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Abstra
t: We investigate two-dimensional Wess-Zumino models in the 
ontinuum andon spatial latti
es in detail. We show that a non-antisymmetri
 latti
e derivative notonly ex
ludes 
hiral fermions but in addition introdu
es supersymmetry breaking latti
eartifa
ts. We study the nonlo
al and antisymmetri
 SLAC derivative whi
h allows for
hiral fermions without doublers and minimizes those artifa
ts. The super
harges of thelatti
e Wess-Zumino models are obtained by dimensional redu
tion of Dira
 operatorsin high-dimensional spa
es. The normalizable zero modes of the models with N = 1 andN = 2 supersymmetry are 
ounted and 
onstru
ted in the weak- and strong-
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1 Introdu
tionEver sin
e its invention supersymmetry has been an important subje
t in high-energyphysi
s beyond the standard model. It is 
onsidered to be a ne
essary ingredient tobridge the gap between the s
ale of ele
troweak symmetry breaking and the mu
h largeruni�
ation s
ale. Nowadays, supersymmetri
 theories 
over the whole range from su-persymmetri
 
lassi
al me
hani
s [1℄, quantum me
hani
s [2, 3℄, s
alar and gauge �eldtheories [4℄ to string- and M -theory [5℄. They allow for the 
onstru
tion of low-energye�e
tive a
tions, as for the N = 2 Seiberg-Witten model [6℄ or the formulation of 
ertainduality relations, like in the original Malda
ena 
onje
ture for gauge theories withN = 4extended supersymmetry [7℄.The non-perturbative e�e
ts in supersymmetri
 theories, and in parti
ular, the dynam-i
al breaking of supersymmetry are a subje
t of intensive studies. At present time thelatti
e formulation is the only tool for systemati
 investigations of su
h e�e
ts, and lat-ti
e simulations provide the means of doing reliable 
al
ulations in the strong-
ouplingregime or near a phase transition point. After the pioneering work of Dondi and Ni
o-lai [8℄ there has been an ongoing e�ort into formulating, understanding and simulatingsupersymmetri
 theories on the latti
e [9, 10, 11, 12℄. Re
ent latti
e results, e.g. on thebreaking of supersymmetry, have been obtained in [13, 14, 15℄.A 
ommonly a

epted guiding prin
iple in any good latti
e 
al
ulation is to build in asmany of the symmetries of the 
ontinuum model as possible, su
h that the latti
e resultsrespe
t these symmetries identi
ally. However, often these are 
on
i
ting requirementsand not all symmetries 
an be in
orporated on the latti
e. This in turn introdu
es subtlelatti
e artifa
ts into the formalism, whi
h one may not get rid of in the 
ontinuum limit.For example, latti
e regularizations of supersymmetri
 theories generi
ally break largeparts of supersymmetry, and it is a nontrivial problem to re
over supersymmetry inthe 
ontinuum limit. However, there are dis
retizations with highly nonlo
al derivativeoperators, for whi
h supersymmetry is manifestly realized [8, 11℄. Alternatively, for two-dimensional models one 
an dis
retize only spa
e (time remains 
ontinuous) su
h that asubalgebra of the N = 1 supersymmetry algebra,fQ�; Q�g = 2(
�
0)��P�remains inta
t [9, 10, 16℄. That subalgebra then determines the spe
tral properties ofthe super-Hamiltonian H. The fermion doubling for naive latti
e derivatives [17, 18℄is another apparently unrelated notorious example of su
h latti
e artifa
ts. For bosonsthere is no su
h problem. However, if we try to preserve part of supersymmetry thenthe fermioni
 mirror states lead to doublers in the bosoni
 se
tor as well.In this paper we study 
ontinuum and latti
e versions of two-dimensional Wess-Zumino(WZ) models. Similar to the original four-dimensional theory [19℄, these models 
ontains
alar and fermion �elds 
oupled by a Yukawa term. A parti
ular version possessesN = 2 supersymmetry and has been the subje
t of analyti
 [20, 21℄ and numeri
al [22℄studies. 2



In se
tion 2 we 
onsider the o�-shell formulation for a general 
lass of 
ontinuum mod-els and derive the supersymmetry transformations and Noether 
urrents. Parti
ularemphasis is put on the form of the 
entral 
harges [23℄.In se
tion 3 we turn to the latti
e version of the models. We show that for real andantisymmetri
 latti
e derivatives the N = 1 algebra 
an be represented on free �elds.The lo
al left- and right-derivatives are not antisymmetri
 and the anti
ommutator ofthe 
orresponding super
harges does not yield the dis
retized Hamiltonian for the freemodel. If we insist that supersymmetry is realised on free �elds without fermion andboson doubling then we must allow for nonlo
al derivatives on the latti
e. One parti
ularsu
h derivative, the SLAC operator, is introdu
ed in this se
tion. The numeri
al resultsfor this operator 
on
erning supersymmetry in lower-dimensional systems are in ex
ellentagreement with 
ontinuum results. In se
tion 4 we show how to derive the models withN = 1 andN = 2 supersymmetry on a spatial latti
e by a suitable dimensional redu
tionof a high-dimensional Eu
lidean Dira
 operator. In the pro
ess of redu
tion the Dira
matri
es and 
oordinates turn into Majorana spinors and s
alar �elds on the latti
e.We 
ount and 
onstru
t the normalisable eigenstates of H with zero energy both in theweak and strong-
oupling limits. In parti
ular we �nd that the N = 2 models with �2qintera
tion admit qN su
h states if N is the number of spatial latti
e sites.In se
tion 4 we bridge the gap between strong- and weak-
oupling regimes for modelswith N = 1 and N = 2 supersymmetry with the help of powerful methods from operatortheory. Using a theorem by Kato we prove that the zero modes in the strong-
ouplinglimit survive for intermediate 
ouplings as long as the 
oupling 
onstant of the leadingterm in the potential does not vanish. We 
omment on what we expe
t to happen in the
ontinuum limit of theN = 2 models, where only q of the qN zero modes survive [24℄. Wealso 
omment on re
ent latti
e simulations of the two dimensional Wess-Zumino modelby Be

aria et al. [25℄. Some te
hni
al details 
on
erning the nonlo
al SLAC operatorand the proof that the transition from strong to intermediate 
ouplings is governed bya relative 
ompa
t perturbation are relegated to the appendix.2 Wess-Zumino Models in 1 + 1 DimensionsIn the o�-shell formulation two-dimensional parity invariant Wess-Zumino models 
on-tain a set of, say d, triples, ea
h 
ontaining a real s
alar �, Majorana spinor  andauxiliary �eld F . In a Majorana representation for the Cli�ord algebraf
�; 
�g = 2��� ; with 
0
�y
0 = 
�; � = diag(1;�1); (1)the Majorana spinors are real.The supersymmetry algebra is spanned by N Hermitian spinorial super
harges Q(I),I = 1; : : : ;N , by the Hermitian two-momentum P� and by the (anti-)symmetri
 matrix
3



of Hermitian 
entral 
harges ZIJS (ZIJA ) and has the formfQ(I)� ; �Q(J)� g = 2 �ÆIJ =P�� + iÆ��ZIJA + i
���ZIJS � ; 
� = 
0
1; (2)with spinor index � = 1; 2.In 
omponent �elds the Lagrangian of the models with N = 1 supersymmetry reads [26℄L = 12���a���a � F aW;a+12F aFa + i2 � a =� a � 12W;ab � a b; (3)where the superpotential W depends on the dimensionless s
alar �elds �1; : : : ; �d. Wedenoted the derivative of W with respe
t to �a by W;a and employed the Einstein sum-mation 
onvention. For Wess-Zumino models the target spa
es are Rd with Eu
lideanmetri
 Æab.Now we 
onsider the most general linear o�-shell supersymmetry transformation of the�elds. Sin
e (�a;  a; F a) have mass dimensions (0; 12 ; 1) respe
tively, su
h transforma-tions have the form [26℄ Æ��a = ��(A )a;Æ� a = i=� (B�)a�+ (CF )a�; (4)Æ�F a = i��=� (D )a;where, for example, (A )a = Aab b. The 
onstant matri
es A;B;C;D must be real forthe supersymmetry variations to be Hermitian �elds. The requirement that L transformsinto a divergen
e implies the following algebrai
 relations for these matri
es and the realsymmetri
 matrix W 00 = (W;ab ),A+BT = 0; D + CT = 0; (5)ATW 00 +W 00C = 0; W 00AT + CW 00 = 0: (6)It follows thatÆL = �� ��V � +� with � = �12W;ab
 ���Aad d� � � b 
�:Free models have quadrati
 superpotentials and � is identi
ally zero. For intera
tingmodels we may exploit the Fierz identity( � a b)( 
 d) + ( � a d)( b 
) + ( � a 
)( d b) = 0to prove that � vanishes, providedW 00A = ATW 00 (7)holds true. Then the a
tion is left invariant by the transformations (4) and the 
orre-sponding 
onserved Noether 
urrent readsJ� = (���� 
�������)a (A )a � i(CW 0)a
� a; W 0 = (�W=��a) : (8)4



In what follows, employing (5), we express the matri
es B and D in terms of A and C.We 
onsiderN supersymmetries (4) with matri
es (AI ; CI) and denote the 
orrespondingsupersymmetry transformations by Æ(I)� . For all pairs (AI ; CI) the 
onditions (6) and(7) must hold for the Lagrangian to be invariant. These 
onditions severely restri
t theform of the superpotentialW . We also demand that two supersymmetry transformations
lose on translations (later we shall 
omment on the possibility of 
entral 
harges)� Æ(I)�1 ; Æ(J)�2 �� = 2iÆIJ(��2
��1)���; (9)and this puts further restri
tions on the matri
es. For the s
alar and the auxiliary �eldthe 
ondition (9) readAIATJ +AJATI = CTI CJ + CTJ CI = 2ÆIJ1 and AICJ �AJCI = 0: (10)In parti
ular all matri
es are orthogonal, su
h that the two 
onditions in (6) 
oin
ide.A
tually, the last relation implies that the algebra (9) is realized on the Majorana �eldsas well.The transformation Æ(I)� is generated by the Noether 
harge 
orresponding to J�I in (8),Q(I) = Z dx �(� � �0
�)a(AI )a � i(CIW 0)a
0 a� ; �a = _�a; (11)where we have set (d�a=dx) = �0.Canoni
al stru
ture: The 
anoni
al stru
ture is more transparent in the on-shell for-mulation. This is obtained from the o�-shell one by repla
ing Fa by W;a. The nontrivialequal time (anti)
ommutators between the s
alar �elds, their 
onjugated momentum�elds �a = _�a and the Majorana �elds readf a�(x);  b�(y)g = Æ��ÆabÆ(x� y) and [�a(x); �b(y)℄ = iÆabÆ(x � y): (12)The Hamiltonian is the Legendre transform of the Lagrangian,H = Z dxH; H = 12� � � + 12�0 � �0 + 12W 0 �W 0 + 12 yhF ; (13)where, for example, � �� = �a�a. We have introdu
ed the Hermitian Dira
-Hamiltonian(hF)ab = �i
��xÆab + 
0W;ab� (h0F)ab + 
0W;ab : (14)The a
tion is invariant under spa
etime translations generated by Noether 
hargesP0 = H and P1 = Z dx �� � �0 + i2 � 
0 0� ; (15)and under supersymmetry transformations (4) generated by the above super
hargesQ(I).By using the relations (6,10) one proves that the Q(I) satisfy the super-algebra (2) with
entral 
harges ZIJA = 0 and ZIJS = �Z �0 � �AICJ�W 0; (16)5



where we have negle
ted ambiguous surfa
e terms 
ontaining the Majorana �elds only.Note, that the integrand is a total derivative, sin
e the integrability 
onditions for theexisten
e of a potential U(�(x)) with�0 � (AICJ)W 0 = dUdx = U 0 � �0is that AICJW 00 is a symmetri
 matrix. But this follows from the 
ondition (6).In most expli
it 
al
ulations we 
hoose the Majorana representation
0 = �2; 
1 = i�3 and 
� = 
0
1 = ��1 (17)su
h that the superalgebra takes the simple formfQ(I)1 ; Q(J)1 g = 2 �HÆIJ +ZIJS � ;fQ(I)2 ; Q(J)2 g = 2 �HÆIJ �ZIJS � ; (18)fQ(I)1 ; Q(J)2 g = 2 �P1ÆIJ + ZIJA � :N = 1 supersymmetry: There is always at least one solution to the 
onstraints (5,6,7)and (10) for an arbitrary superpotential W , namelyA1 = �B1 = �C1 = D1 = 1: (19)Solving for the auxiliary �eld, Fa =W;a, the on-shell transformations take the formÆ(1)� � = �� ; Æ(1)�  = ��i=���W 0� �; (20)and the 
orresponding super
harge readsQ(1) = Z dx �� � �0
� + iW 0
0� �  : (21)For vanishing spinors the only non-trivial 
entral 
harge isZS = Z dx dWdx : (22)N = 2 extended supersymmetry: We assume that the model (3) admits a se
ondsupersymmetry besides the solution (19). The 
onditions (10) implyA2 = �C2 = I; I = �IT ; I2 = �1: (23)The matrix I de�nes a 
omplex stru
ture and exists for all target spa
es Rd with evendimension d. The 
onditions in (6) and (7) on the superpotential both redu
e toIW 00 +W 00I = 0; (24)6



whi
h means that the superpotential is a harmoni
 fun
tion of the s
alar �elds, in agree-ment with the general analysis in [26℄. On-shell, the se
ond supersymmetry has theform Æ(2)� � = ��I ; Æ(2)�  = �i=� I�� IW 0� �; (25)and is generated by the Noether-super
hargeQ(2) = Z dx �� � �0
� � iW 0
0� � (I ): (26)For vanishing spinor �elds the 
entral 
harges readZIJA = 0 and �ZIJS � = �3 Z dx dWdx � �1 Z dx dUdx ; (27)where U is the imaginary part of the analyti
 fun
tion F (�1+i�2) = W + iU with realpart W .For the models with N = 2 supersymmetry there exists a 
on
ise formulation in whi
htwo real s
alars are 
ombined to a 
omplex s
alar, and two Majorana spinors are 
om-bined to a Dira
 spinor. For example, for the target spa
e R2 we set� = 1p2 ��1 + i�2� ;  = 1p2 � 1 + i
� 2� : (28)The harmoni
 superpotential is the real part of a holomorphi
 fun
tion,W (�; ��) = F (�) + �F ( ��); (29)and the on-shell Lagrangian takes the formL = ������y + i � =� � 12 jF 0j2 � F 00 � P+ � �F 00 � P� ; (30)where F 0 is the derivative of F with respe
t to the 
omplex �eld � and we have introdu
edthe 
hiral proje
tors P� = 12(1+ 
�): (31)Along with the real s
alar �elds one 
ombines the 
orresponding 
onjugate momentum�elds to a 
omplex momentum, � = (�1�i�2)=p2, su
h that[�(x); �(y)℄ = iÆ(x � y) and f �;  y�g = Æ�� : (32)The 
omplex super
harge takes the formQ = 12 �Q(1) + i
�Q(2)� = �� � ��0 + iF 0
0�P+ + ��� + �0 + i �F 0
0�P� : (33)and satis�es the anti
ommutation relationsfQ;Qg = 0 and fQ; �Qg = =P + 
�Z11S �Z12S : (34)7



Higher supersymmetries: Next we show that with the absen
e of 
entral 
hargesthere is no third linear o�-shell supersymmetry besides (20) and (25). To be 
ompat-ible with the �rst transformation in (20), the orthogonal matri
es A3 and C3 must beantisymmetri
 and of opposite sign. The 
onditions (10) between the se
ond and thirdsupersymmetry imply [I;A3℄ = fI;A3g = 0;whi
h is impossible for orthogonal matri
es I and A3. We 
on
lude that the models (3)admit at most two linear o�-shell supersymmetries.Let us mention that, if we allow for 
entral 
harges in the superalgebra, there existfurther supersymmetries. But the 
orresponding models are massive free models. They
an be derived by a dimensional redu
tion of the free N = 2 model in 4 dimensions.3 Latti
e Formulations of Wess-Zumino ModelsAs ultraviolet-
uto� we dis
retize spa
e, introdu
e a spatial latti
e with N equidistantsites and 
hoose periodi
 boundary 
onditions. The time is kept 
ontinuous su
h thattime translations remain symmetries generated by the Hamiltonian. Following [9℄ we tryto preserve at least that subalgebra of (2) whi
h involves H.The �elds of the supersymmetri
 model in the Hamiltonian formulation are dis
retizedas follows,(�a(x); �a(x);  a(x)) �! (�a(n); �a(n);  a(n)) ; n = 1; : : : ; N; (35)where the latti
e spa
ing has been set to one. On a spa
e-latti
e the derivative be
omesa di�eren
e operator the parti
ular 
hoi
e of whi
h is left open for the moment being.We de�ne the latti
e Hamiltonian as square of the dis
retized super
harge Q1. Forintera
ting theories it 
onsists of the dis
retized Hamiltonian of the 
ontinuum theoryplus a latti
e 
ounterpart of the 
entral 
harge.On-shell the N = 1 model 
ontains d 2 f1; 2; : : : g Hermitian s
alar �elds �a(n) and dMajorana spinors  a(n) on N latti
e sites (n = 1; : : : ; N). The �elds obey the non-trivial
anoni
al (anti-)
ommutation relations[�a(n); �b(n0)℄ = iÆabÆ(n; n0) and f a�(n);  b�(n0)g = ÆabÆ��Æ(n; n0): (36)We 
hoose a Majorana representation su
h that the  a are Hermitian two 
omponentspinors.When we put the super
harge on a spa
e-latti
e, we must 
hoose the latti
e derivativein the term �Z �0
� = Z �
� 0 = iZ �h0F 8



in (11). Sin
e we do not want to spe
ify � at this point we make the general ansatz forthe Hermitian Dira
-Hamiltonianh0F = iÆab� 0 ���y 0� ; with ��y = �y� � �4 (37)and a real � with 
orre
t 
ontinuum limit. � must be real, sin
e it should map Majoranaspinors into Majorana spinors. Let us de�ne its symmetri
 and antisymmetri
 parts�S = 12(� + �y); �A = 12 (� � �y) with [�A; �S℄ = 0; �2A � �2S = 4: (38)The last two properties follow from our assumption [�; �y℄ = 0 in (37). Sin
eh0F (17)= �i
��A � 
0�S; (39)
hirality is preserved for massless fermions if � = �A is antisymmetri
, in whi
h 
aseh0F = �i
��A. Thus, if � is antisymmetri
 and lo
al then, a

ording to some long-standing no-go theorems there is fermion doubling. There are many su
h theorems, andwe mention only two, one due to Nielsen and Ninomiya [17℄ and a later elaboration dueto Friedan [18℄. No-go theorems are notorious in that people �nd a way around them,and following Friedans work, L�us
her [27℄ and others did so. Below we 
ir
umvent theno-go theorems by using a nonlo
al and antisymmetri
 derivative.However, most latti
e derivative are not antisymmetri
 in whi
h 
ase h0F 
ontains amomentum dependent mass term �
0�S. Su
h a 
hirality violating term has been in-trodu
ed by Wilson [28℄ to raise the masses of the unwanted doublers to values of orderof the 
uto�, thereby de
oupling them from 
ontinuum physi
s.As dis
retized super
harge (21) we takeQ(1) = (�;  ) + i(�; h0F ) + i(W 0; 
0 ): (40)A 
areful 
al
ulation yields the following anti
ommutation relations,12fQ(1)� ; Q(1)� g = (=P
0)�� � i(
1)��(W 0; �A�)� Æ��(W 0; �S�) (41)with energy and momentum2P0 = (�; �)� (�;4�) + �W 0;W 0�+ ( ; hF ) ;2P1 = 2��A�; ��� � ; 
�h0F � ; hF = h0F + 
0W 00: (42)To arrive at these results one uses the identity(�; ��) + i(�y 1;  1) = (��; �) � i( 1; �y 1);whi
h holds for any real di�eren
e operator �. The superalgebra 
an be rewritten as12fQ(1); �Q(1)g = =P + i
�(W 0; �A�)� 
0(W 0; �S�): (43)9



The last term is absent in the superalgebra (2) and breaks Lorentz 
ovarian
e expli
itly.This latti
e artifa
t originates in the Wilson term �
0�S in (39). This term must vanishin the 
ontinuum limit. One may wonder whether there exist other improvement termswe 
ould add to a lo
al �i
��A in order to avoid the fermion doubling. However, sin
efor Majorana fermions the terms( ; �S ); ( ; 
1�S ); ( ; 
��S )are 
onstant or zero, all terms but 
0�S do not show up in the right hand side of (42)and we obtain the same result as if we had 
hosen hF = �i
��A. Hen
e only the Wilsonterm � 
0�S 
an be used to avoid the fermion doubling. This argument does not applyto theories with several Majorana fermions and in parti
ular to models with extendedsupersymmetry.Models with N = 2 supersymmetry 
ontain the se
ond super
harge in (26), the latti
eversion of whi
h readsQ(2) = (�; I ) + i(�; h0FI )� i(W 0; 
0I ); (44)and satis�es the same anti
ommutation relations as Q(1), up to a sign 
hange of the lasttwo terms in (43). The anti
ommutator of two latti
e 
harges reads12fQ(I); �Q(J)g = ÆIJ =P + i
�ZIJS +ZIJL ; (45)where the `would-be' 
entral 
hargesZIJS = �IJ3 (W 0; �A�)� (�1)IJ(U 0; �A�) (46)approa
h the 
entral 
harges (27) of the 
ontinuum model. To arrive at (45) one needsthe harmoni
ity of the superpotential whi
h in turn implies the existen
e of a fun
tionU(�) with IW 0 = U 0, and this fun
tion enters the 
entral 
harges. However, sin
e theLeibniz rule never holds on the latti
e, the integrands W 0 � �A� and U 0 � �A� in (46) arenot just total derivatives as in the 
ontinuum and as a 
onsequen
e the terms ZIJS arenot 
entral to the algebra. The annoying termsZIJL = �(�3)IJ
0(W 0; �S�) + (�1)IJ �
0(U 0; �S�)� i(�; I�S�)� i2( ; I�S )� (47)in (45) are pure latti
e artifa
ts and vanish for antisymmetri
 latti
e derivatives.Free Wess-Zumino model (N = 1): For simpli
ity we 
onsider the free model withs
alars of equal mass. The superpotential reads W = 12m�a�a and with W 0 = m� the`would-be' 
entral 
harge vanishes,(W 0; �A�) = m(�; �A�) = 0: (48)As Hamiltonian we 
hoose the square of the super
harges,H = 12fQ1; Q1g = 12fQ2; Q2g = P0 �m(�; �S�);2P0 = (�; �) + ��; (�4+m2)��+ ( ; hF ) ; (49)10



where the Dira
-Hamiltonian for the non-intera
ting model is justhF = �i
��A + 
0(m� �S) with h2F = (�4+m2 � 2m�S)12 (50)and �4 = ��y. For antisymmetri
 derivatives the pure latti
e artifa
ts 
ontaining �Svanish and with 2P1 = fQ1; Q2g we obtain the familiar algebrafQ�; Q�g = 2(
�
0)��P�; [Q�; P�℄ = 0; [P0; P1℄ = 0: (51)We 
on
lude that the N = 1 superalgebra in 1 + 1 dimensions 
an be represented as afree Wess-Zumino model on a spa
e latti
e.3.1 Latti
e DerivativesAt this point some words about latti
e derivatives are in order. At �rst instan
e onemay think that the lo
al right- and left derivatives(�Rf)(n) = f(n+ 1)� f(n) and (�Lf)(n) = f(n)� f(n� 1) (52)are ideal 
andidates for a latti
e derivative. With respe
t to the `2-s
alar produ
t of twolatti
e fun
tions, (f; g) = NXn=1 f(n)g(n); (53)the adjoint of the left-derivative is minus the right-derivative, �yL = ��R. Both derivativesshare the property that (1; �Rf) = (1; �Lf) = 0. But the 
orresponding momenta p̂L =�i�L and p̂R = �i�R are not Hermitian and possess 
omplex eigenvalues,�k(p̂R) = ��k(p̂L) = 2eipk=2 sin pk2 ; with pk = 2�k=N; and k = 1; : : : ; N:If we insist on a Hermitian momentum we 
ould 
hoose the antisymmetri
 derivativeoperator �R+L = 12(�R + �L) = ��TR+L (54)whi
h is used in many latti
e 
al
ulations. The N real eigenvalues of p̂R+L read�k(p̂R+L) = sin pk = Re (�k(p̂R)) ;and waves with the shortest wavelength, that is with pk at the boundary of the �rstBrillouin zone, are zero modes of �R+L. Hen
e, by trying to preserve the hermiti
ity ofp̂ in this naive way immediately introdu
es spurious zero modes that are responsible for
11



the fermion doubling problem.
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A third alternative for the latti
e mo-mentum is the Hermitian and nonlo
alSLAC operator p̂SLAC = �i�SLAC intro-du
ed by Drell, Weinstein and Yankielow-i
z [29℄ with real eigenvalues pk. This op-erator has no spurious mirror states in the�rst Brillouin zone. The eigenvalues ofp̂SLAC are eigenvalues of the momentumoperator in the 
ontinuum and the di�er-en
e between the latti
e and 
ontinuumresults are minimized. In the �gure on theleft we have plotted the eigenvalues of thevarious latti
e operators. The real partsof the eigenvalues of p̂R and p̂L are justthe eigenvalues of p̂R+L. The eigenvaluesof p̂R+L are twofold degenerate. The SLACoperator has the same dispersion relationas the momentum in the 
ontinuum.Besides �R; �L; �R+L and �SLAC there are many other lo
al and nonlo
al 
andidates for lat-ti
e derivatives with the 
orre
t naive 
ontinuum limit. However, it is easy to see that nolinear di�eren
e operator will obey the Leibniz rule. Many problems in supersymmetri
latti
e theories are exa
tly due to this fa
t, see [8℄.In order to better understand the dependen
y of the spe
trum and doubling phenomenonon the latti
e derivative we 
onsider the following one-parameter interpolating family ofultra-lo
al di�eren
e operators�� = 12(1 + �)�R + 12(1� �)�L = �S + �A; (55)with symmetri
 and antisymmetri
 parts�S = 12�(�R � �L) = 12��R�L and �A = 12(�R + �L) = �R+L: (56)When the parameter � varies from 1 to �1, then �� interpolates between �R and �L.For � = 0 we obtain the antisymmetri
 operator �A in (52).The 2N eigenvalues of the Hermitian Dira
-Hamiltonian (50) depend on the deformationparameter as follows,�k(�) = �N�k(�) = �qm2 + 4�(�+m) sin2(12pk) + (1��2) sin2(pk); (57)where pk = 2�k=N and k runs from 0 to N�1. For the extreme 
ases � = 0; 1 we obtain
12
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�k�SLAC�R��+�R+L m = 0

k

the eigenvalues�k(0) = �qm2 + sin2(pk)with multipli
ity 4 and�k(1) = �qm2 + 4(1 +m) sin2(12pk)with multipli
ity 2. This should be 
om-pared with the eigenvalues on the 
ontin-uous interval of 'length' N ,�k = �qm2 + p2k (58)with multipli
ity 2. One 
an show that for� greater then �+ or less then ��, where4�� = ��pm2 + 8�m� ;all eigenvalues have the same multipli
ity as in the 
ontinuum. In parti
ular, for masslessfermions there are no doublers for �2 > 1=2. However, for � 2 [��; �+℄ some eigenvalueshave multipli
ity four. In the above �gure we have plotted the positive eigenvalues of hFfor � = 0; 1; �+. For 
omparison we have depi
ted the positive eigenvalues of hF for thenonlo
al SLAC derivative(�SLAC)n 6=n0 = (�)n�n0 �=Nsin ��(n� n0)=N� and (�SLAC)nn = 0: (59)Despite being nonlo
al the SLAC derivative has many advantages as 
ompared to thelo
al operators �R; �L or �R+L: it is antisymmetri
 su
h that for massless fermions 
hiralsymmetry is preserved. By 
onstru
tion the 2N real eigenvalues of hF = �i
��SLAC+
0mare identi
al to the 2N lowest eigenvalues of the 
ontinuum operator on the interval of`length' N , (58). For this reason �SLAC has been 
alled ideal latti
e operator in theliterature. We do not expe
t that unwanted nonlo
al 
ounterterms [30℄ are requiredfor the two-dimensional supersymmetri
 Wess-Zumino models. This is 
ertainly the
ase for the �nite models with extended supersymmetry. For the model with N = 1supersymmetry the same should be true sin
e it does not 
ontain gauge �elds whi
h
ouple to high momentum modes at the edge of the Brillouin zone. Indeed, in [31℄ is hasbeen 
laimed that �SLAC approa
hes an ultra-lo
al operator when N tends to in�nity,ex
ept for a border matrix. In the appendix we give a detailed analysis of this interestingoperator.
13



3.2 On the Quality of Latti
e Derivatives in Supersymmetri
 QMIt is enlightening to retreat to quantum-me
hani
al systems and study the super
hargesQ = � 0 AAy 0� ; with A = � +W; Ay = �y +W; (60)and in parti
ular the quality of latti
e approximations for di�erent latti
e derivatives �in A. The super
harge squares toQ2 = �AAy 00 AyA� ; (61)with isospe
tral dis
retized S
hr�odinger operatorsAAy = ��y + �W +W�y +W 2AyA = �y� + �yW +W� +W 2: (62)They have identi
al spe
tra, up to possible zero modes. If the Leibniz rule held on thelatti
e, if � was antisymmetri
 and if we 
ould repla
e �W by W 0+W�, then we would�nd the super-Hamiltonian of supersymmetri
 quantum me
hani
s in the 
ontinuum,H = ���y +W 0 +W 2 00 �y� �W 0 +W 2� : (63)The di�eren
e between Q2 and H is the analog of the last two terms in (43) and thedi�eren
e in their spe
tra is a good measure for the suitability of the 
hosen latti
ederivative as regards supersymmetry and the speed with whi
h the 
ontinuum limit isapproa
hed. In the following �gure we have plotted the eigenvalues of Q2 and H for� = �SLAC, denoted by Q2SLAC and HSLAC and for � = �R, denoted by Q2naiv and Hnaiv.We took the superpotentialW = �x2 whi
h gives rise to the supersymmetri
 anharmoni
os
illator.The lowest 57 eigenvalues of Q2 and H are almost identi
al for the SLAC derivatives andthe lowest 90 eigenvalues of HSLAC agree with the exa
t values (
al
ulated on a mu
h�ner grid). These results 
learly demonstrate the high pre
ision of the SLAC derivativein low-dimensional supersymmetri
 systems. It does not matter whether we dis
retisethe super
harge or the super-Hamiltonian as long as we 
hoose the SLAC derivative.After this detour to quantum me
hani
s we now return to supersymmetri
 �eld theories.4 From the Dira
 Operator to the Latti
e N = 1 WZ ModelIn this se
tion we relate the super
harges and Hamiltonians of two-dimensional Wess-Zumino models on a spatial latti
e to suitable Dira
 operators. We shall use the resultsin [32℄ on the (extended) supersymmetries of i =D in arbitrary dimensions, spe
ialized to14



n
En=Eexa
tn V� = �2x4 � 2�x
b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b
b b b b b b b b b b b b b b b b b

b b

b b

b b

b b

b b

b
b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
b b

b b

b b

b b

b b

b b

b
b
b
b b b b b b b b b b b b b b b b

b
b
b
b
b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b b b b b b b b b b b
b b

b
b
b
b
b
b
b
b
b
b
b
b b

b
b b

b b
b b

b
b
b

b
b

b
b

b
b

b
b

b
b

b
b

b b

Q2SLACHSLAC
Q2naiv

Hnaiv
20 40 60 80 1200:80:61:0

1:21:4
Figure 1: Eigenvalues of Q2 and H for the SLAC derivative and the right-derivative forN = 180 latti
e points, length L = 30 and � = 1.
at spa
e and perform a dimensional redu
tion su
h that the super
harges of the latti
emodels 
an be related to the redu
ed i =D.To see how Dira
 operators relate to multi-dimensional supersymmetri
 matrix-S
hr�odin-ger operators we generalize the redu
tion of the two-dimensional Dira
 equation to theNi
olai-Witten operator to higher dimensions. For that purpose we dimensionally redu
ethe Eu
lidean operatori =D = i��D� ; D� = �� + iA� ; ��y = ��; � = 1; : : : ; 2N; (64)from the produ
ts of 
ylinders,M = R� : : : �R| {z }N-times �S1 � : : : � S1| {z }N-times = RN � TN (65)to the fa
torRN . We take x1; : : : ; xN as 
oordinates onRN and �1; : : : ; �N as 
oordinateson the torus TN , respe
tively. We dimensionally redu
e by assuming that the Abeliangauge potential is independent of the angles �n. Then the Dira
 operator 
ommuteswith the (angular)momenta �i��n and we may set ��n = 0.4.1 Redu
tion to Models with N = 1If we further set A1(x) = � � � = AN (x) = 0 and de�ne �n = N+n, then the square of theredu
ed Dira
 operator takes the form� =D2 � 2H = pnpn +A�nA�n � i�n� �m�nA �m; where pn = 1i ��xn : (66)15



Note that the redu
ed operator H 
ontains no �rst-derivative terms. It 
an be identi�edwith the Hamiltonian of a two-dimensional N = 1 WZ-model on a spatial latti
e, if weset xn = �(n); pn = �(n) and ��n��n� = p2 (n): (67)It follows with (17) that ( ; 
0 ) = �i�n��n holds true. If we further assume that thenon-vanishing 
omponents of A� have the formA�n = ���y��(n) +W 0(�(n)) with �y = �S � �A; (68)then we �nd � 1p2 i =D = (�;  1) + (W 0;  2)| {z }A0 �(�; � 2)| {z }A1 = Q(1)1 (69)with Q(1) in (40). We 
on
lude that the Hamiltonian readsH = P0 + (W 0; �A�)� (W 0; �S�); (70)with P0 from (42). Thus we have proved that the super-Hamiltonian of the N = 1Wess-Zumino model on a latti
e with N sites is just the square of the Dira
 operator in2N dimensions, dimensionally redu
ed from RN � TN to RN .4.2 Ground State of the Free ModelFor the massive non-intera
ting model we have 2W = m�2. The 
orresponding Hamil-tonian is the sum of two 
ommuting operators, of the bosoni
 partHB = 12 (�; �) + 12(�;A2�); A2 = �4+m�S +m2; (71)and the fermioni
 oneHF = 12( ; hF ); hF = �i
��A + 
0(m� �S): (72)We assume that the parameters are su
h that A2 is positive. Near the 
ontinuum limitthis is always the 
ase if the physi
al mass is positive. The ground state wave fun
tion(al)of the supersymmetri
 Hamiltonian fa
torizes,	0 = 	B	F with HB	B = EB	B and HF	F = EF	F:We 
hoose the �eld representation for the s
alar �eld, su
h that�(n) = 1i ���(n) and 	B = 	B(�): (73)16



The bosoni
 fa
tor 	B is Gaussian	B = 
 � exp ��12(�;A�)� and EB = 12 trA: (74)Here A is the positive root of the positive and Hermitian A2 in (71). For the family ofoperators in (55) the tra
e of A is just half the sum of the positive eigenvalues in (57).To �nd 	F we introdu
e the (two-
omponent) eigenfun
tions vk of hF with positiveeigenvalues. Sin
e the Hermitian matrix hF is imaginary the vk 
annot be real and wehave hFvk = �kvk () hF�vk = ��k�vk (�k > 0): (75)The eigenve
tors are orthogonal with respe
t to the Hermitian s
alar produ
t,(vk; vk0) = Xn;�=1;2 �vk�(n)vk0�(n) = Ækk0 and (�vk; vk0) = 0: (76)Now we expand the Majorana spinors in terms of this orthonormal basis, (n) = NXk=1��kvk(n) + �yk�vk(n)� ; where �k = (vk;  ); �yk = (�vk;  ) (77)are one-
omponent 
omplex obje
ts with anti
ommutation relationsf�k; �k0g = 0 and f�k; �yk0g = Ækk0: (78)Inserting the expansion (77) into HF yieldsHF = 12 Xk:�k>0�k ��yk�k � �k�yk� : (79)It follows that the ground state of HF is the Fo
k va
uum whi
h is annihilated by allannihilation operators �1; : : : ; �N and has energyEF = �12 Xk:�k>0 �k: (80)Sin
e h2F = 12 
A2 we 
on
lude, that the positive eigenvalues of hF are identi
al to theeigenvalues of A su
h that E = EB +EF = 0:Sin
e 	0 is normalizable for A > 0 we see that the Hamiltonian admits a supersymmetri
ground state for all 
hoi
es of the latti
e derivative �, provided A is positive.
17



4.3 Ground State for Strong CouplingIn the extreme 
ase of very strong self-
oupling of the s
alar �eld we may negle
t thederivative term in the super
harge (69) [9℄. ThenQ andH are the sum of N identi
al and
ommuting quantum me
hani
al operators, ea
h de�ned on a given latti
e site. Hen
e,the ground state is a produ
t state, 	0(�) = 
n 0(�n). The operators on a �xed latti
esite readQ(1)1 = 1i  1 ��� +  2W 0(�) and H = � �2��2 +W 02 � i 1 2W 00: (81)A normalizable zero-energy state is annihilated by Q(1)1 , 0(�) = e�i 1 2W (�)!0; (82)where !0 is a 
onstant two-
omponent spinor. It is well-known [33℄ and follows at on
efrom (82) that supersymmetry is unbroken if p inW = 1p��p +O(�p�1); � 6= 0; (83)is even and it is broken if p is odd. Note that �i 1 2 is Hermitian and has eigenvalues�1 and that for even p the state  0 is normalisable ifi sign (�) 1 2!0 = !0 or ( 1 � i sign (�) 2)!0 = 0:To summarize, for even p the N = 1 Wess-Zumino model on the spatial latti
e hasalways exa
tly one normalizable zero mode in the strong-
oupling limit. For � > 0 thisprodu
t state has the form	0(�) = exp � NXn=1W (�n)!
0; � 1(n)� i 2(n)�
0 = 0; 8 n: (84)In parti
ular, for �4-models supersymmetry is broken in the strong-
oupling limit where-as it is unbroken for �6-models.5 From the Dira
 Operator to the Latti
e N = 2 WZ ModelIt is known, that on 
at spa
etime the Eu
lidean Dira
 operator admits two supersym-metries if the �eld strength 
ommutes with an antisymmetri
 and orthogonal matrix I,whi
h de�nes a 
omplex stru
ture [32℄. The two real super
hargesQ1 = 1p2 i ��D� and Q2 = 1p2 i I����D� (85)
18



form the superalgebra 12fQi; Qjg = ÆijH: (86)They 
an be 
ombined to a nilpotent 
omplex 
hargeQ = 1p2 (Q1 + iQ2) (87)and its adjoint Qy, in terms of whi
h the supersymmetry algebra takes the formH = 12fQ;Qyg; Q2 = Qy2 = 0 and [Q;H℄ = 0: (88)To obtain N = 2 latti
e models on N sites we 
onsider the Dira
 operator onM = R� : : :�R| {z }2N-times �S1 � : : :� S1| {z }2N-times = R2N � T 2N (89)in 
ontrast to the 2N -dimensional spa
e in (65). Sin
e the �eld strength 
ommutes withthe 
omplex stru
ture I it is very 
onvenient to introdu
e the 
orresponding 
omplex
oordinates on M ,zn = xn + ix�n = xn + i�n; �n = 2N + n; n; �n 2 f1; : : : ; 2Ng; (90)and fermioni
 annihilation and 
reation operators, n = 12 ��n + i��n� ;  yn = 12 ��n � i��n� with f n;  ymg = Æmn: (91)The 
ondition that F�� 
ommutes with the 
omplex stru
ture I implies the existen
e ofa real superpotential �(z; �z), su
h that [32℄Q = 2ie�� 2NXn=1 n ��zn! e�:5.1 Redu
tion to Models with N = 2Again we perform a dimensional redu
tion by assuming that � does not depend on the
ompa
t variables �n, � = � �x1; : : : ; x2N� (92)and that the angular momenta ��n vanish. In the se
tor with vanishing angular momentathe 
omplex 
harge simplify toQ = e��Q0e�; where Q0 = i 2NXn=1 n ��xn ; (93)19



sin
e the 
omplex zn-derivative be
omes the real xn-derivative in this se
tor. Thisdimensional redu
ed super
harge and its adjoint generate the superalgebra (88) withsupersymmetri
 matrix-S
hr�odinger operatorH = 12fQ;Qyg = �12�+ 12(r�;r�) + 12��| {z }HB �X ny�;nm m| {z }HF : (94)For example, for � = ��r this is just the Hamiltonian of the supersymmetrized Hydrogenatom whi
h has been introdu
ed and solved in [34℄. It is evident from the representations(93) and (94) that Q de
reases and Qy in
reases the eigenvalue of the number operatorN =X ny n (95)by one and H 
ommutes with N . The eigenvalues of N are 0; 1; : : : ; 2N .As before, we interpret the 2N 
oordinates xn and annihilation operators  n as valuesof two s
alar and one Dira
 �eld on a one-dimensional latti
e with N latti
e sites. Morepre
isely, we make the following identi�
ations for n = 1; 2; : : : ; N ,�(n) = �x2n�1x2n � ; �(n) = �p2n�1p2n � ; (n) = � 2n�1 2n � ;  y(n) = � y 2n�1 y2n � : (96)The free super
harge (93) takes the formQ0 = i NXn=1 (n) ���(n) ; Qy0 = NXn=1 y(n) ���(n) : (97)The remaining task is to �nd a superpotential � giving rise to intera
ting latti
e Wess-Zumino models. Sin
e � should be real we use a representation for the two-dimensional
-matri
es su
h that i
� and 
0 are real,
0 = �3; 
1 = i�1; 
� = ��2; (98)in order to obtain a real Dira
-Hamiltonian,hmF = �i
�� +m
0 = �m ��� �m� :As explained above, � need not be anti-Hermitian in whi
h 
ase we takehmF = �m ��y �m� = �i
��A +m
0 � i
1�S with (hmF )2 = (�4+m2)12; (99)su
h that hmF is real and Hermitian. Note that the term 
ontaining �S is not a momentumdependent mass term as in (39). We have been lead to a di�erent type of Wilson term20



as 
ompared to the N = 1 model sin
e we have 
hosen a di�erent representation forthe 
-matri
es. The earlier Majorana representation (17) is not useful in the present
ontext, sin
e it would lead to a 
omplex � in (93).The term HF in (94) must 
ontain the free Dira
-Hamiltonian and this 
ondition implies� �2�m���(n)���(n0) = (hmF )��;nn0 ; �; � = 1; 2; n; n0 = 1; 2; : : : ; N: (100)Hen
e we expe
t that the real fun
tion�m = �12(�; hmF �); (101)is the superpotential for a N = 2 supersymmetri
 model. For these models we use thefollowing inner produ
ts(�; ~�) =X�;n ��;n ~��;n and ( ; ~ ) =X�;n  y�(n) ~ �(n); (102)for s
alar doublets and Dira
 spinors, respe
tively. The 
orresponding super
hargeQ = ie��mQ0 e�m = iXn  (n)� ��� � hmF �� (103)and its adjoint give rise to the following super Hamiltonian,HB = �12(�; �) + 12��; (�4+m2)��; HF = ( ; hmF  ): (104)Note that the superpotential �m is a harmoni
 fun
tion, 4�m = 0, and thus there is no
onstant 
ontribution to HB. The 
harges and Hamiltonian a
t on fun
tion(al)s in theHilbert spa
e of the N = 2 latti
e modelsH = h
 � � � 
 h| {z }N�times ; where h = L2(R2)
C4 (105)is the Hilbert spa
e for the degrees of freedom on one latti
e site.Now we turn to intera
ting models by repla
ing the mass term in�m = �12(�; h0F�) +Xn f��(n)�; f(�) = 12m(�22 � �21);given by the quadrati
 harmoni
 fun
tion f , by an arbitrary harmoni
 fun
tion f(�) ofthe two variables �1 and �2,� = �12(�; h0F�) +X f��(n)�; where �f = 0: (106)The super
harge and its adjoint are 
al
ulated asQ = e��Q0e� and Qy = e�Qy0e�� (107)21



with Q0 and Qy0 from (97). After some algebra one �nds for the bosoni
 part of H =12fQ;Qyg the formulaHB = 12(�; �) � 12(�;4�) + 12 ��f��; �f���+� �g��1 ; �y�1��� �g��2 ; ��2� (108)where the harmoni
 fun
tions f and g are the real and imaginary parts of an analyti
fun
tion, su
h that �f��1 = �g��2 and �f��2 = � �g��1 : (109)For the fermioni
 part of the Hamiltonian one obtainsHF = ( ; h0F )� � ; 
0�(�) � ; �(�) = f;11(�)� i
�f;12(�): (110)The last term 
ontains the Yukawa 
oupling between s
alar and Dira
 �elds. Note thatthe last two terms in (108) 
an be rewritten asZ = ���g��; �A��+��g��; �3�S�� : (111)In the 
ontinuum limit the �rst term on the right be
omes a surfa
e term 
ommutingwith the super
harges and the se
ond term, whi
h is a latti
e artifa
t, must vanish. Thusit is natural to set HB +HF = P0 + Z (112)and interpret the �rst termP0 = 12(�; �) � 12(�;��) + ( ; h0F ) + 12 ��f��; �f���� � ; 
0�(�) � (113)as energy and the se
ond term as `would be' 
entral 
harge Z in (111). This agrees withour interpretation for solitoni
 
on�gurations saturating the BPS-bound. To see thatmore 
learly we 
onsider the energy of a purely bosoni
 stati
 solution,E = P0 = �12(�;��) + 12 ��f��; �f��� : (114)From the very 
onstru
tion it is evident, that there is a BPS-bound. One just adds thenon-negative operator HB in (108) to the non-negative operator one gets when 
hangingthe signs of f and g and �nds E � jZj: (115)For example, a 
ubi
 superpotential f + ig = ��3=3 leads to a �4-models withP0 = 12(�; �)� 12 (�;��) + ( ; h0F ) + 12�2 (�; �)2 � � ; 
0�(�) � : (116)22



It 
ontains a s
alar and pseudos
alar Yukawa intera
tion with�(�) = 2�(�1 + i
��2):The would-be 
entral 
harge is 
ubi
 in the s
alar �elds and readsZ = 2���1�2; �y�1�� ���21 � �22; ��2� : (117)Before turning to the dis
ussion of the ground state we note, that the 
onserved numberoperator N =Xn  y(n) (n) (118)leads to a de
omposition of the Hilbert spa
e (105) in orthogonal subspa
es labelled bythe fermion number,H = H0 �H1 � � � � � H2N�1 �H2N ; N ��Hp = p1: (119)The nilpotent super
harge Q de
reases N by one, Qy in
reases it by one and the super-Hamiltonian 
ommutes with N ,[N;Q℄ = �Q; [N;Qy℄ = Qy and [N;H℄ = 0: (120)We 
all the subspa
e Hp p-parti
le se
tor. The states in the zero-parti
le se
tor areannihilated by Q and those in the 2N -parti
le se
tor by Qy.5.2 Ground State of the Free ModelThe Hermitian latti
e Dira
-Hamiltonian hmF in (99) is real and 
an be diagonalized byan orthogonal matrix S,hmF = S�1DS; D = diag(d1; d2; : : : ; d2N ): (121)We rotate the �eld-variables with S,� = S�; � = S and �y = S y:The new �elds still obey the standard anti
ommutation relations, e.g.f�y�(n); ��(m)g = Æ��Ænm; (122)and the transformed super
harges readQ = i�� ��� �D�� and Qy = i�y� ��� +D�� (123)23



and show, that the new degrees of freedom de
ouple. Hen
e the ground state must havethe produ
t form 	0 = exp��12X jdaj�2a� j
i (124)and the super
harges a
t on this state as follows,Q	0 = 2i Xa: da>0 da�a�a	0 ; Qy	0 = �2i Xa: da<0 da�ya�a	0: (125)This way we arrive at the following 
onditions for this state to be invariant,da > 0 =) �aj
i = 0 and da < 0 =) �yaj
i = 0: (126)This leads to the unique normalizable ground state (124) withj
i = Yda<0 �yaj0i: (127)whi
h is annihilated by the super
harges and hen
e has vanishing energy. There are Npositive and N negative eigenvalues of hmF su
h that the invariant va
uum state lies inthe middle se
tor HN in the de
omposition (119) of the Hilbert spa
e. All fermioni
states with negative energies are �lled. This is just the Dira
-sea �lling pres
ription.Note that our result is the latti
e version of the 
ontinuum result for the ground state,	0 = exp��12 Z ��p�4+m2��� j
i:5.3 Ground States for Strong CouplingIn the strong-
oupling limit we may negle
t the spatial derivatives su
h that the super-
harges and the Hamiltonian be
omes the sum of N 
ommuting operators, ea
h de�nedon one latti
e site [21℄. The operators on a given site take the formQ = i (r+rf) ; H = �124+ 12(rf;rf)�  yf 00 : (128)Now we expli
itly 
onstru
t the ground state for the harmoni
 superpotentialf(�) = �p Re�p; � = �1 + i�2 = rei�; (129)whi
h gives rise to a supersymmetri
 anharmoni
 os
illator on the Hilbert spa
e h =L2(R2)�C4. The bosoni
 part of H readsHB = �124+ V with V = 12�2r2p�2; (130)
24



and its fermioni
 partHF = �(p�1) y��Re�p�2 Im�p�2Im�p�2 Re�p�2� (131)It is useful to note that H 
ommutes with the operatorJ = L+ S; S = �s y�2 ; s = 12(p� 2) (132)and that the ground state must reside in the two-dimensional se
tor with parti
le numberN =  y = 1, sin
e the restri
tion of HF to the zero- and two-parti
le se
tors vanishand HB > 0. The one-parti
le se
tor is spanned by the following two eigenstates of S,j"i = � y1 � i y2� j0i and j#i = � y1 + i y2� j0i (133)with eigenvalues 1 and �1, respe
tively. Here j0i denotes the Fo
k-va
uum whi
h isannihilated by the annihilation operators  �. Diagonalising J in this se
tor leads to theansatz  0j(�) = Rj+(r)ei(j�s)� j"i+Rj�(r)ei(j+s)� j#i; (134)where the J -eigenvalue j is integer for even p and half-integer for odd p. Inserting intoQ j = Qy j = 0 yields the following 
oupled system of �rst order di�erential equationsfor the radial fun
tionsR0j�(r)� s� jr Rj�(r) + �rp�1Rj�(r) = 0:The square integrable solutions are Bessel fun
tionsRj�(r) = 
 rp�1K 12� jp ��p rp� with j 2 f�s;�s+ 1; : : : ; s� 1; sg: (135)The number of supersymmetri
 ground states of the models with �2p�2 self-intera
tionis just p� 1. The (p� 1)N normalizable invariant eigenstates are	0;j1;:::;jN = NOn=1 0jn(�n) 2 h1 � � � � � hN : (136)For example, for the N = 2 model with �4 intera
tion there exist 2N normalizable zeromodes in the strong-
oupling limit. This number diverges in the thermodynami
 limit.On the other hand, there is exa
tly one normalisable zero mode when one swit
hes o�the self-intera
tion. This dis
repan
y between the number of supersymmetri
 groundstates in the weak and strong-
oupling regimes be
omes even more puzzling when onetakes into a

ount 
ertain rigorous theorems on the stability of su
h states under analyti
perturbations dis
ussed in the following se
tion. The zero modes in (136) with radialfun
tions (135) have been 
onstru
ted previously in [21, 33℄ and [35℄.25



6 From Strong to Weak Couplings6.1 Perturbation Theory and Zero ModesLet us re
all a well known result for perturbation theory of zero modes in supersymmetri
quantum me
hani
s [33℄. We 
onsider the N = 1 
ase and denote the single Hermitiansuper
harge by Q0,Q20 = H0; f�; Q0g = 0; �y = �; �2 = 1: (137)In addition, we de�ne the proje
tion operatorsP� = 12(1� �) (138)whi
h proje
t on the �1 eigenspa
es of �. These eigenspa
es are denoted by HB=F. Inthe following we assume that there are no zero modes in HF and at least one zero mode	0 in the bosoni
 se
tor HB. We perturb the operator Q0 by an operator �Q1 with realparameter �, Q(�) = Q0 + �Q1, where fQ1;�g = 0. We want to solve the eigenvalueequation Q(�)	(�) = �(�)	(�);with �(0) = 0 and 	(0) = 	0. We 
onsider the following formal power series in �,	(�) = 	0 + 1Xk=1 �k	k; �(�) = 1Xk=1 �k�k:Proposition: Under the assumptions above one has �(�) = 0 and �	(�) = 	(�) in thesense of formal power series.Proof by indu
tion: To order �0 the proposition holds. Let us assume it holds up toorder �j�1. To order �j we obtain the equationQ0	j +Q1	j�1 = �j	0: (139)Taking the s
alar produ
t with 	0 yields�j = (	0; Q1	j�1):Sin
e � squares to 1 and anti
ommutes with the perturbation we �nd�j = (�2	0; Q1	j�1) = �(�	0; Q1�	j�1) = �(	0; Q1	j�1) = ��j ;whi
h proves that �j = 0. Furthermore, withQ0�	j = ��Q0	j = �Q1	j�1 = �Q1	j�1 = Q0	j ;26



we 
on
lude Q0P�	j = 0;where we used the proje
tion operator P� introdu
ed in (138). As P�	j is a zero modeof Q0 it follows by assumption that it resides in HB. But as P� proje
ts onto HF,we 
on
lude P�	j = 0 or 	j 2 HB. This then proves our statement. Note that thestatement has been proved in the sense of formal power series only. In 
ase �(�) is notanalyti
 at � = 0 the result above maybe misleading.6.2 The N = 1 CaseIn what follows, we 
ompare the strong-
oupling results with the usual perturbationtheory around minima of the potential.In the 
ase deg(W ) = p even, supersymmetry is never broken, neither in the strong-
oupling limit nor in perturbation theory. For even p there is at least one minimum ofthe potential V = 12(W 0)2 with V = 0. The quadrati
 approximation of the potential atthe 
riti
al points yields for ea
h minimum one normalizable zero mode similar to theground state of the free model. In 
ontrast to the strong-
oupling limit there may bemore than one perturbative zero mode, but they always 
ome in an odd number. Thedi�eren
e of bosoni
 and fermioni
 zero modes is �1 as in the strong-
oupling limit.In the 
ase deg(W ) = p odd, the di�eren
e between the strong-
oupling limit and per-turbation theory is more severe. Supersymmetry is broken in the strong-
oupling limitbut it may be unbroken in perturbation theory. Let us 
onsider an expli
it example,W (�) = g22 �3 + g0�: (140)Perturbation theory for g0 < 0 predi
ts one bosoni
 and one fermioni
 zero mode (un-broken supersymmetry), and broken supersymmetry for g0 > 0. The strong-
ouplinglimit states that supersymmetry is broken for all g0.In Appendix B.1 we provide the rigorous proof that �A1 with A1 given in (69) is ananalyti
 perturbation of A0 in (69). This implies that all eigenvalues are analyti
 fun
-tions of the parameter �. Assume now that in a �nite range of the parameter � thereis a ground state with energy zero. As an analyti
 fun
tion whi
h vanishes in some�nite range is identi
ally zero, the number of zero modes 
hanges at most at isolatedpoints of the parameter spa
e of �. Furthermore, in the strong-
oupling limit, we haveeither bosoni
 or fermioni
 zero modes. In subse
tion 6.1 we have proved that under thisassumption a zero mode always remains a zero mode. We 
on
lude that, generi
ally,the number of zero modes is given by the number of zero modes in the strong-
ouplinglimit. Generi
ally, sin
e for 
ertain dis
rete values of � the number of zero modes 
ouldbe enhan
ed. Moreover, as the index also depends analyti
ally on the parameter �, weare able to 
al
ulate this index in the strong-
oupling limit.27



In the 
ontinuum and in�nite-volume limit these arguments may break down, as theestimates ne
essary for proving analyti
ity (see Appendix B.1) may not be valid anymore.In the unbroken 
ase we 
an de�nitely 
on
lude that the theory is still unbroken in the
ontinuum and in�nite-volume limit. Suppose we know that for any �nite latti
e thereis at least one ground state with zero energy. As the limit of zero is again zero thismode survives in the limit. In the 
ase of broken supersymmetry a non-zero energyeigenstate may be
ome a zero mode in the 
ontinuum and in�nite-volume limit, andsupersymmetry may get restored in this limit although it is broken for all �nite latti
es.Indeed, for negative g0 in our example above, the s
alar �eld has a non-vanishing va
uumexpe
tation value and therefore the fermioni
 �eld  a
quires a non-zero mass. As thereis no massless Goldstone fermion, supersymmetry has to be unbroken in this 
ase [3℄.Let us summarize. On a �nite latti
e, the strong-
oupling limit gives the 
orre
t numberof zero modes of the full problem. There is only one zero mode in the 
ase wheredeg(W ) = p is even, and otherwise there is no zero mode. Variations of the parametersin the superpotential of power less than p do neither 
hange the number of zero modesnor the index. For example, in the model with superpotential given in (140), it isimpossible to have two phases of broken and unbroken supersymmetry (depending onthe value of the parameter g0) on a �nite latti
e. The numeri
al simulations in [25℄ maybe interpreted as hinting towards su
h a phase transition in the 
ontinuum theory.6.3 The N = 2 CaseSimilar to the 
ase N = 1, we prove in Appendix B.2 that the index in the strong-
oupling limit is the same as for the full problem. This implies that we have at least(p � 1)N zero modes for the theory on �nite latti
es. For the 
ontinuum theory in a�nite volume, it was shown using methods of 
onstru
tive �eld theory that the N = 2Wess-Zumino model is ultraviolet �nite and that the index is given by p� 1 [24℄. Thisseems to be in 
ontradi
tion with our result, as the (p � 1)N zero modes exist for all�nite latti
es and, by the same arguments as for the N = 1 model, remain zero modesin the 
ontinuum limit.We suggest the following solution for this problem. Remember that our latti
e Hamilto-nian H 
ontains not only the dis
retized version of the 
ontinuum Hamiltonian P0 butalso the 
entral 
harge Z, i.e. H = P0 + Z: (141)Furthermore, both P0 and Z 
ontain the latti
e derivative whi
h 
ouples �elds at di�erentlatti
e sites. If we 
hoose in the strong-
oupling limit a zero mode that varies from latti
epoint to latti
e point, both P0 and Z may be
ome very large but will, nevertheless, addup to zero. In the 
ontinuum limit the energy P0 may be in�nite in whi
h 
ase thisrapidly varying zero mode is only a latti
e artifa
t. On the other hand, if we 
hoosethe same zero mode for ea
h latti
e site, then P0 as well as Z should be zero in the28




ontinuum limit. Thus, there are exa
tly p � 1 su
h modes. We are planning to testthis proposal in a perturbative 
al
ulation of P0 and Z. The results will be presentedelsewhere.7 Con
lusionsIn this paper we have related Dira
 operators de�ning supersymmetri
 quantum me-
hani
al systems in high-dimensional spa
es [32℄ to Wess-Zumino models on a spatiallatti
e in 1 + 1 dimensions. After a very parti
ular dimensional redu
tion the squareof i =D 
an be identi�ed with the super-Hamiltonians of latti
ized Wess-Zumino models.This way we dis
overed a natural 
onne
tion between dis
retized supersymmetri
 �eldtheories and supersymmetri
 quantum me
hani
s.We have re
alled the 
ontinuum formulation of Wess-Zumino models and dis
ussed theirlatti
e versions. For the 
ase of simple (N = 1) and extended (N = 2) supersymmetry,we have derived the 
orresponding Dira
 operators. Furthermore, all ground states forthe free massive models and the intera
ting theories in the limit of strong 
oupling havebeen 
onstru
ted.Di�erent realizations of latti
e derivatives have been dis
ussed and their properties { inparti
ular from the point of view of supersymmetri
 quantum me
hani
s { have beenanalyzed. Our results on the number of zero modes do not depend on the parti
ularlatti
e derivative, as long as some mild assumptions are ful�lled.Employing powerful theorems from fun
tional analysis we were able to relate the strongand weak 
oupling regions. For N = 1 it turns out that generi
ally the number of zeromodes is determined by the strong-
oupling limit. There is a single (no) zero mode, ifthe degree of the superpotential is even (odd). For N = 2 we �nd at least (p� 1)N zeromodes, where p is the degree of the superpotential and N the number of latti
e sites.This number is far o� the 
orre
t 
ontinuum result, whi
h predi
ts p� 1 zero modes, aserious problem whi
h has been observed earlier in [21℄.We have explained this paradox as follows: the latti
e Hamiltonian H does not only 
on-tain the 
ontinuum Hamiltonian P0 but also additional terms whi
h (for antisymmetri
latti
e derivatives) are to be interpreted as a latti
e version of the 
entral 
harge Z. Onthe latti
e, P0 and Z 
an
el pairwise for the huge number of zero modes under dis
us-sion, even though neither P0 nor Z is zero in the 
ontinuum limit, ex
ept for exa
tlyp� 1 of the modes.Our Dira
 operators 
learly deserve further studies. For instan
e, the appli
ation of(standard) index theorems to the 
ase at hand should reveal new information about the�eld theories. We also plan to extend our results to Dira
 operators on 
urved manifolds,whi
h 
an be reinterpreted as nonlinear �-models from the �eld theory point of view.
29
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hen Volkes.A The SLAC OperatorIn this appendix we introdu
e and dis
uss the nonlo
al SLAC derivative. It 
an be usedto de�ne 
hiral fermions without fermion-doubling.First we 
onsider real valued s
alar �elds on the spatial latti
e. They maybe interpretedas wave fun
tions of a quantum me
hani
al system with Hilbert spa
e RN , equippedwith the s
alar produ
t (�; �) = NXn=1 ��(n)�(n):Although the �elds are real it is useful to embed them in the spa
e of 
omplex valuedlatti
e �elds. For a normalised fun
tion we interpret j�(n)j2 as probability for �nding the'parti
le' at the latti
e site n. Expe
tation values of fun
tions of the 'position' operatorn̂ are hf(n̂)i� =X ��(n)f(n)�(n): (142)We want to derive a similar formula for expe
tation values of fun
tions of the momentumoperator. For that aim we Fourier transform the wave fun
tion as follows~�(pk) = 1pN N 0Xn=�N 0 e�ipk n�(n); where N 0 = 12 (N�1); pk = 2�N k: (143)The inverse Fourier transformation reads�(n) = 1pN N 0Xk=�N 0 eipk n ~�(pk); n = �N 0; : : : ; N 0: (144)We have 
hosen the symmetri
 summation to end up with a real di�eren
e operator. Forperiodi
 �elds nmust be integer and this is the 
ase for spa
e latti
es with an odd numberof sites. For a normalized � the Fourier transform ~� is normalized as well and we mayinterpret j~�(pk)j2 as probability for �nding the 'momentum' pk. With this interpretationwe obtain hf(p̂)i� = N 0Xk=�N 0 f(pk) j~�(pk)j2 =Xnn0 ��nf(p̂)nn0�n0 (145)30



with matrix elements f(p̂)nn0 = 1N N 0Xk=�N 0 eipk(n�n0)f(pk):With the help of the generating fun
tionZ(x) = N 0Xk=�N 0 eipkx = sin(�x)sin(�x=N) ; (146)we 
an 
al
ulate all matrix elements of f(p̂). Now we are ready to de�ne the real,nonlo
al and antisymmetri
 latti
e operator �SLAC = ip̂. The matrix elements aref(�SLAC)nn0 = 1N f � ddx�Z(x)���x=n�n0 : (147)As expe
ted �SLAC is a Toeplitz matrix with elements(�SLAC)nn0 = (�)n�n0 �=Nsin ��(n� n0)=N� ; for n 6= n0; (148)and the elements on the diagonal vanish, (�SLAC)nn = 0.B Analyti
ity of PerturbationIn the following we 
onsider operators on the Hilbert spa
eH = L2(Rd;ddx)
CD (149)for D 2 N with normkfk2 = DXi=1 kfik2L2 ; f = (f1; : : : ; fD) 2 H: (150)Here, k � kL2 denotes the familiar L2-norm.B.1 The N = 1 CaseFor the Wess-Zumino model on the latti
e with N = 1 supersymmetry we take D = 2N ,d = N (N = number of latti
e points) and 
onsider the (unperturbed) operator (69)A0 = NXn=1 ��i 1(n)�n +  2(n)W 0(xn)� : (151)31



We re
all that W is a polynomial of degree deg(W ) = p > 1 and  �(n) are HermitianD �D�matri
es obeying the Cli�ord algebraf �(n);  �(n0)g = 2Æ��Æ(n; n0); �; � = 1; 2; n; n0 = 1; 2; : : : ; N: (152)The operator A0 with domain of de�nitionD(A0) = C1
 (RN )
CDis essentially self-adjoint, where we write C1
 (RN ) for the C1-fun
tions with 
ompa
tsupport in RN . A simple 
al
ulation using (152) shows(A0)2 =Xn ���n�n +W 0(xn)W 0(xn)� i 1(n) 2(n)W 00(xn)� :Closure of the Operator A0To determine the 
losure �A0 of the operator A0 we have to �nd the 
losure of its domainD(A0) with respe
t to the normkfk2A0;a = akfk2 + kA0fk2; a > 0: (153)Note that these norms are equivalent for all a > 0. Using the abbreviation�p = 1 + jxjp�1; (154)we 
an prove the followingLemma: There exist 
onstants a; b1; b2 > 0 su
h thatkf 0k2 + b1k�pfk2 � kfk2A0;a � kf 0k2 + b2k�pfk2 (155)holds for all f 2 D(A0).In the Lemma we used the short hand notation kf 0k2 =Pm k�mfk2.Proof: First, we show that only the degree deg(W ) = p is important for terms likePn kW 0(xn)fk2 with f 2 D(A0). Indeed, we �ndXn kW 0(xn)fk2 � Na1k�pfk2; a1 = 



W 0(xn)�p 



21 ; (156)where k � k1 denotes the supremum norm. The fa
tor N arises from the sum over n, asa1 does not depend on n. Similar we obtaink�pfk2 = 




 �pp1 +PnW 02(xn)q1 +XW 02(xn) f




2� a2 �kfk2 +X kW 0(xn)fk2� ; a2 = 




 �pp1 +PW 02(xn)




21 : (157)32



Now, it is easy to prove the se
ond inequality in (155),akfk2 + kA0fk2 (156)� kf 0k2 + akfk2 +Na1k�pfk2 +Xn kfk kW 00(xn)fk� kf 0k2 + (a+Na1 +Na3)| {z }b2 k�pfk2; (158)with a3 = 


W 00(xn)�p 


1. We used that the matrix-norm of  �(n) is one, sin
e its eigen-values are �1. In the last inequality we made use of kfk � k �pfk whi
h holds for allf 2 D(A0).The other inequality in (155) is more diÆ
ult to prove. With (157) we getakfk2 + kA0fk2 � kf 0k2 + 1a2 k�pfk2 + (a� 1)kfk2 �X kfk kW 00(xn)fk: (159)In order to obtain a positive 
onstant b1 in our lemma we must be rather 
areful withour estimates for the last term in (159). We introdu
e a ball of radius R and split f intotwo parts, f = f<+f>, where f< has its support inside the ball f> outside the ball. Weobtain Xn kfk kW 00(xn)fk =X�kf<k kW 00(xn)f<k+ kf>k kW 00(xn)f>k� ; (160)where the terms 
ontaining both f< and f> vanishes. Let us now 
onsider the two termsseparately. First, we obtainX kf>k kW 00(xn)f>k � Na4(R)k�pfk2; a4(R) = 



W 00(xn)�p 



1;> ; (161)where we have introdu
ed the supremum norm k � k1;> = supjxj>Rfj � jg. For large R wehave a4(R) � 1=R su
h that a4 gets arbitrarily small for big balls. Se
ond, we obtainX kf<k kW 00(xn)f<k � Na5(R)kfk2; a5(R) = kW 00(xn)k1;<; (162)with k � k1;< = supjxj<Rfj � jg. For R!1 we have a5(R)!1. Altogether, we �ndakfk2 + kA0fk2 � kf 0k2 + (a� 1�Na5(R)) kfk2 + (1=a2 �Na4(R))| {z }b1 k�pfk2: (163)In a �rst step we 
hoose R large enough su
h that b1 is positive. In a se
ond step we
hoose a large su
h that the 
onstant in front of kfk2 is positive as well. This �nishesthe proof of our lemma.Sin
e all norms kfk2b � kf 0k2 + b k�pfk2 (164)33



are equivalent for b > 0, the Lemma implies that these norms are equivalent to thenorms kfk2A0;a in (153). Therefore, the 
losure of D(A0) with respe
t to the norm (153)
oin
ides with the 
losure with respe
t to k � kb. This 
losure is given byD( �A0) = �f 2W 12 (RN )
CD : k�pfk <1	 �W 12 (RN ; �2p)
CD: (165)Here W 12 (RN ) is the Sobolev spa
e with �rst weak-derivative in L2.PerturbationLet us perturb the operator A0 by the operator A1 in (69),A1 = � NXm;n=1xm (�)mn  2(n): (166)The operator A1 is self-adjoint with D(A1) = L2(RN ; ~�)
CD � D( �A0), with ~�-weightedLebesgue measure, where ~�(x) = (1 + jxj)2. From the following Lemma we will deriveuseful information about the nature of the perturbation.Lemma: For all � 2 R and arbitrarily small � > 0 there exists a C� > 0 su
h thatk�A1fk � �kA0fk+ C�kfk; 8f 2 D( �A0): (167)Proof: We prove the inequality for all f 2 D(A0). Then it holds for all elements in the
losure as well. As before we split f = f< + f>. First, we notek�A1f<k � j�jN2a(R) kfk; a(R) = kxnk1;< �maxfj�mnj : m;n = 1; : : : ; Ng: (168)For R!1 the 
onstant a(R) tends to in�nity. Next, we havek�A1f>k (155)� j�jN2b(R) (
 kfk+ kA0fk) ;b(R) = 



 xn�p(x)



1;> �maxfj�mnj : m;n = 1; : : : ; Ng (169)for some positive 
onstant 
. For big R the 
onstant b(R) tends to zero. We 
hoose theball big enough su
h that j�jN2b(R) = � and set C� = �
 + j�jN2a(R). Note that thelatter 
onstant may be
ome huge.Self-adjointnessWe did prove that �A0 is a self-adjoint operator. Clearly �A1 is symmetri
 on D( �A0).Furthermore, (167) shows that �A1 is �A0-bounded with relative bound less than one.The famous Kato-Relli
h Theorem, see Theorem X.12 in [36℄, states that under these
onditions the operator Q1(�) = A0 + �A1 (170)is self-adjoint with domain D( �A0). We 
on
lude that Q1(�) is a family of self-adjointoperators with 
ommon domain of de�nition D( �A0).34



Analyti
ity of EigenvaluesIn the following we prove that Q1(�) is an analyti
 family in the sense of Kato for allreal �. We have seen that Q1(�) is self-adjoint for real �. For a self-adjoint and analyti
family it is known that the eigenvalues depend analyti
ally on the parameter �, see forexample Theorem XII.13 in [36℄.For an arbitrary real �0 the perturbation �0A1 is �A0-bounded with arbitrary smallrelative bound (167). Then, it is easy to see that A1 is Q1(�0)-bounded. It followsthat for small � the operators Q1(�0 + �) form an analyti
 family of type (A) [36℄ andtherefore also an analyti
 family in the sense of Kato. But as �0 2 R is arbitrary, wehaven proved that Q1(�) is analyti
 for all real �.A
tually, the 
ited Theorem XII.13 [36℄ above is only valid for isolated eigenvalues with�nite degenera
y or equivalently for eigenvalue in the dis
rete spe
trum. In the followingwe prove that the spe
trum of Q1(�) is dis
rete by proving this statement for its square,H(�) = Q1(�)2. H(�) is self-adjoint with domain of de�nition given byD (H(�)) � �f 2 D( �A0) : Q1(�)f 2 D( �A0)	= W 22 (RN ; �0)
CD; �0(x) = �1 + jxj2p�2�2 (171)and it is semibounded H(�) � 0: (172)Su
h operators possess entirely dis
rete spe
tra if and only if its resolvent is a 
ompa
toperator, see Theorem XIII.64 in [36℄. In the following we prove that H(�) has 
ompa
tresolvent for all � 2 R.We must prove that the image of a bounded subset of the Hilbert spa
e, sayff 2 H : kfk < 1g; (173)is mapped to a pre
ompa
t set under the map (H � z)�1 for some z in the resolvent ofH. The image is given by fg 2 D(H) : k(H � z)gk < 1g: (174)As earlier we split g into g> and g< and obtain for large enough radii R the inequalitykgk � kg<k + �. For a 
ompa
t ball B = fx 2 RN : jxj � Rg we have Sobolev'sembedding theorem and there is an �-net gj 2W 22 (K; �0), j = 1; : : : ; N� with kg<�gjk < �for one j 2 f1; : : : ; N�g. We extend the gj by zero to the region outside the ball andobtain kg � gjk � 2� (175)for any g in the image of the unit ball under (H � z)�1 and a spe
i�
 j 2 f1; : : : ; N�g.We 
on
lude that there is a 2�-net of the image and therefore the image is pre
ompa
t.This 
ompletes our proof. 35



Stability of the IndexWe have shown that the eigenvalues are analyti
 fun
tions of the parameter � on thewhole real axis. It follows at on
es that the index { the di�eren
e of bosoni
 zero modesand fermioni
 zero modes { is also an analyti
 fun
tion and, as the index only takes oninteger values, is 
onstant.An alternative and elegant proof of this statement 
an be given with the help of thetheorem that a relatively 
ompa
t perturbation does not 
hange the index [37℄. Indeed,inequality (167) implies that our perturbation is relatively 
ompa
t1.B.2 The N = 2 CaseAfter the detailed investigation of the N = 1 
ase we shorten our dis
ussion for N = 2.In what follows we 
onsider the real part of the 
omplex super
harge in (107)B0 = NXn=1 �i 11(n)�xn � i 21(n)�yn + 2Xa=1 a2 (n)W;a(xn; yn)! (176)in the strong-
oupling limit. For N = 2 supersymmetry the  a� are D-dimensionalHermitian matri
es obeying the Cli�ord algebra, with D = 22N . The fun
tion W (x; y)is harmoni
 and and thus is the real part of an analyti
 fun
tion F (x+iy). As in 
hapter2 we use the notation W;1 (x; y) = �xW (x; y) and W;2 (x; y) = �yW (x; y). As domain ofde�nition we take D(A0) = C1
 (R2N )
CD; D = 22N ; (177)su
h that B0 is essentially self-adjoint. We introdu
e the potentialK(x; y) =Xa W;2a (x; y): (178)For large radii r only the leading power of W is relevant. Therefore, we may 
onsiderthe parti
ular 
ase W (x; y) = �pRe zp (179)for whi
h we �nd K(x; y) = �rp�1 !1 in all dire
tions for r!1.The perturbation 
ontains the latti
e derivative,B1 = 2NXm;n=1�xm(�)mn 22(n) + ym(�y)mn 12(n)� :Repla
ing in the estimates for the 
ase with N = 1 supersymmetry the potentialW 0(xn)by K(xn; yn) leads to analogous results in the N = 2 
ase. Again all eigenvalues areanalyti
 fun
tions of the parameter � and in parti
ular the index does not depend onthis parameter.1We thank H. Triebel for the proof of this statement.36
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