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Abstra
t: We 
onsider supersymmetri
 quantum me
hani
al systems in arbitrary di-mensions on 
urved spa
es with nontrivial gauge �elds. The square of the Dira
 operatorserves as Hamiltonian. We derive a relation between the number of super
harges thatexist and restri
tions on the geometry of the underlying spa
es as well as the admissiblegauge �eld 
on�gurations. From the superalgebra with two or more real super
harges weinfer the existen
e of integrability 
onditions and obtain a 
orresponding superpotential.This potential 
an be used to deform the super
harges and to determine zero modes ofthe Dira
 operator. The general results are applied to the K�ahler spa
es CPn.Keywords: Supersymmetry, Dira
 Operator, Complex Manifolds, K�ahler Manifolds,Proje
tive Spa
es.PACS: 02.40.Dr, 02.40.Ky, 11.30.Pb.1 Introdu
tionSupersymmetry is a 
ru
ial ingredient in many attempts to unify the intera
tions 
on-tained in the standard model of parti
le physi
s. It softens the ultraviolet divergen
esand o�ers the hope of resolving the hierar
hy problem. It arises naturally in low-energy�A.Kir
hberg�tpi.uni-jena.de, J.D.Laenge�tpi.uni-jena.de, A.Wipf�tpi.uni-jena.de1



limits of string theory. Supersymmetri
 models are easier to solve than their non-supersymmetri
 
ounterparts, sin
e they are more strongly 
onstrained by the higherdegree of symmetries.In re
ent years we have seen a renewed interest in nonperturbative aspe
ts of stronglyintera
ting supersymmetri
 theories. This is mainly due to the Seiberg-Witten solutionfor the low-energy e�e
tive a
tion of N = 2 super-Yang-Mills theory [1℄ and the Mal-da
ena 
onje
ture stating that N = 4 super-
onformal SU(N
)-gauge theories arisingon parallel D3-branes are in the limit of large 't Hooft 
oupling and large N
 dual tosupergravity theories on an AdS5-ba
kground [2℄. Despite of these striking results thereis still a long way to go towards a better understanding of nonperturbative e�e
ts insupersymmetri
 theories with less supersymmetries and �nite N
. In parti
ular, sin
elow-energy physi
s is manifestly not supersymmetri
, it is ne
essary that this symme-try is broken at some energy s
ale. As issues of supersymmetry breaking are diÆ
ultto address in perturbation theory, one is motivated to study supersymmetri
 modelson a spa
etime latti
e. Unfortunately, supersymmetry is expli
itly broken by most dis-
retization pro
edures, and it is a nontrivial problem to re
over supersymmetry in the
ontinuum limit. However, there are dis
retizations with nonlo
al intera
tion terms forwhi
h supersymmetry is manifestly realized [3℄. Alternatively, for some models one 
andis
retize spa
e { but not time { su
h that a subalgebra of the supersymmetry algebrawhi
h determines spe
tral properties of the super-Hamiltonian remains inta
t [4℄.Every supersymmetri
 �eld theory on a spatial latti
e may be reinterpreted as a higher-dimensional supersymmetri
 quantum me
hani
al system. The �rst studies of su
h sys-tems go ba
k to Ni
olai [5℄ and have been extended by Witten in his work on supersym-metry breaking [6, 7, 8℄. Soon after that, de Crombrugghe and Rittenberg [9℄ presenteda very general analysis of supersymmetri
 Hamiltonians. Over the years, it has beendemonstrated that supersymmetry is a useful te
hnique to 
onstru
t exa
t solutions inquantum me
hani
s [10℄. For example, all ordinary S
hr�odinger equations with shapeinvariant potentials 
an be solved algebrai
ally with the methods of supersymmetry. Onthe other hand, apparently di�erent quantum systems may be related by supersymmetry,and this relation may shed new light on the physi
s of the two systems. For example,the hydrogen atom (its Hamiltonian, angular momentum and Runge-Lenz ve
tor) 
anbe supersymmetrized. The 
orresponding theory 
ontains both the proton-ele
tron andthe proton-positron system as subse
tors [11℄.The present work 
ontains the �rst part of our attempt to better understand supersym-metri
 �eld theories on spatial latti
es. Here, we will analyze properties of quantumme
hani
al systems. In a forth
oming publi
ation, our results will be related to Wess-Zumino models on su
h latti
es. This paper is organized as follows: In Se
tion 2 were
all supersymmetri
 quantum me
hani
s with N supersymmetries. The main empha-sis is on the algebrai
 stru
ture of su
h systems. In the following se
tion we give expli
itrealizations of systems with one, two or more supersymmetries. They are based on theDira
 operator in external gauge and gravitational �elds. We shall see that for 
ertainba
kground �elds there are N inequivalent ways to take the square root of � =D2. At the2



same time � =D2 
ommutes with several parti
le-number operators whi
h 
orrespond to
omplex stru
tures. The superalgebra implies 
onsisten
y 
onditions for these stru
turesand the gauge �eld strength. For example, the Dira
 operator in four dimensions admitsan extended N =4 supersymmetry if spa
etime is hyper-K�ahler and the gauge �eld is(anti-)selfdual. In Se
tion 4 we show that, for ba
kground �elds admitting an extendedsupersymmetry, the geometry and gauge potential are en
oded in a superpotential. Thesuperpotential may be used to deform the generally- and gauge-
ovariant derivative intothe ordinary derivative. In Se
tion 5 we apply our general results to study the Dira
operator on the 
omplex proje
tive spa
es CP n with an Abelian ba
kground gauge �eld.We derive expli
it expressions for the superpotential and fermioni
 zero modes on theseK�ahler spa
es.2 Extended Supersymmetri
 Quantum Me
hani
sSupersymmetri
 quantum me
hani
s des
ribes systems with nonnegative Hamiltoniansthat 
an be written asÆijH = 12 fQi; Qjg ; i; j = 1; : : : ;N ; (1)with Hermitian super
harges Qi anti
ommuting with an involutary operator �,fQi;�g = 0; �y = �; �2 = 1: (2)There are various de�nitions of supersymmetri
 quantum me
hani
s in the literature, fora re
ent dis
ussion, in parti
ular 
on
erning the role of the grading operator �, we referto [12℄. One may also relax the 
ondition for the left-hand side of (1), see for example[13℄, but in this paper we will not 
onsider su
h systems.The +1 and �1 eigenspa
es of � are 
alled bosoni
 and fermioni
 se
tors respe
tively,H = HB �HF; HB = P+H; HF = P�H; P� = 12 (1� �): (3)The super
harges Qi map HB into HF and vi
e versa. The super-algebra (1) impliesthat they 
ommute with the super-Hamiltonian,[Qi;H℄ = 0; (4)and generate supersymmetries of the system. The simplest models exhibiting this stru
-ture are 2� 2-matrix S
hr�odinger operators in one dimension [5, 6, 7℄. In this paper weshall investigate expli
it representations of the superalgebra (1) with one, two, four andmore super
harges.
3



One super
harge: In this 
ase every eigenstate of H = Q21 � 0 with positive energyis paired by the a
tion of Q1. For example, if jBi is a bosoni
 eigenstate with positiveenergy, then jF i � Q1jBi is a fermioni
 eigenstate with the same energy. However, anormalizable eigenstate with zero energy is annihilated by the super
harge, Q1j0i = 0,and hen
e has no superpartner. In a basis where � = �3 
 1, the Hermitian 
harge Q1has the form Q1 = P�Q1P+ + P+Q1P� � �0 AyA 0 � : (5)The index of Q1 
ounts the di�eren
e of bosoni
 and fermioni
 zero modes,ind Q1 = dimkerA� dimkerAy = n0B � n0F: (6)Supersymmetry is spontaneously broken if and only if there exists no state whi
h is leftinvariant by the super
harges, or equivalently if 0 is not in the dis
rete spe
trum of H.Two super
harges: In this 
ase there exist two anti
ommuting and Hermitian roots ofthe super-HamiltonianH = Q21 = Q22; fQ1; Q2g = 0; Qyi = Qi: (7)Later we shall use the nilpotent 
omplex super
hargeQ = 12(Q1 + iQ2); (8)and its adjoint Qy, in terms of whi
h the supersymmetry algebra takes the formH = fQ;Qyg; Q2 = Qy 2 = 0 and [Q;H℄ = 0: (9)The number of normalizable zero modes of H is given by [6℄n0 = n0B + n0F = dim(kerQ=im Q) = dim(kerQy=im Qy): (10)Four super
harges: Now there are four distin
t roots of the super-Hamiltonian,H = Q21 = Q22 = Q23 = Q24: (11)The only nontrivial anti
ommutators of the 
omplex nilpotent super
hargesQ = 12(Q1 + iQ2) and ~Q = 12 (Q3 + iQ4) (12)and their adjoints are fQ;Qyg = f ~Q; ~Qyg = H: (13)
4



3 Supersymmetries and the Eu
lidean Dira
 OperatorThere exists a fundamental supersymmetri
 Hamiltonian in nature, the square of theEu
lidean Dira
 operator. In other words, one identi�es the Dira
 operator as a super-
harge asso
iated to this Hamiltonian. There are non-linear sigma-models whi
h giverise to exa
tly these super
harges, in parti
ular the (1 + 0)-dimensional models studiedin [13, 14℄. In 
ontrast to those models, we allow for the presen
e of gauge �elds butdo not in
lude torsion. The identi�
ation of Dira
 operators and super
harges has alsobeen employed by Alvarez-Gaum�e in [15℄, where he uses supersymmetry to derive theAtiyah-Singer index theorem.The 
hiral supersymmetry with one 
harge exists in all even dimensions and for arbi-trary gauge and gravitational ba
kground �elds. It 
an be extended if =D2 
ommuteswith 
ertain parti
le-number operators to be de�ned below. For example, in D = 2nEu
lidean dimensions and for ba
kground �elds with holonomy group U(n) the operator=D2 
ommutes with one parti
le-number operator and admits two supersymmetries. InD=4n dimensions and for ba
kground �elds with holonomy group Sp(n), there are three
onserved number operators and four supersymmetries.We 
onsider a smooth Riemannian manifoldM of dimension D whi
h allows for a spinstru
ture. We des
ribe the gravitational �elds in terms of vielbeins EAM rather than ametri
 GMN , whi
h is related to the vielbein byGMN = EAMEBNÆAB ; ÆAB = GMNEAMEBN : (14)The Lorentz indi
es A;B 2 f1; : : : ;Dg are 
onverted into 
oordinate indi
es M;N 2f1; : : : ;Dg (or vi
e versa) with the help of the vielbein EAM or its inverse, whi
h is givenby EMA = GMNEBNÆBA. The Cli�ord algebra is generated by the Hermitian matri
es�A, satisfying f�A;�Bg = 2ÆAB or f�M ;�Ng = 2GMN ; (15)where the �M = �AEMA are the matri
es with respe
t to the holonomi
 basis �M .3.1 Chiral SupersymmetryIn even dimensions we always have 
hiral supersymmetry generated by the HermitianEu
lidean Dira
 operator, viewed as super
hargeQ1 = i =D = i�MrM = i�ArA; rA = EMA rM : (16)The generally- and gauge-
ovariant derivative a
ting on spinors,rM = �M +
M +AM= �M + 14
MAB�AB +AaMTa; (17)5




ontains the 
onne
tion 
 and gauge potential A together with the anti-Hermitian gen-erators �AB = 12 ��A;�B� and T a of spin rotations and gauge transformations. Thegamma-matri
es are 
ovariantly 
onstant in the following sense,rM�N = �M�N + �NMP�P + [
M ;�N ℄ = 0: (18)For the involutary operator � in (2) we take in D=2n dimensions� = ��1 : : :�D; (19)where the phase � is 
hosen su
h that � is Hermitian and squares to 1, �2 = (�)n. The`bosoni
' and `fermioni
' subspa
es 
onsist of spinor �elds with positive and negative
hiralities, respe
tively, and the number of bosoni
 minus the number of fermioni
 zeromodes equals the index of the Dira
 operator,n0B � n0F = ind i =D : (20)Sin
e the 
ommutator of two 
ovariant derivatives yields the gauge �eld strength and
urvature tensor in the spinor-representation,[rM ;rN ℄ = FMN = FMN +RMN ;FMN = �MAN � �NAM + [AM ; AN ℄ = F aMNTa; (21)RMN = �M
N � �N
M + [
M ;
N ℄ = 14RMNAB�AB;where the Riemann 
urvature tensor is obtained from the 
onne
tion viaRMNAB = �M
NAB � �N
MAB +
 CMA 
NCB � 
 CNA 
MCB; (22)we �nd the squared Dira
 operator or super-Hamiltonian� =D2 = H = Q21 = �GMNrMrN � 12�ABFAB : (23)Here we have used the 
omponents of FMN with respe
t to an orthonormal vielbein,FAB = EMA ENB FMN = [rA;rB ℄:Note that the two 
ovariant derivatives rMrN in (23) a
t on di�erent types of �elds.The derivative on the right a
ts on spinors and is given in (17), whereas the derivativeon the left a
ts on spinors with a 
oordinate index and hen
e 
ontains an additionalterm proportional to the Christo�el symbols,rM N = �M N +
M N � �PMN P +AM N : (24)3.2 Extended SupersymmetriesIn this se
tion we show that for parti
ular ba
kground �elds the 
hiral supersymmetry
an be extended to �ner, parti
le-number 
onserving supersymmetries. The existen
eof a single 
onserved number operator is equivalent to the existen
e of a 
ovariantly
onserved 
omplex stru
ture. This way one �nds that N = 2 is only possible if spa
eadmits a K�ahler stru
ture, and N =4, if it admits a hyper-K�ahler stru
ture. Analogous
onditions are derived for the ba
kground gauge �eld.6



3.2.1 Square Roots of H = � =D2In this subse
tion we 
hara
terize a 
lass of �rst order di�erential operators whi
h squareto H = � =D2. Our ansatz is motivated by previous results in [16, 17, 18, 19℄ and thesimple observation that both the free Dira
 operator =� on 
at spa
e andIMN�N�Mhave the same square for any orthogonal matrix I. Thus, we are lead to the followingansatz for the super
harge in a gravitational and gauge �eld ba
kground,Q(I) = i IMN�NrM � i(I�)MrM ; (25)where I is a real tensor �eld with 
omponents IMN .This 
onstru
tion is 
lose in spirit to the one presented in [9℄. The algebrai
 approa
hthere is applied to the parti
ular situation of a Dira
 operator, and this will allow us tointerpret all quantities in [9℄ as geometri
al ones, like 
onne
tions, 
urvature et
.To derive the 
onditions on I and the ba
kground su
h that Q(I)2=H, we �rst 
onsiderthe anti
ommutator of two operators with di�erent I,fQ(I); Q(J)g = �12(IJT + JIT )MNfrM ;rNg � 12�MN �ITFJ + JTFI�MN��(I�)PrP (J�)Q + (J�)PrP (I�)Q	rQ; (26)where, for example(IJT )MN = IMPJNP and (ITFJ)MN =IPMFPQJQN :After setting I=J we see that Q(I) squares to the Hamiltonian H in (23) if and only ifthe following three 
onditions are satis�ed,GMN = (IIT )MN ; (27)FMN = (ITFI)MN ; (28)0 = rMIPQ: (29)By interpreting the IMN as 
omponents of a map I between se
tions of the tangentbundle, the 
ondition (27) just means that I is an isometry,G(IX; IY ) = G(X;Y ):In view of our remarks above it should not be surprising that the 
omponents IAB withrespe
t to an orthonormal vielbein form an orthogonal matrix.The 
ondition (29) means, that the tensor �eld I must be 
ovariantly 
onstant. WithRMNAB = RABMN = �RNMAB the 
orresponding integrability 
onditions read0 = IRM [rA;rB ℄IRN = IRMRRSABISN �RMNABor RMN = (ITRI)MN ;7



and (28) simpli�es to the same 
ondition with FMN repla
ed by the gauge �eld strengthFMN . Thus we end up with the followingLemma: The 
harge Q(I) = i IMN�NrM ; IMN (x) 2 R; (30)is Hermitian and squares to H in (23) if and only if the following 
onditions hold:rI = 0; IIT = 1 and [I; F ℄ = 0: (31)The hermiti
ity follows from rI = 0, whi
h in turn implies that the IMN�N 
ommutewith the 
ovariant derivative. Be
ause of the se
ond 
ondition in (31) the last one isequivalent to (28) with F repla
ed by F .A trivial solution is of 
ourse I =1 in whi
h 
ase Q be
omes the Dira
 operator itself.Let us now assume that there is a se
ond square root Q(I) anti
ommuting with theDira
 operator Q(1). With rI=0 and (26) these two 
harges anti
ommute iffQ(1); Q(I)g = �12(IMN + INM )frM ;rNg � 12�MN �ITF + FI�MN != 0;and this shows that the map I must be antisymmetri
. Be
ause of (27) it squares to�1. Hen
e it de�nes an almost 
omplex stru
ture. Sin
e it is 
ovariantly 
onstant, themanifold is K�ahler with 
omplex stru
ture I. Thus we have shown that H admits twosupersymmetries generated by Q(1) and Q(I) if the manifold is K�ahler with 
omplexstru
ture I and if the gauge �eld strength F 
ommutes with this stru
ture.Now we are ready to generalize to N super
hargesQ(1) and Q(Ii); i = 1; : : : ;N � 1:From our general result (26) we 
on
ludeLemma: The N 
hargesQ(1) = i =D and Q(Ii) = i IMi N�NrM ; i = 1; : : : ;N � 1 (32)are Hermitian and generate an extended superalgebra (1), if and only iffIi; Ijg = �2Æij1D; ITi = �Ii; (33)rIi = 0; [Ii; F ℄ = 0: (34)The 
ovariantly 
onserved 
omplex stru
tures form a D-dimensional real representationof the Eu
lidean Cli�ord algebra with N�1 gamma-matri
es. We 
all a representation
8



irredu
ible, if only 1 
ommutes with all those matri
es. Irredu
ible representations areknown to exist for N � 1 = 8n; 6 + 8n; 7 + 8n;D = 16n; 8 � 16n; 8 � 16n; (35)with n 2 N0. In these 
ases, only trivial gauge �elds on 
at spa
e are possible. Wefurther observe that, if fI1; : : : ; Ik; Fg satisfy the 
onditions in the above lemma, thenalso fI1; : : : ; Ik; Ik+1 = I1 � � � Ik; Fg do, providedk = 2 + 4n:It follows, for example, that the superalgebra with 7 super
harges fQ(1); Q(Ii)g 
analways be extended to a superalgebra with 8 super
harges. In addition, sin
e for N�1 =8n the Eu
lidean gamma-matri
es may be 
hosen real and 
hiral, one 
an 
onstru
tthe 
orresponding 
omplex stru
tures out of the 
omplex stru
tures ~Ii of the N = 8nsupersymmetry, Ii = �0 ~Ii~Ii 0� and I8n = � 0 1�1 0� :For irredu
ible Ii one 
an 
onstru
t systems withN = 8n and N = 8n+ 1 (36)independent real super
harges in this way. Note, however, that there may exist D-dimensional matri
es Ii whi
h do not generate all of GL(D) and hen
e do not belong toa real irredu
ible representation of the Cli�ord algebra. These are the most interesting
ases sin
e they admit nontrivial ba
kground �elds 
ommuting with all Ii, as requiredin our lemma above. Below we will dis
uss su
h systems with N = 4 + 8n.3.2.2 N =2 and Parti
le-Number OperatorOn any K�ahler manifold the Dira
 operator admits an extended N =2 supersymmetryif the �eld strength 
ommutes with the 
omplex stru
ture. With respe
t to a suitably
hosen orthonormal frame the stru
ture has the form (IAB) = i�2
1n. The 
harge Q(I)on a K�ahler manifold with 
omplex stru
ture I squares to H and 
ommutes with theDira
 operator if and only if[I; F ℄ = 0 or (FAB) = � U V�V U� ; UT = �U; V T = V:The 
omplex nilpotent 
harge in (8) takes the simple formQ = 12Q(1) + i2Q(I) = i ArA (37)9



with operators  A = PAB�B; PAB = 12(1+ iI)AB: (38)P proje
ts onto the n-dimensional I-eigenspa
e 
orresponding to the eigenvalue �i, its
omplex 
onjugate �P onto the n-dimensional eigenspa
e +i. The two eigenspa
es are
omplementary and orthogonal, P + �P =1 and P �P =0. The  A and their adjoints forma fermioni
 algebra,f A;  Bg = f Ay;  Byg = 0 and f A;  Byg = 2PAB : (39)At this point it is natural to introdu
e the number operatorN = 12 yA A = 14 �D + iIAB�AB� ; (40)whose eigenvalues are lowered and raised by  A and  Ay, respe
tively,[N; Ay℄ = PAB By =  Ay;[N; A℄ = �PAB B = � A: (41)Sin
e only n = rankP of the 2n 
reation operators are linearly independent we haveinserted a fa
tor 12 in the de�nition of the number operator N in (40). This operator
ommutes with the 
ovariant derivative, be
ause rI = 0 is equivalent to[rM ; N ℄ = �MN + [
M ; N ℄ = 0; (42)and therefore Q de
reases N by one, while its adjoint Qy in
reases it by one,[N;Q℄ = �Q and [N;Qy℄ = Qy: (43)The 
orresponding real super
harges are given byQ(1) = Q+Qy = i =D;Q(I) = i(Qy �Q) = i[N; i =D℄: (44)Finally, we observe that the Hermitian matrix� = N � 14D = i4IAB�AB 2 spin(D)generates a U(1) subgroup of Spin(D). This is the R-symmetry of the superalgebra,�Q(1)Q(I)� �! � 
os� sin�� sin� 
os���Q(1)Q(I)� :Next, we introdu
e the Cli�ord va
uum j0i, whi
h is annihilated by all annihilationoperators  A and hen
e has parti
le number N =0. The 
orresponding Cli�ord spa
e
10



C is the Fo
k spa
e built over this va
uum state. Sin
e only n 
reation operators arelinearly independent, we obtain the following grading of the Cli�ord spa
e,C = C0 � C1 � : : :� Cn; dimCp = �np�; (45)with subspa
es labelled by their parti
le number,N ��Cp = p � 1: (46)In parti
ular, the one-dimensional subspa
e C0 is spanned by j0i and the n-dimensionalsubspa
e C1 by the linearly dependent states  yAj0i. Along with the Cli�ord spa
e theHilbert spa
e of all square integrable spinor �elds de
omposes asH = H0 �H1 � : : :�Hn with N jHp = p � 1: (47)Compared to the standard Fo
k spa
e 
onstru
tion, 
f. e.g. [20℄, the number operatorN in (40) 
ommutes with the Hamiltonian even in 
urved spa
e and in the presen
e ofgauge �elds. Thus, N leaves Hp invariant. The nilpotent 
harge Q maps Hp into Hp�1and its adjoint Qy maps Hp into Hp+1.The raising and lowering operators  Ay and  A are linear 
ombinations of �A andtherefore anti
ommute with � in (19). Hen
e they map left- into right-handed spinorsand vi
e versa. Sin
e �j0i is annihilated by all  A, A��j0i� = �� Aj0i = 0;and sin
e the Cli�ord va
uum j0i is unique, we 
on
lude that j0i has de�nite 
hirality.It follows that all states with even N have the same 
hirality as j0i, and all states withodd N have opposite 
hirality, � = �(�)N : (48)3.2.3 N = 3 and N = 4 SuperalgebrasIf fI1; I2g satisfy the 
onditions (33,34), then fI1; I2; I3 = �I1I2g do so as well. For thisreason N = 3 supersymmetry implies automati
ally N = 4 supersymmetry. Hen
e, itsuÆ
es to 
onsider systems with 4 super
harges. This should be 
ompared to the resultsin [13℄, where systems with N = 3 but N 6= 4 are possible, the reason for this being thatin [13℄ a more general algebra than (1) has been studied.The dimension of the matri
es Ii (whi
h equals the dimension of the manifold) must bea multiple of 4, D=4n. In this se
tion we 
hoose the selfdual or anti-selfdual matri
es,SD: ~I1 = i�0 
 �2; ~I2 = i�2 
 �3; ~I3 = i�2 
 �1 = �~I1 ~I2;ASD: ~I1 = i�3 
 �2; ~I2 = i�2 
 �0; ~I3 = i�1 
 �2 = ~I1 ~I2; (49)11



and de�ne Ii = ~Ii 
 1n. They generate two 
ommuting so(3) subalgebras of so(4n).The 
onditions (33,34) imply that the 
urvature tensor (RAB) and gauge �eld strength(FAB) 
ommute with all three Ii. For example, in 4 dimensions both must be selfdual oranti-selfdual. A 4-dimensional manifold with (anti-)selfdual 
urvature is hyper-K�ahler.More generally, a 4n-dimensional manifold is hyper-K�ahler if it admits three 
ovariantly
onstant and anti
ommuting 
omplex stru
tures. We see, that � =D2 admits 4 super-symmetries if and only if the underlying spa
e M is hyper-K�ahler and the gauge �eldstrength 
ommutes with the three 
omplex stru
tures.For ea
h 
omplex stru
ture Ii there exists an asso
iated number operatorNi = N(Ii) = 14D +�(Ii); �(I) = i4IAB�AB ; (50)and the 4 real super
harges take the formQ(1) = i =D and Q(Ii) = i[Ni; i =D℄: (51)However, the 3 number operators do not 
ommute, be
ause[�(Ii);�(Ij)℄ = i� ([Ii; Ij ℄) ; (52)and the antisymmetri
 matri
es Ii, together with 14n, form a 4n-dimensional real rep-resentation of the non-
ommutative quaternioni
 algebra,IiIj = �Æij14n � �ijkIk: (53)The three matri
es �(Ii) generate an SO(3)-subgroup of Spin(4n) whi
h rotates the realsuper
harges. This is proven with the help of the simple identitiesi[�(I); Q(1)℄ = Q(I) and i[�(I); Q(J)℄ = Q(JI):Now it follows at on
e, that the selfdual (anti-selfdual) SO(3)-subgroup of the SO(4)R-symmetry is implemented by the exponentiated a
tion of the �(Ii),U(~�)QmU�1(~�) = RmnQn; whereU(~�) = exp (i�(�iIi)) ; R(~�) = exp(�i ~Ii):The ~Ii are the 4-dimensional selfdual (anti-selfdual) matri
es in (49), and Ii = ~Ii 
 1nare 4n-dimensional 
omplex stru
tures with respe
t to a suitable orthonormal base. TheQm are the four real super
harges,fQ0; Q1; Q2; Q3g � fQ(1); Q(I1); Q(I2); Q(I3)g:Let us remark, that other 
hoi
es for the 
omplex stru
tures than those obtained from(49) are possible.
12



3.2.4 N = 7 and N = 8 SuperalgebrasA

ording to (35) we 
an �nd 6 or 7 real and antisymmetri
 matri
es Ii, for examplethe 8-dimensional (irredu
ible) matri
es~I1 = i�1 
 �0 
 �2; ~I3 = i�2 
 �1 
 �0; ~I5 = i�0 
 �2 
 �1;~I2 = i�3 
 �0 
 �2; ~I4 = i�2 
 �3 
 �0; ~I6 = i�0 
 �2 
 �3; (54)~I7 = ~I1 ~I2 ~I3 ~I4 ~I5 ~I6 = �i�2 
 �2 
 �2;tensored with 1n. Thus we 
an satisfy (33) in 8n dimensions and a N =7 superalgebra
an always be extended to a N = 8 superalgebra, sin
e if fI1; : : : ; I6; Fg satisfy the
onditions (33,34) then fI1; : : : ; I6; I7 = I1 � � � I6; Fg do so as well.In 8 dimensions there is no non-trivial solution to[Ii;F ℄ = 0; i = 1; : : : ; 7;sin
e the only matrix 
ommuting with all Ii in (54) is the identity matrix. Hen
e themanifold must be 
at and the gauge �eld strength must vanish. In 8 dimensions, only thefree Dira
 operator admits an N =8 supersymmetry. However, in 8n dimensions withn= 2; 3; : : : ; there are nontrivial solutions to the 
onstraints in (33,34). For example,every �eld strength (FAB) = 18 
 ~F with antisymmetri
 ~F 
ommutes with the Ii listedin (54). In the 
ase of extended supersymmetry one 
an de�ne a set fN01; N23; N45; : : :gof parti
le-number operators that 
ommute with ea
h other and with the Hamiltonian.Here the Nij are de�ned asNij = N(IiIj) = 14D +�(IiIj); where I0 = 1: (55)4 Superpotentials on K�ahler ManifoldsThe super-Hamiltonian � =D2 admits an extended supersymmetry if it 
ommutes with anumber operator or if the 
omplex super
harge is nilpotent and de
reases the parti
lenumber by one. Then the manifold is K�ahler and the 
omplex stru
ture 
ommutes withthe gauge �eld strength. Now we shall see that this in turn is the 
ondition for theexisten
e of a superpotential g from whi
h the spin 
onne
tion and gauge potential 
anbe derived.K�ahler manifolds of real dimension D = 2n are parti
ular 
omplex manifolds and wemay introdu
e 
omplex 
oordinates (z�; �z��) with �; �� = 1; : : : ; n [21℄. The real and
omplex 
oordinate di�erentials are related as followsdz� = �z��xM dxM � f�MdxM ; d�z�� = ��z���xM dxM � f ��MdxM ;�� = �xM�z� �M � fM��M ; ��� = �xM��z�� �M � fM���M : (56)13



The integrability 
onditions for the dz� to be di�erentials of 
omplex 
oordinate fun
-tions z� are automati
ally satis�ed on a K�ahler manifold.The f� and f� are left and right eigenve
tors of the 
omplex stru
ture,f�MIMN = �if�N and IMNfN� = �ifM�; � = 1; : : : ; n: (57)Sin
e IMN is antisymmetri
 with respe
t to the s
alar produ
t (A;B)=AMGMNBN , theeigenve
tors with di�erent eigenvalues are orthogonal in the following sense,GMNf�Mf�N = GMNfM�fN� = 0: (58)Identity and 
omplex stru
ture possess the spe
tral de
ompositionsÆMN = fM�f�N + fM��f ��N ; (59)iIMN = fM�f�N � fM��f ��N ; (60)and the relations �z�=�z�=Æ�� and �z�=��z�� = 0 translate intof�MfM� = Æ�� and f�MfM�� = 0: (61)With (58) the line element takes the formds2 = GMNdxMdxN = 2h���dz�d�z�� ; h��� = h��� = GMNfM� fN�� ; (62)where the h��� are derived from a real K�ahler potential K as follows,h��� = �2K�z���z�� � �����K: (63)Covariant and exterior derivatives split into holomorphi
 and antiholomorphi
 pie
es,r = dz�r� + d�z��r��;d = dz��� + d�z����� = � + ��; (64)and the only non-vanishing 
omponents of the Christo�el symbols are���� = h�����h��� = h��������K; (65)������� = h������h��� = h���������K: (66)Along with the derivatives the forms split into holomorphi
 and antiholomorphi
 parts.For example, the �rst Chern 
lass 
1 = (2�i)�1h���dz�d�z�� is a (1; 1)-form and the gaugepotential A = A�dz�+A��d�z�� a sum of a (1; 0)- and a (0; 1)-form. With the help of (65)the 
ovariant derivative of a (1; 0)-ve
tor �eld 
an be written asr�(B���) = ���B� + ����B����= ���B� + h���(��h���)B���� (67)= h�����(h���B�)��:14



Let us introdu
e 
omplex vielbeins e�=e���� and e�=e��dz�, su
h that h��� = 12Æ���e����e�� .The 
omponents of the 
omplex 
onne
tion 
an be related to the metri
 h��� and thevielbeins with the help of Leibniz' rule and (65) as follows,!���e� � r�e� = r�(e����) = (��e��)�� + e��������= (��e��)�� + e��h�����(h���)�� = h�����(e��h���)�� = e��h�����(e��h���)e� :Comparing the 
oeÆ
ients of e� yields the 
onne
tion 
oeÆ
ients !���. The remaining
oeÆ
ients are obtained the same way, and one �nds altogether!��� = e�����e���; ! ����� = e������e����;! ������ = e��� ����e���; !���� = e�� ����e��; (68)where, for example, e���=h���e�� .Now we are ready to rewrite the Dira
 operator in 
omplex 
oordinates. For that weinsert the 
ompleteness relation (59) in i =D = i�NÆMNrM and obtaini =D = Q+Qy � 2i �r� + 2i y��r��; (69)where we are led to the independent fermioni
 raising and lowering operators, � = 12f�M�M ;  y�� = 12f ��M�M ; (70)and the 
omplex 
ovariant derivativesr� = fM�rM ; r�� = fM��rM : (71)Of 
ourse, the super
harge Q in (69) is just the 
harge in (37) rewritten in 
omplex
oordinates. Contrary to the annihilation operators  A, the fermioni
 operators  � areindependent. They ful�ll the anti
ommutation relationsf �;  �g = f y��;  y��g (58)= 0; f �;  y��g = 12h��� ; (72)where h��� = f�Mf ��M is the inverse of h��� in (62). This 
an be seen as follows,h���h��� = f ��Mf�M � fN�fN �� (58)= f ��M �fN�f�M + fN��f ��M� fN ��(59)= f ��MfM �� (61)= Æ���� :The operators  � lower the value of the Hermitian number operatorN = 2h��� y�� � (73)by one, while the  y�� raise it by one. The proof is simple,[N; � ℄ = 2h��� [ y�� � ;  � ℄ = �2h���f y��;  �g � = �h���h��� � = � �:15



With (59,60) the fermioni
 operators in (38) and (70) are related as follows, M = 12(1+ iI)MN�N = 2fM� �; yM = 12(1� iI)MN�N = 2fM�� y��; (74)and we 
on
lude that the number operators in (40) and (73) are indeed equal,12 yM M = 2GMNfM��fN� y�� � = 2h��� y�� � :Now we are ready to prove that in 
ases where =D admits an extended supersymmetrythere exists a superpotential for the spin and gauge 
onne
tions. Indeed, if spa
etime isK�ahler and the gauge �eld strength 
ommutes with the 
omplex stru
ture,FMN = (ITFI)MN ; (75)then the 
omplex 
ovariant derivatives 
ommute[r�;r� ℄ = F�� = fM�fN�FMN = 0: (76)One just needs to insert (60) and use (61). Alternatively, one may use Q2=0 with the
omplex super
harge in (69). Equation (76) is just the integrability 
ondition (
f. Yang'sequation [22℄) for the existen
e of a superpotential g su
h that the 
omplex 
ovariantderivative 
an be written asr� = g��g�1 = �� + g ���g�1� = �� + !� +A�: (77)This useful property is true for any (possibly 
harged) tensor �eld on a K�ahler manifoldprovided (75) holds. If the K�ahler manifold admits a spin stru
ture, as for example CP nfor odd n, then (77) holds true for a (possibly 
harged) spinor �eld.Of 
ourse, the superpotential g depends on the representation a

ording to whi
h the�elds transform under the gauge and Lorentz group. One of the more severe te
hni
alproblems in appli
ations is to obtain g in the representation of interest. It 
onsists oftwo fa
tors, g = gAg!. The �rst fa
tor gA is the path-ordered integral of the gaugepotential. A

ording to (68) and (77) the matrix g! in the ve
tor representation is justthe vielbein e���. If one su

eeds in rewriting this g! as the exponential of a matrix, thenthe transition to any other representation is straightforward: one 
ontra
ts the matrixin the exponent with the generators in the given representation. This will be done forthe 
omplex proje
tive spa
es in the following se
tion.Now let us assume that we have found the superpotential g. Then we 
an rewrite the
omplex super
harge in (69) as follows,Q = 2i �r� = 2igQ0g�1; Q0 =  �0 ��;  �0 = g�1 �g: (78)The annihilation operators  � are 
ovariantly 
onstant,r� � = �� � + ���� � + [!�;  � ℄ = 0; (79)16



and this translates into the following property of the 
onjugate operators,�� �0 = g�1 ��� � + [ g��g�1;  � ℄� g (77)= g�1 (�� � + [!�;  � ℄) g= ����� g�1 �g (65)= �h��� (��h���) �0 :This implies the following simple equation,�� (h��� �0) = 0; (80)stating that the transformed annihilation operators  0�� are antiholomorphi
. Indeed,one 
an show that they are even 
onstant.The relation (78) between the free super
harge Q0 and the g-dependent super
harge Qis the main result of this se
tion. It 
an be used to determine zero modes of the Dira
operator. With (44) we �ndi =D� = 0 () Q� = 0; Qy� = 0: (81)In se
tors with parti
le number N =0 or N =n one 
an easily solve for all zero modes.For example, Qy annihilates all states in the se
tor with N = n, su
h that zero modesonly need to satisfy Q� = 0. Be
ause of (78), the general solution of this equation reads� = �f(�z)g y�1 � � � y�nj0i; (82)where �f(�z) is some antiholomorphi
 fun
tion. Of 
ourse, the number of normalizablesolutions depends on the gauge and gravitational ba
kground �elds en
oded in the su-perpotential g. With the help of the novel result (82) we shall �nd the expli
it form ofthe zero modes on CP n in the following se
tion.5 The Dira
 Operator on CP nThe ubiquitous two-dimensional CP n models possess remarkable similarities with non-Abelian gauge theories in 3+1 dimensions [23℄. They are frequently used as toy modelsdisplaying interesting physi
s like fermion-number violation analogous to the ele
troweaktheory [24℄ or spin ex
itations in quantum Hall systems [25℄. Their instanton solutionshave been studied in [26℄, and their N =2 supersymmetri
 extensions des
ribe integrablesystems with known s
attering matri
es.It would be desirable to 
onstru
t manifestly supersymmetri
 extensions of these modelson a spatial latti
e. To this end we re
onsider the Dira
 operator on the symmetri
K�ahler manifolds CP n. We shall 
al
ulate the superpotential g in (77) and the expli
itzero modes of the Dira
 operator.
17



5.1 Complex Proje
tive Spa
esFirst we brie
y re
all those properties of the 
omplex proje
tive spa
es CP n whi
h arerelevant for our purposes. The spa
e CP n 
onsists of 
omplex lines in Cn+1 interse
tingthe origin. Its elements are identi�ed with the following equivalen
e 
lasses of pointsu = (u0; : : : ; un) 2 Cn+1nf0g, [u℄ = fv = �uj� 2 C�g;su
h that CP n is identi�ed with (Cn+1nf0g)=C�. In ea
h 
lass there are elements withunit norm, �u �u =P �ujuj=1, and thus there is an equivalent 
hara
terization as a 
osetspa
e of spheres, CP n = Sn+1=S1. The u's are homogeneous 
oordinates of CP n. Wede�ne the n+1 open setsUk = �u 2 Cn+1juk 6= 0	 � Cn+1nf0g; (83)the 
lasses of whi
h 
over the proje
tive spa
e. The n+1 maps'k : Cn �! [Uk℄; z 7! [z1; : : : ; 1; : : : ; zn℄;where the kth 
oordinate is 1, de�ne a 
omplex analyti
 stru
ture. The line element onCn+1, ds2 = nXj=0 dujd�uj = du � d�u; (84)
an be restri
ted to S2n+1=S1 and has the following representation on the kth 
hart,ds2 = � �u�z�dz� + �u��z��d�z��� � � ��u�z�dz� + ��u��z��d�z��� :We shall use the (lo
al) 
oordinatesu = '0(z) = 1� (1; z) 2 U0; where �2 = 1 + �z � z = 1 + r2; (85)for representatives with non-vanishing u0. With these 
oordinates the line element takesthe form ds2 = 1�2dz � d�z � 1�4 (�z � dz)(z � d�z); (86)and is derived from a K�ahler potential K=ln�2. This 
on
ludes our summary of CP n.To 
ouple fermions to the gravitational ba
kground �eld we must �nd a 
omplex or-thonormal vielbein, ds2 = e�Æ���e ��, and write it as the exponential of a matrix. Weobtained the following representation for the vielbein of the Fubini-Study metri
 (86),e� = e��dz� = ��1 �P�� + ��1Q���dz�;e� = e���� = � (P�� + �Q��) ��: (87)18



Here, we have introdu
ed the matri
esP = 1� zzyr2 and Q = zzyr2 ; z = �z1 : : : zn�T : (88)They satisfyP2 = P; Q2 = Q; PQ = QP = 0; Py = P; Qy = Q; (89)and hen
e are orthogonal proje
tion operators. For the parti
ular spa
e CP 2, the viel-beins are known, and 
an be found in [27℄. These known ones are related to those in (87)by a lo
al Lorentz transformation. We have not seen expli
it formulae for the vielbeinsfor n > 2 in the literature. Expressing the vielbeins in terms of proje
tion operators asin (87) allows us to relate the superpotentials in di�erent representations. From (68)and (87) we obtain the 
onne
tion (1,0)-form!��� = � �z��2 �12P�� +Q���+ 1� ��r2 P���z�:5.2 Zero Modes of the Dira
 OperatorIn this subse
tion we want to determine the zero modes of the Dira
 operator i =D onCP n. We use the method proposed at the end of Se
tion 4. A
tually, only for oddvalues of n a spin bundle S exists on CP n. We 
an tensor S with Lk=2, where L is thegenerating line bundle, and k takes on even values. In the language of �eld theory thismeans that we 
ouple fermions to a U(1) gauge potential A. For even values of n, thereis no spin stru
ture, so S does not exist globally. Similarly, for odd values of k, Lk=2is not de�ned globally. There is, however, the possibility to de�ne a generalized spinbundle S
 whi
h is the formal tensor produ
t of S and Lk=2, k odd [28℄. Again, in thelanguage of �eld theory, we 
ouple fermions to a suitably 
hosen U(1) gauge potentialwith half-integer instanton number. In both 
ases, the gauge potential readsA = k2 �u � du = k4 (� � ��)K = gA�g�1A + gy�1A ��gyA; gA = e�kK=4 = (1 + r2)� k4 ; (90)with 
orresponding �eld strengthF = dA = (� + ��)A = k2 ���K: (91)gA is the part of the superpontential g that gives rise to the gauge 
onne
tion A. Itremains to determine the spin 
onne
tion part g! of g � g!gA.When using (87,88), the equation (68) 
an be written in matrix notation as (!�)�� =�S��S�1���, whereS = �(P+ �Q) (89)= exp �P ln�+Q ln�2� = exp�(1+Q) ln��: (92)19



From the matrix form of S in (92) we read of the superpotential g! in the spinor repre-sentation, g! = exp�14(Æ��� +Q���)���� ln�� ; (93)where we have introdu
ed���� � 12[���;��℄ = 2[ y��;  � ℄; ��� = 2 y��; �� = 2 � : (94)Next, we study zero modes of Q and Qy in the gauge �eld ba
kground (90). In the se
torof interest with N=n, the superpotential g! in the spinor representation simpli�es asg!��N=n = (1 + r2)n+14 ; sin
e ������N=n = 2Æ���: (95)All states in the N = n se
tor are annihilated by Qy. Zero modes � satisfy in addition0 = Q� = 2i �r�� = 2i �g��g�1�; g = gAg!: (96)Using (90) and (95) we 
on
lude that� = g �f(�z) y�1 � � � y�nj0i = (1 + r2)n+1�k4 �f(�z) y�1 � � � y�nj0i; (97)with some antiholomorphi
 fun
tion �f . Normalizability of � will put restri
tions on theadmissible fun
tions �f . Sin
e the operators �z����� (no sum) 
ommute with �� and withea
h other, we 
an diagonalize them simultaneously on the kernel of ��. Thus, we arelet to the following most general ansatz�fm = (�z�1)m1 � � � (�z�n)mn ; nXi=1 mi = m: (98)There are �m+n�1n�1 � independent fun
tions of this form. The solution � in (97) is square-integrable if and only ifk�k2 = Z dvol (det h) �y�(97)/ Z d
Z dr r2m+2n�1(1 + r2)�n+k+12 <1; (99)so normalizable zero modes in the N = n se
tor exist form = 0; 1; 2; : : : ; q � 12(k � n� 1): (100)Note, that q is always integer-valued, sin
e k is odd (even) if n is even (odd). Alsonote, that there are no zero modes in this se
tor for k < n+ 1 or equivalently q < 0. Inparti
ular, for odd n and vanishing gauge potential there are no zero modes, in agreementwith [29℄. 20



For q � 0, the total number of zero modes in the N=n se
tor isqXm=0�m+ n� 1n� 1 � = 1n! (q + 1)(q + 2) : : : (q + n): (101)Similar 
onsiderations show that there are no normalizable zero modes in the N = 0se
tor for q0 < 0, where q0 = 12(�k � n � 1). For q0 � 0 there are zero modes in theN = 0 se
tor, and their number is given by (101) with q repla
ed by q0.Observe, that the states in the N = 0 se
tor are of the same (opposite) 
hirality as thestates in the N = n se
tor for even (odd) n. The 
ontribution of the zero modes in thosese
tors to the index of i =D is given by1n! (q + 1)(q + 2) : : : (q + n); q = 12(k � n� 1); (102)for all q 2 Z.On the other hand, the index theorem on CP n reads [30℄ind i =D = ZCPn 
h(L�k=2)Â(CP n) = 1n! (q + 1)(q + 2) : : : (q + n); (103)where 
h and Â are the Chern 
hara
ter and the Â-genus, respe
tively. Note, that thisindex 
oin
ides with (102). This leads us to 
onje
ture, that for positive (negative) k allnormalizable zero modes of the Dira
 operator on the 
omplex proje
tive spa
es CP nwith Abelian gauge potential (90) reside in the se
tor with N = n (N = 0) and have theform (97).We 
an prove this 
onje
ture in the parti
ular 
ases n = 1 and n = 2. For CP 1 we have
onstru
ted all zero modes. The same holds true for CP 2 for the following reason: Letus assume that there are zero modes in the N = 1 se
tor. A

ording to (48) they haveopposite 
hirality as 
ompared to the states in the N = 0 and N = 2 se
tors. Hen
e,the index would be less than the number of zero modes in the extreme se
tors. On theother hand, a

ording to the index theorem, the index (103) is equal to this number.We 
on
lude that there 
an be no zero modes in the N = 1 se
tor.Con
lusionsWe have analyzed D-dimensional quantum me
hani
al systems that exhibit 
ertainamounts of supersymmetry. Taking the Hamiltonian to be the square of the Dira
operator, H = � =D2, on a 
urved manifold and with ba
kground gauge �elds, we have
onstru
ted a set of inequivalent `square roots' of H. This set in
ludes, of 
ourse, theoriginal Dira
 operator as well as additional super
harges Q(Ii). We have shown howthese 
an be obtained from 
omplex stru
tures Ii. Therefore, the existen
e of a higher21



amount of supersymmetry puts restri
tions on the admissible geometries and gauge 
on-�gurations. In even dimensions, N = 1 gives no restri
tions on the ba
kground �elds,while N =2 requires the manifold to be K�ahler and the �eld strength to 
ommute withthe 
omplex stru
ture. The N = 4 extended supersymmetry further requires spa
e tobe hyper-K�ahler and the gauge �eld strength to 
ommute with all three 
omplex stru
-tures. In four dimensions this is equivalent to the �eld strength being (anti-)selfdual.In 8; 12; 16; : : : dimensions this requirement is mu
h less restri
tive. In 8 spa
e dimen-sions, N =8 has only trivial solutions, namely 
at spa
e without gauge �elds. Again, in16; 24; 32; : : : dimensions there are non-trivial ba
kgrounds admitting an extended N =8supersymmetry.Our 
onstru
tion is similar to the one given in [9℄. However, our approa
h has the advan-tage that all obje
ts 
an be given a geometri
 interpretation, like 
onne
tions, 
urvatureet
. In addition, we found the following new aspe
ts: for ba
kgrounds admitting ex-tended supersymmetries (in parti
ular N =2) we 
an de�ne parti
le-number operatorsN 
ommuting with the super-Hamiltonian (even in 
urved spa
e and in the presen
e ofgauge �elds). The 
omplex nilpotent super
harges Q and Qy a
t as lowering and raisingoperators for the number operator. The 
ondition Q2=0 translates into the existen
eof a superpotential g for the (spin)
onne
tion as well as the gauge potential.As an appli
ation, we have deformed the Dira
 operator on CP n with the help of g intoits free 
ounterpart and solved the Dira
 equation, for all zero modes of i =D.As already mentioned in the introdu
tion, parti
ular higher dimensional quantum me-
hani
al systems 
an be interpreted as supersymmetri
 �eld theoreti
al models on aspatial latti
e. The results obtained in this paper will turn out to be very useful to
onstru
t supersymmetri
 sigma-models on a spatial latti
e. This is work in progress,and we are 
on�dent to report on these developments in the near future.A
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