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Abstract
We study supersymmetric quantum mechanics with the fumaki®G formulated in terms of an exact
and manifestly off-shell supersymmetric flow equation fo effective action. We solve the flow equation
nonperturbatively in a systematic super-covariant daéveaexpansion and concentrate on systems with
unbroken supersymmetry. Already at next-to-leading orther energy of the first excited state for con-
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nonperturbative regimes.

* E-mail: franziska.synatschke@uni-jena.de, g.bergner.@ti-jena.de, gies@tpi.uni-jena.de, wipf@tpi.unigede

1


http://arXiv.org/abs/0809.4396v1

I. INTRODUCTION

Supersymmetry is a key ingredient in the construction of eledf fundamental physics, since
it provides for a salient possibility to combine internahsyetries with the Poincare group. Even
though distinguishing features of supersymmetric systesnsbe understood within perturbation
theory, many important properties such as collective cosaéon phenomena often related to
symmetry breaking are inherently nonperturbative. If ssyp@metry is realized in nature, power-
ful and flexible nonperturbative tools will be needed to stigate the underlying mechanisms of
these strong-coupling phenomena.

As supersymmetry does not only mix bosons and fermions kotial/olves spacetime trans-
lations, lattice methods built on spacetime discretizatiéten go along with a partial loss of
supersymmetry. The construction of appropriate latticenfdations in addition to the challenge
of dealing with dynamical fermions is an ongoing effort [1,214]. These studies need to be
complemented by nonperturbative continuum methods @elfgwith manifest supersymmetry.

In recent years, the functional renormalization group (R&9 become such a nonperturbative
tool as has been demonstrated by many successful apptisatinging from critical phenomena,
via fermionic systems and gauge theories even to quantunitygrsee [5, 6, [7,.8,/9] for reviews.
However, the number of applications to supersymmetricesystis rather small. In this work, we
formulate and test the functional RG for a simple supersytrio®ystem, namely, supersymmetric
quantum mechanics.

In fact, ordinary quantum mechanics has often been usedldstrating and testing the non-
perturbative capabilities of the functional RG, since tlt& ffow equations are easily obtained and
approximate solutions can directly be compared to knowmtesesults or high-precision numer-
ics. In particular, the study of ground- and excited-statergies with RG techniques has received
a great deal of interest in the last few years [6, 10, 11), 1R, \WBereas single-well potentials can
be treated comparatively easily even at extreme coupliogblg-well potentials have turned out
to be more challenging, since the analytic RG flow equati@ve lho build up the non-analyticities
from tunneling; the latter are usually described in termmstfantons, being of topological nature.

In [13], Horikoshi et al. study the quantum double well usargexpansion in powers of the
field, [10] and [12, 14] go beyond this approximation and sedlive RG flow in the so-called
local-potential approximation for the effective potehice., leading-order derivative expansion).

Within the propertime RG, Zappala [11] also includes wawgction renormalization (i.e., next-to-



leading-order derivative expansion), and finds good agee¢fior the mass gap. Particularly, this
study convincingly demonstrates that the functional RG®muattically includes also fluctuations
of topological degrees of freedom without explicitly indacing them by hand.

Supersymmetric quantum mechanics was introduced by Witejnas a toy model for spon-
taneous symmetry breaking. The first to use renormalizgronp methods for supersymmetric
guantum mechanics were Horikoshi et al. [13]. They inveséd a broken supersymmetric model
with nonperturbative renormalization group methods atcltated the nonvanishing ground-state
energy and that of the first excited state in a polynomial egpan of the effective potential. They
found good agreement with the exact results for all casesemo@neling is not important. This
latter region has been coveredin!/[14] within the propertide where again the observation was
made that a wave function renormalization improves thetefr the energy spectrum, i.e., helps
including tunneling.

Both approaches use regulators that break supersymmeich wiakes it difficult to distin-
guish between explicit and spontaneous or dynamical symengtry breaking. In this paper, we
present an approach to flow equations for supersymmetristgoamechanics which maintains
supersymmetry manifestly on the level of the RG flow equatwth the aid of an invariant regu-
lator. In contrast ta [13] and [14], we concentrate on a sysigth unbroken supersymmetry.

Our approach is similar to the works by Bonini and Vian [16], @Fere a supersymmetric regu-
lator for the4d Wess-Zumino model is presented. The functional RG has &ep formulated for
supersymmetric Yang-Mills theory in [18] employing the stfeld formalism; for applications,
see alsol[19, 20]. Very recently, Rosten has investigateergé theories of a scalar superfield
including the Wess-Zumino model with the aid of a Polchirskie of RG equation with elegant
applications in the context of non-renormalization thewme21]. A construction of a Wilsonian
effective action for the Wess-Zumino model by perturbayivierating the functional RG has been
performed inl[22].

The paper is organized as follows: in Sect. I, we briefly Hettee basics of Euclidean su-
persymmetric quantum mechanics, also introducing ourtiootaln Sect[1l] we derive the flow
equation for the superpotential and introduce a generabadé supersymmetric regulator func-
tions. In Sect IV we discuss the flow equation for the suptenttal for different regulators. In
Sect[V we introduce wave function renormalization and iot$€llwe compare our results with

exactly known results.



II. EUCLIDEAN SUPERSYMMETRIC QUANTUM MECHANICS

For our study of supersymmetric quantum mechanical RG flovesemploy the superfield

formalism to maintain supersymmetry manifestly. The Eiledin superfield has the expansion
D=+ 0+ 0+ 00F (1)

with anticommuting parameteésd. Supersymmetric interaction terms are obtaineasrm of
W(®) = W (o) + (0¢ + ¢0)W'(¢) + 00 (FW'(¢) — W (9)40)), 2)

where the superpotenti&d’ (®) is a polynomial in®, and W (¢) denotes the same polynomial
evaluated at the scalar fie}d The nilpotent superchargés= i9; + 00, andQ = i, + 00, anti-
commute into the generator of (Euclidean) time-transtetj@(Q + QQ = 2i0,. Supersymmetry

variations are generated by= Q) — €Q, such that the variation of the superfield takes the form
5B = e(inh + iOF + 00+ 000) — (i) + i0F — 0+ 060))e, 3)

from which we read off the transformation rules for the comgrat fields,

5 = e —ipe, 0= (¢p—iF)e, 0P =e(d+iF), OF = —&p — e (4)

The super-covariant derivativés = id; — 0. andD = 0, — 60- fulfill similar anticommutation

relations as the supercharges,
{D,D}={D,D} =0 and {D,D} = —2id,. (5)

They commute witld, and anticommute with the supercharges. The integrationtbeeanticom-

muting variables extracts the D-term of a superfield

/ dOdOD = @|g. (6)
From this, we obtain the invariant action in the superfieldrfalism:
Slé, F, b, ] = / drdodd E(I)K(I) LW ()

= [ar |5 = i+ irwo) - iy + 372 ™



with kinetic operatoiX’ = (DD — DD). Eliminating the auxiliary fieldF’, we obtain then-shell

action

— 1. LT 1 . ! "

Sonls, 1), 9] = / dr [;b? =i+ 5 (W'(9))" =W (@)9v| - ®)
It contains the bosonic potenti&l¢) = %(W’(gb))Q and a Yukawa term. In this paper, we consider
models with unbroken supersymmetry. They have vanishiogrgt state energ¥, = 0 and are
realized for superpotentials whose highest poweren On the microscopic scale, we will focus

on quartic superpotentials
m a
W(9) = Bé+ 5* + 56" + 20", (©)

as the defining starting point of the interactions of our quanmechanical system before fluctu-

ations are taken into account.

1. FLOW EQUATION IN THE OFF-SHELL FORMULATION
A. Flow equation for the effective action

The functional RG can be formulated in terms of a flow equdtiotheeffective average action
', [23]. This is a scale-dependent action functional whickerpblates between the microscopic
or classical actiort and the full quantum effective actidn being the generating functional for
1PI Green’s functions. The interpolation scaldenotes an infrareflR regulator scale which sup-
presses all fluctuations with momenta smaller thaRork — A with A denoting the microscopic
scale, no fluctuations are included such that, — S. Fork — 0, all fluctuations are taken into
account and we arrive &t,_., — I, i.e., the full solution of the quantum theory. The effeetiv

average action can be determined from the Wetterich equfii]
1 -1
0Ty = 5 STr { [r,(f) + Rk] (9kRk} (10)

which defines an RG flow trajectory in the space of action fonets with the classical action
serving as initial condition. Her&,® denotes the second functional derivative with respecteo th

dynamical fields,

N «—

@) _ 0 0
(Fk )ab - 6\I/ark6\1fb’ (11)




where the indices:, b in the general case summarize field components, internalLanehtz
indices, as well as spacetime or momentum coordinates. drptisent case, we have =

(¢, F,4,7). (Note thatV is not a superfield, but merely a collection of fields.) Theestrace

in eq. [10) as well as the pattern of functional differemiatin eq. (11) takes care of the minus
signs from Grassmann-valued variables. The regulatotiiumé, guarantees the IR suppression
of modes belowk, the shape of which is to some extent arbitrary; examplesb&ibiven below.
Different R, correspond to different RG trajectories manifesting thedRBeme dependence, but
the end point’,_, — I" remains invariant.

The flow equation[(10) has a one-loop structure, but is ant@qtion since it involves the
regularized exact propagat@y, = (1“,(5) + Ry)~L. It can be viewed as the differential counterpart
of a functional integral, or path integral in quantum mecbsinlts perturbative expansion yields
full standard perturbation theory, but also nonpertuveasystematic expansion schemes can be
devised. In the present work, we use a derivative expanditimeceffective action in powers of
the covariant derivative in the off-shell formulation. $kExpansion is systematic in the sense that
all possible operators can uniquely be classified, and bmsistent, since dropping higher-order
terms leads to a closed set of equations. Most importantigiracation of such an expansion
preserves supersymmetry. In this work, the derivative egjoa of supersymmetric quantum me-
chanics will be worked out to next-to-leading-order. Fangilicity, let us here begin with the
leading order, corresponding to the local-potential apipnation for the superpotential; to this

order, the truncated effective action reads

Lwlo, F, . ) = /drd@dé) B@K@ + i - Wi(P)
1. 1 S T
= /dT {§¢2 — Wy + §F2 + iFWi(9) — iWg (o)vn| (12)
The prime always denotes the derivative with respect to dseihic fieldy. In the following we
will derive flow equations for the superpotentidl,(¢). The next order which includes a wave

function renormalization will be considered later on.

B. Supersymmetric regulators

For a supersymmetric initial condition and truncation,ftbes and the resulting effective action
is supersymmetric provided the regulator does not breakyhemetry. When deriving the flow

equation[(1ID) from the functional integral, the reguldi@ais introduced by means of an addi-

6



tional action contributiom\ S, such thatRk, = AS,&Q). The action principle therefore guarantees
a supersymmetric regularization, as long¥eS;, is invariant. Indeed, an off-shell supersymmetric

cutoff action can be written in terms of superfields and itgac@nt derivatives:
AS, = %/df BRy(D, D)d|z, . (13)
SinceD andD satisfy the anticommutation relatiors (5) the regulater loa written as
Ri(D, D) = ir (=02, k) + ro(=0*, k)K, K = %(DD — DD). (14)
The factor: in front of r; is chosen for convenience such that the correspondingfcattbn
matches the mass term. Similarlyis chosen such that its cutoff action matches the kinetro.ter

Both functions are functions 0f9?, i.e., of p?> in momentum space. For this general class of

regulators, the cutoff actions read

1 - 1 d
a8, = [ drdsad @ ir, )0 = 5 [ LU CpRGEE). @)
whereV” = (¢, F,1,1). The quadratic forniz,(p) is block-diagonal,
RB 0 ry i 0 +1i
Ro— | with blocks RE — [P "] RF = PR ae)
0 R} iry T2 pro — i1

and hence does not mix bosonic and fermionic degrees ofdreed

For manifestly supersymmetric cutoff actiodsS,, supersymmetry relates the regulators of
bosonic fields to that of the fermionic field. This puts furtikenstraints on the admitted cutoff
functions in a supersymmetric theory, as can be seen fronfiotloeving example. In view of
the regulator structure in edq._(16), one may be tempted to;set 0. A natural choice for the
regulator functions would then be such that the bosonic corapt~ p?r, induces a gap for IR
modes, e.gx.(p?/k?) ~ k?/p? such thap?r, ~ k2. Supersymmetry implies to the regulajos
for the fermions and to the regulatoy for the auxiliary field, both of which diverge in the IR for
this choice. This leads to artificial IR divergencies in tloavflequation when one includes higher-
order terms in the derivative expansion such as a wave famagthormalization. This problem can

be avoided by a softer IR behavior®afand including a suitable nonvanishing

C. Regularized on-shell action

The equation of motion for the auxillary field in the presenta cutoff is

F= —%W’, W (@) = Wi(®) + 119, h=1+rs, (17)



where, for convenience, we have introduced the functign) and the shifted superpotential

containing the cutoff functions, andr;. The regularized non-local on-shell action becomes

1. . . - 1 1
S = [ dr | 3006 = it - 6w @0+ V@) (18)
It is invariant under the followingleformed supersymmetmansformations
_ . 1 _ . 1
o =ico—ite, 60— (- 1W0))e si=c(i+ @) a9

These non-local transformations close on infinitesimaétiranslations,
(0e0e; — 0,0, ) (field) = 2i(€1ex — €x61)0, (field), (20)

provided the fermionic field satisfies the deformed Diracagigum 1) + W’ (¢)y = 0. With (I8)
we have constructed regularized(nonlocal) on-shell action which is invariant under defedn
supersymmetry transformations.

Nevertheless, we would like to stress that the off-sheiti@ation is crucial for the construction
of an invariant flow equation with one-loop structure. As timeshell supersymmetry transforma-
tions act nonlinearly on the fields, the resulting cutofi@etis not quadratic in the fields. Even
though an on-shell supersymmetric flow can straightforlyane constructed from ed._(1L8), the

resulting flow involves higher-loop terms and thus is mucherdifficult to deal with.

D. Flow equation

Returning to the off-shell formulation and using the blatkgonal structure of the regulator

(@86), the flow equation for the effective actibn[¢, F, 1, ¥)] written in component fields reads

0l = % STr { [F/E;Q) + Rk] - 8kRk} = % Tr (Ox Ry Gk) g — % Tr (O Rk G) e (21)
where we have introduced the regularized full Green'’s fionadr propagato€s;, = (F,(f) + Ry
Upon insertion of the truncation (1L2) into ef.21), we nemgrioject only onto the flow of the
superpotentiali/,.. It can be done by extracting the flow of either the term liriea” or the term
proportional toy, cf. eq. [12). This is a direct consequence of the manifgstrsymmetry of
this approach. As an illustration of this fact, we it both wayror the projection, it suffices to
consider constant fields, such that an expansion of thesav@reen’s function in terms of the

constant anticommuting spinors « yields

Gl =T% + R, = Gy, + oMy + Mot + ¢ Msi). (22)



The propagator itself reads

Gr=Gop — Go,k(ile + Moy)Go
+ Gox (MyGo .My — MGl .My — M3) Go ). (23)

To proceed we use the block notation,

N N
N=| PR (24)
NFB NFF
The nonvanishing blocks of the operators in the expangi@niave the form

hp? + iFW® 4w 0 hp + iW"
(Gy1)BB = P . (Gop)rr = P :
’ iw'" h ’ hp — W 0

w® 0 . 0 iW®
Mpp = —Mipr = 0 0 ) Mypr = _MQFB = 0 0 ’ (25)

—iw® 0
M3BB = .
0 0

To calculate the full propagateéf, we must inverGg’,lﬁ. The inverse oﬂa}ﬁ is block diagonal, and

the diagonal blocks read for constant fields

Coss = " T ) and (Goper = - (Giher (26)
0,k)BB = Ap W hp2+iFW(3) 0,k)FF = Ap 0k)FF
with determinantal factors
Ap = h%p* + W")? and Ag = Ap +ihFW'. (27)

Since the regulatoR;, is block-diagonal, seé (16), only the diagonal blocks ofdtessed propa-
gator enter the flow equation (21). These blocks can be eatmlivith the help of (23). Inserting
the regulator[(16) finally yields

Str(0y Ry Gy) = / dr (Ho + Hsyv)) (28)

with ¢ and F’-dependent coefficient functions

d_p 8kT2(h2 2 - W”z) + 2h0,r W
2 ABAF

Hy = —iFW® / (29)



and

[d o Opra(R2p? — W) + 200 r W
Hj :zfﬁ (AP — 2B W) = 2 NBA)F i
. dp (3)\2 8kT1(h2p2 - W”z) - thzakTQW”
+ 2 / 5 V) ApAZ : (30)

The flow equation[(21) relates the supertrace (28) to thetran of the effective actio (12). To
project onto the flow for the superpotential, we differetgtithe flow equation with respect 0
and afterwards sdf = 1) = 1) = 0. This yields

, 1 Ol WO [ dp Ora(R*p? — W'2) + 2h0r W

T30F ke 2 ) 2n AZ (1)

Integrating with respect to finally yields the flow equation for the superpotential

1 dp h@krl — 0kr2W”(qb)
aka<¢) = 5 % h2p2 + W/,(¢)2 ) (32)

where we recall the abbreviatiohs= 1 + r, andW" = r, + W,'. This flow equation for the
superpotential is one of the central results of our worknirtioe solution of{(3R), we can calculate
the effective potential, by eliminating the auxiliary field in the effective actiom passing, we
note that a quicker way to obtain the flow equation makes usiaeacfuperspace formulation, and
an efficient approach is summarized in appendix A.

The flow equation[(32) can alternatively be obtained by mtojg the flow of the effective

action [21) onto the coefficient @fi). This way one obtains
" ]‘
OWy = S Hl .y, (33)

The two projection formulas (31) and (33) indeed give riselémtical flows, since

82 H,
96OF

|F—0 = 1H3|p—o.

This identity illustrates the fact that our flow equation iamifestly supersymmetric.

IV. FLOW OF THE SUPERPOTENTIAL FOR DIFFERENT REGULATORS

The regulator in the flow equation not only suppresses IR ®oldet also guarantees UV
regularization due to the operator insertigz;, for R, decreasing with momentum. This renders

the flow local in momentum space, enhancing also the nunistetaility. In quantum mechanics,
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this property is less important, since quantum mechanid¢$Mfinite. This allows to choose
less UV-restrictive regulators for which the momentum gnéd in eq. [[32) can be carried out
analytically.

Indeed, as long as no diagrams with clogetbops contribute to the truncation, the regulator
ro can be dropped completely, asis sufficient to regularize all diagrams with at least gnar ¢

line, as is clear from the structure of the regulafot (16)ethe flow equatior (32) simplifies to

o 1 o dp &Jl
AWi(9) = 5 /_oo 2 2t (WG (34)

We verify in appendiXx B, that this regulator choice is suéfitti for guaranteeing that the micro-

scopic action is the correct starting point of the flow withowsedF' loops. Incidentally, setting

r1 = 0 and usingr, as a regulator alone in the flow equations would lead to adifitvergencies
for the wave function renormalization, as mentioned abadvext, we will discuss and compare
different regulators. In principle, the choice of the real can be optimized in order to minimize
truncation artifacts. However, due to the mixing betweemmaontum- and field-dependencies in
the denominator of eq[(B4) r,(p*)W}/ (¢), simple optimization strategies for bosonic systems
[24] do not apply and full functional optimization would bequired [38]. However, since we are

not aiming for high-precision calculations, our regulatbhoice will be guided by simplicity.

A. The Callan-Symanzik regulator

First, we consider a simple Callan-Symanzik regulat@p?, k) = k for which eq. [(3%) reduces
to the simple flow equation

Lt
4 R+ W (9)

We will discuss and compare various approaches to solvédtwsequation for different parame-

DWi(9) (35)

ters and, in particular, for non-convex classical supepiodls.

1. Polynomial expansion

For a polynomial approximation, one may expand the supenpat 1V, (¢) in eq. [35) in

powers of the bosonic field,

Wi(¢) = Z anT(k:) ¢"  with Wi a(¢) = Wa(¢) = ep + %Qﬁz + %¢3 + %¢4. (36)

n
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Then also the right hand side of the flow equation can be exghsinilarly. A comparison of
coefficients leads to a system of coupled ordinary difféateguations for the coefficients, (k).
Terminating the expansions on both sides at ofdeand setting:,,~y — 0 the system becomes
closed and can be solved numerically. At the cutof= A, the non-vanishing coefficients are
(a1, as,as,as) = (e,m, g,a). Note that forg> > 3ma the classical superpotential becomes non-
CONnvex.

Indeed, such an expansion abgut 0 is not adjusted to the flow, as the largest contribution
to the flow equation arises from field values which minimiZg. An expansion of eq[(36) about

the minimum ofiV//,

an

Mz

¢ do(k))", Wy (¢o) = 2a3 = 0, (37)

n=1
thus has a much better convergence behavior. At the cutefinitial conditions are provided by
the nonvanishing paramete(&,, a., a4, ¢o) Which can directly be linked witlie, m, g, a) given
above. Most importantlyiyy = @y + 3a4(¢ — ¢o)? is an even function o — ¢,. Thus, the flow
is also even, implying thaitl’}’ stays even at all scales and all coefficiemt$k) vanish for odd
n > 3. From the(¢ — ¢y)? coefficient of the flow, we findk + a,)?0,.¢o = as/as = 0 which states
that ¢, is scale-invariant The same is true fai,, sinced,a; = 0. The differential equations for

the nontrivial even coefficients of the truncated systenouprtler N = 10 read,

3 ay

8k&2 = —§ﬁ, P=k+as
_ 9a2 — 5ag P
Oty = ———— 3 ‘
. 327a3 — 30a4a6 P + TagP?
0ka6 = ——=
2 p4
. 8lay — 135azas P + (25a2 + 42a4a5) P? — a0 P?
0ka8 = 2 P5
6. 5243a5 — 540agas P + (189aga2 + 225a2a, ) P? — 70agag P? — 54ayoay P*
k10 = —3 . .
2 ps

The energyF; of the first excited state is determined by the curvature eféffiective potential
Vi = %(W,;)2 at its minimume,,,;,,; note thaton,, is generically not equal tg,. At the mini-
mum, W’ vanishes, such thal; = W"(¢nin). Tablell contains the gap enerdy for classical
superpotentials with parameters= m = a = 1 and different values of. For ¢> > 3 the
initial superpotential becomes non-convex. In additibe, tinimumag,;, moves away from the

expansion poind,, in principle signaling the break down of the polynomial epimation which

12



TABLE I: Energy E; of the first excited state calculated in different ordershefpolynomial approximation
with the Callan-Symanzik regulator fer= m = a = 1. For comparison, also the results obtained from the
solution to the partial differential equatidn {35) (PDE}ahe exact values from numerically diagonalizing

the Hamiltonian are given.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

#* | 2008 1.960 1.895 1.815 1.722 1.615 1.497 1.371 1.237 1.097
#F 2205 2140 2.064 1980 1.889 1.794 1.699 1.608 1.530 1.472
#° 2214 2146 2.070 1987 1.898 1.808 1.721 1.646 1.596  1.590
$% | 2201 2135 2060 1.977 1.888 1.798 1.711 1638 1595 1.612

PDE| 2.203  2.137 2.062 1.979 1.890 1.798 1.710 1.633 1584  1.590

exact 2.022 1.970 1.905 1.827 1.738 1.639 1534  1.426 1.323 1.235

can be expected to hold only neay. Nevertheless, the valués (¢) obtained for the polynomial
approximations of orders 6, 8 and10 converge to values obtained by solving the full partial dif-
ferential equatiori (35). We conclude that the polynomiglsion as an approximation to the full
solution to leading-order derivative expansion worksssatitorily for the energy?; at these cou-
pling values. However, as the 10% difference to the exact gap energies shows, the leadingr-ord
derivative expansion itself gives acceptable but not veegige results. This should be compared
to the analogous flow-equation approximation for non-ssygametric quantum mechanics which
yields an error below the percent level even at strong cogpli

One important difference is that we have a flow equation ferghperpotential and not for
the effective potential itself. As a consequence, the flomagiqn tends to make the superpotential
convex but not necessarily the effective potential. Figisaows the flow of the effective potential

V% in the polynomial approximatiof (87) with = 6 for a convex and non-convé¥,.

2. Partial differential equation

It is known from the study of hon-supersymmetric systemsttiapolynomial approximation
fails for nonconvex potentials [10, 114]. The latter requarsolution of the full partial differential
equation[(3b), which we did witNDSol ve of MATHEMATICA. In practice, we have choseénin

the range of € (—200, 200) and kept the potential at its classical values on the boyrafethis
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054V,
054V}

FIG. 1: The effective potentidl; in the polynomial approximatiorior W/,(¢) = 1 + ¢ + g¢? + ¢°. The

left panel shows the potential fgr= 0 and the right panel fog = 2.

range. The results for three different scales are depiat€igure 2. For convex superpotentials,

054V,
054V}

FIG. 2: The effective potentidl;, obtained from the solutiofil’;, to thepartial differential equation(35).

The left panel shows = 0 and the right pang} = 2.

the solutions obtained from the polynomial expansions aonh fsolving the partial differential
equation are almost identical. But in the non-convex case,pblynomial expansion fails to
reproduce the correct asymptotic form of the superpotemMian-convex classical superpotentials
pose a numerical challenge as they might lead to instaslriginating from the singularity at
W/ (¢) = —k. For such potentials — corresponding to a large coupjirghe flow equation also
does not reproduce the correct gap energigg); see the PDE row in tablé I. We shall see that

similar conclusions hold for other regulators in the flow &iipn.
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B. Exponential andf regulator

We want to compare the results obtained with the Callan-®yikaegulator — which serves

only as an IR regulator but does not suppress the UV — with poreential and & regulator,

n (02 k) = k- e/ exponential regulator
O k) =k — p2- 0(k* — p*) 6 regulator. (38)

In contrast to the infrared Callan-Symanzik regulator usg85), these regularize the IR and UV.

The corresponding flow equations for the superpotentia rea

1 dp (k? + 2;492)6_1”2/’1“2

W)= — [ —
AW ) =515 | o p?+ (W) (9) + kep*/k*)2
1 k _ k2 — W)
@)y — k
aka, (¢) = Em <7T (]_ - SlgnW,:) + 2 arctan TM) . (39)

Note, that for the regulator the integral (34) can be calculated analyticdlhe numerical results
in Table[Il have been obtained from the solutions to thestagbalifferential equations. For the
exponential regulator we have takenc (—20,20) and the integration over from —5k to 5k.

For thed regulator, we have usetlc (—50,50). The results for the three different regulators are

TABLE II: Energy of the first excited state for the classicapsrpotential[(36) witi{e, m,a) = (1,1,1)
and varyingg calculated from the solution to the partial differentiabiation [34) with Callan-Symanzik,

exponential and regulators.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CS 2,203  2.137 2.062 1979 1890 1798 1.710 1.633 1584  1.590
exp 2,195  2.130 2.055 1972 1884 1791 1701 1622 1569 1.684
0 2.197  2.132 2.058 1975 1888 1.794 1705 1626 1576 1.581

exact 2.022 1.970 1905 1827 1738 1639 1534 1426 1323 1.235

depicted in tablé&]l. They are almost identical, but all eifon the~ 10% level from the exact
values displayed in the last row of the table. Higher precishus requires a next-to-leading order

calculation in the derivative expansion including a wanaetion renormalization.
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V. WAVE FUNCTION RENORMALIZATION

To next-to-leading-order in the derivative expansion, klftependent wave function renor-

malization is included in the truncation,
Celo, F, 6, 4] = / drdodo sz(@)f(zk@) +i- Wk(@)}
= [ [3zi0rd - izierii - iz 20000 + 2P
- BLZF G0+ WG - W] (40)

with a field dependent functiof (¢). The operato’ has been defined in(14) and primes denote
derivatives with respect to. The results of the last sections are recovered®fdd) = o.
In the spirit of functional optimization [8], we choose a sprally adjusted regulator [25] which

includes the wave function renormalization,

1 _ _
ASy = 5 /drd@d@ Z1 (D)2 (iry + oK) @, (42)
where Z/ is evaluated at a background field = (¢, 0,0). The value ofp can be viewed as a

parameter labeling a class of regulator functions. In camepts, the cutoff action reads

AS;, = / dr Z,(6)? (%p%w + %FTQF +iFri¢ +(pry — m)w) . (42)

Again, the flow of Z, can be read off from various operators. The simplest ch@agvien by
the prefactor of the? term, cf. eq.[(4D), since no time derivatives are involveteheAfter
the projection onto thé™ term at vanishing/) and a constant scalar field, we obtain the flow

equations for the Callan-Symanzik regulator

QW(6) =~ W'
ziazio) = (ZDEE _ (g3 0y - HTEO) L (ag)
where we have introduced the abbreviations
N = (1+kdp)ZL($)> and D =W"(¢)+ kZL($)> (44)

To solve this system of coupled equations, we need to pickweviar the background fielg.
Since we are interested in the excited-state energy, anabiochoice would bé = ¢min. Since

®min 1S NOt a priori known but a result of the flow, this would reguém iterative construction of the
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RG trajectory. Instead we make a technically much simpleicghand identify the background
field ¢ with the fluctuation fields. Since all functions in the action are parameters of the back
ground fielde, e.g., Z.(¢) = Zi(¢, ¢), identifying ¢ = ¢ goes along with an approximation.
This becomes obvious from the fact that, eZ,(¢, ¢ = ¢) = 0, 2k(¢, ¢)|5-0 # 0sZk(0, ¢). By
settingy = ¢, we ignore this latter difference. This approximation idlwaown in the context of
background-field flows [26, 27], and the resulting flow can iesved as a generalized propertime
flow [25,128]. As experience demonstrates, the error madbibyapproximation is outweighed by
the improvement arising from the better spectral adjustraéthe regulator, see, e.g., [29]. Our
results indeed confirm this conjecture.

Including the wave function renormalization, the on-slediéctive bosonic action at next-to-

leading order in the derivative expansion is

tiso=0.5=0= [ar[Joz@rouo]. e =3 (P9

At k£ = 0, the energy gap results from the curvature of the effectoiemntial with respect to
canonically normalized fluctuations = Z(¢), for which we have the standard kinetic term

(0,x)%. Hence, the energy of the first excited state for unbrokeersymmetry is

w = lim M
dx? k=0 (2'(9))?

Xmin:Z(¢min)

O=0¢min

In table1ll, the energy gap; (¢) for (e, m,a) = (1,1, 1) and various couplinggis compared with
those obtained without wave function renormalization. flbe with wave function renormaliza-
tion leads to much better results as compared to the flow witivave function renormalization.
The agreement is very satisfactory with errors ontheé% level even for couplings of order 1.
We conclude that the flow equation is able to capture nongEtire physics in supersymmetric

guantum systems with a reasonable precision.

VI. SUMMARY OF THE NUMERICAL RESULTS
A. The energy of the first excited state

We find that the polynomial approximation and the solutiorihed partial differential equa-

tion withoutwave function renormalization for convex superpotentialsverge to the same value
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TABLE llI: Energy of the first excited state for the classisalperpotential (36) witlie, m,a) = (1,1, 1)
and varyingg calculated from the solution to flow equations with Callan¥anzik regulator without and

with wave function renormalization.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PDE 2203 2137 2062 1979 1890 1.798 1.710 1.633 1584 1.590
PDE+WH 2.089 2031 1961 1879 1.788 1690 1589 1489 1402 1.341

exact 2022 1.970 1905 1827 1738 1.639 1534 1426 1323 1.235

independent of the regulator, see Séct. IMA 1. Dependindierparameters of the classical su-
perpotential, we obtain an accuracy of 10% for a small masmpeterm ~ 1) and 2% for larger
mass parametefs: =~ 3). Inclusion of the wave function renormalization improves tesults for
the energy gap considerably. We achieve an accuracy of 3% ferl. Due to the presence of the
auxiliary field, the wave function renormalization has cimttions of orderp® in the momentum
and thel2-term — which is neglected without wave function renornegiian — contributes to the
on-shell potential/;(¢). This effect is more pronounced for small mass parametetseamnoma-
lous dimension scales with the inversemf For largem, the anomalous dimension is small so we
do not expect large contributions in agreement with the migaleresults. Figuré]3 summarizes
the results for the energids, (¢g) obtained from the different approximation schemesrfor= 1
andm = 3. The explicit values are listed in tablés THII.

The parameter space of largesouplings is explored in Fidl 4. Here, we have used m =
g = 1, implying that the initial potential is always convex. Ejr&e observe that the excited-state
energy from the polynomial expansion converges rapidiyhtd taken from the full solution at
leading-order. The deviations from the exact result arénagathe~ 10% level. This is greatly
improved at next-to-leading-order including the wave tiorcrenormalization. Here, the results
match the exact values with an error on the 1% level or beldwe dgreement holds over the whole
coupling range from the weak- to the deeply nonperturbatir@ng-coupling regime.

The overall picture confirms that the functional RG emplgythe super-covariant deriva-
tive expansion captures the physics of the first excitea steil beyond the perturbative small-
coupling regime. For initial boundary conditions given @rrhs of classical convex potentials,
the derivative expansion appears to converge well and esaglvery satisfactory accuracy level

already at next-to-leading order.
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FIG. 3: We compare the energy gap(g) computed with different approximation schemes for thesitzd
superpotentialWy = 1 + me¢ + go? + ¢ with m = 1 (left panel) andn = 3 (right panel). For convex
initial potentials, we obtain both a good convergence aradisfactory accuracy of the next-to-leading order
derivative expansion including a wave function renornalan. Beyond convex initial potentials, e.g., for
larger couplingg; > /3 for m = 1, significant deviations from the exact result are obseriraticating a

less controlled convergence behavior.

For combinations of couplings where the initial potentsahbn-convex, e.gg > /3 for e =
m = a = 1, there is clearly room for improvements, as the deviatidrib® excited-state energy
from the exact result become large. Though the inclusion wheae function renormalization
at next-to-leading order improves the result significarttig accuracy remains poor, see [ig. 3.
Moreover, as the next-to-leading-order correction becafi¢he same order as the leading order,
the convergence of the derivative expansion may becomeiguabkle. On the other hand, it is
important to note in this context that the hierarchy of thevdgive expansion is interwoven more
strongly for the supersymmetric version than for non-ssyp@metric systems. In the present case,
also next-to-next-to-leading order operators can couteito the flow of the superpotential. These
contributions may be relevant for non-convex initial pdigis and thus restore the convergence

properties of the derivative expansion.

B. The global structure of the effective potential

Whereas the polynomial expansion does rather well for ticéexk state energy for the convex

case, we observe its break-down beyond this restricted Easénstance fop? > 3 ate = m =
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FIG. 4: Energy gag; (a) versus coupling: for e = m = g = 1 (convex initial potentials). We observe a
good convergence of the polynomial expansion. At nexesmling-order derivative expansion including a
wave function renormalization, satisfactory quanti@taccuracy is obtained for the whole coupling range

and even at strong coupling, demonstrating the nonpetivebeapabilities of the functional RG.

a = 1, the classical superpotential ceases to be convex. Hezxgydlynomial approximation
fails for asymptotic values of the field, since it tries toyide for a polynomial solution of the
partial differential equation near the expansion pointemetthe low-energy effective potentig|
becomes flat. The global structure of the effective potéfdarag = 2 calculated from the partial
differential equation(35) and the polynomial approxiraativith Callan-Symanzik regulator are
plotted in Figuré b together with the classical potentia.eXpected the polynomial approximation
is not able to reproduce the correct global structure wiseteapartial differential equation is able

to do so. The other regulators lead to the same global streiofithe effective potential.

VII. CONCLUSIONS

In this paper, we have presented a functional RG approachpersymmetric quantum me-
chanics. Our approach is formulated in terms of an exact aadifestly supersymmetric flow
equation for the effective action which is a supersymmefaitant of the Wetterich equation. We

have used the supersymmetric off-shell formulation whéctine crucial ingredient to maintain the
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FIG. 5: The effective potentidl’’(¢)? with the Callan-Symanzik regulator for a nonconi@y with g = 2.
The polynomial expansion fails to reproduce the globalcstme of the effective potential, whereas the full

numerical solution of the superpotential flow agrees welhvhe expectation.

simple one-loop structure of the flow equation. The appreachstraightforwardly be generalized
to other supersymmetric models based on a real superfield.

We solve the flow equation nonperturbatively in a systemaid consistent approximation
scheme based on an expansion of the effective action in gowidreld operators of increasing
numbers of supercovariant derivatives. To leading ordes, ytields a flow equation for the su-
perpotential — a supersymmetric analogue of the localrpiaieapproximation; a field dependent
wave function renormalization appears in the flow to nextetding order.

In the present work, we focus on unbroken supersymmetry bgidering only superpotentials
whose highest power is even. As a physical observable, weecdrate on the energy of the first
excited state resulting from the effective potential. A gamson with the exact solution provides
information about the convergence of the derivative exiganOur results confirm that the func-
tional RG is indeed capable of describing the system ovewtide range from weak to strong
coupling. Our approach works particularly well for init@nvex potentials. Here, first quantita-
tive estimates can already be obtained from a simple polyalarpansion of the superpotential.
For the excited-state energy, the polynomial expansianaisverges nicely, whereas the solution

of the full partial differential equation for the superpati@l is required for global properties of
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the potential. Since the excited-state energy is a phygicatity, it should also be universal in an
RG sense. In fact, our results show little dependence oreth@dator which confirms this required
universality. At next-to-leading order, the inclusion ofvave function renormalization improves
the quantitative accuracy considerably. For convex patsnthe functional RG result agrees with
the exact result within an error on the1% level even at strong coupling.

As soon as the initial potential becomes non-convex, the-8quation result for the energy
to lowest order starts to deviate significantly from the éxasult. As is already known from
standard quantum mechanics, the relevant tunneling esesre associated also with higher
orders in the derivative expansion. Inclusion of the wavefion renormalization indeed improves
our result, even though sizable deviations from the exatlretill remain. The reason for this
can be anticipated: supersymmetry forces us to organizexpansion in powers of the super-
covariant derivative. This, however, mixes different oedef time derivatives; e.g, in the off-shell
version of any supersymmetric theory with a scalar multjplee auxiliary field and the derivative
of the scalar field occur on equal footings. This is visiblar, é&xample, in the supersymmetry
transformation of) being proportional tap — iF, see[[#). On the other hand, we expect that
the low-lying excitation energies are mainly determinedh®/long-wavelength fluctuations, such
that an expansion in time derivatives of the field should bk jwstified.

The crucial observation in this context is that the supeagdant derivative expansion con-
tains terms without time derivatives also at higher supstadant derivative order, for instance,
O[(DD)®)* ~ F3+.... In particular, thesé-potential terms can directly contribute to the flow of
the superpotential. Since these terms are generatedysaaplat larger values of the coupling, it
is natural to expect that they can exert a pronounced infeien¢he energy gap at large coupling.
As even higher-order operators will not take a direct infeeean the flow of the superpotential, it
is conceivable that the excited-state energy convergdgsahéxt-to-next-to-leading order of the
super-covariant derivative expansion. Otherwise, theegence and use of this expansion in the
tunneling regime would be questionable.

A study of these higher orders giving access to operatois gher powers of" are also
needed for the case of broken supersymmetry. In this casenzero vacuum expectation value
of I is expected to occur, the description of which requires Kadge of the effective potential
of this auxiliary field.

The models considered here can be obtained by a dimenseshadtion from the2d Wess-

Zumino model withN = 1 supersymmetry. This in part is the reason that most straictesults

22



of the present work also apply to this two-dimensional fi¢gldary, for example to the form of
the cutoff action and the structure of the flow equations. Juper-covariant derivative-expansion

techniques are straightforwardly generalizable. Worlnia tlirection is in progress.
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APPENDIX A: THE FLOW EQUATIONS IN SUPERSPACE

In this appendix we sketch the derivation of the flow equat@rthe superpotential in super-
space. The equivalence of this manifestly supersymmegriwvation with the one in component
form will be shown afterwards. The superspace-coordinates ) are denoted by.

The supertrace that defines the flow of the effective actamslates into a superspace integral:

1
Ol = 5/ dzdz Oy Ry(2,2)Gr(7,2), Gp= (F,(f) + Rk)_l (A1)

As in the component formulation the fields are taken to betemi$o calculate the Green’s func-
tion G,(7/, z). In addition the expression is expanded in terms of the ¢avederivativesD and

D. To zeroth order in the covariant derivatives one finds

i / 400 0,1V () — % / Z—i 408 d6'dT (10,1 (p) + Durs(p) K (p))5(F — B)5(6 — 6) x

hK(p) B iW’l(q)) 0/ %) /
X s oy (0~ 08 —0). (A2)

Note that in momentum space the operator= (DD — DD) still contains derivatives with
respect to the Grassmann-coordinates. These derivatitemnathe first entry of the adjacent
delta-functions. The only two contributions that remaiteafin integration ovet’ andé’ are the
ones where the highest Grassmann derivative acts on onengnoine of the delta functions inside
the integral. Therefore we get

- 1 fdp ,, - (hOiri(p) — W' (®)0r2(p)
/d@d@@tW(é) = 5/% dfdo ( Wt OV (@) ) : (A3)
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For the lowest component of the superfield this is exacthyfltve equation[(3R).

To prove the equivalence of this derivation to the one in givethe main body of the paper
we observe that the transition from component to superfaich@ilation can be achieved with the
linear operators>(6,6) = (1,60, —0,0) andPT(6,0) = (1,00,6, —0) :

= (¢7 F7 &7 w>l<17 ée? 87 _é>l = (¢7 F7 &7 w>ZRT(‘97 é) . (A5)
In the other direction the operatoxé, §) = (99,1, —9, —6) must be applied:
(¢, Fap,)); = /d@dé Qi(0,0)® = /d@dé (00,1,—0,—0); (¢ + O + 00 + 00F).  (A6)

Note that as expected;(¢',0)Q;(0,0) = Q:(0,0\PT(0,0) = 6@ — )50 — 6) and
[d0do Q;(0,0)P;(0,0) = [dodo PF(0,0)Q;(0,0) = &;. The operator;, and its inverse can

be easily translated from component to superspace forianlasing these operators:
(Re(z, '),y = / 4040 d0'dF Q:(0,0) Ry (=, )Q,(, ) (A7)
(Ri(z,2));' = / dodo do'dd’ PF(0,0)(Ry(z,2') ' Py(¢,8'), (A8)
with [ dz'Ry(z,2')(Rk(2',2)) "t = §(z — /). So the flow equations translate into
/dxdx/(—l)eiatRk(x,x/)iij(x/,x)ji
- / 4608 4948 drd="(~1)7Qu(0, B)P.(6' . &) (DR (1, 6,0 )Gy (" 2.0, )
= / dzdz" (0, Re) (2, 2")Gi(2"; 2)

with (—1)% —1 if 4 is a fermionic index and otherwise), sincé—1)% P,(6,0) = P (0, 0).

APPENDIX B: INITIAL CONDITIONS

Throughout this work, we have set the regulator compongnt 0. With regard to the regulator
structure[(16), one may wonder whether this choice is cailpatith a sufficient UV suppression
of all modes. If not, the initial condition of the flow would hoecessarily coincide with the
microscopic (classical) action, but a separate UV renamaiibn would be necessary.

Indeed, itis easy to see that diagrams containing clésedps with a momentum-independent

free propagator can give rise to UV divergencies signalimg insufficient UV suppression. On
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the other hand, closefl' loops do simply not contribute to the present truncations ¥would
require, e.g., the occurrence 6f self-interactions~ £ which are generated only at higher-
order in the super-covariant derivative expansion. Pledtiwely, they occur at the two-loop level.
We conclude that there is no danger frdmloops up to next-to-leading order in the derivative
expansion.

Indeed, sufficient UV suppression can directly be verifieor IRrgek, the cutoff actionASy

dominates the action in the defining Euclidean path integhéth is of the form|[23]

8Ty, 6T

o TRlOF 0.9 _ /DSOD}—DX,DS@—S[¢>+e07F+]-',1/1+Xﬂl_ﬂ+>_de(isrtf<P+{;FFkF+ 50 X S XmpriF—xrix. (B1)

The integral becomes dominated by small fluctuations arddlassical solutions in the pres-
ence of the cutoff. A good estimate is thus provided by a sagdint approximation of the path
integral. Using the simple Callan-Symanzik regulatoe k£ as an example, one-loop corrections
are given by

e e}

1 = S.. S _ 52 1 72 "
L'k 1lo0p = —5 @ I 22T =2 / @ In{1+ Gl .
’ 2 ) 2r¢ SppS iy 2 ) 2r¢ P2+ (W"+ k)2

—0o0 —00

Rescaling with £ yields

oo

dp 1 iFW"
Thtoop= —k | —In(1+— .
i 1loop / o ( TERT Wkt 1)2)

—00

This integral vanishes fotr — oo so that no UV counterterms are necessary to define the initial

conditions. The starting point of the flow equation is inddeelclassical action.
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