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Abstract

We study supersymmetric quantum mechanics with the functional RG formulated in terms of an exact

and manifestly off-shell supersymmetric flow equation for the effective action. We solve the flow equation

nonperturbatively in a systematic super-covariant derivative expansion and concentrate on systems with

unbroken supersymmetry. Already at next-to-leading order, the energy of the first excited state for con-

vex potentials is accurately determined within a 1% error for a wide range of couplings including deeply

nonperturbative regimes.
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I. INTRODUCTION

Supersymmetry is a key ingredient in the construction of models of fundamental physics, since

it provides for a salient possibility to combine internal symmetries with the Poincare group. Even

though distinguishing features of supersymmetric systemscan be understood within perturbation

theory, many important properties such as collective condensation phenomena often related to

symmetry breaking are inherently nonperturbative. If supersymmetry is realized in nature, power-

ful and flexible nonperturbative tools will be needed to investigate the underlying mechanisms of

these strong-coupling phenomena.

As supersymmetry does not only mix bosons and fermions but also involves spacetime trans-

lations, lattice methods built on spacetime discretization often go along with a partial loss of

supersymmetry. The construction of appropriate lattice formulations in addition to the challenge

of dealing with dynamical fermions is an ongoing effort [1, 2, 3, 4]. These studies need to be

complemented by nonperturbative continuum methods preferably with manifest supersymmetry.

In recent years, the functional renormalization group (RG)has become such a nonperturbative

tool as has been demonstrated by many successful applications ranging from critical phenomena,

via fermionic systems and gauge theories even to quantum gravity, see [5, 6, 7, 8, 9] for reviews.

However, the number of applications to supersymmetric systems is rather small. In this work, we

formulate and test the functional RG for a simple supersymmetric system, namely, supersymmetric

quantum mechanics.

In fact, ordinary quantum mechanics has often been used for illustrating and testing the non-

perturbative capabilities of the functional RG, since the RG flow equations are easily obtained and

approximate solutions can directly be compared to known exact results or high-precision numer-

ics. In particular, the study of ground- and excited-state energies with RG techniques has received

a great deal of interest in the last few years [6, 10, 11, 12, 13]. Whereas single-well potentials can

be treated comparatively easily even at extreme coupling, double-well potentials have turned out

to be more challenging, since the analytic RG flow equations have to build up the non-analyticities

from tunneling; the latter are usually described in terms ofinstantons, being of topological nature.

In [13], Horikoshi et al. study the quantum double well usingan expansion in powers of the

field, [10] and [12, 14] go beyond this approximation and solve the RG flow in the so-called

local-potential approximation for the effective potential (i.e., leading-order derivative expansion).

Within the propertime RG, Zappalà [11] also includes wave function renormalization (i.e., next-to-

2



leading-order derivative expansion), and finds good agreement for the mass gap. Particularly, this

study convincingly demonstrates that the functional RG automatically includes also fluctuations

of topological degrees of freedom without explicitly introducing them by hand.

Supersymmetric quantum mechanics was introduced by Witten[15] as a toy model for spon-

taneous symmetry breaking. The first to use renormalizationgroup methods for supersymmetric

quantum mechanics were Horikoshi et al. [13]. They investigated a broken supersymmetric model

with nonperturbative renormalization group methods and calculated the nonvanishing ground-state

energy and that of the first excited state in a polynomial expansion of the effective potential. They

found good agreement with the exact results for all cases where tunneling is not important. This

latter region has been covered in [14] within the propertimeRG, where again the observation was

made that a wave function renormalization improves the results for the energy spectrum, i.e., helps

including tunneling.

Both approaches use regulators that break supersymmetry which makes it difficult to distin-

guish between explicit and spontaneous or dynamical supersymmetry breaking. In this paper, we

present an approach to flow equations for supersymmetric quantum mechanics which maintains

supersymmetry manifestly on the level of the RG flow equationwith the aid of an invariant regu-

lator. In contrast to [13] and [14], we concentrate on a system with unbroken supersymmetry.

Our approach is similar to the works by Bonini and Vian [16, 17] where a supersymmetric regu-

lator for the4dWess-Zumino model is presented. The functional RG has also been formulated for

supersymmetric Yang-Mills theory in [18] employing the superfield formalism; for applications,

see also [19, 20]. Very recently, Rosten has investigated general theories of a scalar superfield

including the Wess-Zumino model with the aid of a Polchinski-type of RG equation with elegant

applications in the context of non-renormalization theorems [21]. A construction of a Wilsonian

effective action for the Wess-Zumino model by perturbatively iterating the functional RG has been

performed in [22].

The paper is organized as follows: in Sect. II, we briefly recall the basics of Euclidean su-

persymmetric quantum mechanics, also introducing our notation. In Sect. III we derive the flow

equation for the superpotential and introduce a general class of supersymmetric regulator func-

tions. In Sect. IV we discuss the flow equation for the superpotential for different regulators. In

Sect. V we introduce wave function renormalization and in Sect. VI we compare our results with

exactly known results.
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II. EUCLIDEAN SUPERSYMMETRIC QUANTUM MECHANICS

For our study of supersymmetric quantum mechanical RG flows,we employ the superfield

formalism to maintain supersymmetry manifestly. The Euclidean superfield has the expansion

Φ = φ+ θ̄ψ + ψ̄θ + θ̄θF (1)

with anticommuting parametersθ, θ̄. Supersymmetric interaction terms are obtained asD-term of

W (Φ) = W (φ) +
(

θ̄ψ + ψ̄θ
)

W ′(φ) + θ̄θ
(

FW ′(φ)−W ′′(φ)ψ̄ψ
)

, (2)

where the superpotentialW (Φ) is a polynomial inΦ, andW (φ) denotes the same polynomial

evaluated at the scalar fieldφ. The nilpotent superchargesQ = i∂θ̄ + θ∂τ andQ̄ = i∂θ + θ̄∂τ anti-

commute into the generator of (Euclidean) time-translations,QQ̄ + Q̄Q = 2i∂τ . Supersymmetry

variations are generated byδǫ = ǭQ− ǫQ̄, such that the variation of the superfield takes the form

δǫΦ = ǭ
(

iψ + iθF + θφ̇+ θθ̄ψ̇
)

−
(

iψ̄ + iθ̄F − θ̄φ̇+ θ̄θ ˙̄ψ
)

ǫ, (3)

from which we read off the transformation rules for the component fields,

δφ = iǭψ − iψ̄ǫ, δψ = (φ̇− iF )ǫ, δψ̄ = ǭ(φ̇+ iF ), δF = −ǭψ̇ − ˙̄ψǫ. (4)

The super-covariant derivativesD = i∂θ̄− θ∂τ andD̄ = i∂θ − θ̄∂τ fulfill similar anticommutation

relations as the supercharges,

{D,D} = {D̄, D̄} = 0 and {D, D̄} = −2i∂τ . (5)

They commute with∂τ and anticommute with the supercharges. The integration over the anticom-

muting variables extracts the D-term of a superfield

∫

dθdθ̄Φ ≡ Φ|θ̄θ. (6)

From this, we obtain the invariant action in the superfield formalism:

S[φ, F, ψ̄, ψ] =

∫

dτdθdθ̄

[

1

2
ΦKΦ + i ·W (Φ)

]

=

∫

dτ

[

1

2
φ̇2 − iψ̄ψ̇ + iFW ′(φ)− iψ̄W ′′(φ)ψ +

1

2
F 2

]

, (7)
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with kinetic operatorK = 1
2
(DD̄−D̄D). Eliminating the auxiliary fieldF , we obtain theon-shell

action

Son[φ, ψ, ψ̄] =

∫

dτ

[

1

2
φ̇2 − iψ̄ψ̇ +

1

2

(

W ′(φ)
)2 − iW ′′(φ)ψ̄ψ

]

. (8)

It contains the bosonic potentialV (φ) = 1
2

(

W ′(φ)
)2

and a Yukawa term. In this paper, we consider

models with unbroken supersymmetry. They have vanishing ground state energyE0 = 0 and are

realized for superpotentials whose highest power iseven. On the microscopic scale, we will focus

on quartic superpotentials

W (φ) = Eφ+
m

2
φ2 +

g

3
φ3 +

a

4
φ4 , (9)

as the defining starting point of the interactions of our quantum mechanical system before fluctu-

ations are taken into account.

III. FLOW EQUATION IN THE OFF-SHELL FORMULATION

A. Flow equation for the effective action

The functional RG can be formulated in terms of a flow equationfor theeffective average action

Γk [23]. This is a scale-dependent action functional which interpolates between the microscopic

or classical actionS and the full quantum effective actionΓ, being the generating functional for

1PI Green’s functions. The interpolation scalek denotes an infraredIR regulator scale which sup-

presses all fluctuations with momenta smaller thank. Fork → Λ with Λ denoting the microscopic

scale, no fluctuations are included such thatΓk→Λ → S. Fork → 0, all fluctuations are taken into

account and we arrive atΓk→0 → Γ, i.e., the full solution of the quantum theory. The effective

average action can be determined from the Wetterich equation [23]

∂kΓk =
1

2
STr

{

[

Γ
(2)
k +Rk

]−1

∂kRk

}

(10)

which defines an RG flow trajectory in the space of action functionals with the classical action

serving as initial condition. Here,Γ(2) denotes the second functional derivative with respect to the

dynamical fields,
(

Γ
(2)
k

)

ab
=

−→
δ

δΨa

Γk

←−
δ

δΨb

, (11)
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where the indicesa, b in the general case summarize field components, internal andLorentz

indices, as well as spacetime or momentum coordinates. In the present case, we haveΨT =

(φ, F, ψ, ψ̄). (Note thatΨ is not a superfield, but merely a collection of fields.) The supertrace

in eq. (10) as well as the pattern of functional differentiation in eq. (11) takes care of the minus

signs from Grassmann-valued variables. The regulator functionRk guarantees the IR suppression

of modes belowk, the shape of which is to some extent arbitrary; examples will be given below.

DifferentRk correspond to different RG trajectories manifesting the RGscheme dependence, but

the end pointΓk→0 → Γ remains invariant.

The flow equation (10) has a one-loop structure, but is an exact equation since it involves the

regularized exact propagatorGk ≡ (Γ
(2)
k + Rk)

−1. It can be viewed as the differential counterpart

of a functional integral, or path integral in quantum mechanics. Its perturbative expansion yields

full standard perturbation theory, but also nonperturbative systematic expansion schemes can be

devised. In the present work, we use a derivative expansion of the effective action in powers of

the covariant derivative in the off-shell formulation. This expansion is systematic in the sense that

all possible operators can uniquely be classified, and it is consistent, since dropping higher-order

terms leads to a closed set of equations. Most importantly, atruncation of such an expansion

preserves supersymmetry. In this work, the derivative expansion of supersymmetric quantum me-

chanics will be worked out to next-to-leading-order. For simplicity, let us here begin with the

leading order, corresponding to the local-potential approximation for the superpotential; to this

order, the truncated effective action reads

Γk[φ, F, ψ̄, ψ] =

∫

dτdθdθ̄

[

1

2
ΦKΦ + i ·Wk(Φ)

]

=

∫

dτ

[

1

2
φ̇2 − iψ̄ψ̇ +

1

2
F 2 + iFW ′

k(φ)− iW ′′

k (φ)ψ̄ψ

]

. (12)

The prime always denotes the derivative with respect to the bosonic fieldφ. In the following we

will derive flow equations for the superpotentialWk(φ). The next order which includes a wave

function renormalization will be considered later on.

B. Supersymmetric regulators

For a supersymmetric initial condition and truncation, theflow and the resulting effective action

is supersymmetric provided the regulator does not break thesymmetry. When deriving the flow

equation (10) from the functional integral, the regularization is introduced by means of an addi-
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tional action contribution∆Sk, such thatRk = ∆S
(2)
k . The action principle therefore guarantees

a supersymmetric regularization, as long as∆Sk is invariant. Indeed, an off-shell supersymmetric

cutoff action can be written in terms of superfields and its covariant derivatives:

∆Sk =
1

2

∫

dτ ΦRk(D, D̄)Φ|θ̄θ . (13)

SinceD andD̄ satisfy the anticommutation relations (5) the regulator can be written as

Rk(D, D̄) = ir1(−∂2
τ , k) + r2(−∂2

τ , k)K, K =
1

2
(DD̄ − D̄D). (14)

The factori in front of r1 is chosen for convenience such that the corresponding cutoff action

matches the mass term. Similarlyr2 is chosen such that its cutoff action matches the kinetic term.

Both functions are functions of−∂2
τ , i.e., of p2 in momentum space. For this general class of

regulators, the cutoff actions read

∆Sk =
1

2

∫

dτdθdθ̄ Φ (ir1 + r2K) Φ =
1

2

∫

dp

2π
ΨT (−p)Rk(p)Ψ(p), (15)

whereΨT = (φ, F, ψ, ψ̄). The quadratic formRk(p) is block-diagonal,

Rk =





RB
k 0

0 RF
k



 with blocks RB
k =





p2r2 ir1

ir1 r2



 , RF
k =





0 pr2 + ir1

pr2 − ir1 0



 , (16)

and hence does not mix bosonic and fermionic degrees of freedom.

For manifestly supersymmetric cutoff actions∆Sk, supersymmetry relates the regulators of

bosonic fields to that of the fermionic field. This puts further constraints on the admitted cutoff

functions in a supersymmetric theory, as can be seen from thefollowing example. In view of

the regulator structure in eq. (16), one may be tempted to setr1 = 0. A natural choice for the

regulator functions would then be such that the bosonic component∼ p2r2 induces a gap for IR

modes, e.g.,r2(p2/k2) ∼ k2/p2 such thatp2r2 ∼ k2. Supersymmetry implies to the regulatorpr2

for the fermions and to the regulatorr2 for the auxiliary field, both of which diverge in the IR for

this choice. This leads to artificial IR divergencies in the flow equation when one includes higher-

order terms in the derivative expansion such as a wave function renormalization. This problem can

be avoided by a softer IR behavior ofr2 and including a suitable nonvanishingr1.

C. Regularized on-shell action

The equation of motion for the auxillary field in the presenceof a cutoff is

F = − i
h
W ′, W ′(φ) = W ′

k(φ) + r1φ, h = 1 + r2, (17)
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where, for convenience, we have introduced the functionh(p) and the shifted superpotentialW
containing the cutoff functionsr2 andr1. The regularized non-local on-shell action becomes

Son =

∫

dτ

[

1

2
φ̇hφ̇− iψ̄hψ̇ − iψ̄W ′′(φ)ψ +

1

2
W ′(φ)

1

h
W ′(φ)

]

. (18)

It is invariant under the followingdeformed supersymmetrytransformations

δφ = iǭψ − iψ̄ǫ, δψ =

(

φ̇− 1

h
W ′(φ)

)

ǫ, δψ̄ = ǭ

(

φ̇+
1

h
W ′(φ)

)

. (19)

These non-local transformations close on infinitesimal time translations,

(δǫ2δǫ1 − δǫ1δǫ2)(field) = 2i(ǭ1ǫ2 − ǭ2ǫ1)∂τ (field), (20)

provided the fermionic field satisfies the deformed Dirac equationhψ̇ +W ′′(φ)ψ = 0. With (18)

we have constructed aregularized(nonlocal) on-shell action which is invariant under deformed

supersymmetry transformations.

Nevertheless, we would like to stress that the off-shell formulation is crucial for the construction

of an invariant flow equation with one-loop structure. As theon-shell supersymmetry transforma-

tions act nonlinearly on the fields, the resulting cutoff action is not quadratic in the fields. Even

though an on-shell supersymmetric flow can straightforwardly be constructed from eq. (18), the

resulting flow involves higher-loop terms and thus is much more difficult to deal with.

D. Flow equation

Returning to the off-shell formulation and using the block-diagonal structure of the regulator

(16), the flow equation for the effective actionΓk[φ, F, ψ̄, ψ] written in component fields reads

∂kΓk =
1

2
STr

{

[

Γ
(2)
k +Rk

]−1

∂kRk

}

=
1

2
Tr (∂kRk Gk)BB −

1

2
Tr (∂kRkGk)FF , (21)

where we have introduced the regularized full Green’s function or propagatorGk = (Γ
(2)
k +Rk)

−1.

Upon insertion of the truncation (12) into eq. (21), we need to project only onto the flow of the

superpotentialWk. It can be done by extracting the flow of either the term linearin F or the term

proportional toψ̄ψ, cf. eq. (12). This is a direct consequence of the manifest supersymmetry of

this approach. As an illustration of this fact, we it both ways. For the projection, it suffices to

consider constant fields, such that an expansion of the inverse Green’s function in terms of the

constant anticommuting spinorsψ, ψ̄ yields

G−1
k = Γ

(2)
k +Rk ≡ G−1

0,k + ψ̄M1 +M2ψ + ψ̄M3ψ. (22)
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The propagator itself reads

Gk = G0,k −G0,k(ψ̄M1 +M2ψ)G0,k

+ G0,k (M1G0,kM2 −M2G0,kM1 −M3)G0,kψ̄ψ. (23)

To proceed we use the block notation,

N =





NBB NBF

NFB NFF



 . (24)

The nonvanishing blocks of the operators in the expansion (22) have the form

(G−1
0,k)BB =





hp2 + iFW(3) iW ′′

iW ′′ h



 , (G−1
0,k)FF =





0 hp+ iW ′′

hp− iW ′′ 0



 ,

M1FB = −M1BF =





iW(3) 0

0 0



 , M2BF = −MT
2FB =





0 iW(3)

0 0



 , (25)

M3BB =





−iW(4) 0

0 0



 .

To calculate the full propagatorGk we must invertG−1
0,k. The inverse ofG−1

0,k is block diagonal, and

the diagonal blocks read for constant fields

(G0,k)BB =
1

∆B





h −iW ′′

−iW ′′ hp2 + iFW(3)



 and (G0,k)FF =
1

∆F

(G−1
0,k)FF (26)

with determinantal factors

∆F = h2p2 + (W ′′)2 and ∆B = ∆F + ihFW ′′. (27)

Since the regulatorRk is block-diagonal, see (16), only the diagonal blocks of thedressed propa-

gator enter the flow equation (21). These blocks can be calculated with the help of (23). Inserting

the regulator (16) finally yields

Str(∂kRk Gk) =

∫

dτ
(

H0 +H3ψ̄ψ
)

(28)

with φ andF -dependent coefficient functions

H0 = −iFW(3)

∫

dp

2π

∂kr2(h
2p2 −W ′′ 2) + 2h∂kr1W ′′

∆B∆F

(29)
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and

H3 = i

∫

dp

2π

(

∆FW(4) − 2(W(3))2W ′′
) ∂kr2(h

2p2 −W ′′2) + 2h∂kr1W ′′

∆2
B∆F

+ 2i

∫

dp

2π
h(W(3))2 ∂kr1(h

2p2 −W ′′2)− 2hp2∂kr2W ′′

∆B∆2
F

. (30)

The flow equation (21) relates the supertrace (28) to the variation of the effective action (12). To

project onto the flow for the superpotential, we differentiate the flow equation with respect toF

and afterwards setF = ψ = ψ̄ = 0. This yields

∂kW
′

k = − i
2

∂Γ0

∂F

∣

∣

∣

F=0
= −W

(3)

2

∫

dp

2π

∂kr2(h
2p2 −W ′′ 2) + 2h∂kr1W ′′

∆2
B

. (31)

Integrating with respect toφ finally yields the flow equation for the superpotential

∂kWk(φ) =
1

2

∫

dp

2π

h∂kr1 − ∂kr2W ′′(φ)

h2p2 +W ′′(φ)2
, (32)

where we recall the abbreviationsh = 1 + r2 andW ′′ = r1 + W ′′

k . This flow equation for the

superpotential is one of the central results of our work. From the solution of (32), we can calculate

the effective potentialVk by eliminating the auxiliary field in the effective action. In passing, we

note that a quicker way to obtain the flow equation makes use ofthe superspace formulation, and

an efficient approach is summarized in appendix A.

The flow equation (32) can alternatively be obtained by projecting the flow of the effective

action (21) onto the coefficient of̄ψψ. This way one obtains

∂kW
′′

k =
1

2
H3

∣

∣

F=0
. (33)

The two projection formulas (31) and (33) indeed give rise toidentical flows, since

∂2H0

∂φ∂F
|F=0 = iH3|F=0.

This identity illustrates the fact that our flow equation is manifestly supersymmetric.

IV. FLOW OF THE SUPERPOTENTIAL FOR DIFFERENT REGULATORS

The regulator in the flow equation not only suppresses IR modes, but also guarantees UV

regularization due to the operator insertion∂kRk for Rk decreasing with momentum. This renders

the flow local in momentum space, enhancing also the numerical stability. In quantum mechanics,
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this property is less important, since quantum mechanics isUV finite. This allows to choose

less UV-restrictive regulators for which the momentum integral in eq. (32) can be carried out

analytically.

Indeed, as long as no diagrams with closedF loops contribute to the truncation, the regulator

r2 can be dropped completely, asr1 is sufficient to regularize all diagrams with at least oneφ orψ

line, as is clear from the structure of the regulator (16). Then the flow equation (32) simplifies to

∂kWk(φ) =
1

2

∫

∞

−∞

dp

2π

∂kr1
p2 + (r1 +W ′′

k (φ))2
. (34)

We verify in appendix B, that this regulator choice is sufficient for guaranteeing that the micro-

scopic action is the correct starting point of the flow without closedF loops. Incidentally, setting

r1 = 0 and usingr2 as a regulator alone in the flow equations would lead to artificial divergencies

for the wave function renormalization, as mentioned above.Next, we will discuss and compare

different regulators. In principle, the choice of the regulator can be optimized in order to minimize

truncation artifacts. However, due to the mixing between momentum- and field-dependencies in

the denominator of eq. (34)∼ r1(p
2)W ′′

k (φ), simple optimization strategies for bosonic systems

[24] do not apply and full functional optimization would be required [8]. However, since we are

not aiming for high-precision calculations, our regulatorchoice will be guided by simplicity.

A. The Callan-Symanzik regulator

First, we consider a simple Callan-Symanzik regulatorr1(p
2, k) = k for which eq. (34) reduces

to the simple flow equation

∂kWk(φ) =
1

4
· 1

k +W ′′

k (φ)
. (35)

We will discuss and compare various approaches to solve thisflow equation for different parame-

ters and, in particular, for non-convex classical superpotentials.

1. Polynomial expansion

For a polynomial approximation, one may expand the superpotentialWk(φ) in eq. (35) in

powers of the bosonic fieldφ,

Wk(φ) =
∑

n

an(k)

n
φn with Wk→Λ(φ) = Wcl(φ) = eφ+

m

2
φ2 +

g

3
φ3 +

a

4
φ4. (36)
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Then also the right hand side of the flow equation can be expanded similarly. A comparison of

coefficients leads to a system of coupled ordinary differential equations for the coefficientsan(k).

Terminating the expansions on both sides at orderN and settingan>N → 0 the system becomes

closed and can be solved numerically. At the cutoffk = Λ, the non-vanishing coefficients are

(a1, a2, a3, a4) = (e,m, g, a). Note that forg2 > 3ma the classical superpotential becomes non-

convex.

Indeed, such an expansion aboutφ = 0 is not adjusted to the flow, as the largest contribution

to the flow equation arises from field values which minimizeW ′′

k . An expansion of eq. (36) about

the minimum ofW ′′

k ,

Wk(φ) =
N

∑

n=1

ãn(k)

n

(

φ− φ0(k)
)n
, W ′′′

k (φ0) = 2ã3 = 0, (37)

thus has a much better convergence behavior. At the cutoff, the initial conditions are provided by

the nonvanishing parameters(ã1, ã2, ã4, φ0) which can directly be linked with(e,m, g, a) given

above. Most importantly,W ′′

Λ = ã2 + 3ã4(φ− φ0)
2 is an even function ofφ− φ0. Thus, the flow

is also even, implying thatW ′′

k stays even at all scales and all coefficientsãn(k) vanish for odd

n ≥ 3. From the(φ−φ0)
3 coefficient of the flow, we find(k+ ã2)

2∂kφ0 = ã5/ã4 = 0 which states

thatφ0 is scale-invariant. The same is true for̃a1, since∂kã1 = 0. The differential equations for

the nontrivial even coefficients of the truncated system up to orderN = 10 read,

∂kã2 = −3

2

ã4

P 2
, P = k + ã2

∂kã4 =
9ã2

4 − 5ã6P

P 3

∂kã6 = −3

2

27ã3
4 − 30ã4ã6P + 7ã8P

2

P 4

∂kã8 = 2
81ã4

4 − 135ã2
4ã6P + (25ã2

6 + 42ã4ã8)P
2 − 9ã10P

3

P 5

∂kã10 = −5

2

243ã5
4 − 540ã6ã

3
4P + (189ã8ã

2
4 + 225ã2

6ã4)P
2 − 70ã8ã6P

3 − 54ã10ã4P
4

P 6
.

The energyE1 of the first excited state is determined by the curvature of the effective potential

Vk = 1
2
(W ′

k)
2 at its minimumφmin; note thatφmin is generically not equal toφ0. At the mini-

mum,W ′ vanishes, such thatE1 = W ′′(φmin). Table I contains the gap energyE1 for classical

superpotentials with parameterse = m = a = 1 and different values ofg. For g2 > 3 the

initial superpotential becomes non-convex. In addition, the minimumφmin moves away from the

expansion pointφ0, in principle signaling the break down of the polynomial approximation which

12



TABLE I: EnergyE1 of the first excited state calculated in different orders of the polynomial approximation

with the Callan-Symanzik regulator fore = m = a = 1. For comparison, also the results obtained from the

solution to the partial differential equation (35) (PDE) and the exact values from numerically diagonalizing

the Hamiltonian are given.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

φ4 2.008 1.960 1.895 1.815 1.722 1.615 1.497 1.371 1.237 1.097

φ6 2.205 2.140 2.064 1.980 1.889 1.794 1.699 1.608 1.530 1.472

φ8 2.214 2.146 2.070 1.987 1.898 1.808 1.721 1.646 1.596 1.590

φ10 2.201 2.135 2.060 1.977 1.888 1.798 1.711 1.638 1.595 1.612

PDE 2.203 2.137 2.062 1.979 1.890 1.798 1.710 1.633 1.584 1.590

exact 2.022 1.970 1.905 1.827 1.738 1.639 1.534 1.426 1.323 1.235

can be expected to hold only nearφ0. Nevertheless, the valuesE1(g) obtained for the polynomial

approximations of orders4, 6, 8 and10 converge to values obtained by solving the full partial dif-

ferential equation (35). We conclude that the polynomial expansion as an approximation to the full

solution to leading-order derivative expansion works satisfactorily for the energyE1 at these cou-

pling values. However, as the∼ 10% difference to the exact gap energies shows, the leading-order

derivative expansion itself gives acceptable but not very precise results. This should be compared

to the analogous flow-equation approximation for non-supersymmetric quantum mechanics which

yields an error below the percent level even at strong coupling.

One important difference is that we have a flow equation for the superpotential and not for

the effective potential itself. As a consequence, the flow equation tends to make the superpotential

convex but not necessarily the effective potential. Figure1 shows the flow of the effective potential

Vk in the polynomial approximation (37) withN = 6 for a convex and non-convexWcl.

2. Partial differential equation

It is known from the study of non-supersymmetric systems that the polynomial approximation

fails for nonconvex potentials [10, 14]. The latter requirea solution of the full partial differential

equation (35), which we did withNDSolve of MATHEMATICA . In practice, we have chosenφ in

the range ofφ ∈ (−200, 200) and kept the potential at its classical values on the boundary of this

13
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FIG. 1: The effective potentialVk in thepolynomial approximationfor W ′

cl(φ) = 1 + φ + gφ2 + φ3. The

left panel shows the potential forg = 0 and the right panel forg = 2.

range. The results for three different scales are depicted in Figure 2. For convex superpotentials,
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FIG. 2: The effective potentialVk obtained from the solutionWk to thepartial differential equation(35).

The left panel showsg = 0 and the right panelg = 2.

the solutions obtained from the polynomial expansions and from solving the partial differential

equation are almost identical. But in the non-convex case, the polynomial expansion fails to

reproduce the correct asymptotic form of the superpotential. Non-convex classical superpotentials

pose a numerical challenge as they might lead to instabilities originating from the singularity at

W ′′

k (φ) = −k. For such potentials – corresponding to a large couplingg – the flow equation also

does not reproduce the correct gap energiesE1(g); see the PDE row in table I. We shall see that

similar conclusions hold for other regulators in the flow equation.
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B. Exponential andθ regulator

We want to compare the results obtained with the Callan-Symanzik regulator – which serves

only as an IR regulator but does not suppress the UV – with an exponential and aθ regulator,

r
(e)
1 (p2, k) = k · e−p2/k2

exponential regulator

r
(θ)
1 (p2, k) =

√

k2 − p2 · θ(k2 − p2) θ regulator. (38)

In contrast to the infrared Callan-Symanzik regulator usedin (35), these regularize the IR and UV.

The corresponding flow equations for the superpotential read

∂kW
(e)
k (φ) =

1

2k2

∞
∫

−∞

dp

2π

(k2 + 2p2)e−p
2/k2

p2 + (W ′′

k (φ) + ke−p2/k2)2

∂kW
(θ)
k (φ) =

1

4π

k

|k2 −W ′′

k
2|

(

π (1− signW ′′

k ) + 2 arctan
|k2 −W ′′

k
2|

2kW ′′

k

)

. (39)

Note, that for theθ regulator the integral (34) can be calculated analytically. The numerical results

in Table II have been obtained from the solutions to these partial differential equations. For the

exponential regulator we have takenφ ∈ (−20, 20) and the integration overp from −5k to 5k.

For theθ regulator, we have usedφ ∈ (−50, 50). The results for the three different regulators are

TABLE II: Energy of the first excited state for the classical superpotential (36) with(e,m, a) = (1, 1, 1)

and varyingg calculated from the solution to the partial differential equation (34) with Callan-Symanzik,

exponential andθ regulators.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CS 2.203 2.137 2.062 1.979 1.890 1.798 1.710 1.633 1.584 1.590

exp 2.195 2.130 2.055 1.972 1.884 1.791 1.701 1.622 1.569 1.684

θ 2.197 2.132 2.058 1.975 1.888 1.794 1.705 1.626 1.576 1.581

exact 2.022 1.970 1.905 1.827 1.738 1.639 1.534 1.426 1.323 1.235

depicted in table II. They are almost identical, but all differ on the∼ 10% level from the exact

values displayed in the last row of the table. Higher precision thus requires a next-to-leading order

calculation in the derivative expansion including a wave-function renormalization.

15



V. WAVE FUNCTION RENORMALIZATION

To next-to-leading-order in the derivative expansion, a field-dependent wave function renor-

malization is included in the truncation,

Γk[φ, F, ψ̄, ψ] =

∫

dτdθdθ̄

[

1

2
Zk(Φ)KZk(Φ) + i ·Wk(Φ)

]

=

∫

dτ

[

1

2
Z ′

k(φ)2φ̇2 − iZ ′

k(φ)2ψ̄ψ̇ − iZ ′

k(φ)Z ′′

k (φ)φ̇ψ̄ψ +
1

2
Z ′

k(φ)2F 2

−Z ′′

kZ ′

kFψ̄ψ + iFW ′

k(φ)− iW ′′

k (φ)ψ̄ψ

]

(40)

with a field dependent functionZk(φ). The operatorK has been defined in (14) and primes denote

derivatives with respect toφ. The results of the last sections are recovered forZk(Φ) = Φ.

In the spirit of functional optimization [8], we choose a spectrally adjusted regulator [25] which

includes the wave function renormalization,

∆Sk =
1

2

∫

dτdθdθ̄ Z ′

k(Φ̄)2Φ (ir1 + r2K) Φ, (41)

whereZ ′

k is evaluated at a background field̄Φ = (φ̄, 0, 0). The value ofφ̄ can be viewed as a

parameter labeling a class of regulator functions. In components, the cutoff action reads

∆Sk =

∫

dτ Z ′

k(φ̄)2

(

1

2
p2φr2φ+

1

2
Fr2F + iF r1φ+ ψ̄(pr2 − ir1)ψ

)

. (42)

Again, the flow ofZk can be read off from various operators. The simplest choice is given by

the prefactor of theF 2 term, cf. eq. (40), since no time derivatives are involved here. After

the projection onto theF 2 term at vanishinḡψψ and a constant scalar field, we obtain the flow

equations for the Callan-Symanzik regulator

∂kW
′

k(φ) =−W ′′′

k

N
4D2

Z ′

k(φ)∂kZ ′

k(φ) =

(

4Z ′′

k (φ)W ′′′

k (φ)

D −
(

Z ′′

k (φ)Z ′

k(φ)
)′ − 3Z ′

k(φ)2W ′′′

k (φ)2

4D2

) N
4D2

, (43)

where we have introduced the abbreviations

N = (1 + k∂k)Z ′

k(φ̄)2 and D = W ′′(φ) + kZ ′

k(φ̄)2. (44)

To solve this system of coupled equations, we need to pick a value for the background field̄φ.

Since we are interested in the excited-state energy, a reasonable choice would bēφ = φmin. Since

φmin is not a priori known but a result of the flow, this would require an iterative construction of the
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RG trajectory. Instead we make a technically much simpler choice and identify the background

field φ̄ with the fluctuation fieldφ. Since all functions in the action are parameters of the back-

ground fieldφ̄, e.g.,Zk(φ) ≡ Zk(φ, φ̄), identifying φ̄ = φ goes along with an approximation.

This becomes obvious from the fact that, e.g.,Z ′

k(φ, φ̄ = φ) ≡ ∂φZk(φ, φ̄)|φ̄=φ 6= ∂φZk(φ, φ). By

settingφ̄ = φ, we ignore this latter difference. This approximation is well known in the context of

background-field flows [26, 27], and the resulting flow can be viewed as a generalized propertime

flow [25, 28]. As experience demonstrates, the error made by this approximation is outweighed by

the improvement arising from the better spectral adjustment of the regulator, see, e.g., [29]. Our

results indeed confirm this conjecture.

Including the wave function renormalization, the on-shelleffective bosonic action at next-to-

leading order in the derivative expansion is

Γk[φ, ψ = 0, ψ̄ = 0] =

∫

dτ

[

1

2
(∂τZk(φ))2 + Vk(φ)

]

, Vk(φ) =
1

2

(

W ′

k(φ)

Z ′

k(φ)

)2

. (45)

At k = 0, the energy gap results from the curvature of the effective potential with respect to

canonically normalized fluctuationsχ = Z(φ), for which we have the standard kinetic term∼
(∂τχ)2. Hence, the energy of the first excited state for unbroken supersymmetry is

E1 = lim
k→0

√

d2Vk(Z−1
k (χ))

dχ2

∣

∣

∣

∣

∣

∣

χmin=Z(φmin)

= lim
k→0

W ′′(φ)

(Z ′(φ))2

∣

∣

∣

∣

φ=φmin

. (46)

In table III, the energy gapE1(g) for (e,m, a) = (1, 1, 1) and various couplingsg is compared with

those obtained without wave function renormalization. Theflow with wave function renormaliza-

tion leads to much better results as compared to the flow without wave function renormalization.

The agreement is very satisfactory with errors on the∼ 1% level even for couplings of order 1.

We conclude that the flow equation is able to capture nonperturbative physics in supersymmetric

quantum systems with a reasonable precision.

VI. SUMMARY OF THE NUMERICAL RESULTS

A. The energy of the first excited state

We find that the polynomial approximation and the solution ofthe partial differential equa-

tion withoutwave function renormalization for convex superpotentialsconverge to the same value
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TABLE III: Energy of the first excited state for the classicalsuperpotential (36) with(e,m, a) = (1, 1, 1)

and varyingg calculated from the solution to flow equations with Callan-Symanzik regulator without and

with wave function renormalization.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PDE 2.203 2.137 2.062 1.979 1.890 1.798 1.710 1.633 1.584 1.590

PDE+WF 2.089 2.031 1.961 1.879 1.788 1.690 1.589 1.489 1.402 1.341

exact 2.022 1.970 1.905 1.827 1.738 1.639 1.534 1.426 1.323 1.235

independent of the regulator, see Sect. IV A 1. Depending on the parameters of the classical su-

perpotential, we obtain an accuracy of 10% for a small mass parameter(m ≈ 1) and 2% for larger

mass parameters(m ≈ 3). Inclusion of the wave function renormalization improves the results for

the energy gap considerably. We achieve an accuracy of 3% form = 1. Due to the presence of the

auxiliary field, the wave function renormalization has contributions of orderp0 in the momentum

and theF 2-term – which is neglected without wave function renormalization – contributes to the

on-shell potentialVk(φ). This effect is more pronounced for small mass parameters asthe anoma-

lous dimension scales with the inverse ofm. For largem, the anomalous dimension is small so we

do not expect large contributions in agreement with the numerical results. Figure 3 summarizes

the results for the energiesE1(g) obtained from the different approximation schemes form = 1

andm = 3. The explicit values are listed in tables I-III.

The parameter space of large-a couplings is explored in Fig. 4. Here, we have usede = m =

g = 1, implying that the initial potential is always convex. First, we observe that the excited-state

energy from the polynomial expansion converges rapidly to that taken from the full solution at

leading-order. The deviations from the exact result are again on the∼ 10% level. This is greatly

improved at next-to-leading-order including the wave function renormalization. Here, the results

match the exact values with an error on the 1% level or below. The agreement holds over the whole

coupling range from the weak- to the deeply nonperturbativestrong-coupling regime.

The overall picture confirms that the functional RG employing the super-covariant deriva-

tive expansion captures the physics of the first excited state well beyond the perturbative small-

coupling regime. For initial boundary conditions given in terms of classical convex potentials,

the derivative expansion appears to converge well and reaches a very satisfactory accuracy level

already at next-to-leading order.
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FIG. 3: We compare the energy gapE1(g) computed with different approximation schemes for the classical

superpotentialWcl = 1 + mφ + gφ2 + φ3 with m = 1 (left panel) andm = 3 (right panel). For convex

initial potentials, we obtain both a good convergence and a satisfactory accuracy of the next-to-leading order

derivative expansion including a wave function renormalization. Beyond convex initial potentials, e.g., for

larger couplingsg >
√

3 for m = 1, significant deviations from the exact result are observed,indicating a

less controlled convergence behavior.

For combinations of couplings where the initial potential is non-convex, e.g.,g >
√

3 for e =

m = a = 1, there is clearly room for improvements, as the deviations of the excited-state energy

from the exact result become large. Though the inclusion of awave function renormalization

at next-to-leading order improves the result significantly, the accuracy remains poor, see Fig. 3.

Moreover, as the next-to-leading-order correction becomes of the same order as the leading order,

the convergence of the derivative expansion may become questionable. On the other hand, it is

important to note in this context that the hierarchy of the derivative expansion is interwoven more

strongly for the supersymmetric version than for non-supersymmetric systems. In the present case,

also next-to-next-to-leading order operators can contribute to the flow of the superpotential. These

contributions may be relevant for non-convex initial potentials and thus restore the convergence

properties of the derivative expansion.

B. The global structure of the effective potential

Whereas the polynomial expansion does rather well for the excited-state energy for the convex

case, we observe its break-down beyond this restricted case: For instance forg2 > 3 at e = m =
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FIG. 4: Energy gapE1(a) versus couplinga for e = m = g = 1 (convex initial potentials). We observe a

good convergence of the polynomial expansion. At next-to-leading-order derivative expansion including a

wave function renormalization, satisfactory quantitative accuracy is obtained for the whole coupling range

and even at strong coupling, demonstrating the nonperturbative capabilities of the functional RG.

a = 1, the classical superpotential ceases to be convex. Here, the polynomial approximation

fails for asymptotic values of the field, since it tries to provide for a polynomial solution of the

partial differential equation near the expansion point, where the low-energy effective potentialVk

becomes flat. The global structure of the effective potential for g = 2 calculated from the partial

differential equation (35) and the polynomial approximation with Callan-Symanzik regulator are

plotted in Figure 5 together with the classical potential. As expected the polynomial approximation

is not able to reproduce the correct global structure whereas the partial differential equation is able

to do so. The other regulators lead to the same global structure of the effective potential.

VII. CONCLUSIONS

In this paper, we have presented a functional RG approach to supersymmetric quantum me-

chanics. Our approach is formulated in terms of an exact and manifestly supersymmetric flow

equation for the effective action which is a supersymmetricvariant of the Wetterich equation. We

have used the supersymmetric off-shell formulation which is the crucial ingredient to maintain the

20



 0

 200

 400

 600

 800

 1000

 1200

 1400

-4 -3 -2 -1  0  1  2  3

0.
5*

V
k

φ

g=2

partial differential equation
polynomial approximation

classical potential

FIG. 5: The effective potentialW ′(φ)2 with the Callan-Symanzik regulator for a nonconvexWcl with g = 2.

The polynomial expansion fails to reproduce the global structure of the effective potential, whereas the full

numerical solution of the superpotential flow agrees well with the expectation.

simple one-loop structure of the flow equation. The approachcan straightforwardly be generalized

to other supersymmetric models based on a real superfield.

We solve the flow equation nonperturbatively in a systematicand consistent approximation

scheme based on an expansion of the effective action in powers of field operators of increasing

numbers of supercovariant derivatives. To leading order, this yields a flow equation for the su-

perpotential – a supersymmetric analogue of the local-potential approximation; a field dependent

wave function renormalization appears in the flow to next-to-leading order.

In the present work, we focus on unbroken supersymmetry by considering only superpotentials

whose highest power is even. As a physical observable, we concentrate on the energy of the first

excited state resulting from the effective potential. A comparison with the exact solution provides

information about the convergence of the derivative expansion. Our results confirm that the func-

tional RG is indeed capable of describing the system over thewhole range from weak to strong

coupling. Our approach works particularly well for initialconvex potentials. Here, first quantita-

tive estimates can already be obtained from a simple polynomial expansion of the superpotential.

For the excited-state energy, the polynomial expansion also converges nicely, whereas the solution

of the full partial differential equation for the superpotential is required for global properties of
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the potential. Since the excited-state energy is a physicalquantity, it should also be universal in an

RG sense. In fact, our results show little dependence on the regulator which confirms this required

universality. At next-to-leading order, the inclusion of awave function renormalization improves

the quantitative accuracy considerably. For convex potentials, the functional RG result agrees with

the exact result within an error on the∼ 1% level even at strong coupling.

As soon as the initial potential becomes non-convex, the flow-equation result for the energy

to lowest order starts to deviate significantly from the exact result. As is already known from

standard quantum mechanics, the relevant tunneling processes are associated also with higher

orders in the derivative expansion. Inclusion of the wave function renormalization indeed improves

our result, even though sizable deviations from the exact result still remain. The reason for this

can be anticipated: supersymmetry forces us to organize theexpansion in powers of the super-

covariant derivative. This, however, mixes different orders of time derivatives; e.g, in the off-shell

version of any supersymmetric theory with a scalar multiplet, the auxiliary field and the derivative

of the scalar field occur on equal footings. This is visible, for example, in the supersymmetry

transformation ofψ being proportional toφ̇ − iF , see (4). On the other hand, we expect that

the low-lying excitation energies are mainly determined bythe long-wavelength fluctuations, such

that an expansion in time derivatives of the field should be well justified.

The crucial observation in this context is that the super-covariant derivative expansion con-

tains terms without time derivatives also at higher super-covariant derivative order, for instance,

Φ[(DD̄)Φ]2 ∼ F 3+. . . . In particular, theseF -potential terms can directly contribute to the flow of

the superpotential. Since these terms are generated sizably only at larger values of the coupling, it

is natural to expect that they can exert a pronounced influence on the energy gap at large coupling.

As even higher-order operators will not take a direct influence on the flow of the superpotential, it

is conceivable that the excited-state energy converges at this next-to-next-to-leading order of the

super-covariant derivative expansion. Otherwise, the convergence and use of this expansion in the

tunneling regime would be questionable.

A study of these higher orders giving access to operators with higher powers ofF are also

needed for the case of broken supersymmetry. In this case, a nonzero vacuum expectation value

of F is expected to occur, the description of which requires knowledge of the effective potential

of this auxiliary field.

The models considered here can be obtained by a dimensional reduction from the2d Wess-

Zumino model withN = 1 supersymmetry. This in part is the reason that most structural results
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of the present work also apply to this two-dimensional field theory, for example to the form of

the cutoff action and the structure of the flow equations. Thesuper-covariant derivative-expansion

techniques are straightforwardly generalizable. Work in this direction is in progress.
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APPENDIX A: THE FLOW EQUATIONS IN SUPERSPACE

In this appendix we sketch the derivation of the flow equationfor the superpotential in super-

space. The equivalence of this manifestly supersymmetric derivation with the one in component

form will be shown afterwards. The superspace-coordinates(x, θ, θ̄) are denoted byz.

The supertrace that defines the flow of the effective action translates into a superspace integral:

∂kΓk =
1

2

∫

dz dz′ ∂kRk(z, z
′)Gk(z

′, z), Gk = (Γ
(2)
k +Rk)

−1 (A1)

As in the component formulation the fields are taken to be constant to calculate the Green’s func-

tionGk(z
′, z). In addition the expression is expanded in terms of the covariant derivativesD and

D̄. To zeroth order in the covariant derivatives one finds

i

∫

dθdθ̄ ∂tW (Φ) =
1

2

∫

dp

2π
dθdθ̄ dθ′dθ̄′ (i∂tr1(p) + ∂tr2(p)K(p))δ(θ̄′ − θ̄)δ(θ′ − θ)×

× hK(p)− iW ′′(Φ)

hp2 + (W ′′(Φ))2
δ(θ̄′ − θ̄)δ(θ′ − θ) . (A2)

Note that in momentum space the operatorK = 1
2
(DD̄ − D̄D) still contains derivatives with

respect to the Grassmann-coordinates. These derivatives act on the first entry of the adjacent

delta-functions. The only two contributions that remain after an integration overθ′ andθ̄′ are the

ones where the highest Grassmann derivative acts on one and only one of the delta functions inside

the integral. Therefore we get
∫

dθdθ̄ ∂tW (Φ) =
1

2

∫

dp

2π
dθdθ̄

(

h∂tr1(p)−W ′′(Φ)∂tr2(p)

hp2 + (W ′′(Φ))2

)

. (A3)
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For the lowest component of the superfield this is exactly theflow equation (32).

To prove the equivalence of this derivation to the one in given in the main body of the paper

we observe that the transition from component to superfield formulation can be achieved with the

linear operatorsP (θ, θ̄) = (1, θ̄θ,−θ, θ̄) andP T (θ, θ̄) = (1, θ̄θ, θ,−θ̄) :

Φ = Pi(θ, θ̄)(φ, F, ψ̄, ψ)i = (1, θ̄θ,−θ, θ̄)i(φ, F, ψ̄, ψ)i = φ+ θ̄ψ + ψ̄θ + θ̄θF (A4)

= (φ, F, ψ̄, ψ)i(1, θ̄θ, θ,−θ̄)i = (φ, F, ψ̄, ψ)iP
T
i (θ, θ̄) . (A5)

In the other direction the operatorQ(θ, θ̄) = (θ̄θ, 1,−θ̄,−θ) must be applied:

(φ, F, ψ̄, ψ)i =

∫

dθdθ̄ Qi(θ, θ̄)Φ =

∫

dθdθ̄ (θ̄θ, 1,−θ̄,−θ)i (φ+ θ̄ψ + ψ̄θ + θθ̄F ). (A6)

Note that as expectedPi(θ′, θ̄′)Qi(θ, θ̄) = Qi(θ
′, θ̄′)P T

i (θ, θ̄) = δ(θ̄′ − θ̄)δ(θ′ − θ) and
∫

dθdθ̄ Qi(θ, θ̄)Pj(θ, θ̄) =
∫

dθdθ̄ P T
i (θ, θ̄)Qj(θ, θ̄) = δij . The operatorRk and its inverse can

be easily translated from component to superspace formulation using these operators:

(Rk(x, x
′))ij =

∫

dθdθ̄ dθ′dθ̄′Qi(θ, θ̄)Rk(z, z
′)Qj(θ

′, θ̄′) (A7)

(Rk(x, x
′))−1

ij =

∫

dθdθ̄ dθ′dθ̄′ P T
i (θ, θ̄)(Rk(z, z

′))−1Pj(θ
′, θ̄′) , (A8)

with
∫

dz′Rk(z, z
′)(Rk(z

′, z))−1 = δ(z − z′). So the flow equations translate into
∫

dxdx′(−1)εi∂tRk(x, x
′)ijGk(x

′, x)ji

=

∫

dθdθ̄ dθ′dθ̄′ dxdz′′(−1)εiQi(θ, θ̄)Pi(θ
′, θ̄′)(∂tRk)(x, θ, θ̄; z

′′)Gk(z
′′; x, θ′, θ̄′)

=

∫

dzdz′′(∂tRk)(z, z
′′)Gk(z

′′; z)

with (−1)εi −1 if i is a fermionic index and1 otherwise), since(−1)εiPi(θ, θ̄) = P T
i (θ, θ̄).

APPENDIX B: INITIAL CONDITIONS

Throughout this work, we have set the regulator componentr2 = 0. With regard to the regulator

structure (16), one may wonder whether this choice is compatible with a sufficient UV suppression

of all modes. If not, the initial condition of the flow would not necessarily coincide with the

microscopic (classical) action, but a separate UV renormalization would be necessary.

Indeed, it is easy to see that diagrams containing closedF loops with a momentum-independent

free propagator can give rise to UV divergencies signaling this insufficient UV suppression. On
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the other hand, closedF loops do simply not contribute to the present truncation; this would

require, e.g., the occurrence ofF self-interactions∼ F 3 which are generated only at higher-

order in the super-covariant derivative expansion. Perturbatively, they occur at the two-loop level.

We conclude that there is no danger fromF loops up to next-to-leading order in the derivative

expansion.

Indeed, sufficient UV suppression can directly be verified. For largek, the cutoff action∆Sk

dominates the action in the defining Euclidean path integralwhich is of the form [23]

e−Γk [φ,F,ψ,ψ̄] =

∫

DϕDFDχDχ̄e−S[φ+ϕ,F+F ,ψ+χ,ψ̄+χ̄]e
δΓk
δφ

ϕ+
δΓk
δF

F+
δΓk
δψ

χ+
δΓk
δψ̄

χ̄−ϕr1F−χr1χ̄. (B1)

The integral becomes dominated by small fluctuations aroundthe classical solutions in the pres-

ence of the cutoff. A good estimate is thus provided by a saddle-point approximation of the path

integral. Using the simple Callan-Symanzik regulatorr1 = k as an example, one-loop corrections

are given by

Γk,1loop = −1

2

∞
∫

−∞

dp

2π
ln
SφφSFF − S2

Fφ

Sψψ̄Sψ̄ψ
= −1

2

∞
∫

−∞

dp

2π
ln

(

1 +
iFW ′′′

p2 + (W ′′ + k)2

)

.

Rescalingp with k yields

Γk,1loop = −k
∞

∫

−∞

dp̃

2π
ln

(

1 +
1

k2

iFW ′′′

p̃2 + (W ′′/k + 1)2

)

.

This integral vanishes fork → ∞ so that no UV counterterms are necessary to define the initial

conditions. The starting point of the flow equation is indeedthe classical action.
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