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Abstra
tWe 
onsider pure Yang Mills theory on the four torus. A set of non-Abeliantransition fun
tions is presented whi
h en
ompass all instanton se
tors. It is arguedthat these transition fun
tions are a 
onvenient starting point for gauge �xing. Inparti
ular, we give an extended Abelian proje
tion with respe
t to the Polyakovloop, where A0 is independent of time and in the Cartan subalgebra. In the non-perturbative se
tors su
h gauge �xings are ne
essarily singular. These singularities
an be restri
ted to Dira
 strings joining monopole and anti-monopole like \defe
ts".
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1 Introdu
tionA long standing and yet unsolved problem is to explain 
olor 
on�nement in QCD. Animportant �rst step in this dire
tion would be to prove the 
on�nement of stati
 quarks.Indeed, this has been 
onvin
ingly demonstrated by many latti
e studies [1℄. However, itwould be desirable to study this phenomenon with less relian
e on numeri
s, sin
e MonteCarlo simulations do not have the logi
al transparen
y of mathemati
al derivations. Therelevant observables are produ
ts of Wilson-loop operators [2℄. When one has periodi
ityin Eu
lidean time (ie. �nite temperature) then one may use a Polyakov loop [3℄ operator,ie. the Polyakov loop is a 
losed, periodi
 time-like Wilson loop.Sin
e the Lagrangian in
ludes massless �elds and one is interested in the infrared be-haviour of the theory, it is sensible to implement some kind of infrared 
uto�. It iswell-known for example that in supersymmetri
 theories with massless modes, the non-renormalisation \theorems" fail in the absen
e of an infrared regulator [4℄. One possibilityis to use a Wilsonian e�e
tive a
tion [5℄ whi
h by de�nition in
ludes a momentum spa
einfrared 
ut-o� on the quantum 
u
tuations. An alternative pro
edure is to simply work onsome 
ompa
t Eu
lidean spa
e. Of these, the four torus, T 4, is the most attra
tive. Whendealing with T 4, one automati
ally in
ludes the �nite temperature 
ase (S1 � lR3), andunphysi
al 
urvature e�e
ts are absent. On T 4 one also maintains translational invarian
e,and thus any relevant supersymmetry.We assume that our gauge �elds are periodi
 in timeA�(x0 + �; ~x) = A�(x0; ~x): (1.1)In the quantum theory, we may interpret � as the inverse temperature, see for example[6℄. The Polyakov loop operator P (~x) is de�ned as the following tra
e of a path orderedexponential of A0P (~x) = Tr � (P(�; ~x)) ; where P(x0; ~x) = P exp "i Z x00 d�A0(�; ~x)# ; (1.2)and � is the representation of the gauge group whi
h a
ts on the fermions. The Polyakovloop is invariant under gauge transformations whi
h are periodi
 in time4. The two-pointfun
tion e��F (~x;~y) = hP (~x)P y(~y)i� (1.3)yields the free energy F (~x; ~y) in the presen
e of a heavy quark at ~x and a heavy an-tiquark at ~y. In the 
on�ning low-temperature phase F (~x; ~y) in
reases for large sep-arations5 of the quark-antiquark pair and thus hP (~x)P y(~y)i ! 0. In the de
on�ning4On 
an de�ne a Polyakov loop operator whi
h is invariant under all gauge transformations, ie. P (~x) =Tr �U0(x0 = 0; ~x)P(�; ~x)�, U0(x0; ~x) being the time transition fun
tion (see se
tion 2). However, sin
e wealways work with time periodi
 obje
ts, ie. U0 = 1l, de�nition (1.2) is suÆ
ient for our purposes.5We assume that the three spatial edge lengths of our torus are mu
h larger than ��1QCD1



high-temperature phase the free energy rea
hes a 
onstant value for large separations andhP (~x)P y(~y)i ! 
onstant 6= 0. Inferring the 
luster property we see that hP i� vanishes inthe 
on�ning phase but not in the de
on�ning one. In other words, it is an order parameterfor 
on�nement.Note that the Weyl gauge, A0 = 0, is not 
ompatible with time-periodi
ity. Yet westill would like A0 to be as simple as possible, sin
e we are interested in observables onlydepending on A0. On the two dimensional torus, T 2, one 
an perform an Abelian proje
tion[7℄ with respe
t to the Polyakov loop operators and gauge �x in su
h a way that A0 is inthe Cartan subalgebra and is independent of time, while preserving the time periodi
ityof A1. In this gauge one has a remarkable 
an
ellation between part of exp(�S) and theFadeev-Popov determinant. This simpli�es the 
al
ulation of the partition fun
tion and theexpe
tation value of the Polyakov loop order parameter, and avoids zero mode ambiguities[8℄. In this paper we address the question of to what extent the gauge �xing used in [8℄
an be generalised to QCD on the four torus. The gauge �xing pro
edure hinges on thediagonalisation of the path ordered exponential, P(�; ~x), whose tra
e is the Polyakov loop.It is 
onvenient that P(�; ~x) be periodi
 in the spatial variables. Yet unless we are inthe perturbative se
tor, the gauge �elds themselves are ne
essarily non-periodi
. This nonperiodi
ity is 
hara
terised by a set of group-valued transition fun
tions. We introdu
ea set of non-Abelian transition fun
tions whi
h fa
ilitate a periodi
 P(�; ~x) even in thenon-perturbative se
tors. Unlike the well known Abelian transition fun
tions introdu
edby 't Hooft [9℄, our transition fun
tions en
ompass all instanton se
tors, thus solving theproblem of �nding smooth transition fun
tions for the odd instanton se
tors of SU(2)gauge theory.In 
ontrast to the two dimensional 
ase the diagonalisation pro
edure has unavoidablesingularities. The singularities 
an be interpreted as Dira
 strings [10℄ joining magneti
ally
harged \defe
ts". Here we understand defe
ts as points, loops (not to be 
onfused with theDira
 strings!), sheets and lumps where P(�; ~x) has degenerate eigenvalues. The lo
ationsof the defe
ts are gauge invariant and may be viewed as additional \
olle
tive 
oordinates"asso
iated to the gauge �xing. The simplest 
ase (and probably the most relevant for theQCD path integral) is where one only has point defe
ts (whi
h 
an be viewed as magneti
monopoles). Here the �nal gauge �xed potential has very simple periodi
ity properties, andthe topologi
al 
harge is 
ompletely �xed by the network of monopoles and Dira
 strings(see also [11℄). We also 
onsider the more general 
ase where one has extended defe
ts.The outline of this paper is as follows. In se
tion two we re
all some basi
 fa
ts aboutgauge �elds on the torus, in
luding the standard Abelian transition fun
tions. Our new setof non-Abelian transition fun
tions (whi
h in
ludes the odd se
tor of SU(2)) is presentedin se
tion 3. We also explain how one 
an use the Polyakov loop itself to de�ne a di�erentset of non-Abelian transition fun
tions. Next, in se
tion 4 we elaborate our gauge �xingpro
edure, and study the spe
ial 
ase where one has no defe
ts. In se
tion 5 we dis
uss theproblem of defe
ts, and show how they 
ontribute to the instanton number. Conventionsand some te
hni
al results are 
olle
ted in three appendi
es.2



2 Gauge �elds on T 4We view the four torus as lR4 modulo the latti
e generated by four orthogonal ve
torsb�; � = 0; 1; 2; 3. The Eu
lidean lengths of the b� are denoted by L� (we may identify L0with the inverse temperature �). Lo
al gauge invariants su
h as TrF��F�� are periodi
 withrespe
t to a shift by an arbitrary latti
e ve
tor. However, it follows that gauge �elds haveto be periodi
 only up to gauge transformations. In order to spe
ify boundary 
onditionsfor gauge potentials A� on the torus one introdu
es a set of transition fun
tions U�(x),whi
h are de�ned on the whole of lR4. The periodi
ity properties of A� are as followsA�(x + b�) = U�1� (x)A�(x)U�(x) + iU�1� (x)��U�(x); � = 0; 1; 2; 3 (2.1)where the summation 
onvention is not applied. The transition fun
tions U�(x) have tosatisfy the 
o
y
le 
ondition6U�(x)U�(x+ b�) = U�(x)U�(x + b�): (2.2)Under a gauge transformation, V (x), the pair (A;U) is mapped toAV� (x) = V �1(x)A�(x)V (x) + iV �1(x)��V (x); UV� (x) = V �1(x)U�(x)V (x+ b�):(2.3)We de�ne the (integer valued) topologi
al 
harge or instanton number as followsq = 132�2 ZT 4 �����TrF��F��: (2.4)The integrand in (2.4) 
an be written as a total derivative. Using Stokes theorem we getq = 124�2 X� ZB� �����Tr h(U�1� ��U�)(U�1� ��U�)(U�1� ��U�)i� 18�2 X�;� ZB�� �����Tr h(U�1� ��U�)(��U�(x + b�)U�1� (x + b�))i ; (2.5)with B� = fx 2 T 4jx� = 0g; B�� = fx 2 T 4jx� = x� = 0g:(see also [12℄). That is q is fully determined by the transition fun
tions. In parti
ular,if we take all the transition fun
tions to be the identity (i.e. we assume the gauge �eldsare periodi
 in all dire
tions) then the instanton number is zero. A

ordingly, if we are to6One 
an 
onsider the more general possibility U�(x)U�(x+b�) = Z��U�(x)U�(x+b�) where the twistsZ�� lie in the 
entre of the group. In this paper we 
on
entrate on the untwisted 
ase, ie. Z�� = 1l, whi
his appropriate if the matter �elds are in a fundamental representation of the gauge group.3



des
ribe the non-perturbative se
tors, one must 
onsider non-trivial transition fun
tions.For a given q we only require one set of transition fun
tions. If we have two sets oftransition fun
tions with the same instanton number then they are gauge equivalent [12℄.For SU(N), N > 2, one 
an write down a set of very simple Abelian transitionfun
tions, whi
h in
lude all possible values of q. For SU(2), the situation is rather pe
uliar,in that there exist Abelian transition fun
tions for the even instanton number 
ase, butfor odd q, the transition fun
tions are ne
essarily non-Abelian.Consider the following set of transition fun
tionsU0 = U2 = 1l; U1(x) = e2�iH1�2 ; U3(x) = e2�iH3�0 ; (2.6)where H1; H3 2 L, with L being the dis
rete latti
e in the Cartan subalgebra H;L � nH 2 Hje2�iH = 1lo (2.7)and we have introdu
ed the dimensionless 
oordinates�� = x�=L�; � = 0; 1; 2; 3: (2.8)These transition fun
tions satisfy the 
o
y
le 
ondition (2.2), and using (2.5), the instantonnumber asso
iated with these transition fun
tions is simplyq = TrH1H3: (2.9)Now, if we take H3 to be proportional to H1 it is easy to see that q is always even. To getan odd 
harge one must take non-parallel H's. For example, in SU(3) 
onsiderH1 = 0B� 1 0 00 �1 00 0 0 1CA and H3 = 0B� 0 0 00 �1 00 0 1 1CA :In this 
ase q = 1. However, for SU(2) H1 and H3 must be parallel sin
e the Cartansubalgebra is one dimensional. Hen
e, within this 
lass of transition fun
tions one isrestri
ted to even topologi
al 
harges. Although the transition fun
tions (2.6) are not themost general Abelian transition fun
tions, it is easy to see that any Abelian transitionfun
tions lead to an even q for SU(2).Although we have 
on
entrated on the transition fun
tion question, another (to dateunsolved) problem is to obtain the instantons for pure gauge theory on T 4. While 'tHooft found some extremely simple \Abelian" instantons [9℄, these 
an only representsingle points in the moduli spa
e of a given instanton se
tor. This is in sharp 
ontrastto the situation on S4 where Atiyah et al [13℄ gave an algebrai
 re
ipe for 
omputingall instantons. In fa
t one of the few things known about instantons on T 4 is a negativeresult. Using the Nahm transformation [14℄, van Baal [15℄ has argued that there are no4



SU(N) instantons with q = 17. We should stress that while there are no 
harge oneinstantons there do exist 
on�gurations with q = 1. While for q = 1, the minimala
tion is never a
hieved one 
an �nd 
on�gurations whose a
tion is arbitrarily 
lose to theinstanton number. Numeri
al [16℄ and analyti
al studies indi
ate that as one brings thea
tion 
loser to the minimum the a
tion density be
omes 
on
entrated near a point. Forthe higher 
harge jqj > 1 se
tors, smooth instantons are known to exist [17℄. However, forthe purposes of our gauge �xing the expli
it form of the instantons is not required.3 Non Abelian transition fun
tions and Polyakov loopsWe have seen that Abelian transition fun
tions are not suÆ
ient to des
ribe the odd 
hargese
tors, for the gauge group SU(2). Yet we would still like to have our transition fun
tionsas simple as possible. Consider the following possibility; let us take three of the fourtransition fun
tions to be the identity, ie.U0 = U1 = U2 = 1l: (3.1)Within this ansatz, the 
o
y
le 
ondition (2.2) implies that U3(x) is periodi
 in x0, x1 andx2. Now the formula (2.5) for the instanton number redu
es toq(U3) = 124�2 ZB3 �3���Tr h(U�13 ��U3)(U�13 ��U3)(U�13 ��U3)i (3.2)with B3 = fx 2 T 4jx3 = 0g. Note that the two dimensional integrals in (2.5) drop out,and one only has a single three dimensional integral. Furthermore, it is evident that the x3dependen
e of U3 is irrelevant, and we may assume that U3 is independent of x3. In otherwords, suppose we have a U3(x) whi
h depends on x3, then a simpler U3 with the sameinstanton number 
an be obtained simply by setting x3 to be an arbitrary 
onstant. Avery useful 
onsequen
e of (3.2) is that if U3(x) 
an be de
omposed into periodi
 fa
tors,then the topologi
al 
harge is simply a sum of the 
ontributions of the periodi
 fa
tors,more pre
isely, if we 
an write U3(x) = P1(x)P2(x), where P1(x) and P2(x) are periodi
 inall dire
tions, then q(U3) = q(P1P2) = q(P1) + q(P2);mu
h like the situation on S4.First we show that (3.1) is easily a
hieved in the even se
tors of SU(2). Let us startwith Abelian transition fun
tionsU0 = U2 = 1l; U1 = e2�i�2�3 ; U3 = e2n�i�0�3 (3.3)whi
h lead to q = 2n, n 2 Z (we use the dimensionless 
oordinates �� de�ned by (2.8)).7However, by using the Nahm-transformation one 
an 
onstru
t transition fun
tions and instantonsolutions with q = 1 for U(N � 1) 5



Here only two transition fun
tions are the identity. However it is straightforward to gaugetransform U1 to unity. To a
hieve this we require a gauge transformation V (x) whi
h isperiodi
 in x0 and x2 (sin
e we wish to keep U0 and U2 as unity), and has the propertythat V (x+ b1) = e�2�i�2�3V (x):Choosing the parameterisationV (x) =  �(x) ��(x)��(x) ��(x) ! ; j�j2 + j�j2 = 1; (3.4)�(x) and �(x) are periodi
 in x0 and x2, and satisfy�(x+ b1) = e�2�i�2�(x); �(x+ b1) = e2�i�2�(x):One 
an simply take (our 
onventions regarding theta fun
tions are explained in AppendixA) ��(x) = 1N � " �2�1 # (0; i); �(x) = 1N � " �2�1+d # (0; i); j�j2 + j�j2 = 1; (3.5)where d is not an integer. Sin
e the two theta fun
tions are regular and have no 
ommonzeroes, the fun
tions �(x) and �(x) are smooth. Note that V (x) only depends on x1 andx2. After this gauge transformation (3.1) holds and U3(x) be
omes non-AbelianU3 = V �1(x1; x2)e2�in�0�3V (x1; x2):Multiplying U3(x) by the periodi
 Abelian fa
tor e�2�in�0�3 does not 
hange the instantonnumber. Hen
e, an equally valid set of transition fun
tions for the 2n se
tor isU0 = U1 = U2 = 1l; U3 = V �1(x) e2�in�0�3 V (x) e�2�in�0�3 :Note that U3 is independent of x3 and periodi
 in x0, x1 and x2. Now 
onsider the followingset of transition fun
tionsU0 = U1 = U2 = 1l; U3 = V �1(x)e�in�0�3V (x)e��in�0�3 ; n 2 Z: (3.6)U3(x) is still periodi
 in x0, x1 and x2 and thus these transition fun
tions satisfy the 
o
y
le
ondition (2.2). It is easy to see that the instanton number of these transition fun
tionsis pre
isely half that of (3.3); i.e. now we have q = n, n 2 Z. Thus we have a set of C1transition fun
tions for all instanton se
tors. Let us write our U3 more expli
itlyU3(x) =  j�j2 + j�j2e�2�in�0 ����(e2�in�0 � 1)��(1� e�2�in�0) j�j2 + j�j2e2�in�0 ! :6



Note that U3(x0 = 0; ~x) = 1l: (3.7)This will greatly simplify the analysis of the gauge �xing in the next se
tion.Suppose we have a set of transition fun
tions with the following propertiesU0 = 1l; Ui(x0 = 0; ~x) = 1l: i = 1; 2; 3: (3.8)The non-Abelian transition fun
tions introdu
ed here 
learly satisfy these 
onditions. Then
onsider the following gauge transformationV (x0; ~x) = P(x0; ~x);where P(x0; ~x) is the path ordered exponential in (1.2) whi
h in general is non-periodi
 intime. Now P(x0; ~x) has the following periodi
ity propertiesP(x0 + L0; ~x) = P(x0; ~x)P(L0; ~x)P(x0; ~x+ bi) = U�1i (x0; ~x)P(x0; ~x)Ui(x0 = 0; ~x): (3.9)For brevity we use the notation P(~x) := P(L0; ~x): (3.10)Using (2.3,3.8,3.9), the gauge transformed transition fun
tions areUV0 = P(~x); UV1 = UV2 = UV3 = 1l:Thus we have performed a gauge transformation from transition fun
tions where U0 =U1 = U2 = 1l to transition fun
tions with U1 = U2 = U3 = 1l. Note however that the newU0 is simply the path ordered exponential of the original A0 whose tra
e is the Polyakovloop. Applying the formula (2.5) for the instanton number to the new set of transitionfun
tions yields q = 124�2 ZB0 �0ijkTr h(P�1�iP)(P�1�jP)(P�1�kP)i ; (3.11)where P = P(~x), and B0 = fx 2 T 4jx0 = 0g = T 3. It is evident that for SU(2) the righthand side is the winding number of the map P : T 3 ! SU(2) �= S3, ie. the instantonnumber is just the winding number of the Polyakov loop. The analogous result for gaugetheories on lR4 has been given in ref. [11℄. We emphasise that (3.11) is only valid whenthe (original) transition fun
tions satisfy (3.8).7



4 Gauge �xing on T 4 without Defe
tsWe may always assume that we start with a smooth gauge potential whi
h is periodi
in time, so that U0 = 1l. We may also assume that we are in a gauge where the spatialtransition fun
tions have the property (3.8). Thus we may use the formula (3.11) for theinstanton number. Another useful 
onsequen
e of (3.8) is that this together with (3.9)implies that P(~x) = P(L0; ~x) is periodi
 in all spatial dire
tions. Note that the standardAbelian transition fun
tions 
an only have property (3.8) if we are in the perturbative(q = 0) se
tor. The non-Abelian transition fun
tions given in the last se
tion do indeedsatisfy (3.8).Following [8℄ we seek a (time-periodi
) gauge transformation, V (x), for whi
h the gaugetransformed A0 is independent of time and in the Cartan subalgebra. Below we argue thatit is impossible in general to �nd a smooth gauge transformation whi
h leads to a gauge�eld with the desired properties. While it is straightforward to formally de�ne a suitablegauge transformation, the gauge transformed potential is ill de�ned in the presen
e of\defe
ts" where P(~x) has degenerate eigenvalues [7, 11℄. This motivates us to de�ne thedefe
t manifoldD = f~x 2 T 3jP(~x) has at least one degenerate eigenvalue.g (4.1)whi
h is invariant under time-periodi
 gauge transformations. A defe
t is understood tobe a 
onne
ted subset of D.Before we 
onsider the various defe
ts, we �rst show that in the absen
e of defe
ts asuitable non-singular gauge transform exists. More pre
isely, for D = ;, there is a smooth(periodi
 in time but non-periodi
 in the spatial variables) gauge transformation whi
htransforms our starting gauge �eld, so that A0 has the simple formA0 = a0(~x) (4.2)with a0(~x) in the Cartan subalgebra and periodi
,a0(~x + bi) = a0(~x); i = 1; 2; 3: (4.3)Consider the time-periodi
 gauge transformation [8℄V (x0; ~x) = P(x0; ~x)P��0(~x)W (~x); (4.4)where P(x0; ~x) is the path ordered exponential (1.2), and W (~x) diagonalises P(~x), i.e.P(~x) = W (~x)D(~x)W�1(~x); D(~x) = expf2�iH(~x)g; (4.5)with H(~x) in the Cartan subalgebra H. The fra
tional power of P in (4.4) is de�ned viathis diagonalisation of P. Then it follows at on
e that the gauge transformed A0 reads8



AV0 = 2�L0H(~x): (4.6)For D = ; the eigenvalues of P are nowhere degenerate and we 
an �nd smoothD(~x);W (~x). Sin
e P(~x) is periodi
 in all spatial dire
tions it has the same spe
trum at ~xand ~x+ bi. In the absen
e of defe
ts the spe
tral 
ow from ~x to ~x+ bi 
annot inter
hangetwo eigenvalues, that is the situation depi
ted in �g.1b 
annot o

ur, and D(~x) must beperiodi
. In general, the periodi
ity of D(~x) implies only that the eigenvalues of H areperiodi
 modulo 1. But if they are not periodi
 they would have to wind as shown in �g.1awhen we move from ~x to ~x+bi. Then at least one eigenvalue of H is degenerate somewhereon T 3 and D is not empty. Thus H(~x) must be periodi
,H(~x+ bi) = H(~x): (4.7)>From (4.6) it is 
lear that the transformed A0 indeed has the stated properties.
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= 0 mod 13λ+2λ+1λ (b)Figure 1: The eigenvalues �i of H(~x) may wind (a) or there may be a spe
tral 
ow (b).In both 
ases P has degenerate eigenvalues at �. Shown are examples for SU(3).If P has no degenerate eigenvalue, then W in (4.5) and hen
e the gauge transformationV in (4.4) is determined up to right-multipli
ation by a diagonal matrix. The role ofthe residual lo
al gauge group U(1)N�1 � SU(N), and in parti
ular the transformationproperties of the various matter and gauge �elds under this residual symmetry, has beendis
ussed lu
idly in [7, 19℄.Hen
e, although P(~x) and exp(2�iH(~x)) are periodi
, we may not assume that W (~x)is periodi
. All we 
an say is thatW (~x+ bi) =W (~x)Ri(~x); i = 1; 2; 3; (4.8)where the Ri(~x) lie in the residual gauge group U(1)N�1, i.e. they are Abelian and satisfythe 
o
y
le 
ondition Ri(~x)Rj(~x + bi) = Rj(~x)Ri(~x+ bj): (4.9)9



Using (2.3,3.9) and (3.8), the �nal form of the transition fun
tions is UV0 = 1l andUVi = e2�i�0H(~x)W�1(~x)W (~x+ bi)e�2�i�0 H(~x) = Ri(~x); (4.10)whi
h are Abelian. Inserting these transition fun
tions into (2.5) yields q = 0. This alreadyshows, that for gauge �elds with non-zero instanton number there are ne
essarily defe
tson T 3.In the SU(2) 
ase we may writeRi(~x) = e2�iri(~x)�3 ;where the ri(~x) are fun
tions of the spatial 
oordinates. The 
o
y
le 
ondition (4.9) impliesthat �kij�ri(~x + bj)� ri(~x)� = nk 2 Z: (4.11)Unless all the nk are zero one 
annot �nd a smooth diagonalising W (~x) su
h that theAbelian transition fun
tions Ri(~x) be
ome the identity. We have seen, that W (~x), whi
hdiagonalises P(~x) is de�ned only up to right-multipli
ation,W (~x) �!W (~x) ei�(~x)�3 : (4.12)If we append to ea
h point in T 3 the set of all diagonalising matri
esW (~x), we get a U(1)-prin
ipal bundle over T 3, here denoted by Q(T 3; U(1)) [18℄. A smooth and periodi
 W (~x)on T 3 would be a global se
tion in this bundle. But in general the U(1)-bundles over T 3are non-trivial and are 
hara
terised by three integers. Indeed, with a (time-independent)Abelian gauge transformation (4.12) we 
an bring the transition fun
tions Ri into thestandard formR1 = 1l; R2 = e�2�in3�1�3 and R3 = e2�i(n2�1�n1�2)�3 ; (4.13)where the ni are the integers de�ned in (4.11). If not all ni vanish, then these are transitionfun
tions of nontrivial U(1)-bundles over T 3.A more dire
t and physi
al way to understand the obstru
tion uses the (magneti
)U(1)-gauge potential [7, 19℄Amag = 12iTr�W (~x)�1dW (~x)�3� (4.14)on T 3, whi
h transforms under the residual gauge transformation (4.12) asAmag �! Amag + d�:Using (4.9) it follows at on
e that the 3 magneti
 
uxes�i = Zxi=
onstFmag = Zxi=
onstdAmag = �ijk�rj(x+ bk)� rj(x)� = 2�ni10



are quantised. We 
on
lude that the integers ni in (4.11,4.13) 
annot be 
hanged by asmooth (Abelian) gauge transformation. Note, that the 
ux �i is independent of xi andAmag may be interpreted as a sour
eless magneti
 potential permeating the torus.The �xing of the residual gauge freedom 
an be a

omplished mu
h like in the two-dimensional 
ase [8℄ and is dis
ussed in appendix C.5 Gauge �xing with defe
tsBelow we shall argue that isolated defe
ts may be identi�ed with magneti
 monopoles, linedefe
ts with magneti
 loops and sheetlike defe
ts with domain walls. Monopoles may bepresent if D
 = T 3 n D 
ontains non-
ontra
table 2-spheres and magneti
 loops if D
 hasnon-
ontra
table loops (besides the 3 topologi
ally distin
t loops winding around T 3). Inother words, monopoles and loops 
an only be present if�2(D
) 6= 0 monopoles�1(D
) 6= Z3 loopsBesides monopoles and loops, there may exist defe
t walls extending over the whole threetorus. The three types of defe
ts are depi
ted in �g.2.We 
ould try to repeat the analysis of 
hapter 4 in the presen
e of defe
ts still assumingthat W and D in (4.5) are smooth. If only monopoles and loops are present, then we 
an
onne
t ~x with ~x+ bi by a path in D
. Along su
h a path the eigenvalues of H 
an neitherwind nor ex
hange as in the absen
e of defe
ts. Hen
e, spe
tral 
ows as shown in �g.1 arenot possible and H(~x) must be periodi
, and as in 
hapter 4 we have UVi = Ri(~x). Sin
esu
h transition fun
tions have instanton number zero, we have a 
ontradi
tion in all q 6= 0se
tors.We now spe
ialise to the gauge group SU(2); we will 
onsider SU(N) elsewhere. Thedefe
t manifold is now simplyD = f~x 2 T 3jP(~x) = �1lg:Thus we have two distin
t defe
t sets, a

ording to whether P(~x) is plus or minus 1l. In
hapter 4 we de�ned an Abelian magneti
 potential Amag and �eld Fmag = dAmag. Nowwe wish to argue that the defe
ts a
t as a sour
e for the magneti
 �eld Fmag. Moreover,we show that in the absen
e of walls8 the total magneti
 
harge of the P = 1l defe
tsis quantised and is proportional to the instanton number q. The magneti
 
harge of theP = �1l defe
ts is minus that of the P = 1l defe
ts so that the total magneti
 
hargeis zero. This di�ers from the lR4 
ase, where one only has magneti
 
harge neutrality ifone in
ludes \
harges at in�nity". In order to establish these results it is 
onvenient to8We 
an formally de�ne the absen
e of walls as follows. Consider the extension of the defe
t manifoldto lR3, ie. ~D = f~x 2 lR3jP(~x) = �1lg. There are no walls if ~D
 = lR3 n ~D is 
onne
ted.11
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Figure 2: Monopoles, loops, domain walls and spe
tral 
owsintrodu
e a stati
 \Higgs" �eld �(~x) viaP(~x) = ei�(~x); � = �j�j: (5.1)Of 
ourse �(~x) is not globally de�ned. Let S be a 
losed surfa
e surrounding a P = 1ldefe
t. We further assume that S neither 
ontains nor interse
ts any other defe
ts. Forexample, in �g. 3 an (extended) monopole defe
t is surrounded by a 2-sphere and 
losedloop defe
ts are surrounded by 2-tori. Now �(~x) may be smoothly de�ned on S and on theinterior of S su
h that the Higgs �eld is zero on the defe
t. On S itself � is non-vanishingand hen
e 
an be normalised. The normalised �eld �̂ = �=j�j takes its values in S2 andde�nes a map S ! S2. The winding number of this map is [20℄12



S = S
2

S = T
2

φ = 0

magnetic .
monopole

magnetic
loops

Figure 3: The magneti
 
ux through 
losed surfa
es is equals the winding of thenormalised Higgs �eld S ! S2n(S) = 116�i IS Tr ��̂d�̂ ^ d�̂� : (5.2)The magneti
 
ux through S is de�ned by�(S) = IS Fmag: (5.3)In Appendix B we show that Tr ��̂d�̂ ^ d�̂� = 8iFmag (5.4)and hen
e n(S) = 12��(S): (5.5)That is the magneti
 
harge of the defe
t is proportional to the winding number of theHiggs �eld �̂ : S ! S2. Hen
e it is quantised. A
tually, if S is a two-sphere surroundinga magneti
 monopole then AmagjS may be viewed as the Abelian gauge potential of theS
hwinger model on S2 [21℄, if S is a two-torus as the gauge potential of the S
hwingermodel on T 2 [22℄. The quantised 
ux � is just the quantised instanton number of theS
hwinger model on S2 or T 2.We now look at the relation between the winding numbers of the defe
ts (and hen
ethe magneti
 
harges) and the instanton number q. We again assume that we only haveno walls. In this 
ase the Higgs �eld, �(~x), 
an be assumed to be smooth throughout T 3ex
ept at the the P = �1l defe
ts, where it is ill de�ned. At the P = 1l defe
ts the Higgs13



�eld is zero. In Appendix B we derive the following relation between Tr ((P�1dP)3) andthe Higgs �eld �2iTr(P�1dP)3 = 3dh(j�j � 12 sin(2j�j))Tr(�̂ d�̂ ^ d�̂)i; (5.6)�̂ being the normalised Higgs �eld. Note that the right hand side of (5.6) is ill-de�nedboth where P = 1l and P = �1l. Using the instanton number formula (3.11) and (5.6) we
an write the topologi
al 
harge as a fun
tional of the Higgs �eldq = 116�2i ZD
 dh(j�j � 12 sin(2j�j))Tr(�̂d�̂ ^ d̂�)i: (5.7)Before we 
an apply Stokes theorem we must ex
lude 
losed sets (with in�nitesimal volumein D
) surrounding both P = 1l and P = �1l defe
ts. Thus we haveq = 116�2iXi ISi (j�j � 12 sin(2j�j)Tr(�̂d�̂ ^ �̂): (5.8)where the Si are surfa
es surrounding the defe
ts. Note that the fa
tor j�j� 12 sin(2j�j) be-haves very di�erently in the neighbourhoods of the two kinds of defe
ts. Near a defe
t withP = 1l the Higgs �eld tends to zero and the fa
tor vanishes as � j�j3. Sin
e HS Tr(�̂ d�̂^ �̂)stays �nite if we approa
h su
h a defe
t the integrals in (5.8) vanish when the surroundingsurfa
es approa
h defe
ts with P = 1l. On the other hand, in the neighbourhood of theP = �1l defe
ts we have j�j � � so that (j�j � sin(2j�j)=2) � �, from whi
h follows thatq = 116�i XP = �1l defe
ts ISi Tr(�̂d�̂ ^ d�̂): (5.9)At this point it is 
onvenient to de�ne an alternative Higgs �eld �alt(~x) throughP(~x) = � exp [i�alt(~x)℄ ;where now �alt(~x) is smooth and zero at P = �1l, but ill de�ned at the P = 1l defe
ts. Inthe absen
e of walls we have that both j�(~x)j and j�alt(~x)j are in the interval [0; �). In D
one has the following relations between the two Higgs �eldsj�j = � � j�altj; �̂alt = ��̂: (5.10)Using this we see that the topologi
al 
harge is proportional to the sum of winding numbersof �alt around the P = �1l defe
tsq = � 116�i XP = �1l defe
ts ISi Tr(�̂alt d�̂alt ^ d�̂alt): (5.11)14



The orientation of integration in this equation is su
h that the normal ve
tor on the surfa
eSi points inside the surfa
e (onto the monopole). But in equation (5.2) the orientation ofintegration is opposite. Therefore we 
on
ludeq = XP = �1l defe
tsnalt(Si): (5.12)Hen
e the instanton number is the sum over the winding numbers of the Higgs �eld �altat P = �1l defe
ts. Taking into a

ount equation (5.10) we obtainTr ��̂alt d�̂alt ^ d�̂alt� = �8iFmag: (5.13)Thus a P = �1l defe
t with winding number nalt has magneti
 
harge �nalt. Similar
onsiderations yield that the instanton number q is given by the sum over winding numbersof the Higgs �eld � at P = 1l defe
ts, or equivalently, by the sum of all monopole 
hargesat P = 1l defe
ts. The relation between the instanton number and the magneti
 
hargesof pointlike monopoles on lR4 has already been obtained by Reinhardt [11℄.For a non-zero 
ux the magneti
 potential Amag must ne
essarily be singular somewhereon S, else the 
ux H dAmag would vanish. As is well-known from the Dira
 monopole, wemay assume that Amag is regular on S with one point removed. Sin
e this holds true forany S � D
 surrounding a 
harged defe
t we must atta
h a string to ea
h su
h defe
ton whi
h Amag is singular. By de�nition, wherever the magneti
 potential is singular thediagonalisation matrix W (~x) is singular.Let us now 
onsider a S2 � D
 surrounding a monopole-antimonopole pair. On su
h asphere the Higgs �eld has no winding and 
an smoothly be diagonalised. This means thatthe strings on whi
h W (~x) (and Amag) is singular start and end at defe
ts with oppositemagneti
 
harge. Outside of these strings it is possible to 
hoose W smooth. A possibledistribution of monopoles 
onne
ted by strings is shown in �g.4. The string positions aregauge dependent. But they must start and end at (anti)monopoles whose positions aregauge invariant. There is some freedom regarding whi
h defe
ts are 
onne
ted to ea
hother with Dira
 strings. Suppose we have a Dira
 string emanating from a P = 1l defe
t.Then this string may be 
onne
ted to either a P = 1l or P = �1l defe
t with the opposite
harge. We have shown that the instanton number, q, is proportional to the total magneti

harge at P = 1l defe
ts. We 
an restate this result in terms of the Dira
 strings as follows;q is proportional to the number of Dira
 strings joining P = 1l and P = �1l defe
ts9. Infa
t, it is possible to rewrite the instanton number formula (3.11) so that the 
ontributionof the strings is transparent without introdu
ing Higgs �elds. This 
al
ulation is given inAppendix B.To gain further insight we investigate P in the vi
inity of a point defe
t (see also [18℄).For that we follow the eigenvalues along a 
losed path from p to p (see �g.2a) passingthrough a monopole10. We may slightly deform this path so that it misses the monopole.9Dira
 strings joining P = 1l anti-monopoles to P = �1l monopoles 
ount with a relative minus sign tostrings joining P = 1l monopoles and P = �1l anti-monopoles.10a SU(2)-monopole with P = 1l 15
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onne
tingmonopoles and anti-monopoles of opposite 
harges. Shown is a string-networkin the se
tor with instanton number q = 4On the deformed path the eigenvalues of P are nowhere degenerate and thus H in (4.5)must be periodi
 (see above). Returning to the undeformed path through the monopolewe 
on
lude, that at the monopole, where both eigenvalues are 1, the two eigenvalues arere
e
ted at � = 1 as shown in �g.2a. The spe
tral 
ow is 
ontinuous but not di�erentiable.Sin
e P(~x) is smooth, the diagonalising W (~x) in (4.5) must be singular to 
ompensatefor the non-smoothness of D(~x). As in the 
ase without defe
ts, W (~x) is not ne
essarilyperiodi
 and obeys (4.8).To summarise, in the presen
e of monopole and loop defe
ts we 
an still perform thegauge transformation (4.4). But it is ne
essarily singular on strings 
onne
ting the defe
ts.The gauge transformed A0(~x) is periodi
, but singular on these strings. After gauge �xingthe transition fun
tions 
an be 
hosen as in (4.13). The instanton number is related to themagneti
 
harges of the defe
ts in a very simple way.In 
ases where domain walls extend over the whole torus the situation is analogous tothe one in 2-dimensional gauge theories. We 
annot avoid defe
ts when going from one\fa
e" of the torus to the opposite one. There is no obstru
tion for the eigenvalues to varysmoothly along a path 
rossing the wall. Neither H nor W are singular at the wall (see�g.2). But the eigenvalues of H may wind or inter
hange if we move from ~x to ~x+ bi andthus D(~x) may be periodi
 only up to a permutation of its entries, i.e.H(~x+ bi) =WiH(~x)W�1i + Ĥi;where theWi are Weyl-re
e
tions and the Ĥi 2 L, with L being the dis
rete latti
e de�nedin (2.7). Now we 
an only prove, that the gauge transformed transition fun
tions have the16



form U0 = 1l; Ui = e�2�i�0ĤiRi(~x)Wi;where again the Ri are in the Abelian subgroup and ful�l the 
o
y
le 
ondition (2.2). Thistime dependen
e in the transition fun
tions is reminis
ent of the T 2 analysis [8℄. The gauge�xed A0 has the formA0(~x) = a0(~x) + 2�L0 3Xi=1 Ĥi�i; where a0(~x+ bi) =Wia0(~x)W�1i : (5.14)As in the 
ase without defe
ts there are residual gauge transformations (see Appendix C).6 Con
lusions and OutlookIn this paper we have 
onsidered the gauge-�xing of Yang-Mills theory on the four torusfor arbitrary instanton se
tors. Of 
ourse the 
hoi
e of gauge �xing does not a�e
t physi
s,but an appropriate gauge-�xing may 
onsiderably simplify the mathemati
al problem of
omputing or approximating fun
tional integrals. Motivated by their su

ess in two di-mensions we adopted an extended Abelian proje
tion on the four torus. Here we requireA0 to be Abelian, time independent and the spatial 
omponents Ai of the gauge potentialto be periodi
 in time.One di�eren
e with the T 2 problem is that we have the added 
ompli
ation of instantonse
tors. In two dimensions one may assume that before gauge �xing the gauge potential A�is 
ompletely periodi
, ie. the transition fun
tions are trivial U� = 1l. In four dimensions,we may only assume this if we are in the zero instanton se
tor (ie. the topologi
al 
hargeq is zero). We have argued that for q 6= 0 it is 
onvenient to work with a new set of non-Abelian transition fun
tions. With these transition fun
tions the path ordered exponential,P(~x), whi
h is 
entral to the gauge �xing is 
ompletely periodi
, even though of 
oursethe gauge �eld itself is non-periodi
. Moreover, these transition fun
tions in
lude the oddinstanton se
tors of SU(2). To our knowledge, smooth untwisted transition fun
tions forthis 
ase have not been given before.The most signi�
ant break with the two dimensional treatment is the presen
e of un-avoidable singularities in the �nal gauge �xed potential [7℄. These singularities are due toambiguities in the diagonalisation of P(~x) where the eigenvalues of P(~x) are degenerate(for SU(2) this degenera
y o

urs where P(~x) = �1l). There is a 
lose analogy betweenthese defe
ts (ie. points, loops or surfa
es where P(~x) is degenerate) and magneti
 
hargesin Yang-Mills-Higgs theories [23℄. We have presented a detailed analysis of the spe
ial 
asewhere one only has point and loop defe
ts, whi
h 
an be interpreted as magneti
 monopolesand magnetised loops. The gauge �xed potential is smooth everywhere ex
ept for \Dira
strings" joining monopole (loop) pairs. The instanton number, q is simply the number ofmagneti
 
harges at the P = 1l defe
ts.>From one viewpoint the existen
e of these magneti
 defe
ts imply that our attemptto generalise the two dimensional �xing has failed. We take the opposite view. It is a long17



standing 
onje
ture that 
on�nement of 
olor is produ
ed by dual super
ondu
tivity (oftype II) of the QCD va
uum [24℄. Indeed, latti
e 
al
ulations [25℄ indi
ate that magneti
monopoles (or loops?) are the dominant infrared degrees of freedom, at least in the maximalAbelian gauge and the Polyakov gauge.There is a long way from the pi
ture of 
ondensed magneti
 monopoles to realQCD. Atpresent there is no analyti
 proof of the existen
e of the 
ondensate of monopoles. However,in those theories where we understand 
on�nement, the latter is due to the 
ondensation ofmonopoles; these examples are 
ompa
t QED [26℄ and supersymmetri
 Yang-Mills theories[27℄. The balan
ing of the energy and the entropy of monopoles (and/or loops) may explainthe o

urren
e of the de
on�nement transition in QCD. At low temperatures we expe
t a
ondensation of monopoles with P = 1l and of monopoles with P = �1l. In the broken hightemperature phase, where hTrPi � �2, we do not expe
t long monopole loops but rathera dipole gas of monopole-antimonopole pairs, both with P = 1l (or both with P = �1l).Of 
ourse the treatment given here has been purely 
lassi
al. The next step would beto study the path integral within this gauge �xing. At this point one would need a suitableapproximation [28℄. With a view to investigating the 
on�nement of stati
 quarks it wouldbe interesting to 
onsider whether in any regime the monopoles and Dira
 strings play adominant role in the path integral.A
knowledgementsWe are grateful to O. Jahn, F. Lenz, G. Rudolph and P. van Baal for helpful dis
ussions.Appendi
esA Theta Fun
tionsOur 
onventions with respe
t to theta fun
tions are the same as ref. [29℄. We work withthe Ja
obi theta fun
tion with 
hara
teristi
s� " ab # (z; i�) = Xn2Z e���(n+a)2+2�i(n+a)(z+b): (A.1)This fun
tion has the following periodi
ity properties� " a +mb+ n # (z; i�) = e2�ina� " ab # (z; i�); m; n 2 Z (A.2)and has zeros where z = (a+ n + 12)� + (b +m+ 12); n;m 2 Z.B Te
hni
al ResultsIn this appendix we derive some of the te
hni
al results quoted in 
hapter 5.18



B.1 Magneti
 Charges and Higgs winding numbersTo relate this winding number to the magneti
 
ux we parameterise the normalised Higgs�eld as �̂ = ( sin � 
os'; sin � sin'; 
os �); � = j�j�̂i�i; (B.1)where the angles �; ' are fun
tions on S. The 
orresponding P = exp(i�) is diagonalisedby [30℄ W = exp(�i'2 �3) exp(�i�2�2) exp(i��3) and D = exp(ij�j�3):The magneti
 potential (4.14) is Amag = d�� 12 
os �d', and the 
orresponding �eld strengthis Fmag = 12 sin �d� ^ d':On the other hand, taking the Higgs �eld (B.1) we getTr ��̂d�̂ ^ d�̂� = 4i sin �d� ^ d' = 8iFmag: (B.2)Comparing with equations (5.2) and (5.3) one readily obtainsn(S) = 12� IS sin � d� ^ d' = 12��(S): (B.3)B.2 Derivation of equation (5.6)Now we will relate Tr �(P�1dP)3� to the Higgs �eld � = ����. With the notation j�j =qTr�2=2 and �̂ := �=j�j we have P = exp (i�) = 
os(j�j) + i sin(j�j)�̂ and it follows that(P�1dP)3 = � sin4 j�j�̂d�̂ ^ d�̂ ^ d�̂� i sin3 j�j 
os j�jd�̂ ^ d�̂ ^ d�̂�3i sin2 j�j�̂d�̂ ^ d�̂ ^ dj�j: (B.4)Under the tra
e the �rst two terms on the right hand side of (B.4) drop out. Hen
e wehave Tr �(P�1dP)3� = �3i sin2 j�jdj�j ^ Tr ��̂d�̂ ^ d�̂�= d( 32i  j�j � sin(2j�j)2 !Tr ��̂d�̂ ^ d�̂�) : (B.5)19



B.3 Instanton number and Dira
 StringsWe showed in the paper that in the presen
e of magneti
 monopoles the diagonalizationis not smoothly possible. The matrix W be
omes singular on Dira
 strings 
onne
tingmonopoles with opposite magneti
 
harges. We shall argue that the strings on whi
h Wis singular 
ontribute to the instanton number q. Setting P =WDW�1 one �rst observesfor arbitrary gauge groups that Tr �(P�1dP)3� = dA;where the 2-form A isA = �6Tr �W�1dW ^D�1dD�+ 3Tr �W�1dWD�1 ^W�1dWD� :Thus we 
an 
onvert the integral in (3.11) into a surfa
e integral over the \boundary" ofthe torus and over in�nitesimal 
ylinders around the strings (see �g.4):q = 124�2 Z Tr �(P�1dP)3� = qs + qb;where the individual 
ontributions from the strings and boundary of the torus readqs = 124�2 Xstrings Z
yl: A and qb = 124�2 3Xi=1 � Zxi=0 (A(x+ bi)�A(x))�:If only monopoles are present, then H(~x) is periodi
 and W (~x + bi) = W (~x)Ri(~x), wherethe Ri are abelian and satisfy the 
o
y
le 
onditions (4.9). After some algebra we obtainA(x+ bi)�A(x) = �6Tr(Ri(x)�1dRi(x) ^D(x)�1dD(x)):We parametrize the diagonal matrix asD = ei��3 so that D�1dD = id��3 (B.6)and arrive atqb = 14i�2 3Xi=1 Zxi=0 dh�Tr(R�1i dRi�3)i (B.7)= 14i�2 Xi;j Zxi=xj=0 "ijk�Tr ��Ri(x+ bj)�1�kRi(x + bj)�Ri(x)�1�kRi(x)� i�3� dxk :Di�erentiating equation (4.9) one sees that the tra
e term is symmetri
 in i and j. Thereforewe 
on
lude qb = 0 in a

ordan
e with the fa
t that the spatial transition fun
tions aresimply given by the fun
tions Ri, see equation (4.10).20



The strings do 
ontribute to the instanton number. We 
onsider a Dira
 string 
onne
t-ing monopoles. We argue that this string 
ontributes to the instanton number the sum ofmonopole 
harges of P = 1l monopoles atta
hed to the string. Using the parametrisation(B.6) we 
an writeA = �12d� ^ Amag + 12 sin� 
os�Fmag= �12d(�+ sin� 
os�) ^ Amag + 12d(sin� 
os�Amag): (B.8)Integrating over a 
losed surfa
e S surrounding the string the 
ontribution from the se
ondterm vanishes. Now we 
hoose a P = 1l monopole and the Dira
 string emanating from it.We introdu
e 
oordinates (z; ') on S su
h that � is independent of '. The 
ontributionof the string to the instanton number reads124�2 IS A = � 12�2 Z dz ��z (�+ sin� 
os�) Z d'Amag': (B.9)The integral R d'Amag' is up to the sign given by the magneti
 
ux through the Dira
string, ie. it is �2� times the magneti
 
harge of the P = 1l monopole. Therefore the
ontribution of the string to the instanton number is given by (1=�)�(� + sin� 
os�).Hen
e, if the string ends at a P = �1l monopole then it 
ontributes 1 (�� = �) and,if it ends at a P = 1l monopole (�� = 0), it will not 
ontribute. The generalisation toarbitrary strings is straightforward.C Residual Gauge FixingAfter the gauge �xing pro
edure des
ribed in se
tions 4 and 5, A0 is independent of timeand restri
ted to the Cartan subalgebra. Furthermore, the transition fun
tions be
omeabelian (upto an element of the Weyl group if one has wall defe
ts). However, the gaugeis not �xed 
ompletely, sin
e one must �x the residual gauge freedom related to gaugetransformations whi
h preserve the properties of A0 mentioned above. If we have no wallswe may assume that the transition fun
tions have the standard form (4.13). Thus we only
onsider residual gauge transformations whi
h do not 
hange the transition fun
tions. Onemay regard this �xing of the transition fun
tions as the �rst part of our residual gauge�xing. Let us �rst 
onsider the 
ase 
onsidered in 
hapter 4, where one has no defe
ts.C.1 No defe
tsHere we assume that the defe
t manifold D is empty, in whi
h 
ase P(~x) is smoothlydiagonalisable. We may also assume that H(~x) is smoothly restri
ted to the �rst Weyl
hamber. After the �rst part of the gauge �xing given in se
tion four the transitionfun
tions are abelian. The residual gauge transformations areV (x) = exp�2�i�Hper(~x) +Hi xiLi�� ; (C.1)21



where all H's are in the Cartan subalgebra, Hper is periodi
 in all spatial dire
tions, andHi 2 L. Clearly these residual gauge transformations have no e�e
t on A0. A

ordingly,to �x the gauge we must impose 
onstraints on the spatial 
omponents of the gauge�eld. Of 
ourse, Ai(x) depends on time, whereas the residual gauge transformations under
onsideration are time-independent. Thus we 
ould impose 
onstraints on Ai for some�xed time, say x0 = 0. Alternatively, if we wish to treat all times on an equal footing we
an 
onsider the time-averaged obje
t~Ai(~x) = 1L0 Z L00 dx0Ai(x0; ~x): (C.2)Using the result that the transition fun
tions are Abelian after gauge-�xing, theCartan part of ~Ai(~x) (or Ai(x0 = 0; ~x)) may be de
omposed into a periodi
 pie
e ~A
;periand a 
ontribution ~A
;lini , whi
h is linear in the spatial 
oordinates. If we impose1L1L2L3 ZT 3 ~A
;peri d3x 2 2�Li � H=L; i = 1; 2; 3; (C.3)we �x the gauge freedom with respe
t to the Hi. Here H=L is the torus obtained bydividing the Cartan subalgebra H by the latti
e L.If we demand the following relations, we 
an �x the residual gauge freedom 
on
erningHper upto an Abelian global gauge transformation~A
;per1 = h1(x2; x3); L1Z0 ~A
;per2 dx1 = h2(x3); L1Z0 L2Z0 ~A
;per3 dx1dx2 = h3; (C.4)where the fun
tions hi are Cartan subalgebra valued fun
tions of the relevant spatial 
oor-dinates. An alternative to (C.4) whi
h is symmetri
 in the spatial variables is simply theCoulomb type 
ondition r � ~A
;per(~x) = 0: (C.5)C.2 Defe
ts without wallsWe now assume that the defe
t manifold, D, is non-empty. Thus our gauge �xed potentialis not well de�ned for ~x 2 D and on the Dira
 strings joining the defe
ts. While D is gaugeinvariant, the paths taken by the Dira
 strings are not. However, one 
an only 
hangethe path of the Dira
 strings with a singular gauge transformation. The residual gaugetransformations 
onsidered in the previous subse
tion were (impli
itly) assumed to besmooth. Thus it is 
onvenient to separate the residual gauge �xing into two parts. Firstly,one �xes the lo
ation of the Dira
 strings (whi
h 
an be viewed as a singular residualgauge �xing). For example 
onsider the 
ase where one only has point-like monopoledefe
ts. Here one 
an take the Dira
 strings to be straight lines all meeting together in the
entre of T 3. Then one repeats the residual gauge �xing of se
tion C.1, ex
ept that nowone must ex
lude a 
losed set, G, 
ontaining both the defe
t manifold D and the (by now�xed) Dira
 strings from the relevant integrals in (C.4).22



C.3 WallsIf we allow for wall defe
ts then we a
tually have a wider 
lass of residual gauge transfor-mations V (x) =W � exp�2�i�Hper(~x) +Hi xiLi +H0 x0L0�� ; (C.6)where H0 2 L, and W is an element of the Weyl group whi
h 
ommutes with all thetransition fun
tions.The reason for this extra freedom is that in the 
ases 
onsidered in theprevious subse
tions we 
ould assume that H(~x) is restri
ted to the �rst Weyl 
hamber,and we only 
onsidered residual gauge transformations whi
h respe
ted this 
onstraint.Referen
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