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Abstract: In the present work we analyse N = (2, 2) supersymmetric Yang-Mills (SYM)
theory in two dimensions by means of lattice simulations. The theory arises as dimen-
sional reduction of N = 1 SYM theory in four dimensions. As in other gauge theories with
extended supersymmetry, the classical scalar potential has flat directions which may desta-
bilize numerical simulations. In addition, the fermion determinant need not be positive and
this sign-problem may cause further problems in a stochastic treatment. We demonstrate
that N = (2, 2) super Yang-Mills theory has actually no sign problem and that the flat
directions are lifted and thus stabilized by quantum corrections. Only the bare mass of the
scalars experience a finite additive renormalization in this finite theory. On various lattices
with different lattice constants we determine the scalar masses and hopping parameters for
which the supersymmetry violating terms are minimal. By studying four Ward identities
and by monitoring the π-mass we show that supersymmetry is indeed restored in the con-
tinuum limit. In the second part we calculate the masses of the low-lying bound states.
We find that in the infinite-volume and supersymmetric continuum limit the Veneziano-
Yankielowicz super-multiplet becomes massless and the Farrar-Gabadadze-Schwetz super-
multiplet decouples from the theory. In addition, we estimate the masses of the excited
mesons in the Veneziano-Yankielowicz multiplet. We observe that the gluino-glueballs have
comparable masses to the excited mesons.
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1 Introduction

Many extensions of the standard model of particle physics make use of supersymmetry
in order to cure well-known flaws of the standard model, as for instance the hierarchy
problem. Some of the additional particles of supersymmetric (susy) gauge theories may
be identified as dark matter particles in the universe. Since no additional particles have
been observed in experiments up to now it is of utmost interest to investigate the spectrum
of susy gauge theories, in particular in the strongly coupled regime. The most simple
supersymmetric gauge theories are probably the N = 1 Super-Yang-Mills (SYM) theories
with gauge groups SU(N). These are supersymmetric extensions of SU(N) Yang-Mills
theories [1, 2]. For SU(3) the bosonic sector is identical to that of QCD. It describes the
gluons of strong interaction in interaction with their superpartners, the gluinos. The gluinos

– 1 –



are Majorana fermions transforming in the adjoint representation of the gauge group. Like
in QCD, the theory is asymptotically free and it is expected, that the gluons and gluinos are
confined in colorless bound states. But differently from one-flavor QCD, the U(1)A chiral
symmetry is anomalously broken only to the discrete subgroup Z2N . At low temperatures
this symmetry is further broken spontaneously to Z2 by the formation of a gluino condensate
and thus gives rise to N physically equivalent vacua [3].
The SYM-theory has a richer spectrum of colour-blind bound states as QCD since the
gluinos are in the adjoint representation. Beside (adjoint) mesons, baryons and glueballs,
hybrid bound states of gluons and gluinos are expected to show up in the low energy
spectrum. Implementing symmetries and anomalies of the theory, low energy effective
actions have been proposed [4–6] describing the supersymmetric spectrum of bound states.
Thereby the chiral multiplet containing the adjoint f and η meson is extended to a super-
multiplet by a gluino-glueball. A second multiplet contains a 0+ glueball, a 0− glueball and
in addition a gluino-glueball. The low-energy effective action depends on free parameters
and hence it is not clear which multiplet is the lighter one. Various arguments were given
for both scenarios, see [4–7]. Another difficulty stems from the fact, that for every state
in the first multiplet there exists a state in the second multiplet with the same quantum
numbers. This mixing of states may lead to an even more complex multiplet structure.

Similarly as QCD the N = 1 SYM-theory is strongly coupled at low energies and
non-perturbative methods are necessary to investigate its mass spectrum. We simulate the
theory on a discrete spacetime lattice. This is a non-trivial task since a lattice regularisation
breaks supersymmetry explicitly. This can be seen from the susy algebra

{Q,Q} ∝ Pµ,

where Q is a generator of supersymmetry and the Pµ generate translations in space and
time. Since a discrete lattice does not admit arbitrary small translations, we can not pre-
serve the full supersymmetry on a lattice, similar to chiral symmetry. In order to recover
both symmetries in the continuum limit, certain parameters have to be fine-tuned, making
simulations more expensive. Fortunately for N = 1 SYM theory, the only relevant operator
that breaks supersymmetry (softly) is a non-vanishing gluino condensate which at the same
time breaks chiral symmetry. Thus it suffices to restore chiral symmetry in the continuum
limit to recover supersymmetry [8], making chiral Ginsparg-Wilson fermions the preferred
choice [9–11]. Unfortunately chiral fermions are computationally very expensive such that
it seems to be more efficient to fine-tune the bare gluino mass parameter of Wilson fermions.
For the gauge group SU(2) with Wilson fermions, the theory has been extensively investi-
gated by the DESY-Münster collaboration [12–19]. Their results confirm the formation of
the predicted super-multiplets and reveal, that the glueballs are heavier than the mesons.
Simulations for the gauge group SU(3) are underway [20, 21].
Another strategy is to look at the dimensionally reduced model, namely N = (2, 2) SYM-
theory in two dimensions. By calculating the mass spectrum of this related and simpler
model we should get further insights into the four-dimensional model. The two-dimensional
super-renormalizable descendant of the four-dimensional theory allows for larger lattices and
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much better statistics. This will lead to a mass spectrum with less statistical errors as in
four dimensions.
A first numerical simulation of the two-dimensional model was presented in [22, 23], where
the dimensional reduction was done for the lattice theory with compact link variables. Ac-
cordingly the scalar fields in the reduced model appear in the exponent of the compact link
variables. In the simulation the quenched configurations were reweighted with the Pfaffian.
Because of large (statistical) errors the results for Ward identities where inconclusive.
Apart from being a descendant of SYM-theory in four dimensions, the N = (2, 2) theory
in two dimensions has further interesting properties. Theoretical arguments [24, 25] and
numerical calculations based on a discretized light cone quantization [26, 27], both suggest
massless states in the physical spectrum. This massless super-multiplet is not seen in four
dimensions. Furthermore, it has been conjectured that dynamical susy breaking may occur
in the theory [28]. Recent lattice results for the vacuum energy however show no sign of
susy breaking [29].
The N = (2, 2) theory is the simplest gauge theory which admits a conserved and nilpotent
supercharge. This is possible because there are four supercharges from which one can build
one nilpotent supercharge Q. On a lattice only the subalgebra generated by nilpotent su-
percharges can be realized. Several Q-exact lattice models were proposed [30–32]. All these
models suffer from the following problem: Usually one can expand the link variables as
Uµ = 1 + iaAµ + · · · , in which case we expect an unique vacuum state. This is not the case
in all three models proposed and thus one expects an ambiguous continuum limit. In the
models in [30, 31] the problem is solved by adding the susy-breaking term µ2 tr

(
U †U − 1

)2
to the Lagrangian, which dynamically picks a unique vacuum state. In the limit µ → 0,
supersymmetry is then recovered in this construction. In contrast, by deforming the model
[32] the unphysical vacuum states can be removed without breaking the nilpotent super-
symetry explicitly [33]. Several numerical investigations show the restoration of the full susy
(not only the nilpotent one) [34–40]. The relations between these models were investigated
in [41–44]. For a more detailed overview see the reviews [45–49].
Two-dimensional continuum gauge theories have less dynamical degrees of freedom as four-
dimensional ones and thus we may expect that topology of the (Euclidean) spacetime be-
comes more important. In our work we use periodic lattices which discretize a two-torus.
In the works [50–52] different lattices with other spacetimes were scrutinized. In particular
a generalized topological twisting on generic Riemann surfaces in two dimensions [50] have
been considered. The authors revealed the connection of the sign problem, which is absent
on the torus, to the U(1)A anomaly. With a so called compensator the sign problem can
be solved on Riemann surfaces with genus 6= 1. Ward identities and the U(1)A anomaly –
the latter is intimately related to the zero modes of the Dirac operator – have been looked at.

The paper is organized as follows: In section 2 we introduce the N = (2, 2) theory,
discuss its continuum properties and in particular the expected particle spectrum. There is
only one relevant operator trφ2 that needs to be fine-tuned to recover susy in the continuum
limit. The corresponding mass-parameter is calculated to one-loop order. To investigate the
restoration of susy we derive three independent Ward identities. In section 3 we introduce
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our lattice formulation with Wilson fermions and discuss some technical points like the
fermion sign problem, potentially flat directions of the effective potential and fine-tuning of
the bare parameters. Since susy is broken at finite lattice spacing, the Ward identities are
not fulfilled. The additional contributions at finite lattice spacing are discussed in section
4 together with our simulation results concerning the restoration of supersymmetry in the
continuum and thermodynamic limit. We shall see that the model has no sign problems
in the simulations. The flat directions are lifted and we see no instabilities in the scalar
subsector. In section 5 we present our accurate results for the masses of the low lying bound
states. One super-multiplet becomes massless in the thermodynamic and supersymmetric
limit and a second super-multiplet decouples from the theory. In addition we see a massive
super-multiplet of excited states. At the end we present our conclusions in section 6.

2 N = (2, 2) SYM theory in two dimensions

In this section we will derive N = (2, 2) supersymmetric Yang-Mills (SYM) theory in two
dimensions by a dimensional torus-reduction from N = 1 SYM theory in four dimensions.
We begin with reviewing some relevant properties of the four-dimensional theory [1, 2]. The
action is given by

S =

∫
d4x tr

(
−1

4
FMNF

MN +
i

2
λ̄ΓMDMλ

)
, (2.1)

where capital indicesM,N assume the values 0, 1, 2, 3, the matrices ΓM build an irreducible
representation of the four-dimensional Clifford algebra and FMN is the field strength tensor

FMN = ∂MAN − ∂NAM − i g [AM , AN ] (2.2)

with gauge potential AM in the adjoint representation of the gauge group SU(N). The
gauge potential and Majorana-field are components of the same super-field such that λ
transforms under the adjoint representation as well. Hence, the covariant derivative of the
Majorana fermion is

DMλ = ∂Mλ− i g [AM , λ] . (2.3)

The action (2.1) is invariant under the on-shell supersymmetry transformations

δεAµ = iε̄ΓMλ, δελ = iFMNΣMN ε, δελ̄ = −iε̄ FMNΣMN (2.4)

with [ΓM ,ΓN ] = 4i ΣMN . These transformations are generated by ε̄Q, where ε is a constant
anticommuting Majorana-valued parameter and the {Qα} are the four components of the
Majorana-valued supercharge Q. The Majorana condition relates the four entries of a spinor
according to λ = λc = Cλ̄T, where C is a charge conjugation matrix.

The action is also invariant under global U(1)A transformations

λ→ eiαΓ5λ Γ5 = i Γ0Γ1Γ2Γ3 . (2.5)
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In the quantum theory, this chiral symmetry is broken down to Z2N via instantons. If a
chiral condensate

〈
λ̄λ
〉
6= 0 forms, it is further broken spontaneously to Z2

U(1)A
instantons−→ Z2N

〈λ̄λ〉
→ Z2 . (2.6)

The 2N physically equivalent vacua are related by the discrete chiral rotations

λ→ exp
(

i
nπ

N
Γ5

)
λ , n = 0, 1, 2, . . . , N − 1. (2.7)

Lattice simulations of four-dimensional N = 1 SYM show that chiral symmetry is indeed
spontaneously broken at zero temperature and restored above a critical temperature [17].

The two-dimensional N = (2, 2) SYM theory can be derived from the four-dimensional
theory via a Kaluza-Klein torus reduction. Thereby one compactifies two directions on a
torus such that R4 → R2 × T 2 and assumes, that the fields are constant on the torus,
e.g. ∂Mλ = 0 for M = 2, 3. The remaining non-compact coordinates are xµ with
µ ∈ {0, 1}. Although the reduction does not depend on the particular representation of
the four-dimensional Γ matrices, it is convenient to choose a particular one:

Γµ = 1⊗ γµ, Γ2 = iσ1 ⊗ γ5, Γ3 = iσ3 ⊗ γ5, Γ5 = σ2 ⊗ γ5 (2.8)

with γ5 = γ0γ1. In this representation, the charge conjugation matrices in two and four
dimensions are related as C4 = 1⊗ C2 and satisfy

C2γµC−1
2 = −γTµ =⇒ C4ΓMC−1

4 = −ΓTM . (2.9)

In a Majorana representation with purely real or imaginary γµ we may choose C2 = −γ0.
Applying the dimensional reduction to the Yang-Mills Lagrangian yields

− 1

4
FMNF

MN = −1

4
FµνF

µν +
1

2
DµφmD

µφm +
g2

4
[φm, φn] [φm, φn] , (2.10)

where the first term on the right hand side is the two-dimensional Yang-Mills Lagrangian,
the second term a kinetic term for the two adjoint scalar fields φm = Am+1 with m ∈ {1, 2}
and the third term a quartic interaction potential for the scalar fields. The kinetic term for
the four-dimensional Majorana fermion decomposes in a two-dimensional kinetic part and
a Yukawa interaction between the Majorana fermion λ and the scalar fields φm,

λ̄ΓMDMλ = λ̄ΓµDµλ− i gλ̄Γm+1 [φm, λ] . (2.11)

Note, that the four-component Majorana spinor λ turns into two (real) Majorana spinors in
two dimensions (in two dimensions an irreducible spinor has two components only). Later
we will merge them into one complex two-component Dirac spinor. After rescaling all fields
A, λ and φ according to A→ g−1A and absorbing afterwards the volume of the compactified
torus in the gauge coupling 1/g2 → VT /g2, we obtain the action of the two-dimensional
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N = (2, 2) SYM theory

S =
1

2g2

∫
d2x tr

{
−1

2
FµνF

µν + iλ̄ΓµDµλ+DµφmD
µφm

+λ̄Γm+1 [φm, λ] +
1

2
[φm, φn] [φm, φn]

}
,

(2.12)

the Euclidean version of which we use in our lattice simulations. In a next step we combine
the four-components of the Majorana spinor λ in two components of an irreducible Dirac
spinor in two dimensions and rewrite the action in terms of Dirac fermions and complex
scalars. Then the symmetries of the model are transparent and we can easily compare with
the Q-exact formalism [31]. With the Ansatz

λ =
2∑
r=1

er ⊗ χr =⇒ λ̄ =
2∑
r=1

eTr ⊗ χ̄r , (2.13)

where {e1, e2} is a Cartesian basis of R2, on which Γ0 in (2.8) acts trivially, and χr are
irreducible Majorana spinors in two dimensions, we obtain

S =
1

2g2

∫
d2x tr

{
− 1

2
FµνF

µν +DµφmD
µφm +

1

2
[φm, φn][φm, φn]

+ iχ̄rγ
µDµχr − χ̄r(iσ1)rsγ5[φ1, χs]− χ̄r(iσ3)rsγ5[φ2, χs]

}
(2.14)

that contains two flavours χr of Majorana fermions and two real scalar fields. Introducing
the Dirac fermion ψ and the complex scalar ϕ according to

ψ =
1√
2

(χ1 + iγ5χ2) , ψ̄ =
1√
2

(χ̄1 + iχ̄2γ5) , ϕ = φ1 + iφ2 , (2.15)

we end up with

S =
1

g2

∫
d2x tr

{
−1

4
FµνF

µν +
1

2
(Dµϕ)†(Dµϕ)− 1

8

[
ϕ†, ϕ

]2
+ i ψ̄γµDµψ − ψ̄P+ [ϕ,ψ]− ψ̄P−

[
ϕ†, ψ

]}
(2.16)

with chiral projection operators P± = (1± γ5) /2. When proving this results one may
use that for two Majorana spinors χ1, χ2 the trace of χ̄1[ϕ, χ2] + χ̄2[ϕ, χ1] vanishes. Un-
der dimensional reduction, the four-dimensional Lorentz transformations in SO(1, 3) turn
into two-dimensional Lorentz transformations and flavour rotations for the scalar fields (R
symmetry), i.e.

SO(1, 3)→ SOL(1, 1)× SOR(2) , (2.17)

and correspondingly Spin(1, 3) turns into Spin(1, 1) and R-transformations of the two spinor
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fields, generated by Σ23 = −σ3 ⊗ 1/2. This R-symmetry acts on the real fields as(
φ1

φ2

)
→ R(2α)

(
φ1

φ2

)
,

(
χ1

χ2

)
→ R(−α)

(
χ1

χ2

)
, (2.18)

where R(α) is a rotation with angle α. The complex fields transform as

ϕ→ exp(2iα)ϕ , ψ → exp(−iαγ5)ψ, ψ̄ → ψ̄ exp(−iαγ5) , (2.19)

which is identified as chiral symmetry in two dimensions. In contrast, the four-dimensional
chiral symmetry turns into a phase rotation of the Dirac field,

λ′ = exp(iαΓ5)λ =

(
cosα γ5 sinα

−γ5 sinα cosα

)(
λ1

λ2

)
⇒ ψ′ = exp(−iα)ψ (2.20)

and implies fermion number conservation in two dimensions. This observations allow us to
introduce two different fermion mass terms in the lattice formulation with Wilson fermions.
A four-dimensional Majorana mass term proportional to λ̄λ which violates fermion number
conservation in two dimensions or a two-dimensional Dirac mass term ψ̄ψ which violates
chiral symmetry. When fine tuning to the supersymmetric continuum limit we shall break
chiral symmetry of the reducible model in order to have the same fermionic symmetries as
in the Q-exact formulation in [32], to which we shall compare our results.

2.1 Expected mass spectrum

Veneziano and Yankielowicz where the first to derive a low energy effective Lagrangian for
N = 1 SYM theory in four dimensions, in analogy to QCD [4]. They conjectured that the
lightest super-multiplet contains the bound states shown in Table 1(a): a scalar meson a-f,

particle spin name

λγ5λ 0 a-η
λλ 0 a-f

FMNΣMNλ 1
2 gluino-glueball

(a) VY multiplet

particle spin name

FMNFMN 0 0++ glueball
FMN εMNRSF

RS 0 0−+ glueball
FMNΓMDNλ 1

2 gluino-glueball

(b) FGS multiplet

Table 1: Multiplet structure of N = 1 SYM theory as predicted by low energy effective
actions [4, 6].

a pseudoscalar meson a-η and a spin 1/2 bound state between a Majorana fermion and a
gauge boson, called gluino-glueball. We refer to this super-multiplet as the VY-multiplet. In
a confining theory one also expects glueballs in the particle spectrum. Therefore a second
super-multiplet was added by Farrar, Gabadadze and Schwetz [6]. The FGS-multiplet
is shown in Table 1(b). It contains a scalar glueball, a pseudoscalar glueball as well as
a spin 1/2 gluino-glueball. Predictions about the mass-hierarchy of the two multiplets
vary in the literature [4–7]. In four dimensions large scale Monte-Carlo simulations with
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Wilson fermions have been performed to investigate the spectrum of bound states [19].
The formation of the VY-multiplet containing both mesons and a gluino-glueball has been
observed while the 0−+ glueball is significantly heavier. Within (large) errors the 0++

glueball has the same mass as the f meson, but due to mass mixing, it is not clear whether
the operator projects onto the correct state. Thus the formation of a heavier multiplet has
not been confirmed yet.

The multiplet structure of the N = (2, 2) SYM model can be extracted either from an
effective Lagrangian of the two-dimensional system or by dimensionally reducing the super-
multiplets of the four-dimensional effective theory. Thereby one should be cautious since
the reduced model should contain massless states [26] and a super-multiplet with massless

particle spin name

λΓ5λ 0 a-η
λλ 0 a-f

FµνΣµνλ+ 2i[φ1, φ2]Σ23λ 1
2 gluino-glue/scalarball

particle spin name

[φ1, φ2]Fµν 0 glue-scalarball
FµνF

µν − 2DµφmD
µφm − 2[φ1, φ2]2 0 0++-glueball, scalarball

FµνΓµDνλ−Dµφm
(
iΓµ [φm, λ] + Γm+1Dµλ

)
1
2 gluino-glue/scalarball−[φm, φn]Γm+1 [φn, λ]

Table 2: Two dimensional reduced supermultiplets for the N = (2, 2) theory. In the
main body of the text we will call FµνΣµνλ the gluino-glueball and [φ1, φ2]Σ23λ the gluino-
scalarball.

states looks different as a massive super-multiplet. Thus it is not straightforward to foresee
the multiplet structure of the reduced system. In any case, the expected bound states –
massive or massless – of the N = (2, 2) SYM model are listed in Table 2.

2.2 Supersymmetry restoration in the continuum limit

As argued in the introduction, the lattice will break supersymmetry explicitly. To restore it
in the continuum limit, we have to fine-tune all relevant supersymmetry breaking operators
that are allowed by the remaining symmetries on the lattice. For N = (2, 2) SYM, a
discussion of supersymmetry breaking operators is contained in [32]. Thereby the authors
use a lattice formulation where one nilpotent supersymmetry is exactly preserved on the
lattice. In contrast, in our lattice formulation with Wilson fermions the operator φ2 may
show up in the effective action. To cancel this term we must introduce a scalar mass counter-
term m2

sφ
2 that has to be fine-tuned. The fine-tuned continuum value m2

s = 0.65948255(8)

has been calculated to one-loop order (which is sufficient for this theory) in [22]. Although
a formulation with compact scalar fields has been used, we checked that this value is also
correct for non-compact scalar fields used in our simulation. This can be explained as
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follows: The Jacobian of the transformation from the compact variables in [22] to non-
compact variables cancels (in one-loop) the additional contribution in the action for the
compact fields. Thus we find the identical continuum value for m2

s in both formulations.
As for the four-dimensional mother-theory there is only one relevant susy breaking term

in two dimensions. Because of the similarity of the two theories one expects an important
role of the fermion mass term in two dimensions as well. Let us first recall the impact of a
fermion mass in four dimensions. Calculating the Ward identities for the chiral symmetry
and the supersymmetry on the lattice, Curci and Veneziano demonstrated that only the
renormalized gluino mass will appear as a relevant additional lattice contribution in the
Ward identities [8]. Therefore by fine-tuning the bare gluino mass (in our case the fermion
mass), one recovers chiral symmetry and supersymmetry in the same limit. We expect the
same mechanism to be at work in two dimensions and thus will fine-tune the fermion mass.
Note that this idea is in line with [32], as the fermion mass must vanish in the continuum
limit to recover the chiral limit, as it is not a relevant operator. A fine-tuning on the lattice
will act as an improvement, reducing further supersymmetric violating contributions for
finite lattice spacing.

2.3 Euclidean formulation

Since we can not simulate a model with Minkowski spacetime, we must construct a continu-
ation to the corresponding Euclidean theory. This continuation for theories with Majorana
fermions was discussed in [53–55]. In contrast to Dirac fermions there is only one Majorana
spinor with λ = λTC. One cannot impose the reality condition λ = λ†. The action picks
up an overall negative sign leading to

S =

∫
d4xL, L = tr

(
1

4
FMNF

MN − i

2
λ̄ΓMDMλ

)
(2.21)

with Euclidean Gamma-matrices ΓM . Majorana fermions exist in the dimensionally reduced
Euclidean theory. As convenient representation we may use

Γµ = 1⊗ γµ, Γ2 = σ1 ⊗ γ5, Γ3 = σ3 ⊗ γ5, Γ5 = −σ2 ⊗ γ5 , (2.22)

now with Euclidean γµ. The hermitean matrices Γ5 = Γ0Γ1Γ2Γ3 and γ5 = iγ0γ1 are
related as Γ5 = −σ2 ⊗ γ5. Rescaling the fields and absorbing the volume of the torus in a
dimensionful gauge coupling the Lagrangian of the reduced Euclidean model reduces to

L =
1

2g2
tr

{
1

2
F 2
µν +

(
Dµφm

)2 − 1

2
[φm, φn]2 − iλ̄ΓµDµλ− λ̄Γm+1 [φm, λ]

}
. (2.23)

In terms of complex fields ψ and ϕ it takes the form

L =
1

g2
tr

{
1

4
F 2
µν +

1

2
(Dµϕ)†(Dµϕ) +

1

8

[
ϕ†, ϕ

]2
− i ψ̄γµDµψ + i ψ̄P+[ϕ,ψ] + i ψ̄P−[ϕ†, ψ]

}
. (2.24)
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In actual simulations we choose the formulation (2.23) with two real scalar fields and a
reducible four-component Majorana spinor.

2.4 Ward identities

In order to check for the restoration of supersymmetry in the continuum limit, we monitor
supersymmetric Ward identities

〈QO〉 = 0, (2.25)

with supercharge Q introduced in (2.4) and operators O. In four dimensions the fermionic
operator

Oa(x) = trc

{
λb(x)

(
ΓMN

)b
a
FMN (x)

}
(2.26)

is frequently used and gives rise to the bosonic Ward identity

1

V
〈SB〉 = 〈LB〉 =

1

4

〈
trFMNFMN

〉
= −3

8

i

2

〈
tr λ̄ /Dλ

〉
=

3

2

(
N2
c − 1

)
=

9

2
. (2.27)

We made use of the fact that the expectation values of densities do not depend on x. Note
that in the on-shell formulation, one obtains the factor of 3

8 instead of the factor 1
2 in the

off-shell formulation [47]. The identity relates the expectation values of the bosonic part of
the action to the fermionic part.

In accordance with the dimensional reduction we decompose the operator (2.26) into
three terms: one with {M,N} being {m,n}, one with {µ, ν} and finally one with {m,µ}
or {µ,m}. The corresponding three (two-dimensional) Ward identities read

W1 =
1

2

〈
[φ1, φ2]2

〉
− i

8

〈
λ̄Γ2 [φ1, λ] + λ̄Γ3 [φ2, λ]

〉
= 0 ,

W2 =
1

4

〈
FµνF

µν
〉

+
i

8

〈
λ̄Γ2 [φ1, λ]− λ̄Γ3 [φ2, λ]

〉
=

3

2
,

W3 =
1

2

〈
Dµφ

mDµφm
〉

= 3.

(2.28)

Note that the sum rule W1 +W2 +W3 just reproduces the result 9
2 in (2.27).

3 Lattice formulation

In the simulations we use Wilson fermions and the tree-level improved Lüscher-Weisz gauge
action [56]. The scalar fields are treated as non-compact site-variables in the adjoint repre-
sentation of the gauge group. The action for the scalar fields is implemented by using the
forward difference

Df
µφx = φx+eµ − UA

x,µφx (3.1)

in the kinetic term, where the link variables UA
x,µ are in the adjoint representation. The

fermion operator for Wilson fermions is then

Dxy = (mf + 2 + Γm+1f
aφma ) δx,y −

1

2

∑
µ

(1− Γµ) δx+eµ,yU
A
x,µ + (1 + Γµ) δx−eµ,yU

A
y,µ

T

(3.2)
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where the matrices (fa)bc are the structure constants of the gauge group SU(2). Integration
over the Majorana fermion yields the Pfaffian of CD and we obtain for the partition function
as integral over the bosonic fields,

Z =

∫
DUDφ Sign(Pf(CD)) det(D†D)

1
4 e−S[U,φ]. (3.3)

We made use of the Γ5-hermiticity of the fermion operator Γ5DΓ5 = D†. The fourth root
of D†D is approximated by a rational approximation in the rHMC [57–60] algorithm.

3.1 Sign problem and flat directions

Two known problems may potentially spoil the Monte-Carlo simulations: a potential sign
problem introduced by the Pfaffian and possible flat directions in which the scalar potential
is constant. We address both issues in turn. Although the eigenvalues λi of the hermitian
matrix Q = Γ5D are real and doubly degenerate [12], the Pfaffian can still introduce a sign
problem that we have to take into account in the simulations. Using the dependence of
the Pfaffian on the hopping parameter κ = 1/(2mf + 4) it is possible to show [15] that the
Pfaffian and the determinant are related by

detD =
∏
i

λ2
i ⇒ Pf(CD[U ]) =

∏
i

λi . (3.4)

We use the nice spectral flow method introduced in [15] to monitor a potential sign problem.
The idea is that for a given gauge field configuration (a typical one for fixed β and κ) the
eigenvalues λi vary continuously when the hopping parameter κspec in the fermion operator
increases. For the free operator with κspec = 0 the Pfaffian is positive. Therefore, the
Pfaffian can only become negative if an odd number of eigenvalues λi(κspec) change their
signs as a function of κspec. We have monitored the 10 eigenvalues with smallest absolute
values, shown in the left panel of Figure 1 for configurations generated with β = 17 and
κ = 0.26062 as function of the flow parameter κspec increasing from 0 to the value of interest
κ. The positive eigenvalues decrease monotonously while the negative eigenvalues increase
as κspec → κ, but they do not cross zero such that the Pfaffian for this configuration remains
positive. Furthermore we show the smallest eigenvalues for three ensembles of 1000 gauge
configurations each belonging to the three flow parameters κspec = κ, 0.25734, 0.25520 in
Figure 1. Even for κspec = κ no eigenvalue is small enough to change its sign. Hence the
sign of the Pfaffian is always positive. We repeated the simulation for different volumes,
inverse gauge couplings and hopping parameters. For κ < κc we never observed a negative
Pfaffian while for κ > κc approximately one in thousand configurations had a negative sign.
Thus we safely conclude that there is no sign problem in our simulations.
The scalar potential

V [φ1, φ2] = [φ1, φ2]2 (3.5)

in the bosonic action is invariant under a shift

φ1 → φ1 + αφ2 φ2 → φ2 , (3.6)
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Figure 1: Left: Spectral flow of 10 eigenvalues with smallest absolute values for β = 17,
κ = 0.26062 on a 64 × 32 lattice. Right: Smallest eigenvalues for three different values of
the spectral flow parameter κspec: 0.25520 (blue triangles), 0.25734 (orange circles) and κ
(purple squares).

where α is an arbitrary real parameter. This is an example of a flat direction in the space
of fields (φ1, φ2) along which the potential is constant. Flat directions are generic for SYM-
theories with extended susy and may destabilize Monte-Carlo simulations since the scalar
fields may escape along these directions. Flat directions may either be lifted dynamically
by quantum corrections or explicitly by introducing a mass term m2

sφ
2. Actually, as em-

phasized earlier, on the lattice we must introduce a mass term with finite ms to find the
correct supersymmetric continuum limit. This term (which is needed even for a→ 0) lifts
the flat directions explicitly. This is shown in Figure 2 where we plotted the spatial aver-
age φ2 = 1

V

∑
φ2
x as function of Monte-Carlo time for β = 17, κ = 0.26178 on a 64 × 32

lattice in the left panel and the expectation value of φ2 as function of ms in the right panel.
For all sets of parameters considered, the absolute value of the scalar fields does not run
away. Hence we conclude, that flat directions are lifted for values ms near the value of the
supersymmetric model and thus cause no problems in the simulations. In a previous work
the lifting of flat directions has been observed even for the susy-breaking value m2

s = 0 and
small values of the inverse gauge coupling [61].

3.2 Scalar and fermion mass fine tuning

The scalar mass is the only relevant coupling that has to be fine-tuned to restore super-
symmetry in the continuum limit (in two dimensions the fermion mass needs not be fine
tuned). Its value in the thermodynamic and continuum limit is analytically known from
one-loop perturbation theory m2

s = 0.65948 [22]. On the finite 64 × 32 lattice the mass is
shifted towards the smaller value m2

s = 0.62849. In order to investigate the dependence
of expectation values on m2

s we performed simulations for a larger range m2
s ∈ [0.50, 0.80].

Although the scalar mass breaks supersymmetry explicitly, it turns out that within the
statistical uncertainties the Ward identities are independent of the scalar mass. Therefore
we set the scalar mass to m2

s = 0.66, very close to the continuum value, in our simulations.
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Figure 2: Spatial average of squared scalar field as function of Monte-Carlo time for β = 17,
κ = 0.26178, m2

s = 0.66 (left) and its expectation as function of m2
s (right) on a 64 × 32

lattice. The (one-loop) value for the fine-tuned explicit scalar mass at the supersymmetric
point is m2

s ≈ 0.6595.

In contrast to four-dimensional N = 1 SYM theory, a fine-tuning of the bare fermion
mass mf is not necessary to restore supersymmetry in the continuum limit. Nevertheless we
shall enhance the chiral properties on the lattice by tuning mf to its critical value mc

f (L, β),
that depends on the inverse gauge coupling β but depends little on the lattice size. In the
continuum limit, the critical fermion mass should approach mc

f = 0, in agreement with the
results in [22, 32]. There are two straightforward methods to determine the critical fermion
mass on a finite lattice. The first uses the order parameter for chiral symmetry

〈
λ̄λ
〉
and

defines mc
f by the peak position of the chiral susceptibility. The second method comes from

an analogy to QCD which is also employed in the four-dimensional N = 1 SYM theory
[4, 16, 62]: Although the pion is not a physical particle in the theory, one can define its
correlation function in a partially quenched setup which mimics a second Majorana flavour
in N = 1 SYM. The pion mass is related to the renormalized gluino mass by

mq ∝ m2
π. (3.7)

We expect this relation to hold in two dimensions as well and define the critical fermion
mass at the value where the gluino mass vanishes. The results for the two methods are
given in Table 3. Both methods yield comparable values for the critical fermion mass. One
observes that the fermion mass approaches the expected continuum value from below.
In the following section we show that

√
β ∝ a. Therefore we extrapolate our results to the

continuum with the ansatz

mc
f (β) = m∞ + c1β

−e1 + c2β
−e2 . (3.8)

The coefficients ci encode lattice artifacts and in the continuum limit mc
f (β → ∞) = m∞.

Since mc
f (β) does not depend significantly on the lattice size, we also include simulations
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β 14.0 15.5 17.0 18.0 19.0

mc
f (χs) −0.0983(2) −0.0969(4) −0.0896(22) −0.0857(6) −0.0819(4)

mc
f (π) −0.1003(1) −0.0931(1) −0.0853(1) −0.0821(1) −0.0787(1)

β 40 60 80 100

mc
f (π) −0.0413(5) −0.0272(5) −0.0243(7) −0.0189(4)

Table 3: Critical fermion mass mc
f for different β. To determine the mass we use the chiral

susceptibility and the mass of the pion ground state.

at β = 40, 60, 80, 100 on smaller lattices into the extrapolation. The results of the fits are
shown in Table 4. We give two different values χ2

w and χ2 for the goodness of the fit. The
first χ2

w was calculated including the errors for mc
f as weights in the fit and the second χ2

without weights. χ2 is much smaller, showing that the fit of the given ansatz to the data
is very good, but the errors for the critical masses are probably underestimated1. Within
uncertainties the values for m∞ are compatible with the expected results m∞ = 0.

m∞ c1 c2 e1 e2 χ2
w χ2

0.0108(9) −0.218(9) −0.74(2) 1/2 1 18.98 1.25× 10−6

−0.0037(4) −1.59(1) 3.27(13) 1 2 21.85 8.77× 10−7

0.0037(8) −0.83(1) 0 0.785(8) - 19.04 1.11× 10−6

Table 4: Fit values for the fit function given in (3.8), for three different sets of parameters.
The mass m∞ represents the continuum value of the critical fermion mass mc

f , which should
be zero. The underlined parameters are prescribed in the 2-parameter fits.

3.3 Scale setting and lattice spacing

In order to determine the lattice spacing and perform the continuum limit, we consider the
static quark-antiquark potential in the fundamental representation of SU(2) and extrapolate
with the expected form

V (r) = A+
C

r
+ σr (3.9)

to the chiral limit. Here C parametrizes the Coulomb term and σ is the string tension. For
β = 17 and mf = −0.044 the potential is shown in Figure 3. To compare our results to
usual QCD lattice data, we employ the Sommer scale [63] and define a lattice spacing in
physical units. The results for three different values of the inverse gauge coupling

β =
1

a2g2
(3.10)

1The errors given for the critical fermion masses mc
f include only fit errors but not statistical errors.
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Figure 3: Left: Static quark potential and fit to (3.9) for β = 17.0 and mf = −0.044.
Right: Lattice spacing a for β = 14.0, 15.5 and 17.0 as function of κ on a 64× 32 lattice.

are depicted in Table 5. Since the lattice spacing a heavily depends on the fermion mass,
we extrapolate the latter to its chiral limit mf = mc

f . The results are given in Table 5.
In the last rows we checked that the inverse dimensional coupling 1/g2 = βa2 in (3.10) is
almost independent of β, confirming that the continuum limit is reached for β →∞.

β = 14.0

mf −0.062 −0.08 −0.09 −0.099 −0.100
a[fm] 0.0734(3) 0.0700(4) 0.0678(5) 0.0644(5) 0.0650(25)
βa2[fm] 0.0754(6) 0.0686(8) 0.0644(9) 0.0581(9) 0.0592(46)

β = 15.5

mf −0.054 −0.07 −0.083 −0.093
a[fm] 0.0713(1) 0.0671(4) 0.0645(4) 0.0618(18)
βa2[fm] 0.0788(2) 0.0698(8) 0.645(8) 0.0592(35)

β = 17.0

mf −0.044 −0.074 −0.084 −0.085
a[fm] 0.0676(2) 0.0620(4) 0.0589(4) 0.0591(16)
βa2[fm] 0.0777(5) 0.0653(8) 0.0590(8) 0.0595(31)

Table 5: Lattice spacing for different combinations of β and mf. In the last column we
give the extrapolations to the chiral limit.

3.4 Smearing

We use three different kinds of smearing in the simulations. For the scalar fields we utilize
the low pass filter for functions. This smearing process is defined as

φ̃n(x) = (1 + ε∆) φ̃n−1(x) with φ̃0(x) = φ(x), (3.11)
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where φ(x) is the scalar field, φ̃n(x) is the smeared field and ε is the smearing parameter.
For gauge fields we use STOUT smearing [64] and for the fermionic sinks and sources on
the lattice we apply Jacobi smearing [65, 66].

β mf m2
s # C

14.0 -0.09900 0.66 20000
14.0 -0.09675 0.66 15000
14.0 -0.09450 0.66 15000
14.0 -0.09225 0.66 15000
14.0 -0.09000 0.66 20000
14.0 -0.08000 0.66 20000
14.0 -0.06200 0.66 20000
15.5 -0.09200 0.66 20000
15.5 -0.08975 0.66 15000
15.5 -0.08750 0.66 15000
15.5 -0.08525 0.66 15000

β mf m2
s # C

15.5 -0.08300 0.66 20000
15.5 -0.07000 0.66 20000
15.5 -0.05400 0.66 20000
17.0 -0.08400 0.66 14000
17.0 -0.08150 0.66 15000
17.0 -0.07900 0.66 15000
17.0 -0.07650 0.66 15000
17.0 -0.07400 0.66 20000
17.0 -0.06200 0.66 20000
17.0 -0.04400 0.66 20000

Table 6: Number of Configurations (# C) for the given parameters β, mf and ms on a
64× 32 lattice.

In Table 6 we give the number of configurations generated for the given sets of param-
eters {β,mf,ms} on a 64×32 lattice. A large number of configurations is needed to extract
the masses of the ground- and excited states of the f-meson. Large fluctuations of the two
scalar fields entering the fermion operator via the Yukawa terms induce strong fluctuations
of fermion correlators.

4 Restoration of Ward identities

The simple continuum Ward identities (2.28) do not hold on the lattice since (in our for-
mulation) there are just no supersymmetries which leave the lattice action invariant. But
in the continuum limit we must recover these identities if we take the finite additive renor-
malization of the parameter m2

s into account.

Inspired by the treatment of four-dimensional models in [8, 14, 67–69] we impose three
rules to define the lattice transformations:

1. They become the continuum susy transformations in the continuum limit.
2. They commute with the gauge transformations.
3. The transformation of the covariant derivative is the lattice equivalent of the contin-

uum counterpart.

These rules allow us to reduce the plethora of possible lattice transformations acting on the
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lattice fields {Uµ(x), λ(x), φm(x)} to a small set. We choose the transformations

Q̄αUµ(x) =
a

2
Uµ(x)(Γµ)αβ λ

β(x+ aeµ) , Q̄αU †µ(x) = −a
2

(Γµ)αβ λ
β(x+ aeµ)U †µ(x) ,

Q̄αλβ = 0 , Q̄αλ̄β = −(Γµν)αβG
µν , Q̄αφm =

1

2
Γm+1

α
βλ

β,

(4.1)
where all fields but Uµ carry the canonical dimensions in four dimensions and a2Gµν is the
clover plaquette. Since the lattice action is not invariant the continuum Ward identities are
deformed to lattice identities 〈

Q̄O
〉

=
〈
O Q̄Slat

〉
, (4.2)

where the transformation of the Lagrangian is given by

Q̄αLlat =
β

2

{
∂µs

α
µ − (mf −mc

f ) χ
α
f +

(
m2

s − (mc
s)

2
)
χαs

}
+O(a) (4.3)

with dimensional quantities Llat and β. After summing over all lattice sites the contribution
of the supercurrent sαµ vanishes, up to terms of order O(a). In addition, the terms χαf and
χαs represent corrections introduced by a nonzero fermion mass mf and a scalar mass ms

away from their critical values. These terms are suppressed after fine-tuning the masses.
Details on the calculation are given in Appendix A. Finally we obtain the lattice Ward
identities in the chiral limit mf → mc

f

WB =βV −1〈SB〉+ βm2
s 〈trφ2〉 → 9

2
, W3 =

β

2
〈trDµφ

aDµφa〉+ βm2
s 〈trφ2〉 → 3 ,

W2 =
β

4
〈trFµνFµν〉+ β〈tr λ̄Υ

〉
→ 3

2
, W1 =

β

2
〈tr [φ1, φ2]2〉 − β〈tr λ̄Υ〉 → 0 ,

(4.4)

where we used the abbreviation

Υ =
i

8

(
Γ2 [φ1, λ] + Γ3 [φ2, λ]

)
. (4.5)

4.1 Extrapolation to the chiral limit

For this analysis, we used additional lattices with parameters β = 40, 60, 80, 100, LT = 16

and LS = 8. Such small lattices are reasonable since the Ward identities show no dependence
on the lattice size for LS,T > 8 for all β. To extrapolate our results to the chiral limit we
need a guess for the functional dependence of the Ward identities on the bare mass mf.
In two dimensions there is no spontaneous symmetry breaking and correlators are smooth
functions of mf. Our simulations indicate that bosonic correlators show, up to an additive
constant b, a smoothed step function behavior on the fermion mass. This motivates the
following ansatz for their mf -dependence near the critical fermion bare mass m∗:

W (mf) ∼ a arctan {ξ (mf −m∗)}+ b (4.6)

with fit parameters a, b,m∗ and ξ, where ξ is to be interpreted as lattice correlation length.
For example, in the left panel of Figure 4 we depicted fits to the Ward identity W2
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Figure 4: The Ward identity W2 in (4.4) is shown for β = 17 (left) and β = 40 (right).

which is dominated by the term quadratic in the field strength tensor. We observe that our
ansatz yields a good approximation for the functional dependence of the data on mf. The
extracted value for m∗ is very close to the critical fermion mass mc

f . For β ' 40 this ansatz
is not appropriate anymore and we use a linear fit function, as seen on the right hand side
of Figure 4. This allows us to extract the value of the Ward identities in the chiral limit.
Finally we have to extrapolate the Ward identities to the continuum limit. In the Appendix
A we show that close to its critical value in the continuum m2

s = 0.65948 the results are
insensitive to the scalar mass and we simulate at m2

s = 0.66. In Figure 5 we show the

Ward identity W1 W2 W3 WB

β = 14.0 −0.0204(17) 1.4360(27) 3.01012(90) 4.4434(79)
β = 15.5 −0.0162(16) 1.4403(29) 3.01081(42) 4.4486(55)
β = 17.0 −0.0154(13) 1.4447(25) 3.01007(51) 4.4533(71)
β = 40.0 −0.00246(22) 1.4703(15) 3.00367(48) 4.4729(24)
β = 60.0 −0.00145(12) 1.4790(8) 3.00216(49) 4.4807(17)
β = 80.0 −0.00096(8) 1.47831(8) 3.00233(49) 4.4853(18)
β = 100.0 −0.00084(31) 1.4869(27) 3.00211(67) 4.4877(16)

β →∞ (Fit 1) 0.0058(4) 1.517(2) 2.9951(6) 4.5135(33)
β →∞ (Fit 2) 0.0019(2) 1.4929(8) 2.9999(4) 4.494(2)
β →∞ (Fit 3) −0.0005(2) 1.505(10) 3.001(1) 4.51(2)

β →∞ (weighted average) −0.0005(2) 1.505(12) 2.999(3) 4.506(10)

theor. value 0 3
2 3 9

2

Table 7: Ward identity values for different β and a lattice size of 64×32. In the last columns
we show continuum extrapolations with three different fit functions and a weighted average
as well as the theoretical value.

results for all four Ward identities for different β. We observe a monotonic convergence

– 18 –



-0.0035

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0.0005

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

W1

mf −mc
f

β = 14.0
β = 15.5
β = 17.0
β = 40
β = 60
β = 80
β = 100
theor. value 1.36

1.38

1.40

1.42

1.44

1.46

1.48

1.50

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

W2

mf −mc
f

β = 14.0
β = 15.5
β = 17.0
β = 40
β = 60
β = 80

β = 100
theor. value

3.000

3.002

3.004

3.006

3.008

3.010

3.012

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

W3

mf −mc
f

β = 14.0
β = 15.5
β = 17
β = 40
β = 60
β = 80

β = 100
theor. value

4.40

4.42

4.44

4.46

4.48

4.50

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

Wbos

mf −mc
f

β = 14.0
β = 15.5
β = 17.0
β = 40
β = 60
β = 80

β = 100
theor. value

Figure 5: Ward identities (4.4) as functions of mf −mc
f with mean values and standard

deviation (confident band) for various values of β between 14 and 100. Shown are the Ward
identities W1 (top left), W2 (top right), W3 (bottom left) and the bosonic Ward identity.
The analysis for the bosonic Ward identity WB was done individually for the given data
and is not the sum W1 +W2 +W3.

to the expected continuum value. In Table 7 we give the values of all Ward identities for
the chiral limit and different β together with the expected continuum value. The plots
in Figure 6 show the dependence of the Ward identity on β. The Ward identities clearly
converge to the supersymmetric continuum values. In order to extrapolate our results to
the continuum limit, we use three different fits of the form

W (β) = W∞ + b β−c (4.7)

with the prescribed value c = 1/2 for Fit 1, c = 1 for Fit 2 (b and W∞ are free fit
parameters). Fit 3 has three free fit parameters. The fits are shown in Figure 6 and
the results for W∞ are given in Table 7. From the three fit functions we can estimate a
systematic error coming from the choice of a particular fit function. This error alleviates
our bias in choosing such a function. The weighted average takes into consideration the
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Figure 6: Ward identities for different values of β together with three different fits used
for the continuum extrapolation. Horizontal lines indicate the theoretical value in the
supersymmetric continuum limit.

goodness of the fits. The Ward identities clearly point to the restoration of supersymmetry
in the continuum limit, indicating also no sign of spontaneous susy breaking.

5 Mass spectrum

In order to determine the mass spectrum of the theory, we first perform the infinite volume
limit, then the chiral limit and finally the continuum limit. For the infinite volume limit we
study the dependence of the mass of the lightest state on the size of the system in order to
locate a κ- and β-range where the results are (almost) insensitive to the volume. Then we
simulate the theory at a fixed lattice volume for different values of the hopping parameter κ
and extrapolate the results to the critical value κc(β), where the gluino becomes massless.
Finally we repeat the simulations for three different values of the gauge coupling β and try
to extrapolate the results to β →∞.
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5.1 Volume dependence

The finite volume dependency of bound states is given by [70, 71]

mL = m− c

L
exp

(
− L

L0

)
, (5.1)

where mL is the mass at a finite lattice with spatial length L and m the mass in the infinite
volume limit. The parameter L0 represents the scale at which finite volume effects set in. In
order to eliminate this fit parameter, we relate it to the infinite volume mass of the lightest
particle, i.e. L0 = π/mη. For the fit we consider only masses mL ≥ π/Lt. The η-meson
ground state mass mL is shown for β = 12 and four different values of κ in Figure 7. For
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Figure 7: Infinite volume extrapolation for the mass of the η-meson at β = 12 and different
values of the hopping parameter κ compared to the smallest lattice momentum π/Lt. The
horizontal lines indicate the infinite volume mass m.

the smallest value κ = 0.26206 the infinite volume mass is given by m = 0.1607(8). For
our smallest lattice with Lt = 16 it is below the smallest lattice momentum π/16 and in
accordance with the sampling theory we observe a more massive state then. For our largest
lattices with Lt = 64 and Lt = 96 the mass mL is within statistical errors the same as the
infinite volume mass m. Qualitatively the same behaviour is observed for κ = 0.26344 and
κ = 0.26455. For κ = 0.26539 all masses except the one on the largest lattice are below
the lattice cutoff. Nevertheless we observe that the fit function works well even in this case
and yields reliable results for the infinite volume mass. For the spectroscopy we restrict
ourselves to a lattice size of 64×32 and κ ≤ 0.264, where finite volume effects are negligible.

5.2 Mesons

We have calculated the π -, η - and f-meson correlation function for different values of the
hopping parameter κ. In Figure 8 we show our results for two different values of κ ≤ κc.
For the larger value κ = 0.26096 the masses are slightly above the lattice momentum
cutoff. First of all we observe that the π- and the η-meson correlation functions are not
distinguishable for all values of κ considered. We conclude that the ground state mass of
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Figure 8: The η -,π - and f-meson correlation functions are shown for β = 17 and κ =
0.25800 (left) and κ = 0.26096 (right).

the η-meson vanishes in the chiral limit. Next we observe that the correlation functions
for the f- and the η-meson become more and more degenerate in the chiral limit. This
suggests, that indeed both mesons form a multiplet in the chiral limit, independent of the
restoration of susy in the continuum limit. To further investigate this behaviour we study
the connected and the disconnected contributions to the correlation functions. Recall, that
the pion correlation function is defined as the connected part of the η-meson correlation
function. In Figure 9 we depicted the two contributions to the correlation functions for the
η-meson (left) and the f-meson (right). For the η-meson we find that the connected part is
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Figure 9: Connected and disconnected part of the η-meson (left) and f-meson (right)
correlation function for β = 17 and κ = 0.26096.

at least two orders of magnitude larger than the disconnected part. Therefore the η- and
the π-meson correlation function are not distinguishable. For the f-meson we see, that both
contributions are roughly of equal size over the whole t range. Hence a degeneracy between
η-meson and f-meson correlation functions is nontrivial. We also determined the ground
state and excited state masses of both mesons. The results are given in Table 8 as well as
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in Figure 10. Again we observe that the masses for the η and π meson are the same for

β = 14.0

κ 0.25800 0.26042 0.26178 0.26209 0.26240 0.26270 0.26302

mη 0.208(1) 0.150(2) 0.107(1) 0.098(2) 0.082(3) 0.068(4) 0.053(1)
mf 0.444(71) 0.322(12) 0.237(10) 0.195(11) 0.133(92) 0.084(45) 0.047(3)
mη∗ 0.889(21) 0.943(17) 0.358(54) 0.281(77) 0.272(97) 0.233(33) 0.218(32)
mf∗ - - - 0.792(472) 0.313(246) 0.332(328) 0.242(7)

β = 15.5

κ 0.25694 0.25907 0.26082 0.26113 0.26144 0.26175 0.26205

mη 0.203(3) 0.154(1) 0.100(5) 0.089(2) 0.076(9) 0.059(2) 0.045(1)
mf 0.479(37) 0.324(43) 0.197(11) 0.155(42) 0.100(29) 0.047(14) 0.035(3)
mη∗ 0.842(232) 0.927(11) 0.311(48) 0.270(39) 0.245(43) 0.216(33) 0.222(10)
mf∗ - - - 0.380(415) 0.291(124) 0.253(89) 0.226(72)

β = 17.0

κ 0.25562 0.25800 0.25961 0.25994 0.26028 0.26062 0.26096

mη 0.208(3) 0.157(1) 0.112(2) 0.096(1) 0.082(1) 0.068(2) 0.053(3)
mf 0.502(8) 0.336(26) 0.239(32) 0.159(31) 0.085(13) 0.061(1) 0.044(3)
mη∗ - 0.951(14) 0.462(19) 0.0353(20) 0.283(62) 0.264(96) 0.213(15)
mf∗ - - 0.533(262) 0.509(216) 0.321(36) 0.302(24) 0.270(13)

Table 8: Masses of the η- and f-meson ground and excited states.
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Figure 10: Ground (left) and excited (right) state masses of the η- and f-meson as function
of the pion mass squared for β = 14, 15.5 and 17.

all values of β and κ. For the ground state mass of the f-meson, we find agreement with
the ground state mass of the η-meson only in the chiral limit.

For the excited states we can not make similar conclusive statements, since it is difficult
to extract their masses from κ’s not close to κc. This explains the large errors for the masses
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of the excited states. Nevertheless, in the chiral limit we find they are all in the same range
spanning from 0.19 to 0.28. Since we were unable to get a better mass-resolution for these
states, we can not make a reliable continuum extrapolation to arrive at physical masses.
But we may safely conclude that in the chiral limit the η- and f-meson are degenerate. This
remains true for all values of the gauge coupling considered such that this mass degeneracy
still holds in the continuum limit. In addition, the ground state multiplet is massless, since
the η-meson and the pion always have the same mass. Whether both mesons form the
proposed super-multiplet depends on the mass of the gluino-glueball.

5.3 Gluino-glueball

In the four-dimensional multiplet we have two gluino-glueball particles, which differ by their
transformation under parity. The interpolating fermionic operator we use is given by

OGG = ΣµνF
µνλ. (5.2)

Although the projectors on a definite parity quantum number are P± = (1 ± Γ0)/2 we
project on periodic (S) and antiperiodic (A) correlation functions

CA(t) =
〈
OGG(t)O†GG(0)

〉
, CS(t) =

〈
OGG(t)Γ0O

†
GG(0)

〉
. (5.3)

All other contractions over Γ-matrices can be written as a linear combination of these two
correlation functions, as expected for two independent physical states. The determina-

S 0 6 12 18 24 30 36

mA 0.324(13) 0.531(29) 0.404(16) 0.358(13) 0.333(11) 0.315(10) 0.302(10)
mS 0.391(12) 0.633(14) 0.517(7) 0.469(5) 0.441(4) 0.421(4) 0.406(4)

S 48 80 240 400 1200 2400 3600

mA 0.282(9) 0.256(12) 0.234(5) 0.222(1) 0.165(2) 0.163(2) 0.168(2)
mS 0.384(3) 0.347(11) 0.270(3) 0.252(2) 0.224(5) 0.214(4) 0.214(5)

Table 9: Extracted masses for different smearing levels S for the symmetric and antisym-
metric gluino-glueball states for β = 17 and mf = −0.084.

tion of the mass on larger lattices is only possible with the help of gauge field smearing.
We introduce the smearing level S = steps × parameter, where ’steps’ are the amount of
smearing steps and ’parameter’ is the smearing parameter for these steps. The correlation
functions CS(t) for different smearing levels are shown in Figure 11 (left panel). Even for a
large amount of smearing steps the signal still improves. In Table 9 we give our results for
β = 17 and mf = −0.084. At first, smearing increases the mass of the state. This can be
attributed to a contact interaction between almost decoupled glueballs (see next chapter).
For even more smearing levels, the mass decreases until it converges. This behaviour is
even seen for large smearing levels (S = 3600). Both masses mA and mS converge to the
same value as expected in a parity symmetric theory. Furthermore the mass depends only
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Figure 11: Left: Gluino-glue correlation function at β = 17 and mf = −0.084 for different
smearing levels S. Right: Gluino-glue mass as a function of the squared pion mass.

very weakly on the gauge coupling β and the bare fermion mass mf (see Figure 11, right
panel), but it depends on the lattice size. For the smearing level of 400, it decreases from
ms = 0.315(25) on the 16 × 8 lattice to 0.262(37) on the 32 × 16 lattice and further to
0.252(2) on our largest 64 × 32 lattice. With (5.1) we can extrapolate to infinite volume.
The limiting value 0.251 is very close to the value on the largest lattice, such that there are
only small finite volume effects on the large lattice.

Comparing with the masses of the mesons, we find that the gluino-glueballs have com-
parable masses as the excited mesons. An explanation for this unexpected behavior could
be, that the first excited state of the gluino-glueball dominates the correlation function over
a long t-range, such that the ground state contribution is not visible on our lattice sizes.
To see whether this is the case, we applied this large amount of smearing (S = 3600), but
we did not observe any sign of a lighter particle in this channel. Thus an alternative expla-
nation could be, that we indeed detected the ground state of the gluino-glueball. But then
one must explain why the gluino-glueball forms a multiplet with the excited mesons and
not the mesons in their ground states. The fermionic state in the VY-multiplet is a mixture
of the gluino-glue and a gluino-scalarball. Possibly the gluino-scalarball has a lighter mass.
Unfortunately, also with a large amount of smearing for the scalar field, we are not able to
obtain an estimate for its mass.

5.4 Glue- and scalarballs

The second multiplet of bound states consists of glue-, scalar- and glue-scalarballs. The
correlation functions of the corresponding interpolating operators show no correlation at all
for large distances. For the glueball, this is shown in Figure 12. The only nonzero values
of the correlation function are at distances t = 0, 1, 62 and 64. A similar behavior is seen
in pure Yang-Mills theory on a two-dimensional lattice. Indeed, with Migdals prescription
[72] one obtains for the correlation function of the glueball operator G(x) in this theory

〈G(x)G†(y)〉 = CG = const. (5.4)
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Figure 12: Glueball Correlation function for β = 17 and mf = −0.074.

This holds true if the supports of the interpolating operators are disjunct. Hence the cor-
relation function of glueballs will show only a correlation between time slices with distance
less than the diameter AG of the support of G(x). We observe the very same behaviour
in the supersymmetric theory in Figure 12, where the diameter is two. In the continuum
limit, the physical diameter shrinks to zero and the expectation value is constant in the
whole spacetime volume. Furthermore one can show, that this value goes to zero and the
glueball decouples from the theory. This lattice result is in agreement with the analytical
result presented in [73].

Since we use smearing of sources and sinks in our analysis, it maybe instructive to
study the effect of smearing on the correlation function of glueballs. Every smearing step
increases the diameter AG, and thus induces more artificial correlations between the lattice
points, which are uncorrelated without smearing. The results can be seen in Figure 13,
where we compare pure Yang-Mills theory (left) to susy Yang-Mills theory (right). In both
cases we observe more nonzero values in the correlation functions for higher smearing levels,
as expected. Smearing effects can also be seen in the effective mass: in both theories it is
an ever increasing function of the distance for all values of the smearing level. We conclude
that, similarly as in pure YM-theory in two dimensions, there is no correlation for glueballs
which means that the glueball completely decouples from the N = (2, 2) SYM-theory in two
dimensions. Similarly we did observe no correlations for the scalarball and glue-scalarball.
Since they should form a super-multiplet with the glueball, they will decouple from the
theory as well. The additional gluino-glueball state present in the super-multiplet will also
show no correlations, and thus is not seen in our simulations.

6 Conclusions

In our work, we simulated the two-dimensional N = (2, 2) SYM lattice-theory in a conven-
tional approach without twisting. The simulation could be afflicted with two potentially
serious problems common in gauge theories with extended supersymmetry: flat directions
and a sign problem. In the present work we demonstrate that these problems do not arise
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Figure 13: Comparison between the Glueball correlation function for the two dimensional
Yang-Mills theory (left) and the two-dimensional Super Yang-Mills theory (right) for dif-
ferent smearing levels S. In the bottom row we plot the effective mass.

for all parameters which are relevant to approach the supersymmetric continuum limit.
As concerning the sign problem, this is related to the absence of the sign problem in the
Q-exact formulation of the continuum theory [74].

When studying various Ward identities, we did observe that they are rather insensitive
to the bare mass of the scalars ms, as long as the latter is in the vicinity of the (all-
loop) perturbative value in the supersymmetric continuum model, which is given by m2

s =

0.659 482 55(8). In our simulations we used a mass close to this values. Away from the
continuum limit this may not be the optimal choice. Spotting an observable, which allows
for further fine-tuning of the scalar mass on the lattice could perhaps improve the results
and would allow for more accurate predictions. But such an improvement is probably not
easy to achieve since our results are stable and reliable. They do not depend on the scalar
mass in the vicinity of the above value and thus a further fine-tuning of ms does not help
much.

The restoration of supersymmetry is observed in the chiral limit. Since the fermion
mass is not a relevant coupling (contrary to the situation in four dimensions) this may come
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as a surprise. But generally speaking fine-tuning of an irrelevant coupling maybe helpful
away from criticality. In any case, the result confirms the assumption, that supersymmetry
is recovered in the chiral limit, similarly as in the four-dimensional mother-theory. But the
spectrum of bound states looks different than in the four-dimensional N = 1 theory. We
found a massless multiplet – the dimensionally reduced Veneziano-Yankielowicz multiplet –
which contains the mesons, while the Farrar-Gabadadze-Schwetz multiplet decouples from
the theory (see Table 10). The mass of the lightest gluino-glueball seen in the simulations

particle m m∗

a-η 0.053(3)→ 0 0.213(15)
f 0.044(3)→ 0 0.270(13)

gluino-glueball – 0.168(2)/0.214(5)

Table 10: We observe the formation of a massive VY-multiplet while the ground states
are massless. The FGS-multiplet decouples from the theory.

is still a bit ambiguous. Within errors its mass is equal to that of the excited mesons. We
believe we could not follow the corresponding correlation function for large enough t-values,
in order to disentangle the signals from the ground state and excited state. Probably we
did only see the excited gluino-glueball which forms a multiplet with the excited meson
states. If this is true, then finding the missing ground state of the gluino-glueball maybe
as difficult as finding a needle in a haystack.

In future studies we intend to study the phase structure of the N = (2, 2) SYM-
theory as well as related systems with more supersymmetries. It would be interesting to
measure the two independent holonomies (Wilson loops with windings) on the two-torus
and their dependence on the geometry of the torus. This way one could first compare with
results obtained with Q-exact formulations for N = (8, 8) SYM-theory [75] and furthermore
extend to systems with less supersymmetry where no Q-exact formulation exists. Since we
did not encounter any sign problems for κ < κc and since the flat directions are stabilized,
we should be able to accurately localize the expected phases and phase-transition lines in
two-dimensional SYM with extended supersymmetry.
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A Exact lattice Ward identities

In the main body of the text we studied the violation of several Ward identities due to
lattice artifacts. Thereby we neglected contributions stemming from mf and ms deviating
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from their critical values. Here we derive lattice Ward identities without any approximation.
The application of the lattice supersymmetry transformations (4.1) to the lattice Lagrangian
results in

Q̄αLlat =
β

2

{
∂µsµ

α − 2mf (ΓMN )αβFMNλβ + 2m2
s (Γm+1)αβλ

βφm
}

+XS

=
β

2

{
∂µs

α
µ −mf χ

α
f +m2

s χ
α
s
}

+XS,

(A.1)

with
χαf = 2 tr

(
ΓαβMNF

MNλβ
)

and χαs = 2 tr
(
Γαβm+1λβφ

m
)
. (A.2)

The contributions χα originate from the fermion and scalar mass terms introduced in the
lattice Lagrangian. As pointed out previously the supercurrent sαµ vanishes after summation
over the lattice sites. The term XS originates from the lattice regularisation and is of order
O(a). Clearly, at tree-level supersymmetry is restored in the continuum limit for the critical
values mc

f = mc
s = 0. At one-loop a finite scalar mass is generated due to different lattice

momenta of bosons and fermions. Furthermore, the Wilson term in the fermion operator
gives rise to a nonzero critical fermion mass. In the continuum limit, no further corrections
are generated at higher loop order such that mc

f → 0. In order to compensate for the shifts
at finite lattice spacing one adds counter-terms to the tree-level lattice action and ends up
with the full quantum lattice Ward identity (4.3). The scalar mass counter-term must also
be included in the Ward identity W3 and the bosonic Ward identity because they contain
the kinetic term for the scalar fields. Thus, the set of lattice Ward identities read

WB =βV −1〈SB〉+ βm2
s 〈trφ2〉+ β〈tr λ̄ΓMNFMN Θ〉 → 9

2
,

W3 =
β

2
〈trDµφ

aDµφa〉+ βm2
s 〈trφ2〉+ 2β

〈
tr λ̄ΓµmDµφm Θ

〉
→ 3 ,

W2 =
β

4
〈trFµνFµν〉+ β〈tr λ̄Υ

〉
+ β〈tr λ̄ΓµνFµνΘ〉 → 3

2
,

W1 =
β

2
〈tr [φ1, φ2]2〉 − β〈tr λ̄Υ〉+ β〈tr λ̄Γmn [φm, φn] Θ〉 → 0 ,

(A.3)

where we used the abbreviations

Θ =
(
m2

s − (mc
s)

2
)
χs − (mf −mc

f )χf, Υ =
i

8

(
Γ2 [φ1, λ] + Γ3 [φ2, λ]

)
. (A.4)

Near the supersymmetric continuum limit, lattice artifacts should be sufficiently suppressed
such that the breaking of Ward identities originate from the missing fine-tuning of mc

f and
mc

s . Since we anyway use the π-mass to fine-tune mc
f we will focus on the fine-tuning of

mc
s in what follows. We will show this fine-tuning approach for the Ward-identity W2. The

results for the other identities are very similar.

First we introduce W b
2 and the correction terms Cs and Cf

W b
2 = β

〈1

4
trFµνF

µν + tr λ̄Υ
〉
, Cs = β〈tr λ̄ΓµνFµνχs〉, Cf = β〈tr λ̄ΓµνFµνχf〉 , (A.5)
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which enter the Ward identity W2 of interest,

W2 = W b
2 +

(
m2

s − (mc
s)

2
)
Cs + (mf −mc

f ) Cf . (A.6)

Now we simulate the gauge theory for a set of values m2
s near the one-loop value 0.65948

and measure the expectation values W b
2 , Cs and Cf. Note that ms and mf are the masses

used to generate the ensemble, whereas the trial mass mc
s only enters via the operators

defining the Ward identities. Next we should extract a trial mass for which W2 ≈ 3
2 for

all ms near the critical value. Note that the extracted mc
s could deviate from the one-loop

results due to lattice artifacts.
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Figure 14: On the left we see the term W b
2 and on the right the term Cs. The inserts show

the values near the critical value of m2
s .

Figure 14 clearly shows that W b
2 and Cs do not depend sensitively on ms near the

critical one-loop value. The same holds true for Cf, which is not shown in the figure. This
means that it is difficult to find any deviations of mc

s from its known continuum one-loop
value. But since the correction terms Cs and Cf in (A.6) are two orders of magnitude smaller
thanW b

2 we may safely neglect the lattice correction Θ if we are close to the critical masses,
which we ensure by extrapolating to the chiral limit and using ms = 0.66. This leads to
the final set of approximate Ward identities (4.4) which are measured in our simulations.
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