both deriva-
tives is only valid in the regime of largeg−2 where monotonic behaviour is encountered, which is
however unavailable for the SLAC derivative due to either fine-size effects for small lattices or the
strong sign problem for large lattices. Overall, the slope of the Ward identity clearly points to a
restoration of supersymmetry in the continuum limit.
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Figure 17. Expectation value of the bosonic action atκ = κc for differentg−2 (left panel) and different box
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3N = 1 is expected in the supersymmetric continuum limit.

4 Conclusion

The purpose of this article was to obtain a lattice formulation of the supersymmetric nonlinear O(3)
model which maintains the symmetries of the theory, at leastin the continuum limit. The target
manifold of the model is Kähler and hence it possesses anN = 2 supersymmetry, which could
provide for a nilpotent supercharge and a discretization prescription based on this which maintains
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an exact supersymmetry on the lattice. We first derived the supersymmetry transformation in terms
of constrained field variables and used these to analyze the applicability of such an approach in the
nonlinear O(3) model. We realized that there is in fact no way to formulate a discretization of the
theory which maintains simultanously both the O(3) symmetry and a part of supersymmetry. We
explicitly verified that theQ-exact supersymmetric formulation presented in [14] breaks the O(3)
symmetry such that it is not restored even in the continuum limit.
In contrast, we started from a manifestly O(3) symmetric discretization and investigated whether
the supersymmetry is restored in the continuum limit. The spherical geometry of the target space
is treated by two separate approaches, group valued variables on the one hand and a stereographic
projection on the other hand. The numerical simulations areperformed with the SLAC derivative
and the Wilson derivative respectively. The former does notbreak the chiralZ2 symmetry of the
classical action explicitly, allowing for the evaluation of histograms to verify the symmetric ground
state structure which is spontaneously broken. The applicability of the SLAC derivative in theories
with curved target space was illustrated by a calculation ofthe step scaling function in the quenched
model. A disadvantage of the SLAC derivative, however, is the strong sign problem that becomes
relevant already at comparably small lattices. In a sense the SLAC derivative is already too close to
the continuum limit since it correctly reflects the intrinsic sign problem even on moderately sized
lattices. In order to test the supersymmetric properties ofour lattice models we analyzed the masses
of fermions and bosons as well as a Ward identity based on the bosonic action. For both derivatives
the results indicate that the Ward identity is fulfilled in the continuum limit at finite (large) physical
volume. Concerning the expected degeneracy of the masses, no final statement can be done based
on the small lattice sizes that are accessible by the SLAC derivative. The Wilson derivative en-
ables us to investigate larger lattices, but breaks chiral symmetry explicitly at finite lattice spacing,
which leads to the renormalization of relevant operators insuch a way that one is carried away
from the supersymmetric continuum limit. Motivated by Super Yang-Mills theory, we fine tuned
the fermionic mass in order to remove the explicit breaking of the chiral symmetry. Furthermore,
using the thus tuned ensemble, no ”run away” of fermionic masses is visible, but rather a degen-
eracy of boson and fermion masses. This indicates that a single parameter is sufficient to provide
for a supersymmetric continuum limit and for a cancellationof the encountered divergences. This,
however, remains a conjecture until explicitly checked by means of lattice perturbation theory.
We have therefore presented a lattice discretization whichincorporates the O(3) symmetry exactly
at finite lattice spacing and furthermore shows restored supersymmetry as well as the spontaneously
broken chiral symmetry in the continuum limit. The price to pay is a single additional fine tuning
parameter. It remains an open question whether further possibilities for the lattice derivative like
the Neuberger operator provide a discretization which is free from explicit chiral symmetry break-
ing and perhaps free from the need for fine tuning, provided that only a mild sign problem is
encountered at the same time.
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A Conventions and Fierz identities

We choose the Majorana representation

γ0 = σ3, γ1 = −σ1, γ∗ = iγ0γ1 = σ2, C = −iσ2, (A.1)

and the conjugate spinor is defined asχ̄ = χTC. In the main body of the paper we employ the
Fierz relation

ψχ̄ = −1
2 χ̄ψ − 1

2(χ̄γ
µψ)γµ − 1

2 (χ̄γ∗ψ)γ∗. (A.2)

Due to the symmetry properties

χ̄ψ = ψ̄χ, χ̄γµψ = −ψ̄γµχ, χ̄γ∗ψ = −ψ̄γ∗χ (A.3)

the two last terms in (A.2) vanish forχ = ψ such that

ψψ̄ = −1
2 ψ̄ψ 1 . (A.4)

B Invariance of the action under the second supersymmetry

We will prove the invariance of the on-shell action

S[n,ψ] =

∫

d2x
(

∂µn · ∂µn+ iψ̄/∂ψ + 1
4(ψ̄ψ)

2
)

(B.1)

under the second supersymmetry transformations (2.12). The variation of the Lagrangian is11

δL = 2i∂µn · ∂µ(n× ε̄ψ)− 2iψ̄/∂(n × /∂nε) + 2ψ̄/∂(ε̄ψ ×ψ)− (ψ̄ψ) ψ̄(n× /∂nε) . (B.2)

The term∝ ψ5 vanishes, sinceψ is a Grassmannian field with only four independent degrees of
freedom. We will see that the first and second term cancel eachother as well as the third and fourth
one. Starting with the first two terms, they can be written as

2i∂µn(n × ε̄∂µψ)− 2iψ̄(n× ∂2nε)− 2iψ̄γµγνε(∂µn× ∂νn) . (B.3)

The last term vanishes since∂µn× ∂νn is parallel ton and hence perpendicular toψ. Integrating
the second term by parts one sees that the first and second termcancel owing to the cyclicity of the
triple product.
The cancellation of the third and fourth term in (B.2) is a bit more involved. First, we partially inte-
grate the third term and obtain−2∂µψ̄γ

µ(ε̄ψ×ψ). Sincen ·ψα = 0 for both spinor components
α, we conclude that̄εψ̄ ×ψ is parallel ton such that

− 2∂µψ̄γ
µ(ε̄ψ ×ψ) = −2(∂µψ̄γ

µn) n(ε̄ψ ×ψ) . (B.4)

11up to a negligible boundary term∂µ(−ψ̄γ
µ(ε̄ψ ×ψα))
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The conditionψ̄n = 0 implies∂µψ̄n = −ψ̄∂µn. (B.4) can hence be written as2(ψ̄ /∂n) n(ε̄ψ ×
ψ). To proceed further, we utilizēψ1n1 = −ψ̄2n2 − ψ̄3n3 and the Fierz relation̄ψiγ

µψi = 0:

2(ψ̄1 /∂n1 + ψ̄2 /∂n2 + ψ̄3 /∂n3)[n1ε̄ψ2 · ψ3 − n1ε̄ψ3 · ψ2 + cyclic terms] (B.5)

= 2ψ̄2γ
µψ3

(

∂µn2 · n1 − ∂µn1 · n2
)

ε̄ψ2 + 2ψ̄3γ
µψ2

(

∂µn1 · n3 − ∂µn3 · n1
)

ε̄ψ3 + cyclic terms .

Finally, we employ the Fierz relation(ᾱγµβ) ε̄α = 1
2 ᾱα (β̄γµε), which holds for Majorana

spinors, and obtain

(ψ̄2ψ2)ψ̄3γ
µε(n1∂µn2 − n2∂µn1) + (ψ̄3ψ3)ψ̄2γ

µε(n3∂µn1 − n1∂µn3) + cyclic terms.

Finally, using(ᾱα)ᾱ = 0 we obtain for the third term in (B.2) the simple expression

(ψ̄ψ) ψ̄(n× /∂nε) . (B.6)

As a result, the third and fourth term in (B.2) cancel each other. This proves that the action is
invariant under the second supersymmetry transformation (2.12).
The invariance of the constraints can be shown easily:

δ(n2) = 2in · (n× ε̄ψ) = 0

δ(n · ψ) = i(n× ε̄ψ) · ψ − n · (n× /∂nε)− in · (ε̄ψ ×ψ) = 0 .

C Transformation of the discretized measure

The transformation from the constrained fields(n,ψ) to the unconstrained fields(u,λ) has a non-
trivial Jacobian. Since the transformation only relates values of the fields on a fixed lattice site it is
sufficient to calculate the Jacobian for a given site. Denoting values of the fields on this site by

n =

(

n1
n⊥

)

, ψ =

(

ψ1

ψ⊥

)

we are lead to consider

δ(n2 − 1)δ(n · ψ1)δ(n · ψ2) =
1

2|n1|

[

δ
(

n1 −
√

1−n2
⊥

)

+ δ
(

n1 +
√

1− n2
⊥

)

]

·
∏

α

n1 δ

(

ψα
1 +

n⊥ · ψα
⊥

n1

)

.

Consequently, the measure on a given site transforms as

dn dψ1 dψ2 δ(n2 − 1)δ(n · ψ1)δ(n · ψ2) = 1
2 J(u) dudλ1 dλ2 (C.1)

with Jacobian
J(u) =

√

1− n2
⊥(u)

∣

∣sdet{(n⊥,ψ⊥) → (u,λ)}
∣

∣ . (C.2)
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In the super-stereographic projection (2.7) n does not depend onλα, andψα does not depend on
λβ for β 6= α. The superdeterminant is hence given by

sdet{(n⊥,ψ⊥) → (u,λ)} =
det(∂n⊥/∂u)

det(∂ψ1
⊥/∂λ

1) · det(∂ψ2
⊥/∂λ

2)
. (C.3)

In an O(N) model, all three determinants are equal to

(2ρ)N−1 1− u2

1 + u2
with ρ =

1

1 + u2
.

Expressing the square root in (C.2) in terms of the new fields,

√
1− n⊥ =

1− u2

1 + u2
,

we end up with the Jacobian

J(u) =
1

(2ρ)N−1
∝
(

1 + u2
)N−1

. (C.4)

The functional integral measure for the supersymmetric O(3) model with uncontrained fields is
thus

∏

x

dux dλ
1
x dλ

2
x

(

1 + u2
x

)2
. (C.5)

Note that we proved on the way that the Jacobian for the purelybosonic O(N) model is

JB(u) ∝ ρN−1 =
1

(1 + u2)N−1
. (C.6)

D Sign of the fermion determinant
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Figure 18. Left Panel: Average sign of the SLAC Pfaffian for different couplingsg−2 on lattices sizes
ranging from5 × 5 to 11 × 11. Right Panel: Sign of the Wilson Pfaffian on aN = 162 lattice for different
couplingsg−2 and normalized finetuning parameterκ/κc.
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In order to check whether the sign-quenched approximation is applicable in case of the SLAC
derivative, simulations on lattice sizes ranging from5 × 5 to 11 × 11 have been performed over
a coupling rangeg−2 ∈ [0.4, 1.2]. The results that are based on105 configurations per data point
(see Fig.18, left panel) indicate that the average sign of the Pfaffian issmaller for smallerg−2,
which is equivalent to coarser lattices. The problem is thatthe sign problem worsens for larger
lattice volumes at fixed coupling. In these cases the probability based, i.e. sign-quenched, Monte-
Carlo sampling willnot correspond to the relevant configurations in an unquenched ensemble and
statistical errors on reweighted measurements will becomerather large. Nevertheless, with stan-
dard Monte-Carlo techniques simulations are only possiblewithout taking the sign into account,
such that a reweighting becomes unavoidable. The discretization based on the SLAC derivative
becomes thus unfeasible for larger lattices, which we require in order to study the continuum limit
and a possible restoration of supersymmetry there. As a consequence, we have to rely for this
purpose on the Wilson derivative only. The average Pfaffian sign for the Wilson derivative is de-
picted in the right panel of Fig.18. We see that for small values of the finetuning parameterκ,
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Figure 19. Average Pfaffian sign for different box
sizes. Wilson sign data is gathered from the fine-
tuned ensemble atκc.

which correspond to little finetuning, changes in
the Pfaffian sign are suppressed and it is possible
to evaluate expectation values directly without the
need of reweighting. In the vicinity ofκ ≈ κc
however, this behaviour changes to a mild correc-
tion for large couplingg−2 = 2 up to a significant
correction for smaller couplingg−2 = 1.2. In the
finetuned ensemble atκ = κc, we regain a sign
problem as shown in figure19. However, even for
lattice volumeN = 162 and reasonable box sizes,
the average sign for Wilson fermions lies consid-
erably above the SLAC data at lattice volume112.
Also, the WilsonN = 242 data does not indicate a
drastic decrease of the average sign for larger lat-
tices, as seen in the SLAC case. Additionally, ap-
plying the Wilson formulation allows for an effi-
cient even-odd preconditioning scheme, which provides a sufficient speed-up in order to account
for the larger configuration numbers that are needed for the reweighting procedure.

E Algorithmic aspects

We argued in section3.2that it is of considerable importance to tune the many technical parameters
of advanced algorithms like Rational Hybrid Monte Carlo (RHMC) in the right way in order to ob-
tain an appropriate algorithm that parses configuration space in the correct way. With the sign prob-
lem and large condition numbers lurking, a Hybrid Monte Carlo algorithm with exact evaluation
of the fermion determinant and the inverse fermion matrix using efficient LAPACK routines was
used at small lattice volumes up to162 in order to provide a solid ground for the implementation
of more sophisticated pseudofermion algorithms, e.g. RHMC. These algorithms become necessary
at large volumes due to the poor scaling behaviour of the LU decomposition used to solve for the
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inverse fermion matrix. However, no efficient preconditiong schemes exist for the nonlocal SLAC
derivative. Therefore we concentrated our efforts on the Wilson derivative which allows for even-
odd preconditioning and, moreover, shows less severe sign problems at finite volume. In Table2

original reduced even-odd

condition number 1.6(6) · 1019 1.3(6) · 108 1.4(7) · 103
cg solver steps 454(10) 152(1) 48(1)

Table 2. Average condition numbers and CG solver steps for three different choices of fermion matrix
formulation.

average condition numbersκ obtained from the exact matrix normκ = ||Q|| · ||Q−1|| are shown
as well as typical iteration numbers of a conjugate gradientsolver for three different choices of the
fermion matrix: 1. the original fermion matrix, 2. the reduced fermion matrix where a factorρ,
whose determinant can be evaluated analytically, is separated on both sides,

Q′αβ
xy,ij = 4

(

δik − 2ux,iux,kρx
)

Mαβ
xy

(

δkj − 2uy,kuy,jρy
)

+ 16ρxux,iM
αβ
xy uy,jρy + 4βσxδxyδijδ

αβ , (E.1)

and 3. the preconditioned reduced fermion matrix using the well-known even-odd preconditioning
scheme [33]. The critical step of the iterative cg solver is the application of the inverse ofQTQ,
which is used in the pseudofermion algorithm, to some random(pseudofermion) vector,Y =

(QTQ)−1X. We see a significant improvement in the number of solver steps and in the condition
numbers for the reduced fermion matrix. This can directly beverified by looking at the eigenvalue
spectrum depicted in figure20. Both matrices, the original and the reduced one, are real and
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Figure 20. Eigenvalue frequency of the original and reduced fermion matrix (left panel, normalized such
that both the largest eigenvalue and the integrated surfaceequal one) and for the even-odd preconditioned
matrix (right panel, no normalization, logarithmic scale)from a sample of2000 configurations on a122

lattice.

antisymmetric, so that all eigenvalues are purely imaginary and come in complex conjugate pairs.
Whereas the original fermion matrix exhibits a large numberof eigenvalues very close to zero12,

12This is expected according to the Banks-Casher-relation.
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this is not the case for the reduced one and the condition numbers hence decrease drastically. A
further improvement is achieved by even-odd preconditioning. The preconditioned matrix is no
longer antisymmetric and we see that the majority of eigenvalues lie close to1. This is what we
expected, since the goal of the incomplete LU preconditioning [34, 35], which can be regarded as
a generalization of the even-odd scheme, is to rewrite the fermion matrix in the form1 − L − U ,
where1 is the identity matrix andL (U ) is a lower (upper) triangular matrix.
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