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1 Introdu
tionInstantons play an important role in 
at spa
e gauge �eld theory [45℄. Beingstationary points of the Eu
lidean a
tion, they give the dominant 
ontribu-tion to the Eu
lidean path integral thus a

ounting for a variety of importantphenomena in QCD-type theories. In addition, self-dual instantons admit su-persymmetri
 extensions, whi
h makes them an important tool for verifyingvarious duality 
onje
tures like the AdS/CFT 
orresponden
e [4℄. More gen-erally, the Eu
lidean approa
h has be
ome the standard method of quantum�eld theories in 
at spa
e.Sin
e the theory of gravity and Yang-Mills theory are somewhat similar, it isnatural to study also gravitational instantons. An impressive amount of workhas been done in this dire
tion, leading to a number of important dis
overies.A thorough study of instanton solutions of the va
uum Einstein equationsand also those with a �-term has been 
arried out [20,17,24℄. These solutionsdominate the path integral of Eu
lidean quantum gravity, leading to interest-ing phenomena like bla
k hole nu
leation and quantum 
reation of universes.Perhaps one of the most spe
ta
ular a
hievements of the Eu
lidean approa
his the derivation of bla
k hole entropy from the a
tion of the S
hwarzs
hild in-stanton [22℄. In addition, gravitational instantons are used in the Kaluza-Kleinredu
tions of string theory.Along with these very suggestive results, the diÆ
ulties of Eu
lidean quan-tum gravity have been revealed. Apart from the usual problem of the non-renormalizability of gravity, whi
h 
an probably be resolved only at the level ofa more fundamental theory like string theory, the Eu
lidean approa
h presentsother 
hallenging problems. In �eld theories in 
at spa
e the 
orrelation fun
-tions of �eld operators are holomorphi
 fun
tions of the global 
oordinatesin a domain that in
ludes negative imaginary values of the time 
oordinate,t = �i� , where � is real and positive [48℄. This allows one to perform theanalysis in the Eu
lidean se
tion and then analyti
ally 
ontinue the fun
tionsba
k to the Lorentzian se
tor to obtain the physi
al predi
tions. In 
urvedspa
e the theorems that would ensure the analyti
ity of any quantities arisingin quantum gravity are not known. As a result, even if Eu
lidean 
al
ulationsmake sense, it is not in general 
lear how to relate their result to the Lorentzianphysi
s.This diÆ
ulty is most strikingly illustrated by the famous problem of the 
on-formal se
tor in Eu
lidean quantum gravity. If one tries evaluating the pathintegral over Riemannian metri
s, then one dis
overs that it diverges be
ausethe Eu
lidean gravitational a
tion is not bounded from below and 
an bemade arbitrarily large and negative by 
onformal res
aling of the metri
 [25℄.Su
h a result is a
tually expe
ted, for if the integral did 
onverge (with some2



regularization), then one 
ould give a well-de�ned meaning to the 
anoni
alensemble of the quantum gravitational �eld. However, the possibility of havinga bla
k hole 
auses the 
anoni
al ensemble to break down { sin
e the degen-era
y of bla
k hole states grows faster than the Boltzmann fa
tor de
reases.One 
an, `improve' the Eu
lidean gravitational a
tion by analyti
ally 
ontin-uing the 
onformal modes, let us 
all them h, via h ! ih, and this improvesthe 
onvergen
e of the integral [25℄. This shows that if there is a well-de�nedEu
lidean path integral for the gravitational �eld, then the relation to theLorentzian se
tor is more 
ompli
ated than just via t! �i� .Unfortunately, it is unknown at present whether one 
an in the general 
ase�nd a physi
ally well-de�ned and 
onvergent path integral for the gravitational�eld. At the same time, the idea of 
onstru
ting it is 
on
eptually simple [46℄:one should start from the Hamiltonian path integral over the physi
al degreesof freedom of the gravitational �eld. Su
h an integral 
ertainly makes sensephysi
ally and is well-
onvergent, sin
e the Hamiltonian is positive { at leastin the asymptoti
ally 
at 
ase. The Hamiltonian approa
h is not 
ovariant,but one 
an 
ovariantize it by 
hanging the integration variables, whi
h leadsto a manifestly 
ovariant and 
onvergent path integral for gravity. The mainproblem with this program is that in the general 
ase it is un
lear how to isolatethe physi
al degrees of freedom of the gravitational �eld. For this reason, sofar the program has been 
arried out only for weak �elds in the asymptoti
ally
at 
ase [46℄. Remarkably, the result has been shown to exa
tly 
orrespondto the the standard Eu
lidean path integral with the 
onformal modes being
omplex-rotated via h ! ih. This lends support to the Eu
lidean approa
hin gravity and allows one to hope that the diÆ
ulties of the method 
an be
onsistently resolved; (see, for example, [7,6℄ for the re
ent new developmentswithin the latti
e approa
h).One 
an adopt the viewpoint that Eu
lidean quantum gravity is a meaningfultheory within its range of appli
ability, at least at one-loop level, by assum-ing that a 
onsistent resolution of its diÆ
ulties exists. Then already in itspresent status the theory 
an be used for 
al
ulating 
ertain pro
esses, mostnotably for des
ribing tunneling phenomena, in whi
h 
ase the Eu
lidean am-plitude dire
tly determines the probability. The analyti
 
ontinuation to theLorentzian se
tor in this 
ase is not ne
essary, apart from when the issue ofthe interpretation of the 
orresponding gravitational instanton is 
onsidered.The important example of a tunneling pro
ess in quantum gravity is the 
re-ation of bla
k holes in external �elds. Bla
k holes are 
reated whenever theenergy pumped into the system is enough in order to make a pair of virtualbla
k holes real [33℄. The energy 
an be provided by the heat bath [30,38,5℄, bythe ba
kground magneti
 �eld [21,19,16,15℄, by the expansion of the universe[28,10,41℄, by 
osmi
 strings [37℄, domain walls [11℄, et
; (see also [43,35,36℄).Besides, one 
an 
onsider pair 
reation of extended multidimensional obje
tslike p-branes due to intera
tion with the ba
kground supergravity �elds [14℄.3



In all these examples the pro
ess is mediated by the 
orresponding gravita-tional instanton, and the semi
lassi
al nu
leation rate for a pair of obje
ts ona given ba
kground is given by� = A exp f�(Iobj � Ibg)g : (1.1)Here Iobj is the 
lassi
al a
tion of the gravitational instanton mediating 
re-ation of the obje
ts, Ibg is the a
tion of the ba
kground �elds alone, and theprefa
tor A in
ludes quantum 
orre
tions.In most 
ases the existing 
al
ulations of bla
k hole pair 
reation pro
esses
onsider only the 
lassi
al term in (1.1). This is easily understood, sin
e loop
al
ulations in quantum gravity for non-trivial ba
kgrounds are extremely
ompli
ated. To our knowledge, there is only one example of a next-to-leading-order 
omputation, whi
h was undertaken in [30℄ by Gross, Perry, and Ya�efor the S
hwarzs
hild instanton ba
kground. The aim of the present paper isto 
onsider one more example of a 
omplete one-loop 
omputation in quantumgravity.The problem we are interested in is the quantum 
reation of bla
k holes in deSitter spa
e. This problem was 
onsidered by Ginsparg and Perry [28℄, whoidenti�ed the instanton responsible for this pro
ess, whi
h is the S2 � S2 so-lution of the Eu
lidean Einstein equations R�� = �g�� for � > 0. Ginspargand Perry noti
ed that this solution has one negative mode in the physi-
al se
tor, whi
h renders the partition fun
tion 
omplex, thus indi
ating thequasi-
lassi
al instability of the system. This instability leads to spontaneousnu
leation of bla
k holes in the rapidly in
ating universe. This is the domi-nant instability of de Sitter spa
e, sin
e 
lassi
ally the spa
e is stable [28℄. Theenergy ne
essary for the nu
leation is provided by the �-term, whi
h drivesdi�erent parts of the universe apart thereby drugging the members of a virtualbla
k hole pair away from ea
h other. The typi
al radius of the 
reated bla
kholes is 1=p�, while the the nu
leation rate is of the order of exp(��=�G),where G is Newton's 
onstant. As a result, for �G � 1 when in
ation is fast,the bla
k holes are produ
ed in abundan
e but they are small and presumablyalmost immediately evaporate. Large bla
k holes emerge for �G � 1 whenin
ation slows down, and these 
an probably exist for a long time, but theprobability of their 
reation is exponentially small. This s
enario was furtherstudied in Refs.[10,9,18℄ (see also referen
es in [9℄), where the generalizationto the 
harged 
ase was 
onsidered and also the subsequent evolution of the
reated bla
k holes was analyzed. However, the one-loop 
ontribution so farhas not been 
omputed.A remarkable feature of the S2 � S2 instanton is its high symmetry. In whatfollows, we shall utilize this symmetry in order to expli
itly determine spe
traof all relevant 
u
tuation operators in the problem. We shall use the �-fun
tion4



regularization s
heme in order to 
ompute the one-loop determinants, whi
hwill give us the partition fun
tion Z[S2�S2℄ for the small 
u
tuations aroundthe S2 � S2 instanton. We shall then need to normalize this result. The nor-malization 
oeÆ
ients is Z[S4℄, the partition fun
tion for small 
u
tuationsaround the S4 instanton, whi
h is the Eu
lidean version of the de Sitter spa
e.The one-loop quantization around the S4 instanton was 
onsidered by Gib-bons and Perry [27℄, and by Christensen and Du� [13℄, but unfortunately innone of these papers the analysis was 
ompleted. We shall therefore re
onsiderthe problem by rederiving the spe
tra of 
u
tuations around S4 and 
omput-ing the determinants within the �-fun
tion s
heme, thereby obtaining a 
losedone-loop expression for Z[S4℄.In our treatment of the path integral we follow the approa
h of Gibbons andPerry [27℄; (see also [42℄). In order to have 
ontrol over the results, we work in aone-parameter family of 
ovariant gauges and perform the Hodge de
omposi-tion of the 
u
tuations. These are then expanded with respe
t to the 
ompletesets of basis harmoni
s, and the perturbative path integration measure is de-�ned as the square root of the determinant of the metri
 on the fun
tion spa
eof 
u
tuations. To insure the 
onvergen
e of the integral over the 
onformalmodes, whi
h enter the a
tion with the wrong sign, we essentially follow thestandard re
ipe h! ih [25℄; (see also Ref.[42℄, where a slightly disguised formof the same pres
ription was advo
ated). The subtle issue is that the 
onfor-mal operator ~�0 = �3r�r��4� has a �nite number, N , of negative modes,and these enter the a
tion with the 
orre
t sign from the very beginning.Our treatment of these spe
ial modes is di�erent from that by Hawking [32℄,who suggests that su
h modes should be 
omplex-rotated twi
e, the partitionfun
tion then a
quiring the overall fa
tor of iN . However, the presen
e of thisfa
tor in the partition fun
tion would lead to unsatisfa
tory results, and onthese grounds we are led to not rotating the spe
ial 
onformal modes at all.The path integral is 
omputed by integrating over the Fourier expansion 
o-eÆ
ients, whi
h leads to in�nite produ
ts over the eigenvalues. The only 
on-formal modes giving 
ontribution to the result are the spe
ial negative modesdis
ussed above. We 
arefully analyze the resulting produ
ts to make sure thatall modes are taken into a

ount and that the dependen
e of the gauge-�xingparameter 
an
els thereby indi
ating the 
orre
tness of the pro
edure. Wegive a detailed 
onsideration to the zero modes of the Faddeev-Popov opera-tor, whi
h arise due to the ba
kground isometries. The integration over thesemodes requires a non-perturbative extension of the path-integration measure,and we �nd su
h a non-perturbative measure in the zero mode se
tor to beproportional to the Haar measure of the isometry group. Colle
ting all termsyields the partition fun
tion for small 
u
tuations around a ba
kground in-stanton 
on�guration in terms of in�nite produ
ts over eigenvalues of thegauge-invariant operators. We then use the expli
itly known spe
tra of 
u
-tuations around the S2 � S2 and S4 ba
kgrounds in order to 
al
ulate the5



partition fun
tions.The rest of the paper is organized as follows. In Se
.2 we present our deriva-tion of the bla
k hole nu
leation rate within the �nite temperature approa
h.In Se
.3 the path integration pro
edure is 
onsidered. The spe
tra of small
u
tuations around the S2 � S2 instanton are 
omputed in Se
.4 via a dire
tsolving of the di�erential equations in the eigenvalue problems. The spe
tra ofthe 
u
tuations around the S4 instanton are rederived in Se
.5 with the useof group theoreti
 arguments. The partition fun
tions are 
omputed in Se
.6,and Se
.7 
ontains the �nal expression for the bla
k hole nu
leation rate to-gether with some remarks. We present a detailed analysis of the �-fun
tionsin the Appendix. We use units where 
 = �h = kB = 1.2 Bla
k hole nu
leation rateIn this se
tion we shall derive the basi
 formula for the bla
k hole nu
leationrate in de Sitter spa
e, whose di�erent parts will be evaluated in the nextse
tions. The existing derivations of the nu
leation rate [28,10℄ re
over only the
lassi
al fa
tor in (1.1). In addition, it is not always 
lear to whi
h volume therate refers. We argue that our formula (2.15) gives the nu
leation probabilityper Hubble volume and unit time as measured by a freely falling observer. Thebasi
 idea of our approa
h is to utilize the relation between the in
ation andthermal properties of de Sitter spa
e. This will allow us to use the standardtheory of de
ay of metastable thermal states [39,40,3℄.Let us 
onsider the partition fun
tion for the gravitational �eldZ = Z D[g��℄ e�I ; (2.2)where the integral is taken over Riemannian metri
s, and I = I[g��℄ is theEu
lidean a
tion for gravity with a positive � terms; see Eq.(3.1) below. Thepath integration pro
edure will be 
onsidered in detail in the next se
tion. Atpresent let us only re
all that in the semi
lassi
al approximation the integralis approximated by the sum over the 
lassi
al extrema of the a
tion I, that isZ �Xl Zl : (2.3)Here Zl = Z[Ml℄ is the partition fun
tion for the small gravitational 
u
tu-ations around a ba
kground manifold Ml with a metri
 gl�� subje
t to the6



Eu
lidean Einstein equations R�� = �g��. S
hemati
ally one hasZ �Xl exp(�Il)pDet�l ; (2.4)where Il is the 
lassi
al a
tion for the l-th extremum, and �l is the operatorfor the small 
u
tuations around this ba
kground.The dominant 
ontribution to the sum in (2.4) is given by the S4 instanton,whi
h is the four-dimensional sphere with the radius q3=� and the standardmetri
. Sin
e this is a maximally symmetry spa
e, its a
tion I = �3�=�G isless than that of any other instanton. Hen
e,Z � Z[S4℄ = exp(3�=�G)pDet� : (2.5)On the other hand, the S4 instanton des
ribes the thermal properties of deSitter spa
e [22,23℄, sin
e it 
an be obtained by an analyti
 
ontinuation viat! � = it of the region of the de Sitter solutionds2 = �(1� �3 r2) dt2 + dr21� �3 r2 + r2(d#2 + sin2 #d'2) (2.6)
ontained inside the event horizon, r < q3=�. Let us 
all this region a Hubbleregion. Its boundary, the horizon, has the area A = 12�=�. The temperatureasso
iated with this horizon is T = 12�q�3 , the entropy S = A=4G = 3�=�Gand the free energy F = �TS. The same values 
an be obtained by writingthe partition fun
tion for the S4 instanton asZ[S4℄ = e��F (2.7)with � = 1=T . Indeed, sin
e S4 is periodi
 in all four 
oordinates, any ofthem 
an be 
hosen to be the `imaginary time'. The 
orresponding period,� = 2�q 3� , 
an be identi�ed with the proper length of a geodesi
 on S4,all of whi
h are 
ir
les with the same length. This gives the 
orre
t de Sittertemperature. Comparing (2.7) and (2.5) one obtains �F = �3�=�G+ : : : , thedots denoting the quantum 
orre
tions, and this again agrees with the resultfor the de Sitter spa
e. To re
apitulate, the partition fun
tion of quantumgravity with � > 0 is approximatelyZ � e��F ; (2.8)7
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Fig. 1. The leading 
ontribution to the partition fun
tion 
omes from the S4 andS2 � S2 gravitational bubbles, the e�e
t of the latter being purely imaginary.where 1=� is the de Sitter temperature and F is the free energy in the Hubbleregion.Let us now 
onsider the 
ontribution of the other instantons. One hasZ � e��F  1 + 0Xl Z[Ml℄Z[S4℄ ! ; (2.9)where the prime indi
ates that Ml 6= S4. Now, for �G � 1 all terms inthe sum are exponentially small and 
an safely be negle
ted as 
ompared tothe unity, if only they are real. If there are 
omplex terms, then they willgive an exponentially small imaginary 
ontribution. The S2 � S2 instanton isdistinguished by the fa
t that its partition fun
tion is purely imaginary dueto the negative mode in the physi
al se
tor [28℄. This is the only solution for� > 0 whi
h is not a lo
al minimum of the a
tion in the 
lass of metri
s with
onstant s
alar 
urvature [20℄. Hen
e (see Fig.1),Z � e��F  1 + Z[S2 � S2℄Z[S4℄ ! � exp ��  F � Z[S2 � S2℄�Z[S4℄ !! ; (2.10)where Z[S2 � S2℄ is purely imaginary. As a result, the partition fun
tion 
anstill be represented as Z � e��F , where the real part of F is the free energyof the Hubble region, and the exponentially small imaginary part is given by=(F ) = �Z[S2 � S2℄�Z[S4℄ : (2.11)It is natural to relate this imaginary quantity also to the free energy. We aretherefore led to the 
on
lusion that the free energy of the Hubble region has asmall imaginary part, thus indi
ating that the system is metastable. The de
ayof this metastable state will lead to a spontaneous nu
leation of a bla
k hole8



in the Hubble region, whi
h 
an be inferred from the geometri
al propertiesof the S2 � S2 instanton.The S2 � S2 instanton 
an be obtained via the analyti
 
ontinuation of theS
hwarzs
hild-de Sitter solution [26,28,10℄ds2 = �N dt2 + dr2N + r2(d#2 + sin2 #d'2) : (2.12)HereN = 1� 2Mr ��3 r2, and for 9M2� < 1 this fun
tion has roots at r = r+ > 0(bla
k hole horizon) and at r = r++ > r+ (
osmologi
al horizon). One hasN > 0 for r+ < r < r++, and only this portion of the solution 
an beanalyti
ally 
ontinued to the Eu
lidean se
tor via t ! � = it. The 
oni
alsingularity at either of the horizons 
an be removed by a suitable identi�
ationof the imaginary time. However, sin
e the two horizons have di�erent surfa
egravities, the se
ond 
oni
al singularity will survive. The situation improvesin the extreme limit, r+ ! r++ ! 1p� , sin
e the surfa
e gravities are thenthe same and both 
oni
al singularities 
an be removed at the same time.Although one might think that the Eu
lidean region shrinks to zero whenthe two horizons merge, this is not so. The limit r+ ! r++ implies that9M2� = 1�3�2 with �! 0. One 
an introdu
e new 
oordinates #1 and '1 via
os#1 = (p�r � 1)=�+ �=6 and '1 = p� � � . Passing to the new 
oordinatesand taking the limit �! 0, the result isds2 = 1�� d#12 + sin2 #1 d'12 + d#2 + sin2 # d'2� ; (2.13)and this S2 � S2 metri
 ful�lls the Einstein equations. Sin
e the instanton�eld determines the initial value for the 
reated real time 
on�guration, one
on
ludes that the S2�S2 instanton is responsible for the 
reation of a bla
khole in the Hubble region. This bla
k hole �lls the whole region, sin
e its sizeis equal to the radius of the 
osmologi
al horizon.It is well known that the region r < q3=� of the stati
 
oordinate system in(2.6) 
overs only a small portion of the de Sitter hyperboloid [47℄; (see Fig.2).In order to 
over the whole spa
e, one 
an introdu
e an in�nite number of freelyfalling observers and asso
iate the interior of the stati
 
oordinate system withea
h of them. Hen
e, the spa
etime 
ontains in�nitely many Hubble regions.It is also instru
tive to use global 
oordinates 
overing the whole de Sitterspa
e,ds2 = 3� 
os2 � � d�2 + d�2 + sin2 � (d#2 + sin2 #d'2)! ; (2.14)where � 2 [��=2; �=2℄ and � 2 [0; �℄. The traje
tory of a freely falling observer9
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Fig. 2. Left: The 
onformal diagram of de Sitter spa
e in 
oordinates (2.14).The traje
tories �=
onst. are timelike geodesi
s. The diamond-shaped region inthe 
enter is the Hubble region of the geodesi
 observer at � = �=2. Althoughthis region 
ompletely 
overs the hypersurfa
e �0, at later times one needs moreobservers to 
over the hypersurfa
e �1 with the interiors of their horizons { theHubble regions proliferate. Right: The de Sitter hyperboloid in the embeddingMinkowski spa
e (with two dimensions suppressed). The Hubble region of theinertial observer moving along the hyperbola x = 0, y > 0 is the portion of thehyperboloid lying to the right from the two shaded strips. This 
orresponds tothe interior region of the observer's stati
 
oordinate system.is � = �0 (and also # = #0, ' = '0), and the domain of the asso
iated stati

oordinate system, the Hubble region, is the interse
tion of the interiors of theobserver's past and future horizons [34℄. Let � be a spa
elike hypersurfa
e,say � = �0. If �0 = 0 then � is 
ompletely 
ontained inside the Hubble regionof a single observer with � = �=2 (see Fig.2). However, for late moments oftime, � ! �=2, one needs more and more independent observers in order to
ompletely 
over � by the union of their Hubble regions. One 
an say thatthe Hubble regions proliferate with the expansion of the universe.Sin
e de Sitter spa
e 
onsists of in�nitely many Hubble regions, the bla
k holenu
leation will lead to some of the regions being 
ompletely �lled by a bla
khole, but most of the regions will be empty. The number of the �lled regionsdivided by the number of those without a bla
k hole is the probability for abla
k hole nu
leation in one region. This is proportional to =(F ) in (2.11).One 
an argue that the bla
k holes are a
tually 
reated in pairs [33,36℄,where the two members of the pair are lo
ated at the antipodal points ofthe de Sitter hyperboloid. This 
an be inferred from the 
onformal diagramof the S
hwarzs
hild-de Sitter solution, whi
h 
ontains an in�nite sequen
e ofbla
k hole singularities and spa
elike in�nities; see Fig.3. One 
an identify theasymptoti
ally de Sitter regions in the diagram related by a horizontal shift,10



and the spa
etime will then 
onsist of two bla
k holes at antipodal pointsof the 
losed universe. This agrees with the standard pi
ture of parti
les inexternal �elds being 
reated in pairs.
r = 0

r = 0 8

r = 8

r = 

ho
riz

on
horizon

Fig. 3. The 
onformal digram for the extreme S
hwarzs
hild-de Sitter solution.The surfa
e gravity of the extreme S
hwarzs
hild-de Sitter solution is �nitewhen de�ned with respe
t to the suitably normalized Killing ve
tor [10℄. Thisgives a non-zero value for the temperature of the nu
leated bla
k holes, whi
h
an be read o� also from the S2�S2 metri
: it is the inverse proper length ofthe equator of any of the two spheres, TBH = p�2� . How 
an it be that this isdi�erent from the temperature of the heat bath, whi
h is the de Sitter spa
ewith TdS = 12�q�3 ? For example, in the hot Minkowski spa
e the nu
leatedbla
k holes have the same temperature as the heat bath [30℄. However, theglobal stru
ture of de Sitter spa
e is di�erent from that of Minkowski spa
e.The 
u
tuations 
annot absorb energy from and emit energy into the whole ofde Sitter spa
e, but 
an only ex
hange energy with the Hubble region. Thusthe energy ex
hange is restri
ted. As a result, the lo
al temperature in thevi
inity of a 
reated defe
t may be di�erent from that of the heat bath, butredu
es to the latter in the asymptoti
 region far beyond the 
osmologi
alhorizon.The relation of the imaginary part of the free energy to the rate of de
ay of ametastable thermal state � was 
onsidered in [39,40,3℄. If the de
ay is only dueto tunneling then � = 2=(F ). Suppose that there is an additional possibilityto 
lassi
ally jump over the potential barrier. In this 
ase on top of the barrierthere is a 
lassi
al saddle point 
on�guration whose real time de
ay rate is de-termined by the saddle negative mode !�. At low temperatures the tunnelingformula is then still 
orre
t, while for T > j!�j2� one has � = j!�j�T =(F ). In ourproblem the saddle point 
on�guration also exists, the S2�S2 instanton, butits real time analog, the S
hwarzs
hild-de Sitter bla
k hole, is stable. It seemstherefore that there is no 
lassi
al 
ontribution to the pro
ess and the bla
khole nu
leation is a purely quantum phenomenon. 2 [One 
an imagine that thee�e
tive potential barrier is in�nitely high, su
h that a 
lassi
al transition is2 We do not understand the 
lassi
al interpretation of the Eu
lidean saddle pointsolution suggested in [30℄. The argument uses a family of non-normalizable de-formations of the instanton, and the a
tion is �nite as long as they are `stati
'.11



forbidden, but at the same time so narrow that the tunneling rate is non-zero.℄As a result, the rate of quasi
lassi
al de
ay of the de Sitter spa
e is given by� = 2=(F ). Using Eq.(2.11),� = �2T Z[S2 � S2℄Z[S4℄ : (2.15)Here T = 12�q�3 is the temperature of the de Sitter heat bath, whi
h wasoriginally de�ned with respe
t to the analyti
ally 
ontinued Killing ve
tor ��t .Sin
e t is the proper time of the geodesi
 observer resting at the origin ofthe stati
 
oordinate system (2.6), we 
on
lude that the formula gives theprobability of a bla
k hole nu
leation per Hubble volume and unit time of afreely falling observer.In order to use the formula (2.15), we should be able to 
ompute the one-looppartition fun
tions Z[S2�S2℄ and Z[S4℄. Now we shall 
al
ulate them withinthe path integral approa
h.3 The path integration pro
edureIn this se
tion we shall 
onsider the path integral for 
u
tuations around aninstanton solution of the Einstein equations R�� = �g�� in the stationaryphase approximation. We shall largely follow the approa
h of Gibbons andPerry [27℄.3.1 The se
ond variation of the a
tionOur starting point is the a
tion for the gravitational �eld on a 
ompa
t Rie-mannian manifoldM,I[g��℄ = � 116�G ZM (R� 2�)pg d4x ; (3.1)whose extrema, ÆI = 0, are determined by the equationsR�� = �g�� : (3.2)However, if one 
onsiders a time evolution along su
h a family then the a
tion willbe in�nite, whi
h shows that the 
lassi
al pi
ture does not apply. Even if one usesthe 
lassi
al formula for � in this 
ase, one arrives at the quantum result, sin
ej!�j=T=
onst.� 1. 12



Let g�� be an arbitrary solution, and 
onsider small 
u
tuations around it,g�� ! g�� + h�� . The a
tion expands asI[g�� + h��℄ = I[g��℄ + Æ2I + : : : ; (3.3)where Æ2I is quadrati
 in h�� and dots denote the higher order terms. One 
anexpress Æ2I dire
tly in terms if h�� . However, it is 
onvenient to use �rst thestandard de
omposition of h�� ,h�� = ��� + 14 h g�� +r��� +r��� � 12 g��r��� : (3.4)Here ��� is the transverse tra
efree part, r���� = ��� = 0, h is the tra
e,and the pie
e due to �� is the longitudinal tra
efree part. Under the gaugetransformations (general di�eomorphisms) generated by �� one has h�� !h�� +r��� +r��� : The TT-tensor ��� is gauge-invariant, while the tra
e h
hanges as h! h+ 2r���. It follows that~h = h� 2r��� (3.5)is gauge-invariant. For further referen
es we note that �� 
an in turn be de-
omposed into its 
oexa
t part ��, for whi
h r��� = 0, the exa
t part r��,and the harmoni
 pie
e �H� ,�� = �� +r��+ �H� : (3.6)The number of square-integrable harmoni
 ve
tors is a topologi
al invariant,whi
h is equal to the �rst Betti number of the manifold M. Sin
e the latteris zero if M is simply-
onne
ted, whi
h is the 
ase for � > 0, we may safelyignore the harmoni
 
ontribution in what follows.With the de
omposition (3.4) the se
ond variation of the a
tion in (3.3) isexpressed in terms of the gauge-invariant quantities ��� and ~h alone,Æ2I = 12 h���;�2���i � 116 h~h; ~�0~hi : (3.7)Here and below we 
onsider the following se
ond order di�erential operators:the operator for the TT-tensor 
u
tuations�2��� = �r�r���� � 2R������� ; (3.8)13



the ve
tor operator a
ting on 
oexa
t ve
tors ���1 = �r�r� � � ; (3.9)and the s
alar operators for h, ~h, and ��0=�r�r� ;~�0=3�0 � 4� ;~�
0 = 
 ~�0 ��0 ; (3.10)with 
 being a real parameter. Sin
e for � > 0 the manifold M is 
ompa
t,these operators are (formally) self-adjoint with respe
t to the s
alar produ
th���; ���i = 132�G ZM ������pg d4x ; (3.11)similarly for ve
tors h��; ��i and s
alars h�; �i.The a
tion Æ2I in (3.7) 
ontains only the gauge-invariant amplitudes ��� and ~h,while the dependen
e on the gauge degrees of freedom �� 
an
els. Pure gaugemodes are thus zero modes of the a
tion. Fixing of the gauge is thereforene
essary in order to 
arry out the path integration. To �x the gauge we passfrom the a
tion Æ2I to the gauge-�xed a
tionÆ2Igf = Æ2I + Æ2Ig ; (3.12)where, following [27℄, we 
hoose the gauge-�xing terms asÆ2Ig = 
 *r�h�� � 1� r�h;r�h�� � 1� r�h+ ; (3.13)with 
 and � being real parameters. We shall shortly see that it is 
onvenientto 
hoose [27℄� = 4

 + 1 : (3.14)This 
hoi
e, however, implies that Æ2Ig does not vanish for 
 ! 0. It is often
onvenient to set 
 = 1, in whi
h 
ase � = 2. However, we shall not �x thevalue of 
, sin
e this will provide us with a 
he
k of the gauge-invarian
e ofour results. 14



Using the de
ompositions (3.4), (3.6) the gauge-�xing term readsÆ2Ig = 
h��;�21��i+ 116
 h(~h+ 2~�
0�);�0(~h + 2~�
0�)i : (3.15)Adding this up with Æ2I in (3.7) one obtains the gauge-�xed a
tion Æ2Igf . Itis now 
onvenient to pass from the gauge-invariant variable ~h de�ned in (3.5)ba
k to the tra
e h, sin
e with the 
hoi
e in (3.14) the resulting a
tion thenbe
omes diagonal:Æ2Igf = 12 h���;�2���i+ 
h��;�21��i (3.16)+ 14 h�;�0 ~�0 ~�
0�i � 116
 hh; ~�0hi :This a
tion generi
ally has no zero modes, but it depends on the arbitraryparameter 
, whi
h re
e
ts the freedom of 
hoi
e of gauge-�xing. In order to
an
el this dependen
y, the 
ompensating ghost term is needed.3.2 The mode de
omposition of the a
tionWe wish to 
al
ulate the path integralZ[g�� ℄ = e�I Z D[h�� ℄DFP exp ��Æ2Igf� ; (3.17)where I = I[g�� ℄ is the 
lassi
al a
tion, and the Faddeev-Popov fa
tor isobtained from1 = DFP Z D[��℄ exp ��Æ2Ig� : (3.18)In order to perform the path integration, we introdu
e the eigenmodes asso-
iated with the operators �2, �1 and �0:�2 �(k)�� = "k �(k)�� ;�1 �(s)� = �s �(s)� ;�0 �(p)=�p �(p): (3.19)Throughout this paper we shall denote the eigenvalues and eigenfun
tions ofthe tensor operator �2 by "k and �(k)�� , and those for the ve
tor operator �1 by�s and �(s)� , respe
tively. [Later we shall use the symbol s also for the argument15



of the �-fun
tions, and this will not lead to any 
onfusion℄. Eigenvalues of thes
alar operator will be denoted by �p, and it will be 
onvenient to split theset f�pg into three subsets, f�pg = f�0; �i; �ng, where �0 = 0, �i = 43�,and �n > 43�; see Eqs.(3.25){(3.27) below. A

ordingly, the set of the s
alareigenfun
tions will be split as f�(p)g = f�(0); �(i); �(n)g.Sin
e the manifold is 
ompa
t, we 
hoose the modes to be orthonormal. Thisallows us to expand all �elds in the problem as��� =Xk C�k�(k)�� ; �� =Xs C�s �(s)� ; (3.20)and � =Xp C�p �(p) ; h =Xp Chp�(p) ; ~h =Xp C~hp�(p) : (3.21)As a result, the a
tion de
omposes into the sum over modes, and the pathintegral redu
es to integrals over the Fourier 
oeÆ
ients.a) Ve
tor and tensor modes.{ Let us 
onsider the mode de
ompositionfor the gauge-�xed a
tion in (3.16). This a
tion is the sum of four terms. Forthe �rst two terms we obtain12 h��� ;�2���i= 12 Xk "k (C�k )2 ; (3.22)
 h��;�21��i= 
 Xs (�s)2(C�s )2 : (3.23)These quadrati
 forms should be positive de�nite, sin
e otherwise the integralsover the 
oeÆ
ients C would be ill-de�ned. We 
an see that the quadrati
form in (3.23) for the ve
tor modes is indeed non-negative de�nite. Next, theexpression in (3.22) for the gauge-invariant tensor modes is positive-de�niteif all eigenvalues "k are positive. If there is a negative eigenvalue, "� < 0,as in the 
ase of the S2 � S2 instanton ba
kground, then it is physi
allysigni�
ant. The integration over C�� is performed with the 
omplex 
ontourrotation, whi
h renders the partition fun
tion imaginary thus indi
ating thequasi
lassi
al instability of the system.Let us 
onsider now the 
ontribution of the longitudinal ve
tor pie
e to thea
tion (3.16). We obtain14 h�;�0 ~�0 ~�
0�i = 14 Xp �p~�p~�
p (C�p )2 ; (3.24)16



where ~�p = 3�p � 4� and ~�
p = 
~�p � �p are the eigenvalues of ~�0 and ~�
0 ,respe
tively. We note that while �p � 0, the ~�p and ~�
p 
an be negative andshould therefore be treated 
arefully. Let us split the s
alar modes into threegroups a

ording to the sign of ~�p:�0 �(0) = 0; ) ~�0 = �43 � ; (3.25)�0 �(i) = 43 ��(i); ) ~�i = 0 ; (3.26)�0 �(n) = �n �(n); ) ~�n > 0 : (3.27)First we 
onsider the 
onstant mode �(0) in (3.25). This exists for any ba
k-ground, and for 
ompa
t manifolds without boundary this is the only nor-malizable zero mode of �0. Sin
e this mode is annihilated by �0, it does not
ontribute to the sum in (3.24).Consider now the s
alar modes with the eigenvalue 4�=3 in (3.26). In viewof the Li
hnerowi
z-Obata theorem [49℄, the lowest non-trivial eigenvalue of�0 for � > 0 is bounded from below by 4�=3, and the equality is attained ifonly the ba
kground is S4. Hen
e the modes in (3.26) exist only for the S4instanton, and there 
an be no modes `in between' (3.25) and (3.26). In the S4
ase there are �ve s
alar modes with the eigenvalue 4�=3, and their gradientsare the �ve 
onformal Killing ve
tors that do not 
orrespond to in�nitesimalisometries. If R�� = �g��, a theorem of Yano an Nagano [49℄ states that su
hve
tors exist only in the S4 
ase. Let us 
all these �ve s
alar modes `
onformalKilling modes'. Noti
e that these also do not 
ontribute to the sum in (3.24).To re
apitulate, the lowest lying modes in the s
alar spe
trum are the 
on-stant 
onformal mode in (3.25), whi
h exists for any ba
kground, and also5 `
onformal Killing modes' in (3.26) whi
h exist only for the S4 instantonand generate the 
onformal isometries. As we shall see, these 1+5 lowest ly-ing modes are physi
ally distinguished, sin
e they are the only s
alar modes
ontributing to the partition fun
tion. However, they do not enter the sum in(3.24).For the remaining in�nite number of s
alar modes in (3.27) (these are labeledby n) the eigenvalues �n and ~�n are positive, and it is not diÆ
ult to see thatall the ~�
n's are also positive, provided that the gauge parameter 
 is positiveand large enough. To re
apitulate, the 
ontribution of the longitudinal ve
tormodes to the a
tion is given by14 h�;�0 ~�0 ~�
0�i = 14 Xn �n~�n~�
n (C�n )2 ; (3.28)17



whi
h is positive de�nite. We shall see that all modes 
ontributing to this sumare unphysi
al and 
an
el from the path integral.b) Conformal modes.{ We now turn to the last term in the gauge-�xeda
tion (3.16). Using (3.25){(3.27) we obtain� 116
 hh; ~�0hi = �4 (Ch0 )2 + �12
 Xi (Chi )2 � 116
 Xn ~�
n (Chn)2 : (3.29)The expression on the right has a �nite number of positive terms, 
orrespond-ing to the distinguished lowest lying modes, and in�nitely many negative ones.As a result, an in
rease in the 
oeÆ
ients Chn makes it arbitrarily large andnegative, thus rendering the path integral divergent. This represents the well-known problem of 
onformal modes in Eu
lidean quantum gravity [25℄. A
omplete solution of this problem is la
king at present, but the origin of thetrouble seems to be understood [46℄. In brief, the problem is not related toany defe
ts of the theory itself, but arises as a result of the bad 
hoi
e of thepath integral. If one starts from the fundamental Hamiltonian path integralover the physi
al degrees of freedom of the gravitational �eld, then one doesnot en
ounter this problem. The Hamiltonian path integral, however, is non-
ovariant and diÆ
ult to work with. One 
an `
ovariantize' it by adding gaugedegrees of freedom, and this leads to the Eu
lidean path integral des
ribedabove, up to the important repla
ement [25℄h! ih : (3.30)The e�e
t of this is to 
hange the overall sign in (3.29), su
h that the in�nitenumber of negative modes be
ome positive. Unfortunately, su
h a 
onsistentderivation of the path integral has only been 
arried out for weak gravitational�elds [46℄ (and for � = 0), sin
e otherwise it is un
lear how to 
hoose thephysi
al degrees of freedom. Nevertheless, the rule (3.30) is often used alsoin the general 
ase [25℄, and it leads to the 
an
ellation of the unphysi
al
onformal modes. However, some subtle issues 
an arise.For � > 0 the expression in (3.29) 
ontains, apart from in�nitely many nega-tive terms, also a �nite number of positive ones, whi
h are due to the distin-guished lowest lying s
alar modes. If we apply the rule (3.30) and 
hange theoverall sign of the s
alar mode a
tion, then the negative modes will be
omepositive, but the positive ones will be
ome negative. As a result, the pathintegral will still be divergent. It was therefore suggested by Hawking that the
ontour for these extra negative modes should be rotated ba
k, the partitionfun
tion then a
quiring the fa
tor iN , where N is the number of su
h modes[32℄. As we know, N = 6 for the S4 instanton, and N = 1 for any othersolution of R�� = �g�� with � > 0. 18



Unfortunately, this pres
ription to rotate the 
ontour twi
e leads in some 
asesto physi
ally meaningless results; the examples will be given in a moment. Wesuggest therefore a slightly di�erent s
heme: not to tou
h the positive modesin (3.29) at all and to 
hange the sign only for the negative modes. The wholeexpression then be
omes� 116
 hh; ~�0hi = �4 (Ch0 )2 + �12
 Xi (Chi )2 + 116
 Xn ~�
n (Chn)2 : (3.31)We make no attempt to rigorously justify su
h a rule. We note, however, thatit is essentially equivalent to the standard re
ipe (3.30) { up to a �nite numberof modes whi
h we handle di�erently as 
ompared to Hawking's pres
ription.We shall now 
omment on this di�eren
e.When 
ompared to Hawking's re
ipe [32℄, the ultimate e�e
t of our pres
rip-tion is to remove the fa
tor iN from the partition fun
tion. We are unawareof any examples where it would be ne
essary to insist on this fa
tor beingpresent in the �nal result. On the 
ontrary, the examples are in favour of thefa
tor being absent. For the S4 instanton one has N = 6, su
h that iN = �1,and this would render the partition fun
tion for hot gravitons in a de Sit-ter universe negative, whi
h would be physi
ally meaningless. Next, for theS2 � S2 instanton, whi
h already has one negative mode in the spin-2 se
tor,one has N = 1. As a result, the fa
tor iN would make the partition fun
tionreal instead of being imaginary, and there would be no bla
k hole pair 
reation!These arguments suggest that Hawking's rule should be somehow modi�ed,and we therefore put forward the pres
ription (3.31). Let us also note that ourrule leads to gauge invariant results { the dependen
e on the gauge parameter
 
an
els after the integration. Finally we note that the lowest lying s
alarmodes are physi
ally distinguished, and sin
e they are positive, they shouldbe treated similarly to the physi
al tensor modes.To re
apitulate, the mode expansion of the gauge-�xed a
tion Æ2Igf is givenby the sum of (3.22), (3.23), (3.28), and (3.31):Æ2Igf = 12 Xk "k (C�k )2 + 
 Xs (�s)2(C�s )2 + 14 Xn �n~�n~�
n (C�n )2+�4 (Ch0 )2 + �12
 Xi (Chi )2 + 116
 Xn ~�
n (Chn)2 : (3.32)In a similar way we obtain the following mode expansion for the gauge-�xingterm Æ2Ig in (3.15): 19



Æ2Ig= 
 Xs (�s)2(C�s )2 + 1627
 �3Xi �C�i � 38�C~hi �2+ 116
 Xn �n  2~�
nC�n + C~hn!2 : (3.33)This expression is non-negative de�nite.3.3 The path integration measureIn order to 
ompute the path integrals in (3.17),(3.18) we still need to de-�ne the path-integration measure. The perturbative measure is de�ned as thesquare root of the determinant of the metri
 on the fun
tion spa
e of 
u
tua-tions:D[h�� ℄ � qDet(hdh�� ; dh��i) ; D[��℄ � qDet(hd��; d��i) : (3.34)Here it is assumed that the 
u
tuations are Fourier-expanded and the di�eren-tials refer to the Fourier 
oeÆ
ients, while the meaning of the proportionalitysign will be
ome 
lear shortly. Let us �rst 
onsider D[��℄. It follows from(3.4),(3.6) thathh�� ; h��i= h���; ���i+ 2h��;�1��i+ h�;�0 ~�0�i+ 14 hh; hi ;h��; ��i= h��; ��i+ h�;�0�i : (3.35)Expanding the �elds on the right a

ording to (3.20),(3.21) and di�erentiatingwith respe
t to the Fourier 
oeÆ
ients we obtain the metri
 for the ve
tor
u
tuationshd��; d��i = hd��; d��i+ hd�;�0d�i =Xs (dC�s )2 + 0Xp �p (dC�p )2 ; (3.36)whi
h yieldsqDet(hd��; d��)i =  Ys dC�s! 0Yp q�p dC�p! : (3.37)Here the prime indi
ates that terms with �p = 0 do not 
ontribute to thesum in (3.36), and should therefore be omitted in the produ
t in (3.37). To20



obtain the measure D[��℄ we endow ea
h term in the produ
ts in (3.37) withthe weight fa
tor �2o=p�:D[��℄ =  Ys �2op� dC�s!0�Yi �2op� s4�3 dC�i 1A Yn �2op� q�n dC�n! : (3.38)Su
h a normalization implies that1 = Z D[��℄ exp ���4o h��; ��i� : (3.39)Here �o is a parameter with the dimension of an inverse length. In a similarway we obtain the measure D[h��℄, whi
h is normalized as1 = Z D[h��℄ exp ��2o2 hh��; h��i! ; (3.40)we shall shortly 
omment on the relative normalization of D[h��℄ and D[��℄.The result isD[h�� ℄ = Yk �op2� dC�k! 0Ys �op2� p2�s dC�s! Yn �op2� q�n~�n dC�n!�  �op2� 12 dCh0! Yi �op2� 12 dChi ! Yn �op2� 12 dChn! : (3.41)Here the prime indi
ates that the zero modes of the ve
tor 
u
tuation oper-ator do not 
ontribute to the produ
t. Noti
e, however, that these modes do
ontribute to the measure D[��℄.The following remarks are in order. We use units where all �elds and pa-rameters have dimensions of di�erent powers of a length s
ale l. One has[1=G℄ = [�℄ = [�2o℄ = [l�2℄. Eigenvalues of all 
u
tuation operators have the di-mension [l�2℄. The 
oordinates x� are dimensionless, while [g��℄ = [h��℄ = [l2℄.For the ve
tors, [��℄ = [��℄ = [l2℄, and for the s
alars [h℄ = [l0℄ and [�℄ = [l2℄:We assume that the s
alar, ve
tor and tensor eigenfun
tions in (3.19) areorthonormal with respe
t to the s
alar produ
t in (3.11). As a result, the di-mensions of the eigenfun
tions are [�(k)�� ℄ = [l℄, [�(s)� ℄ = [l0℄, [�(p)℄ = [l�1℄, whi
hgives for the Fourier 
oeÆ
ients in (3.20),(3.21) [C�℄ = [Ch℄ = [l℄, [C�℄ = [l2℄,and [C�℄ = [l3℄.The normalization of D[h��℄ 
an be arbitrary, whi
h is re
e
ted in the pres-en
e of the arbitrary parameter �o in the above formulas. However, the relativenormalization of D[h�� ℄ and D[��℄, whi
h is de�ned by Eqs.(3.39) and (3.40)21



is �xed by gauge invarian
e. Had we 
hosen instead a di�erent relative nor-malization, say dividing ea
h mode in (3.38) by 2, then the path integralwould a
quire a fa
tor of 2 ~N
0 , where ~N
0 is the `number of eigenvalues' ofthe non-gauge-invariant operator ~�
0 . [The issue of relative normalization ofthe 
u
tuation and Faddeev-Popov determinants seldom arises, sin
e in most
ases the absolute value of the path integral is irrelevant℄.3.4 Computation of the path integralNow we are ready to 
ompute the path integrals in (3.17),(3.18). Let us il-lustrate the pro
edure on the example of Eq.(3.18), whi
h determines theFaddeev-Popov fa
tor DFP . Using Æ2Ig from Eq.(3.33) and the measure D[��℄from (3.38) we obtain(DFP )�1 =Ys Z �2op� dC�s exp ��
(�s)2(C�s )2� (3.42)�Yi Z �2op� s4�3 dC�i exp � 1627
 �3 �C�i � 38�C~hi �2!�Yn Z �2op� q�n dC�n exp0�� 116
 Xn �n  2~�
n C�n + C~hn!21A ;whi
h gives(DFP )�1 = 
1  0Ys �2op
�s! Yi 3p
�2o2� ! Yn 2p
�2o~�
n ! : (3.43)3.4.1 Zero modesThe fa
tor 
1 in (3.43) arises due to the gauge zero modes, for whi
h �s ��0 = 0 and the integral is non-Gaussian:
1 = Z Yj �2op� dC�0j ; (3.44)with the produ
t taken over all su
h modes. The existen
e of zero modes ofthe Faddeev-Popov operator indi
ates that the gauge is not 
ompletely �xed.This 
an be related to the global aspe
ts of gauge �xing pro
edure knownas the Gribov ambiguity. However, Gribov's problem is usually not the issuein the perturbative 
al
ulations, where zero modes arise rather due to ba
k-ground symmetries. This will be the 
ase in our analysis below. Spe
i�
ally,22



the isometries of the ba
kground manifoldM form a subgroup H of the fulldi�eomorphism group. Sometimes H is 
alled the stability group; for the S4and S2�S2 ba
kgrounds H is SO(5) and SO(3)�SO(3), respe
tively. Sin
e theisometries do not 
hange h�� (in the linearized approximation), their genera-tors, whi
h are the Killing ve
tors K�, are zero modes of the Faddeev-Popovoperator.We therefore 
on
lude that the integration in (3.44) is a
tually performedover the stability group H. Sin
e the latter is 
ompa
t in the 
ases under
onsideration, the integral is �nite. In order to a
tually 
ompute the integral,some further analysis is ne
essary, in whi
h we shall adopt the approa
h ofOsborn [44℄. First of all, let us re
all that all eigenmodes in our analysis haveunit norm. If we now res
ale the zero modes su
h that the Killing ve
torsKj � K�j ��x� be
ome dimensionless (remember that the 
oordinates x� arealso dimensionless), then the expression in Eq.(3.44) reads
1 = Z Yj �2op� jjKjjj dCj ; (3.45)where now [jjKjjj℄ = [l2℄ and [Cj℄ = [l0℄. For small values of the parameters Cjthey 
an be regarded as 
oordinates on the group manifold H in the vi
inityof the unit element. Sin
e H a
ts on M via x� ! x�(Cj), one has Kj =��Cj � �x��Cj ��x� . However, stri
tly speaking Cj are not 
oordinates on the groupmanifold H but rather on its tangent spa
e at the group unity, su
h thattheir range is in�nite. We wish to restri
t the range of Cj, and for this weshould integrate not over the tangent spa
e but over H itself. In other words,to render the integral in (3.45) 
onvergent we must treat the zero modes non-perturbatively, and for this we should repla
e the perturbative measure Qj dCjby a non-perturbative one, d�(C).In general it is a diÆ
ult issue to 
onstru
t the non-perturbative path in-tegration measure. However, in the zero mode se
tor this 
an be done. Wenote that the measure should be invariant under the group multipli
ations,d�(CC 0) = d�(C), and this uniquely requires that d�(C) should be the Haarmeasure for H. The normalization is �xed by the requirement that for Cj ! 0the perturbative result (3.45) is reprodu
ed. This unambiguously gives
1 = Z 0�Yj �2op� ���������� ��Cj ����������1A d�(C) ; (3.46)where ��Cj is 
omputed at Cj = 0 and d�(C) is the Haar measure of theisometry group H normalized su
h that d�(C)! Qj dCj as Cj ! 0.23



3.4.2 The path integralNow, using (3.32) and the measure (3.41), we 
ompute the path integral in(3.17) { �rst without the Faddeev-Popov fa
tor DFP :Z D[h��℄ exp ��Æ2Igf�=
2  0Yk �op�k! 0Ys �op
�s!0�Yn p2�oq~�
n 1A� �op2�  Yi p3
 �op2� !0�Yn p2
�oq~�
n 1A : (3.47)Here the primes indi
ate that zero and negative modes should be omitted fromthe produ
ts. Zero ve
tor modes do not 
ontribute sin
e they are not present inthe path-integration measure (3.41), and we assume that there are no negativeve
tor modes, sin
e otherwise the metri
 on the spa
e of 
u
tuations wouldnot be positive de�nite. For tensor 
u
tuations negative and zero modes arepresent in the measure (3.41), and their overall 
ontribution is 
olle
ted inthe fa
tor 
2 in (3.47). Let us further assume that there are no zero tensormodes, whi
h is the 
ase for the manifolds of interest. If negative modes arealso absent then 
2 = 1. If there is one negative tensor mode with eigenvalue"� < 0, then
2 = �op2� Z dC�� exp��12 "� (C��)2� : (3.48)The integral is 
omputed via the deformation of the 
ontour to the 
omplexplane, whi
h gives the purely imaginary result
2 = �o2iqj"�j ; (3.49)with the fa
tor of 1/2 arising in the 
ourse of the analyti
 
ontinuation [12℄.Both the Faddeev-Popov fa
tor in (3.43) and the path integral in (3.47) dependon the gauge parameter 
. However, the 
-dependen
e exa
tly 
an
els in theirprodu
t, whi
h provides a very good 
onsisten
y 
he
k. In parti
ular, therelative normalization of the integration measures �xed by Eqs.(3.39) and(3.40) is important. If we had divided ea
h fa
tor in the mode produ
ts in(3.38) by a 6= 1, then the resulting path integral would be proportional to(Qn a) � a�(0) with � being the �-fun
tion of the 
-dependent operator ~�
0 .Thus, unless a = 1, the result would be gauge-dependent.24



We therefore �nally obtain the following expression for the path integral in(3.17):Z[g�� ℄ = 
2
1 �op2� 0�Yi s2�3 1�o1A 0Ys p�s�o ! 0Yk �op�k! e�I (3.50)Here 
2 is the 
ontribution of the negative tensor mode, and 
1 is the isometryfa
tor. As we expe
ted, the 
ontribution of all unphysi
al s
alar modes has
an
eled from the result. The only s
alar modes whi
h do 
ontribute are theseveral lowest lying modes whi
h seem to be physi
ally distinguished. Theseare the 
onstant 
onformal mode giving rise to the fa
tor �o=p2�, and the5 `
onformal Killing s
alars' whi
h exist only in the S4 
ase and give rise tothe produ
t over i. The next two fa
tors in (3.50) is the 
ontribution of thetransversal ve
tor modes and the TT-tensor modes. Finally, I = I[g��℄ is the
lassi
al a
tion.In order to apply the above formula for Z[g��℄ we need the eigenvalues ofthe 
u
tuation operators. Now we shall determine the latter for the manifoldsS2 � S2 and S4.4 Spe
tra of 
u
tuation operatorsIn this se
tion we derive the spe
tra of small 
u
tuations around the S2 � S2and S4 instantons. In the S2 � S2 
ase the problem is ta
kled via solvingthe di�erential equations. It turns out that in a suitable basis the system of10 
oupled equations for the gravity 
u
tuations splits into 10 independentequations. The latter are solved in terms of spin-weighted spheri
al harmoni
s.In the S4 
ase the equations do not de
ouple and the dire
t approa
h is not sotransparent. However, the problem 
an be 
onveniently analyzed with grouptheoreti
 methods, whi
h was done some time ago by Gibbons and Perry [27℄.We shall des
ribe the group theory approa
h in some detail { with the sameprin
ipal result as in [27℄.4.1 Flu
tuations around the S2 � S2 instantonLet us 
onsider the metri
 of the S2 � S2 instanton ba
kground,ds2 = 1�� (d#1)2 + sin2 #1 (d'1)2 + (d#2)2 + sin2 #2 (d'2)2� : (4.1)25



It is 
onvenient to set � = 1 for the time being; at the end of 
al
ulations the�-dependen
e is restored by multiplying all eigenvalues with �. We introdu
ethe 
omplex tetrade1 = 1p2 d#1 + isin#1 d'1 ! ; e2 = 1p2 d#1 � isin#1 d'1 ! ;e3 = 1p2 d#2 + isin#2 d'2 ! ; e4 = 1p2 d#2 � isin#2 d'2 ! : (4.2)The metri
 in (4.1) splits as g�� = ea�eb��ab, where the tetrad metri
 is
�ab = g��ea�eb� = 0BBBBBBBB� 0 1 0 01 0 0 00 0 0 10 0 1 0

1CCCCCCCCA : (4.3)
4.1.1 Tensor modesFirst we 
onsider the eigenvalue problem�r�r���� � 2R���� ��� = "��� ; (4.4)wherer���� = 0; ��� = 0 : (4.5)We expand ��� with respe
t to the 
omplex basis (4.2),��� = ea�eb��ab ; (4.6)insert this into (4.4) and proje
t the resulting equation onto the basis (4.2)again. Remarkably, the system of 10 
oupled equations splits then into 10 in-dependent equations for the 10 tetrad proje
tions �ab. A partial explanationof this fa
t is the existen
e of two di�erent parity symmetries a
ting indepen-dently on the two spheres.It is 
onvenient to introdu
e the operatorD̂[s; #; '℄ = �2�#2 + 
ot# ��# + 2is 
ot#sin# + 1sin2 # �2��2 � s2 
ot# ; (4.7)26



whose eigenfun
tions are the spin-weighted spheri
al harmoni
s sYjm [29℄,D̂[s; #; '℄ sYjm(#; �) = (s2 � j(j + 1)) s Yjm(#; �): (4.8)Here j and m are su
h that j � jsj and �j � m � j. One has sYjm = 0for j < jsj. [Noti
e that we use the bold-fa
ed s for the spin weight.℄ Thefollowing relations between harmoni
s with di�erent values of the spin weights are useful:L̂�[s; #; '℄ sYjm = �q(j � s)(j � s+ 1) s�1Yjm ; (4.9)wherêL�[s; #; '℄ = ��# � isin# ��� � s 
ot# : (4.10)The harmoni
s for a �xed s form an orthonormal set on S2.Using the above de�nitions, Eqs. (4.4) 
an be represented as�D̂[s1ab; #1; '1℄ + D̂[s2ab; #2; '2℄� (s1ab)2 � (s2ab)2 + 2 + "� �ab = 0 ; (4.11)where 1 � a; b � 4 (no summation over a; b). Here the nonzero elements ofthe symmetri
 matri
es s1ab and s2ab ares111 = �s122 = 2; s113 = s114 = �s123 = �s124 = 1 ;s233 = �s244 = 2; s213 = s223 = �s214 = �s224 = 1 : (4.12)The solution to Eqs. (4.11) reads�ab = Cab s1abYj1m1(#1; '1) s2abYj2m2(#2; '2); (4.13)with Cab being integration 
onstants. The eigenvalue, ", is the same for all�ab: " = j1(j1 + 1) + j2(j2 + 1)� 2 : (4.14)This is essentially the sum of squares of the two SO(3) angular momentumoperators a
ting independently on the two spheres.Let us now 
ount the degenera
y of the modes. For this one should takeinto a

ount the additional 
onditions (4.5), whi
h gives algebrai
 
onstraints27



for the 
oeÆ
ients Cab. We 
onsider �rst the tra
e 
ondition ��� = 0. In thelanguage of the tetrad proje
tions this redu
es to �12+�34 = 0, or equivalentlyto C12 + C34 = 0 : (4.15)Hen
e only 9 out of the 10 
onstants Cab are independent.Next, we 
onsider the Lorenz 
ondition r���� = 0. This impliesL̂�[s1a1; #1; '1℄ �a1 + L̂+[s1a2; #1; '1℄ �a2+ L̂�[s2a3; #2; '2℄ �a3 + L̂+[s2a4; #2; '2℄ �a4 = 0 (4.16)(no summation over a). Inserting the solution (4.13) and using the re
urren
erelations in (4.9), these 
onditions redu
e to algebrai
 
onstraints�1C11 � �1C12 + �2 (C13 � C14) = 0 ;�1C12 � �1C22 + �2 (C23 � C24) = 0 ;�1 (C13 � C23) + �2 C33 � �2 C34 = 0 ;�1 (C14 � C24) + �2C34 � �2C44 = 0 : (4.17)Here �� = qj�(j� + 1) (with � = 1; 2) and �� = q(j� + 2)(j� � 1) for j� � 1while �� = 0 for j� = 0.For j� � 2 (whi
h 
orresponds to quadrupole or higher deformations of ea
hsphere) none of the 
oeÆ
ients ��, �� vanish, and the algebrai
 
onstraints(4.17) redu
e the number of independent 
oeÆ
ients Cab to �ve. This givesthe degenera
y d:j1 � 2; j2 � 2; d = 5 (2j1 + 1)(2j2 + 1) : (4.18)The situation is di�erent for small values of j�. Consider, for example, thej1 = j2 = 0 se
tor. Sin
e the harmoni
s sYjm vanish for j < jsj, we must setin the solution (4.13) all Cab's to zero, apart from C12 = �C34. The Lorenz
ondition (4.16) is then ful�lled. As a result, there is only one independentintegration 
onstant, whi
h yieldsj1 = j2 = 0; d = 1: (4.19)Noti
e that in this 
ase " = �2.In a similar way one 
an 
onsider the se
tor where j1 = 0 and j2 = 1 (orj1 = 1 and j2 = 0), in whi
h 
ase " = 0. One dis
overs then that the Lorenz28




onstraints (4.16) require that all non-trivial 
oeÆ
ients Cab mush vanish. Asa result,j1 = 0; j2 = 1; or j2 = 1; j1 = 0; d = 0; (4.20)whi
h shows that there are no zero modes.Next,j1 = j2 = 1; d = (2j1 + 1)(2j2 + 1) = 9; (4.21)and �nallyj1 � 2; j2 = 0; d = 2j1 + 1;j1 � 2; j2 = 1; d = 9(2j1 + 1); (4.22)whi
h 
onditions are symmetri
 under inter
hanging j1 and j2.To re
apitulate, the spe
trum of the tensor 
u
tuations 
ontains one negativemode and no zero modes.4.1.2 Ve
tor modesLet us now 
onsider the eigenvalue problem(�r�r� � �)�� = � �� (4.23)subje
t to the 
onditionr��� = 0 (4.24)for the ve
tor 
u
tuations on the S2 � S2 ba
kground. We again expand the
u
tuations with respe
t to the basis (4.2),�� = ea�	a; (4.25)insert this into (4.23), and proje
t ba
k to the tetrad. Similarly as in the tensor
ase, the equations de
ouple to give(D̂[s1a; #1; '1℄ + D̂[s2a; #2; '2℄ + 1 + �)	a = 0 ; (4.26)29



where 1 � a � 4 (no summation over a), and nonzero 
oeÆ
ients read s11 =�s12 = s23 = �s24 = 1. The solution is	a = Ca s1aYj1m1(#1; '1) s2aYj2m2(#2; '2); (4.27)with Ca being integration 
onstants, and the eigenvalue is the same for all 	a:� = j1(j1 + 1) + j2(j2 + 1)� 2 : (4.28)The Lorenz 
ondition, r��� = 0, readsL̂�[s11; #1; '1℄ 	1 + L̂+[s12; #1; '1℄ 	2+ L̂�[s23; #2; '2℄ 	3 + L̂+[s24; #2; '2℄ 	4 = 0 ; (4.29)whi
h redu
es upon inserting (4.27) to the algebrai
 
onditionqj1(j1 + 1) (C1 � C2) +qj2(j2 + 1) (C3 � C4) = 0: (4.30)This allows one to 
ount the degenera
ies:j1 � 1; j2 � 1 (� > 0); d = 3 (2j1 + 1)(2j2 + 1); (4.31)and alsoj1 � 2; j2 = 0 (� > 0); d = j1(j1 + 1);j1 = 1; j2 = 0 (� = 0); d = 3;j1 = 0; j2 = 0 (� = �2); d = 0 : (4.32)These results are symmetri
 under j1 $ j2, hen
e there are no negative modes,there are six zero modes 
orresponding to the six Killing ve
tors of S2 � S2,and the rest of the spe
trum is positive.4.1.3 S
alar modes and the orthogonality 
onditionsThe eigenvalue problem for the s
alar modes,�r�r�h = � h; (4.33)redu
es to the equation(D̂[0; #1; '1℄ + D̂[0; #2; '2℄ + �) h = 0 ; (4.34)30



whose solutions areh = Yj1m1(#1; '1)Yj2m2(#2; '2) (4.35)(for s = 0 the spin-weighted spheri
al harmoni
s 
oin
ide with the usual spher-i
al harmoni
s). The eigenvalues are just� = j1(j1 + 1) + j2(j2 + 1) ; (4.36)and the degenera
ies arej1 � 0; j2 � 0; d = (2j1 + 1)(2j2 + 1): (4.37)We have obtained the spe
tra of all relevant 
u
tuation operators. Althoughthe eigenfun
tions are 
omplex, one 
an pi
k up their real part in a way thatis 
onsistent with the orthogonality 
onditions. For example, for the s
alarmodes one 
onsiders<(h) = 1 + ip2 Yj1m1 Yj2m2 + 
:
 ; (4.38)and one 
an easily see that the modes <(h) with di�erent quantum numbers(j1m1j2m2) are orthogonal with respe
t to the s
alar produ
t de�ned in Eq.(3.11).For the ve
tor modes 	a the pro
edure is slightly more 
ompli
ated, sin
ethe tetrad metri
 �ab is not diagonal. In addition, harmoni
s sYjm for di�er-ent values of the spin weight are not orthogonal. Consider, however, the real
ombinations<(��) = 1 + ip2 ea�	a + 
:
 ; (4.39)where 	a has quantum numbers (j1m1j2m2). Consider <(�(1)� ) and <(�(2)� )with di�erent quantum numbers. Their s
alar produ
t (de�ned in Eq. (3.11))
an be 
omputed using the relations�ab = e �a e �b g�� ; Æab = e �a (e �b )� g�� ; (4.40)whi
h givesh<(�(1)� );<(�(2)�)i =Xa h	(1)a ;	(2)�a i (4.41)+ih	(1)1 ;	(2)2 i+ ih	(1)3 ;	(2)4 i+ 
:
:31



Table 1Spe
tra of 
u
tuations around the S2 � S2 instantonoperator eigenvalue degenera
y�2 �2� 12� 9(j(j + 1)� 2)� 2(2j + 1) j � 2j(j + 1)� 18(2j + 1) j � 2(j1(j1 + 1) + j2(j2 + 1)� 2)� 5(2j1 + 1)(2j2 + 1) j1; j2 � 2�1 0 6(j(j + 1)� 2)� 2(2j + 1) j � 2(j1(j1 + 1) + j2(j2 + 1)� 2)� 3(2j1 + 1)(2j2 + 1) j1; j2 � 1�0 (j1(j1 + 1) + j2(j2 + 1))� (2j1 + 1)(2j2 + 1) j1; j2 � 0Here ea
h term in the sum Pah	(1)a ;	(2)�a i is a bilinear 
ombination of spin-weighted harmoni
s with the same value of the spin weight, su
h that the or-thogonality relation holds. Next, integrating by parts and using the re
urren
erelations (4.9) one 
an show that the remaining term in the s
alar produ
t,ih	(1)1 ;	(2)2 i+ ih	(1)3 ;	(2)4 i+
:
, vanishes. This shows that ve
tor modes <(��)with di�erent quantum numbers are orthogonal.A similar pro
edure 
an be 
arried out for the tensor modes. Hen
e for alleigenmodes 
onsidered above one 
an 
hoose the real part in su
h a way thatthe orthogonality 
ondition holds. This is a manifestation of the fa
t that the
u
tuation operators are self-adjoint. We �nally restore the dependen
e on �and summarize the results of this se
tion in Tab.1. There is one negative modein the spe
trum, and this plays a 
ru
ial role in our analysis. The 
orrespondingdeformation in
reases the radius of one of the spheres, shrinking at the sametime the se
ond one.4.2 Flu
tuations around the S4 instantonThe S4 instanton 
an be viewed as the four-dimensional sphere with radiusq3=� in �ve-dimensional Eu
lidean spa
e E5. Although the 
orrespondingeigenvalue problem for 
u
tuations was 
onsidered in [27℄, we have reanalyzedit for the sake of 
ompleteness (with the same result) and shall present belowthe key steps of our analysis. The problem essentially redu
es to studyingrepresentations of SO(5) [31,1,2,8℄, whose Casimir operator 
an be relatedto the invariant Lapla
ians on S4 with the help of the proje
tion formalism32



[34℄. We shall therefore �rst outline the group theory part by summarizingthe relevant fa
ts about representations of SO(5). We shall work on the unit4-sphere res
aling at the end the eigenvalues by the fa
tor �=3.4.2.1 Representations of SO(5)The unit sphere S4 in E5 is de�ned in Cartesian 
oordinates by the equationP5a=1(xa)2 = 1. It is 
onvenient to use the 
omplex 
oordinates ��1 = (x1 �ix2)=p2, ��2 = (x3�ix4)=p2, �0 = x5. We shall not distinguish between lowerand upper indi
es, �i = �i. In these new 
oordinates the de�ning quadrati
form reads P2i=�2 �i��i = 1, whi
h is annihilated by the generators of SO(5):Y ij = �i ���j � ��j ����i ; (4.42)whose 
ommutation relations are[Y ij ; Y kl ℄ = ÆkjY il � ÆilY kj + Æ�lj Y i�k � Æk�iY �jl � Cpqij;klY pq : (4.43)Sin
e Y ij = �Y ji , the independent generators 
an be 
hosen to be those for�i < j. Y 11 and Y 22 generate the Cartan subalgebra, while Y ij and Y ji for�i < j < i are the raising and lowering operators, respe
tively. One has[Y ii ; Y kl ℄ = �kl (i)Y kl ; (4.44)where�kl (i) = Æik � Æil + Æi�l � Æi�k (4.45)determine the root ve
tors with the 
omponents �kl � (�kl (1); �kl (2)). Theroots 
orresponding to the four raising operators are �21 = (�1; 1), �20 = (0; 1),�2�1 = (1; 1), and �10 = (1; 0).Irredu
ible representations of SO(5) are 
hara
terized by two numbers denotedby m � (m1; m2), where m2 � m1 and both m1 and m2 are either integeror half-integer. The highest weight ve
tor  m is annihilated by all raisingoperators, Y ij  m = 0 for i > j > �i, and it is an eigenve
tor of the Cartansubalgebra generators, Y ii  m = mi m, i = 1; 2. Using these properties andalso [Y ij ; Y ji ℄ = Y ii � Y jj � 2Æi�jY i�j, one �nds the eigenvalues of the Casimiroperator,Ĉ m � 12Xi;j Y ij Y ji  m = Cm m ; (4.46)33



whereCm = m1(m1 + 1) +m2(m2 + 3) (4.47)is the same for all ve
tors of the representation. The dimension of representa-tions is given bydim(m) =Y� h�; r +mi=Y� h�; ri : (4.48)Here the produ
t is over the four root ve
tors des
ribed above, and r =12 P� � = (12 ; 32). One has r+m = (12 +m1; 32 +m2), and h ; i is the s
alar withrespe
t to the Cartan metri
 gij = �Cpqii;klCkljj;pq = 6Æij (here i; j = 1; 2). As aresult,dim(m) = 16 (2m1 + 1)(2m2 + 3)(m2 �m1 + 1)(m1 +m2 + 2) : (4.49)4.2.2 S
alar modesUsing Eqs.(4.47),(4.49) one 
an �nd the spe
tra of the relevant 
u
tuationoperators. It is now 
onvenient to pass ba
k to the Cartesian 
oordinatesxa = xa (a = 1; : : : 5), su
h that the sphere S4 is determined by the 
onditionr � pxaxa = 1. Let na � xa=r be the unit normal to the sphere. The (anti-hermitean) generators of SO(5) in Cartesian 
oordinates are given by Mab =na�b � nb�a, and the Casimir operator is Ĉ = �12(Mab)2 � �12 Pab(Mab)2.Let us de�ne the proje
tion operator Pab = Æab� nanb = P ab = P ab , whi
h 
anbe thought of as the indu
ed metri
 on the sphere. In what follows we shall usethe proje
tion formalism [34℄ to des
ribe geometri
al 4-obje
ts tangent to thesphere in terms of 5-obje
ts of the embedding spa
e. For example, a 4-ve
tor�� 
an be des
ribed as a 5-ve
tor �a subje
t to the 
ondition na�a = 0. The
ovariant derivative of a tensor is obtained by taking the partial derivativeand then proje
ting all the indi
es down to the sphere. For example, ra�b =(�p�q)P paP qb . One has na = na, while for obje
ts tangent to the sphere 5-indi
es
an be raised and lowered either with Pab or with Æab. The 
urvature tensor isgiven by Rpsqt = PpqPst � PptPsq.Consider �rst s
alar 
u
tuations. The 
ovariant Lapla
ian for a s
alar �eld h
an be expressed in terms of the angular momentum operator as2h � P ab�a(P 
b �
h) = 12(Mab)2h = �Ĉh : (4.50)S
alars transform a

ording to the (0; j) representations, whi
h 
orrespond to34



the Young tableaux 1 2 j. . . and 
an be represented in terms of homogeneouspolynomials on S4 ash = h(a1:::aj)na1 : : : naj : (4.51)Hen
e, the eigenvalues of the Casimir operator in Eq. (4.50) are C(0;j) =j(j+3), whi
h gives the spe
trum of the s
alar eigenvalue problem, �0h = �hwith �0 � ��32:� = �3 j(j + 3); d = 16 (2j + 3)(j + 2)(j + 1); j � 0: (4.52)4.2.3 Ve
tor modesConsider a tangent ve
tor �eld �s = P as �a. The invariant Lapla
ian reads2�s � P ab�a(P 
b �
�pP pq )P qs = 12(Mab)2�s + 2(�a�a)ns + �s : (4.53)Here the last two terms on the right 
an be related to the 
ontribution ofthe spin operator. Under general SO(5) rotations a ve
tor �(x) transformsinto ~�(x) = R�(R�1x), where R = exp(!abSab) with !ab = �!ba being therotation parameters and Sab � (Sab)pq = ÆpaÆqb�Æpb Æqa. For j!abj � 1 one obtains~��� = !ab(Mab+Sab)�, su
h that Sab 
an be identi�ed with the spin operator:(Sab�)s = (Sab) ps �p. As a result,2�s = �12(Mab + Sab)2 + 3� �s � (�Ĉ + 3) �s ; (4.54)where the Casimir operator is now the square of the total angular momentum.The general ve
tor harmoni
s on S4 
an be obtained by 
onsidering the prod-u
t of a 
onstant ve
tor in E5 with s
alar harmoni
s on S4. Su
h a produ
tde
omposes into three irredu
ible pie
es, (0; 1)
 (0; j) = (1; j)� (0; j + 1)�(0; j � 1), whi
h 
an be visualized as
 1 2 j. . . = 1 2 j. . . � 0 1 j. . . � 1 2 j-1. . . : (4.55)The �rst term on the right here is the (1; j)-pie
e, and in the language ofhomogeneous polynomials it reads�s = �[sa℄(a1:::aj�1)nana1 : : : naj�2naj�1 ; (4.56)where �[sa℄(a1:::aj�1) is tra
eless with respe
t to any pair of indi
es. This ismanifestly tangential and 
oexa
t. As a result, the eigenvalues of the Casimir35



operator are C(1;j) = j(j + 3) + 2, and the spe
trum of the ve
tor eigenvalueproblem �1�s � (��32 � �)�s = ��s in the se
tor where �a�a = na�a = 0 isgiven by� = �3 (j(j + 3)� 4); d = 12 j(j + 3)(2j + 3); j � 1 : (4.57)One 
an also dire
tly verify that the harmoni
 �s in Eq.(4.56) ful�lls the
ondition 12(Mab)2�s = �j(j+3)�s. It follows then from Eq. (4.53) that 2�s =�(j(j + 3) � 1)�s, and this again yields the spe
trum in Eq. (4.57). The
orre
t degenera
y 
an be obtained by 
ounting the independent 
omponentsof �[sa℄(a1:::aj�1) [31℄.The remaining two pie
es in (4.55), when represented in terms of the polyno-mials on S4, 
an be related to the exa
t tangential and the normal 
omponentsof the ve
tor �eld.4.2.4 Tensor modesFor a symmetri
 tensor hpq = P ap P bqhab a dire
t 
al
ulation gives2hpq + 2Rpsqthst�P ab�a(P 
b (�
h�p�q)P �ppP �qq )P ppP qq + 2(PpqPst � PptPsq)hst= 12(Mab)2hpq + 2np(�ahaq) + 2nq(�ahap) + 2Æpqhaa=�12(Mab + �ab)2 + 6� hpq � (�Ĉ + 6)hpq : (4.58)Here the spin operator is de�ned in the same way as for ve
tors, whi
h gives(�abh)pq = (Sab) sp hsq + (Sab) sq hsp. The general tensor harmoni
s on S4 areobtained by the dire
t produ
ts (0; 2)
 (0; j) = (0; j+2)� (1; j+1)� (0; j)�(2; j)�(0; j+1)�(1; j�1)�(0; j�2). Again this 
an be visualized by Young'sdiagrams and represented in the language of homogeneous polynomials. Thetransverse and tra
efree harmoni
s tangent to the sphere 
orrespond to the(2; j) pie
e, whose expli
it representation ishpq = h[pa℄[qb℄(a1:::aj�2)nanbna1 : : : naj�2 : (4.59)Here h[pa℄[qb℄(a1:::aj�2) is tra
eless with respe
t to any pair of indi
es and is sym-metri
 under inter
hange of the [pa℄ and [qb℄ pairs. As a result, the eigenval-ues of the Casimir operator are C(2;j) = j(j + 3) + 6. This gives the spe
-trum of the tensor eigenvalue problem �2hpq = "hpq in the se
tor where36



Table 2Spe
tra of 
u
tuations around the S4 instantonoperator eigenvalue degenera
y�2 �3 j(j + 3) 56 (j � 1)(j + 4)(2j + 3) j � 2�1 �3 (j(j + 3)� 4) 12j(j + 3)(2j + 3) j � 1�0 �3 j(j + 3) 16 (j + 1)(j + 2)(2j + 3) j � 0�ahab = nahab = haa = 0:" = �3 j(j + 3); d = 56 (j � 1)(j + 4)(2j + 3); j � 2 : (4.60)The same result 
an be obtained by dire
tly verifying that hpq in Eq. (4.59)ful�lls the 
ondition 12(Mab)2hpq = �j(j + 3)hpq.The other tensor harmoni
s in the expansion of (0; 2) 
 (0; j) 
orrespond tothe exa
t and 
oexa
t pie
es of the longitudinal ve
tor part of the 4-metri
,to those of the 4-ve
tor h5�, and to the tra
e [27℄.We summarize the results of our analysis in this se
tion in Tab.2. Noti
e thatthe s
alar and tensor eigenvalues are the same (for j � 2), while the ve
torspe
trum is shifted by a 
onstant.5 Partition fun
tionNow we are able to derive the expli
it expressions for the one-loop partitionfun
tions for 
u
tuations around the S2 � S2 and S4 instantons. The 
orre-sponding formula was obtained in Eq.(3.50) above. It is 
onvenient to passfrom �o to the dimensionless normalization parameter �0 via the res
aling�o = p��0 : (5.1)The one-loop partition fun
tion for gravity 
u
tuations around an Eu
lideanba
kground then readsZ[g�� ℄ = �0p2 
0 
2
1 sDet0�1Det0�2 e�I : (5.2)Here the �rst two fa
tors on the right are the 
ontributions of the s
alar modes.The fa
tor �0=p2 is due to the 
onstant 
onformal mode, whi
h is always37



present, and 
0 is the 
ontribution of the 5 s
alar modes with eigenvalue4�=3 whi
h exist only for the S4 instanton (see Tab.2):
0 = 0�s23 1�01A5 : (5.3)For any ba
kground other than S4 one has 
0 = 1. As was dis
ussed above,other s
alar modes do not 
ontribute to the partition fun
tion.The fa
tor 
2 in (5.2) is the 
ontribution of the negative tensor mode,
2 = �02iqj"�j : (5.4)For the S2 � S2 instanton there is one su
h mode with " = �2, while in theS4 
ase all tensor modes are positive and 
2 = 1. Next,
1 = 0�Yj �20p� � ���������� ��Cj ����������1AV ol(H) ; (5.5)is the isometry fa
tor. If the ba
kground has no isometries then 
1 = 1.The determinants in Eq. (5.2) are the 
ontributions of the positive ve
tor andtensor modes. One hasqDet0�1 =  0Ys s �s��20! = exp��12� 01(0)� 12(ln�20) �1(0)� ; (5.6)where the �-fun
tion for the positive, transverse ve
tor modes is�1(z) =Xs 0 � ��s�z : (5.7)Similarly for the positive, transverse tra
eless tensor modes:qDet0�2 =  0Yk s �k��20! = exp��12� 02(0)� 12(ln�20) �2(0)� (5.8)with�2(z) =Xk 0 ���k�z : (5.9)38



The last fa
tor in Eq. (5.2) is the 
lassi
al 
ontribution, with I being the a
tionfor the ba
kground. Let us now apply these formulas.5.1 The S2 � S2 instantonThe 
lassi
al a
tion is I[S2 � S2℄ = �2�=�G, and a

ording to Tab.1,
0 = 1 ; 
2 = �02ip2 : (5.10)Consider now the isometry fa
tor 
1 in (5.5), whi
h is due to the ba
k-ground SO(3)�SO(3) symmetry. Ea
h of the two SO(3) groups 
an be pa-rameterized by matri
es Uik = exp("ikjCj). The invariant metri
 on the SO(3)spa
e is gik = 12tr(�iU�kU�1) ! Æik for Cj ! 0. The Haar measure isd�(C) = pdetgik dC1dC2dC3, and the volume V ol(SO(3))= R d�(C) = 8�2.For later use, we reprodu
e this result in a di�erent way. The measure for a(
ompa
t, semi-simple) Lie group G 
an be represented as the produ
t of themeasure for the maximal subgroup H and that for the 
oset G=H. This impliesthatV ol(G) = V ol(H)� V ol(G=H) : (5.11)In parti
ular, V ol(SO(3))=V ol(SO(2))�V ol(S2), where V ol(SO(2))= 2�, andthe volume of the S2 
oset with unit (due to the normalization of the measure)radius is V ol(S2) = 4�. As a result, V ol(SO(3))=2� � 4� = 8�2.When a
ting on S2, the SO(3) generators ��Cj generate rotations in the threeorthogonal planes of the embedding Eu
lidean 3-spa
e. Let ��C3 be the genera-tor of rotations in the XY-plane, su
h that the azimuthal angle of the spheri
al
oordinate system 
hanges as '! '+C3. Then the norm jj ��C3 jj is the squareroot ofh ��'; ��'i = 132�G ZS2�S2 g''pgd4x = �3�3G : (5.12)Obviously, the norms jj ��C1 jj and jj ��C2 jj and those of the generators of these
ond SO(3) fa
tor are the same. Hen
e,
1 =  �20p� � ���������� ��' ����������!6 (V ol(SO(3)))2 = 64�4(�0)1227(�G)3 : (5.13)39



Consider now the positive modes. The �-fun
tion asso
iated with the positiveve
tor modes is (see Tab.1)�1(s) = 1Xj=2 2(2j + 1)fj(j + 1)� 2gs + 1Xj1=2 1Xj2=2 3(2j1 + 1)(2j2 + 1)fj1(j1 + 1) + j2(j2 + 1)� 2gs :(5.14)This 
an be represented as�1(s) = 4s (2 �(2;�9js) + 3Z(1;�10js)); (5.15)where the following two fun
tions have been introdu
ed:�(k; �js)= 1Xj=k 2j + 1f(2j + 1)2 + �gs ; (5.16)Z(k; �js)= 1Xj1=k 1Xj2=k (2j1 + 1) (2j2 + 1)f(2j1 + 1)2 + (2j2 + 1)2 + �gs : (5.17)These fun
tions are studied in detail in the Appendix. Similarly, using theresults of Tab.1 one obtains the �-fun
tion for the positive tensor modes�2(s) = 9� 2�s + 4s (2 �(2;�9js) + 18 �(2;�1js) + 5Z(2;�10js)): (5.18)The following relation implied by the de�nitions in (5.16), (5.17), will be useful:Z(1;�10js) = Z(2;�10js) + 6�(2;�1js) + 9� 8�s.5.1.1 The s
aling behaviourBefore we pro
eed further, it is very instru
tive to pause and 
he
k whetherthe expressions above agree with the general formulas for the s
aling behaviourof e�e
tive a
tions. We shall follow the approa
h of Christensen and Du� [13℄,who relate this s
aling behaviour toN0= 1180 (4�)2 Z (R����R���� + 636�2)pg d4x ;N1= 1180 (4�)2 Z (�11R����R���� + 984�2)pg d4x ;N2= 1180 (4�)2 Z (189R����R���� � 756�2)pg d4x : (5.19)Here N0 is the `number of eigenvalues' of the s
alar operator �0 � 2� a
tingon a manifold with R�� = �g��. N1 is the number of eigenvalues of the ve
tor40



operator �1 a
ting in the spa
e of all ve
tors, that is, in
luding both trans-verse and longitudinal 
u
tuations. Finally, N2 
ounts both transverse andlongitudinal eigenstates of the tensor operator �2, with the only requirementthat the 
u
tuations must be tra
eless.Let us apply these formulas to the S2 � S2 ba
kground. The volume of themanifold is VS2�S2 = (4�)2=�2, while R����R���� = 8�2. As a result,N0 = 16145 ; N1 = 22445 ; N2 = 215 : (5.20)Now let us obtain the same result via a dire
t evaluation of the �-fun
tions.First we 
onsider the s
alar 
ase. Using the results of Tab.1, the operator�0�2� has one negative mode, six zero modes, while the rest of the spe
trumis positive and gives rise to the �-fun
tion�0(s) = 4s (2 �(2;�9js) + Z(1;�10js)) : (5.21)Hen
e the number of all eigenvalues is 7 + �0(0). In order to 
ompute �0(0),we use the results of the Appendix, where the following values are obtained:�(k; �j0)= 112 � 14 � � k2 ; (5.22)Z(k; �j0)= 132 �2 � 124 � + 2k4 + (12 � � 23) k2 + 13360 : (5.23)This gives for the �-fun
tions in (5.15), (5.18), (5.21)�0(0) = �15445 ; �1(0) = �185 ; �2(0) = 389 : (5.24)Using these, the number of s
alar eigenvalues is N0 = 7 � 15445 = 16145 , whi
hagrees with (5.20).Next, the ve
tor operator �1 has 6 zero modes, su
h that the number of itseigenvalues in the transverse se
tor is 6 + �1(0). Now, one should take intoa

ount also the longitudinal ve
tors, whi
h are gradients of s
alars. It is notdiÆ
ult to see that if r�� is an eigenve
tor of �1, su
h that �1r�� = �r��,then (�0 � 2�)� = ��. We see that the eigenfun
tions of �0 � 2� are inone-to-one 
orresponden
e with the longitudinal ve
tors. The number of thelatter is therefore N0 � 1, where the one is subtra
ted be
ause the groundstate s
alar eigenfun
tion is 
onstant, whi
h vanishes upon di�erentiation. Wetherefore 
on
lude that N1 = 6 + �1(0) + N0 � 1 = 6 � 185 + 16145 � 1 = 22445 ,whi
h also agrees with (5.20). 41



Finally, the number of tra
eless eigenvalues of �2 is 1 + �2(0) (here the oneis the 
ontribution of the negative mode) plus the number of longitudinaltra
eless tensor harmoni
s �L�� = r��� +r��� � 12 g��r���.Now, if �1�� = ��� then for �L�� asso
iated with �� one has �2�L�� = ��L�� .Hen
e, the number of longitudinal tensors is determined by the number ofve
tors, whi
h gives N2 = 1+ �2(0)+ (N1� 6). Here six is subtra
ted be
ausethe six Killing ve
tors do not 
ontribute to the tensor spe
trum, sin
e forKilling ve
tors one has �L�� = 0. We therefore obtain N2 = 1+ 389 + 22445 �6 = 215 ,whi
h again is in perfe
t agreement with (5.20).The overall s
ale dependen
e of the partition fun
tion is given by the fa
tor(�0)N2+N0�2N1 . For the S2 � S2 instanton one has N2 +N0 � 2N1 = �9845 , andwe shall shortly see that this agrees with our analysis.5.1.2 The partition fun
tion Z[S2 � S2℄It is now a simple task to insert the formulas above into the expression for thepartition fun
tion. We obtainsDet0�1Det0�2 = exp �� 0(0) + ln�20 �(0)� ; (5.25)where�(s) � 12 (�2(s)� �1(s)) = �9� 2�s + 4s Z(2;�10js) : (5.26)Using the values Z(2;�10j0) = 58145 and Z 0(2;�10j0) � � = �18:3118 (seeEq.(A.51) in the Appendix) we �ndsDet0�1Det0�2 = 2 156745 � 352450 e� : (5.27)Finally, taking into a

ount the 
ontributions of the negative, zero, and s
alarmodes 
omputed in (5.10), together with the 
lassi
al term, we obtainZ[S2 � S2℄ = �i 27 (�G)3256 �4�100 sDet0�1Det0�2 eI (5.28)= �i 0:3667� (�G)3�� 98450 exp� 2��G� :This is our �nal result in the S2 � S2 se
tor.42



5.2 The S4 instantonThe 
lassi
al a
tion is I[S4℄ = �3�=�G. Using the results in Tab.2 we �nd
0 = 0�s23 1�01A5 ; 
2 = 1 : (5.29)Let us 
onsider the symmetry fa
tor 
1. The isometry group is now H=SO(5),and this 
an be represented by matri
es Uik = exp(Cik), where Cik = �Cki,i; k = 1; : : : 5. The 10 generators ��Cik generate rotations of S4 in the 10 orthog-onal planes of the embedding Eu
lidean 5-spa
e. Let ��C12 be the generator ofrotations in the XY-plane, su
h that the standard azimuthal angle 
hanges as'! '+ C12. The norm jj ��C12 jj is the square root ofh ��'; ��'i = 132�G ZS4 g''pg d4x = 9�10�3G ; (5.30)whi
h applies also to the the norms of the remaining 9 generators.The volume of SO(5) 
an be 
omputed by dire
tly 
onstru
ting the invari-ant metri
 and the Haar measure with the use of the matrix representationUik = exp(Cik). The measure should be normalized su
h that for Cik ! 0 itredu
es to Qi<k dCik. However, it is mu
h simpler to use the 
oset redu
tionformula (5.11). One has SO(5)/SO(4)=S4 and SO(4)/SO(3)=S3, su
h thatV ol(SO(5))=V ol(S4)�V ol(S3)�V ol(SO(3)). We know that V ol(SO(3))=8�2,while the volumes of unit S3 and S4 are 2�2 and 8�2=3, respe
tively. As a re-sult, V ol(SO(5))=128�6=3. Summarizing,
1 =  �20p� � ���������� ��' ����������!10 V ol(SO(5)) = � 910�5 128�63 (�0)20(�G)5 : (5.31)Let us 
onsider the positive modes. The �-fun
tion asso
iated with the positiveve
tor modes is (see Tab.2)�1(s) = 12 3s 1Xj=2 j(j + 3)(2j + 3)fj(j + 3)� 4gs : (5.32)This 
an be written as�1(s) = 12 3sQ(1;�4; 0js) ; (5.33)43



where the following fun
tion has been introdu
edQ(k; �; 
js) = 1Xj=k (2j + 3)(j(j + 3) + 
)fj(j + 3) + �gs ; (5.34)Similarly, using the results of Tab.2, one obtains the �-fun
tion for the positivetensor modes�2(s) = 56 3sQ(2; 0;�4js) : (5.35)Finally, 
onsider the s
alar operator �0�2�. A

ording to Tab.2, its eigenval-ues, measured in units of �, are given by (j(j+3)� 6)=3, and the degenera
yis (j + 1)(j + 2)(2j + 3)=6 with j � 0. Hen
e, the �-fun
tion for the positives
alar modes is�0(s) = 16 3sQ(2;�6;�4js) : (5.36)5.2.1 The s
aling behaviourLet us again 
he
k the 
onsisten
y with the general formulas for the s
alingbehaviour of quantum �elds (for 
u
tuations around S4 this was done byChristensen and Du� [13℄). Applying again the formulas in (5.19), where nowthe volume of the manifold is VS4 = 24�2=�2, while R����R���� = 8�2=3, onehas N0 = 47990 ; N1 = 35845 ; N2 = �2110 : (5.37)On the other hand, using the result of the Appendix,Q(k; �; 
j0)=�12 k4 � 2k3 � (
+ 12)k2 (5.38)+ (3� 2
)k + 32 �2 + 13 
� 1115 ;one obtains for the �-fun
tions in (5.32), (5.33), (5.35)�0(0) = �6190 ; �1(0) = �19130 ; �2(0) = �6190 : (5.39)Now, sin
e the spe
trum of �0� 2� 
ontains six non-positive modes, one hasN0 = 6 + �0(0) = 6 � 6190 = 47990 , whi
h agrees with (5.37). Next, �1 has 10zero modes, su
h that there are 10 + �1(0) transverse ve
tor eigenstates, plus44



(N0�1) longitudinal ones (the 
onstant s
alar mode gives no 
ontribution). Asa result, N1 = 10� 19130 + 47990 �1 = 35845 , whi
h agrees with (5.37). Finally, thereare N2 = �2(0)+N1�15 tra
eless tensor modes, where 15 is subtra
ted be
ause10 Killing ve
tors and 5 
onformal Killing ve
tors of S4 do not 
ontribute tothe longitudinal tensor modes. One obtains N2 = �6190+ 35845 �15 = �2110 , whi
hagain agrees with (5.37).The overall s
ale dependen
e of the partition fun
tions is expe
ted to be(�0)N2+N0�2N1 , where N2 +N0 � 2N1 = �57145 .5.2.2 The partition fun
tion Z[S4℄Let us now obtain the partition fun
tion. One �ndssDet0�1Det0�2 = exp (� 0(0) + ln�0 �(0)) ; (5.40)where�(s) � 12 (�2(s)� �1(s)) = 3s � 512 Q(2; 0;�4js)� 14 Q(2;�4; 0js)� : (5.41)One has �(0) = 50990 and � 0(0) � �1 = 6:1015 (see Eq.(A.36) in the Appendix).This yieldssDet0�1Det0�2 = � 509450 e�1 : (5.42)Finally, 
olle
ting the 
ontributions of the negative, zero, and s
alar modes
omputed in (5.10), together with the 
lassi
al term, we obtainZ[S4℄ = p3 55312�6�240 sDet0�1Det0�2 eI= 0:0047� (�G)5�� 571450 exp� 3��G� : (5.43)To our knowledge, this formula has been obtained here for the �rst time, sin
ein Refs.[27,13℄ a 
losed expression for Z[S4℄ was not a
hieved. In parti
ular,the isometry fa
tor 
1 was not taken into a

ount and the derivative of the�-fun
tion was not 
omputed. 45



6 SummaryOur last step is to use the expressions for Z[S2 � S2℄ and Z[S4℄ in (5.28) and(5.43) and insert these into Eq.(2.15) to �nd the de
ay rate�=� 1� s�3 =Z[S2 � S2℄Z[S4℄= 14:338p� (G�)�2(�o�) 47345 exp�� ��G� : (6.1)This is the �nal result of our analysis. This formula gives the rate of semi
las-si
al de
ay of de Sitter spa
e due to the spontaneous nu
leation of bla
k holes.This is the leading mode of de
ay, sin
e 
lassi
ally de Sitter spa
e is stable [28℄.The numeri
al 
oeÆ
ient in the formula originates from the 
u
tuation deter-minants evaluated in the �-fun
tion s
heme. The fa
tor p� 
omes from theheat bath temperature 
oeÆ
ient in (2.15) and gives � the 
orre
t dimensionof an inverse time. The 
oeÆ
ient (G�)�2 arises due to the 
ombined e�e
t ofthe ba
kground isometries. The power of �o� 
ontains the e�e
t of res
alings,where we have passed again to the dimensionful renormalization parameter �o.Sin
e quantum gravity is non-renormalizable, �o remains undetermined, andwe have nothing to say about this problem. For numeri
al estimates it is rea-sonable to assume that �o � G. The last fa
tor in the formula is the 
lassi
alterm. The formula is obtained in the one-loop approximation, whi
h is good aslong as the 
lassi
al term is large 
ompared to the quantum 
orre
tions, thatis for �G� 1. Under this 
ondition the nu
leation rate is exponentially small.Noti
e that sin
e the overall power of � is positive, the quantum 
orre
tionsprovide an additional suppression of the transition rate for small �.The formula gives the probability of bla
k hole nu
leation per unit propertime of a freely falling observer in his Hubble region. The latter is the regionen
losed inside the observer's 
osmologi
al horizon. If a bla
k hole is 
reated,then it has the radius 1=p� and �lls the whole Hubble region. This doesnot mean that the whole spa
e will be eaten by a giant bla
k hole, sin
e deSitter spa
etime 
onsists of many Hubble regions, whose number grows as theuniverse expands. Some of these regions will 
ontain a bla
k hole but mostof them will be empty. The bla
k holes are a
tually born in pairs, where thetwo members of the pair are 
reated at the opposite sides of the 3-spa
e. Theinteresting 
on
lusion is that for G� � 1, when in
ation is `slow', the rateof bla
k hole nu
leation is strongly suppressed, but the 
reated bla
k holesare large. This 
an be understood as a 
onsequen
e of the fa
t that the bla
kholes are made of the energy 
ontained inside the Hubble region. As the sizeof the latter is large for small �, the 
reated bla
k holes are also large. Onthe other hand, if one is allowed to extrapolate the formula for G� � 1, whenin
ation is fast, then the 
reated bla
k holes are small, but they are 
reated46



in abundan
e.One 
an see that for late times the number of bla
k holes per unit physi
alvolume will be 
onstant. Let us 
hoose for de Sitter spa
etime the global
oordinates asso
iated with the freely falling observers:ds2 = �d�2 + 3� 
osh20�s�3 �1A d
23 : (6.2)Here � is the (dimensionful) proper time and d
23 is the volume element ofthe unit 3-sphere. The volume of the global hypersurfa
e �� of 
onstant �is V (�) = 2�2 � 3��3=2 
osh3 �q�3 �� � �24 � 3��3=2 exp(p3��). The portion of�� 
ontained inside the future event horizon of any observer has the volumeVH = 4�3 � 3��3=2 (for late �). This is the spatial Hubble volume. [This quantityslightly depends on the 
hoi
e of the hypersurfa
e. Even though for any givenobserver one has � = t, whi
h is the time asso
iated with the observer's
oordinate system, one has �� 6= �t, unless � = t = 0, in whi
h 
ase thespatial Hubble volume is VH = �2 � 3��3=2℄. As a result, the number of Hubblevolumes on the hypersurfa
e is NH(�) = V (�)=VH. [One has NH(0) = 2: thede Sitter throat 
onsists of two 
ausally dis
onne
ted parts belonging to theHubble regions of two antipodal observers [47℄.℄ Multiplying NH(�) by � givesthe bla
k hole nu
leation rate per �� ,dNBHd� = 3�16 exp(p3��) � : (6.3)Integrating with respe
t to � and dividing by V (�) yields the average volumedensity of 
reated bla
k holes on ��,�BH = �12� � ; (6.4)whi
h does not depend on �.The subsequent real time evolution of these bla
k holes is an interesting issue.Presumably most of them will immediately evaporate, unless � is very smalland the bla
k holes are large, in whi
h 
ase however the nu
leation rate isstrongly suppressed. It was argued in [9℄ that this pro
ess 
ould dramati
ally
hange the global stru
ture of de Sitter spa
e. For more information on thisissue we refer to [10,9,18℄ and to the papers 
ited in Ref.[9℄.The following steps have been essential in our analysis. We have derivedEq.(2.15) for the nu
leation rate using the thermal properties of de Sitter47



spa
e. For this we have approximated the partition fun
tion for Eu
lideanquantum gravity with � > 0 by the semi
lassi
al 
ontributions of the S4 andS2 � S2 instantons, of whi
h the �rst yields the free energy F in the Hubblevolume while the 
ontribution of the se
ond 
an be regarded as a purely imag-inary part of F . In a sense one 
an think of the 
reated bla
k holes as beingthe bubbles of the new phase spontaneously 
reated out of thermal 
u
tua-tions via quantum tunneling. We have argued that these bubbles may havetemperature di�erent from that of the heat bath, sin
e they 
annot thermalizevia intera
tions with the whole reservoir and only ex
hange energy inside theHubble region.To 
ompute the one-loop 
ontributions of the S4 and S2 � S2 instantons wehave used the standard Faddeev-Popov approa
h to the path integral. Wehave worked with a one-parameter family of 
ovariant ba
kground gauges andemployed the Hodge de
omposition of the 
u
tuations with their subsequentspe
tral expansion. In our treatment of the 
onformal modes we have followedthe standard re
ipe of 
omplex rotation, up to several lowest lying modesfor whi
h a di�erent pres
ription has been applied. In order to integrate overzero modes of the Faddeev-Popov operator arising due to the ba
kgroundisometries, we have gone beyond the perturbation theory and showed thatthe 
orresponding integration measure is the Haar measure on the isometrygroup. There are no other zero modes in the problem { for example, thestandard rotational zero modes are absent be
ause rotations are isometries ofthe ba
kgrounds under 
onsideration.We have expli
itly determined the spe
tra of the 
u
tuation operators. For
u
tuations around the S2 � S2 instanton the spe
trum was obtained bydire
tly solving the di�erential equations, while in the S4 
ase group theo-reti
 methods have been applied, in whi
h we followed the approa
h of [27℄.These spe
tra have been used in order to 
ompute the fun
tional determinantswithin the �-fun
tion regularization s
heme, the 
orresponding �-fun
tions be-ing studied in detail in the Appendix below. We have 
he
ked that our resultsagree with the general formulas for the anomalous s
aling behaviour. Finally,we have obtained in (5.28), (5.43) the one-loop partition fun
tions for 
u
tu-ations around the S4 and S2 � S2 ba
kgrounds. To our knowledge, in both
ases su
h 
losed expressions have been obtained for the �rst time. The laststep has been to use the resulting partition fun
tions in order to 
al
ulate thenu
leation rate �. This des
ribes a 
onstant density of 
reated bla
k holes perunit physi
al volume of the expanding 3-spa
e.After the work of Gross, Perry and Ja�e [30℄, our analysis presents the se
ondexample of a 
omplete one-loop 
omputation on a non-trivial ba
kground. 33 Note also that the analysis in [30℄ was not quite 
omplete, sin
e the spe
trumis unknown and the �-fun
tions have not been 
omputed, even though the unde-termined quantities 
an be absorbed into the renormalization parameter. We also48



One may hope that our results 
an lend further support to the Eu
lideanapproa
h to quantum gravity.A
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aling behaviour of the partition fun
tion. Thereason is that some authors do not take into a

ount the 
ontribution of the 10zero modes due to the ba
kground isometries, thereby obtaining Z[S4℄ to beproportional to �+ 329450 instead of �� 571450 [52℄. However, sin
e these zero modes arein the path integration measure, they do 
ontribute to the anomalous s
alingon equal footing with all other modes. In fa
t, the example of 
at spa
e gaugetheories [45℄ shows that the ba
kground symmetry zero modes, when treatednon-perturbatively as was done above, are of vital importan
e for obtainingthe 
orre
t running behaviour of the 
oupling 
onstant. Our result for thes
aling behaviour agrees with that of Christensen and Du� [13℄ and with thegeneral analysis of Fradkin and Tseytlin [54℄.Appendix. Cal
ulation of �-fun
tions.In this Appendix we shall study the �-fun
tionZ(k; �js) = 1Xn=k 1Xm=k (2n+ 1) (2m+ 1)f(2n+ 1)2 + (2m+ 1)2 + �gs ; (A.1)whi
h is used in the main text for 
omputing the one-loop 
u
tuation term onthe S2 � S2 instanton ba
kground. Here � is real while k is a positive integerdo not understand their treatment of the ba
kground isometries and that of thenon-normalizable deformations of the instanton.49



su
h that 2(2k + 1)2 + � > 0. It is assumed that <(s) is positive and largeenough to ensure the 
onvergen
e of the series. Despite its apparent simpli
ity,the analysis of this �-fun
tion is la
king in the literature. This is probably dueto the fa
t that the summation in (A.1) 
annot be extended to all integers andthe standard Poisson resummation te
hniques do not apply. For this reasonwe use other methods, whi
h are unfortunately rather lengthy. However wethink that it is ne
essary to des
ribe the basi
 steps, espe
ially in view ofother possible appli
ations of our results.In what follows we shall perform the analyti
 
ontinuation by �nding theintegral representation for Z(k; �js) that is valid for any s. This will be usedto 
ompute the values of Z(k; �j0) and ddsZ(k; �js) at s = 0. As a �rst step,we shall 
onsider the related �-fun
tion:�(k; �js) = 1Xn=k (2n+ 1)f(2n+ 1)2 + �gs (A.2)with (2k + 1)2 + � > 0. The integral representation for this fun
tion will beuseful. In addition, we shall study the �-fun
tionQ(k; �; 
js) = 1Xj=k (2j + 3)(j(j + 3) + 
)fj(j + 3) + �gs ; (A.3)where k(k + 3) + � > 0, and shall �nd its value and its s-derivative at s = 0.This fun
tion is needed in the analysis of 
u
tuations around the S4 instanton.A.1 Computation of Z(k; �j0) and �(k; �j0).First we shall 
ompute the values of these fun
tions at s = 0 using the stan-dard heat kernel te
hnique. These values determine the s
aling properties ofthe system. Later we shall rederive the same values by using the integral rep-resentations for Z(k; �js) and �(k; �js), and this will provide us with a good
onsisten
y 
he
k. For Q(k; �; 
js) we shall 
onsider only the integral repre-sentation, sin
e the values of Q(k; �; 
j0) have been 
omputed in [13℄.A �-fun
tion related to a se
ond order ellipti
 operator with a positive spe
-trum 
an be expressed as�(s) = 1�(s) 1Z0 ts�1�(t) dt : (A.4)On 
ompa
t spa
es the heat kernel �(t) vanishes exponentially fast for large50



t, while for small t there is the asymptoti
 expansion�(t) �Xr Cr tr ; (A.5)with r assuming in general both integer and half-integer values. It is notdiÆ
ult to see that�(0) = C0 : (A.6)The problem therefore redu
es to determining the asymptoti
 expansion ofthe heat kernel. The heat kernels in our problem are given by�(k; �jt) = ��(t)� �(kjt) �2 e��t (A.7)for Z(k; �js) and�(k; �jt) = ��(t)� �(kjt) � e��t (A.8)for �(k; �js), where�(t) = 1Xn=0 (2n+ 1) e�t (2n+1)2 (A.9)and �(kjt) = k�1Xn=0 (2n+ 1) e�t (2n+1)2 : (A.10)The only diÆ
ulty is to �nd the asymptoti
 expansions for small t for thefun
tion �(t) in (A.9) 4 . �(t) is a partition fun
tion for a two-dimensionalrotator at temperature 1=t. We wish therefore to �nd its high-temperatureexpansion, and for this we shall 
onstru
t the integral representation for �(t).Let us 
onsider the \generating fun
tion"�(t; �) = 1Xn=0 e�t (2n+1)2+i� (2n+1) (A.11)4 We note that �(t) 
annot be expressed in terms of theta-fun
tions in a simpleway, and that the Poisson resummation formula does not dire
tly apply.51



su
h that�(t) = �i lim�!0 ��� �(t; �) : (A.12)�(t; �) ful�lls the di�erential equation���t = �2���2 : (A.13)This has the spe
ial solution~�(t; �) = 1p4�t exp �(� � �0)24t ! (A.14)with the property ~�(0; �) = Æ(���0), whi
h allows us to represent the generalsolution of (A.13) as�(t; �) = 1Z�1 ~�(t; �0)�(0; �0) d�0 : (A.15)The initial value �(0; �0) is obtained dire
tly from the de�nition (A.11):�(0; �0) = 1Xn=0 ei�0 (2n+1) = i2 sin�0 ; (A.16)where we assume that �0 has a small positive imaginary part in order to ensure
onvergen
e of the geometri
al series. We 
an now insert this into (A.15) andthe result into (A.12). Introdu
ing the new variable x = �20=4 we obtain thesought for integral representation�(t) = 1p4�t3 1Z0 e�x=t dxsin(2px) : (A.17)Here we should remember that x has a small imaginary part, su
h that theintegration is a
tually performed along a 
ontour parallel to the positive realaxis and approa
hing it from above.It is now a straightforward task to �nd the asymptoti
 expansion of the integralin (A.17) for small t, sin
e the only non-trivial 
ontribution 
omes from a smallneighbourhood of x = 0:�(t) � 14t �1 + 13 t+ 730 t2 +O(t3)� : (A.18)52



Inserting this into (A.7) and (A.8) gives the asymptoti
 expansions for the heatkernels �(k; �jt) and �(k; �jt), whose 
oeÆ
ients C0 determine the �-fun
tionsat s = 0:Z(k; �j0) = 132 �2 � 124 � + 12 k2� + 2k4 � 23 k2 + 13360 ; (A.19)and �(k; �j0) = 112 � 14 � � k2 : (A.20)To 
he
k these results we note that the de�nitions in (A.1) and (A.2) implythatZ(k1; �js)=Z(k2; �js) + 2 k2�1Xm=k1(2m+ 1)�(k2; � + (2m + 1)2js)+ k2�1Xn=k1 k2�1Xm=k1 (2n+ 1) (2m+ 1)f(2n+ 1)2 + (2m+ 1)2 + �gs ; (A.21)with k2 > k1. Setting here s = 0 we obtain a non-trivial relation for Z(k; �j0)and �(k; �j0), and this is ful�lled by the expressions in (A.19) and (A.20).Finally we use (A.19), (A.20) to obtain the values used in the main text:Z(2;�10j0) = 58145 ; �(2;�9j0) = �53 ; �(2;�1j0) = �113 : (A.22)A.2 Computation of �(k; �js), and Q(k; �; 
js).It is usually more diÆ
ult to determine the derivative of a �-fun
tion at s = 0than the value of the fun
tion itself, sin
e the knowledge of its behaviour in aneighbourhood of s = 0 is required. We shall perform the analyti
 
ontinuationof the �-fun
tions de�ned by Eqs. (A.1), (A.2) and (A.3) to arbitrary valuesof s with the use of the relation sometimes 
alledA.2.1 The Abel-Plan formula.This 
an be derived using the obvious relation1Xn=k f(n) = ZC f(z)e2�iz � 1 dz ; (A.23)53



where the 
ontour C en
ompasses the part of the real axis with Re(z) � k(see Fig.4) and f(z) is analyti
 for Re(z) � k. The idea is to split C into threeparts, C1+C2 +C3, as shown in Fig.4. For the �rst part, C1, the integral 
anbe written asZC1 � 11� e�2�iz � 1� f(z) dz = 1Zk f(t) dt+ ZC1 f(z)1� e�2�iz dz ; (A.24)where in the integral over C1 on the right the 
ontour is then rotated to theposition �C1 as shown in Fig.4. Su
h a rotation is possible if only f(z) tendsto zero fast enough for Re(z) � k and jzj ! 1.
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Fig. 4. Left: Starting from the 
ontour C1 + C2 + C3 and rotating we arriveat �C1 + C2 + �C3. Right: the same when a bran
hing point at z = z+(�) ispresent. The 
ontour C1 will then wrap around the 
ut leading to the additional
ontribution due to ~C. The point z = z+(�) is in the region of interest for� � ��.The integral over the se
ond portion of the 
ontour, C2, is equal to 12f(k),while in the integral over C3 the 
ontour is rotated to the position �C3 asshown in Fig.4. As a result, we arrive at the Abel-Plan formula1Xn=k f(n) = 12 f(k) + 1Zk f(t)dt+ i 1Z0 f(k + it)� f(k � it)e2�t � 1 dt : (A.25)This formula 
an be used for analyti
 
ontinuation of �-fun
tions, in whi
h
ase f(t) depends also on s, f = f(t; s). The analyti
 
ontinuation to smallvalues of s is performed in the �rst integral on the right in (A.25). This usually
onverges only for <(s) large and positive, but 
an often be 
omputed in a
losed form, and then one 
an 
ontinue the result to arbitrary s. The se
ondintegral on the right in (A.25) usually 
annot be 
omputed in a 
losed form,54



but it 
onverges for any s. Let us �rst apply the Abel-Plan formula to the�-fun
tions in (A.2) and (A.3).A.2.2 Analyti
 
ontinuation of �(k; �js).Applying (A.25) to the series for �(k; �js) in (A.2), we havef(z) = 2z + 1f(2z + 1)2 + �gs ; (A.26)whi
h is analyti
 for <(z) > �1=2 and de
ays fast enough for jzj ! 1provided that <(s) is large enough. As a result, we 
an use the Abel-Planformula, whi
h gives�(k; �js) = �k + 12� 1f(2k + 1)2 + �gs + 14(s� 1) 1f(2k + 1)2 + �gs�1+ 1Z0 idte2�t � 1  2k + 1 + 2itf(2k + 1 + 2it)2 + �gs � 2k + 1� 2itf(2k + 1� 2it)2 + �gs! : (A.27)This representation is �nite for all s, apart from s = 1, where the pole islo
ated. The remaining integral here 
onverges uniformly for jsj < 1, whi
hallows us to di�erentiate with respe
t to s. If we set s = 0, then the integral
an be easily 
omputed. We �nd �(k; �j0) = 112� 14 ��k2, and this agrees withthe value obtained above in (A.20).Similarly, we 
an di�erentiate (A.27) with respe
t to s and then set s = 0.This gives� 0(k; �j0) = 14W (lnW � 1)� �k + 12� lnW+2 1Z0 dte2�t � 1 (t lnA+ (2k + 1)	) ; (A.28)where W = (2k + 1)2 + � andA = (W � 4t2)2 + 16(2k + 1)2t2 ; 	 = ar
tan 4(2k + 1) tW � 4t2 : (A.29)For any k and � the integral in (A.28) is 
onvergent and 
an be evaluatednumeri
ally. Noti
e that � 0(k; �j0) is not needed in the main body of the paper,and for this reason we do not quote the a
tual number here.55



A.2.3 Analyti
 
ontinuation of Q(k; �; 
js).The pro
edure is exa
tly the same as above. Denotingf(z) = (2z + 3)(z(z + 3) + 
)fz(z + 3) + �gs (A.30)the dire
t appli
ation of the Abel-Plan formula (A.25) yieldsQ(k; �; 
js) = �k + 32� (k(k + 3) + 
)W�s + 1s� 2W 2�s+
� �s� 1 W 1�s + 1Z0 dte2�t � 1 i(f(k + it)� f(k � it)) ; (A.31)where W = k(k + 3) + �. Setting s = 0 the integral 
an be easily 
omputedleading toQ(k; �; 
j0)=�12 k4 � 2k3 � �
+ 12� k2 (A.32)+ (3� 2
) k + 12 �2 + �43 � �� 
� 1115 :Next, di�erentiating (A.30) with respe
t to s and setting s = 0 givesQ0(k; �; 
j0) = ��k + 32� (W + 
� �) lnW+ 12 �lnW � 12�W 2 + (
� �) (lnW � 1)W + G : (A.33)Here G = 1Z0 dte2�t � 1 ft (6k(k + 3) + 2
+ 9� 2t2) lnA+(4k3 + 18k2 + (18 + 4
) k + 6
� 6 (2k + 3) t2)	g (A.34)withA = t4 + (2W � 4� + 9) t2 +W 2 ; 	 = ar
tan (2k + 3) tW � t2 : (A.35)Evaluating the integral numeri
ally, the two values used in the main text areQ0(2; 0;�4j0) = 3:72344 ; Q0(2;�4; 0j0) = 6:65246 : (A.36)56



Finally, for the fun
tion �(s) = 3s( 512Q(2; 0;�4js) � 14Q(2;�4; 0js)) used inEq.(5.41) in the main text one obtains with the help of (A.32) and (A.36)�(0) = 50990 ; � 0(0) � �1 = 6:10158 : (A.37)A.3 Computation of Z(k; �js)Let us not turn to our main task { the evaluation of the double-sum fun
tionZ(k; �js), whi
h has been de�ned for large values of <(s) by (A.1). The ideais to express it in terms of the single-sum fun
tion �(k; �js).It follows from the de�nitions (A.1) and (A.2) thatZ(k; �js) = 1Xn=k (2n+ 1)�(k; � + (2n+ 1)2js) : (A.38)Here we 
an use the integral representation (A.27) for �(k; � + (2n + 1)2js).Indeed, if � is real and (2k + 1)2 + � > 0 then the same remains true uponrepla
ement � ! �+(2n+1)2, and the formula (A.27) therefore applies. Now,repla
ing in (A.27) � by � + (2n+ 1)2 and assuming for a moment that <(s)is large and positive, the integral in (A.27) 
onverges uniformly with respe
tto n for n ! 1. This allows us, upon insertion of (A.27) into (A.38), tointer
hange the orders of summation and integration. The result then 
an beextended to any s by analyti
 
ontinuation. This givesZ(k; �js) = �k + 12� 1Xn=k 2n + 1f(2k + 1)2 + � + (2n+ 1)2gs ++ 14(s� 1) 1Xn=k 2n + 1f(2k + 1)2 + � + (2n+ 1)2gs�1+ 1Z0 id�e2�� � 1  (2k + 1 + 2i�) 1Xn=k 2n+ 1f(2k + 1 + 2i�)2 + � + (2n+ 1)2gs�(2k + 1� 2i�) 1Xn=k 2n+ 1f(2k + 1� 2i�)2 + � + (2n+ 1)2gs! : (A.39)One 
an see that all sums here are exa
tly the same as in the de�nition of�(k; �js) in (A.2) { up to the repla
ements � ! �+(2k+1)2 and � ! �(�) �� + (2k + 1 + 2i�)2. Sin
e the de�nition in (A.2) makes sense for arbitraryvalues of � (the series always 
onverges for <(s) big enough), we 
an expressthe sums in (A.39) in terms of �(k; �+(2k+1)2js) and �(k; �(�)js). This leadsto the the following formula: 57



Z(k; �js) = �k + 12� �(k; � + (2k + 1)2js) (A.40)+ 14(s� 1)�(k; � + (2k + 1)2js� 1) + 1Z0 i d�e2�� � 1 fF(�)� F(��)g ;with F(�) = (2k+1+2i�) �(k; �(�)js). In this formula the �rst two terms onthe right are determined by the integral representation (A.27) for arbitrary s.We are left with 
omputing the remaining integral over � . The problem hereis that the parameter �(�) is 
omplex, and for this reason we 
annot dire
tlyapply the integral representation (A.27) to 
ompute �(k; �(�)js).Let us re
all that the formula (A.27) was derived assuming that the fun
tionf(z) in Eq.(A.26) had no poles for <(z) > k. This allowed us to rotate theintegration 
ontour as shown in the left part of Fig.4 without interse
tingsingularities. Let us now repla
e � by �(�) � � + (2k + 1+ 2i�)2. As a result,f(z) in Eq.(A.26) is repla
ed byf(z) = 2z + 1f(2z + 1)2 + �(�)gs = 2z + 1f4(z � z+(�))(z � z�(�))gs ; (A.41)with z�(�) = 12(�1 � iq�(�)). For � = 0 one has <(z�(0)) = �12 . As �in
reases, the point z+(�) moves to the right in the 
omplex plane (while z�(�)moves to the left), but as long as <(z+(�)) < k one 
an still use the formula(A.27). However, for large enough values of � the pole at z = z+(�) enters theregion of interest, that is the part of the 
omplex plane with <(z) > k, andwe 
an no longer use the formula (A.27).To ta
kle the problem we noti
e that the pole of f(z) at z = z+(�) is abran
hing point, and one 
an 
hoose the 
ut in the 
omplex plane as shownin the right part of Fig.4. We then repeat the steps leading to the Abel-Plan formula and the additional problem we en
ounter is the following: whenwe rotate the integration 
ontour as we did before, the 
ontour will wraparound the 
ut as shown in Fig.4. The resulting 
ontour will then 
onsist oftwo dis
onne
ted pie
es. The �rst pie
e will be the same as the old 
ontour�C1+C2 + �C3 (see Fig.4). The se
ond pie
e is the 
ontour ~C wrapping aroundthe 
ut. Integrating around su
h a 
ombined 
ontour, the result will 
onsistof two parts,�(k; �(�)js) = �old(k; �(�)js) + �(� � ��) Z~C f(z)e2�iz � 1dz : (A.42)Here the �rst term on the right, �old(k; �(�)js), is the fun
tion given by theprevious expression in (A.27) with � being repla
ed by �(�). The se
ond term,58



with f(z) given by (A.41) and the 
ontour ~C as shown in the right part ofFig.4, is the 
ontribution of the 
ut. The step fun
tion �(� � ��) re
e
ts thefa
t that the 
ut 
ontributes only for large enough � when the pole entersthe region <(z) > k. Here �(x) = 0 for x < 0 and �(x) = 1 for x � 0, and<(z+(��)) = k.The representation (A.42) applies for all values of s and for any � > 0. Sim-ilarly, one 
an obtain �(k; �(��)js) (the 
ut then resides in the upper half-plane). As a result, the fun
tion F(�)�F(��) in the integrand in Eq.(A.40)is de�ned for any � > 0, and the integral 
onverges due to the damping expo-nential fa
tor. This �nally gives Z(k; �js) for any s.Let us �rst 
he
k our result by 
omputing Z(k; �j0). For s = 0 the fun
tionf(z) has no poles and the 
ontribution of the 
ut vanishes. The remainingintegrals then 
an be easily 
omputed, whi
h gives for Z(k; �j0) exa
tly thesame expression as in Eq.(A.19).Let us now 
ompute Z 0(k; �j0). Sin
e all integrals in (A.40),(A.41) 
onvergeuniformly with respe
t to s (at least for jsj < 1), we 
an di�erentiate theintegrands with respe
t to s and then set s = 0. The result 
an be representedin the following form:Z 0(k; �j0) = H + 2 1Z0 dte2�t � 1 G(t)+ 1Z0 d�e2�� � 1 1Z0 dte2�t � 1W(�; t) + S: (A.43)Here H = ��2k4 + (2� �2) k2 + k + 132 (4 + 4� � �2)� ln( 2 (2k + 1)2 + �)+3k4 + 2k3 + 34 (� � 2) k2 + 14 (� � 6) k + 164 (3�2 � 4� � 20) : (A.44)In addition,G(t)= t2 (4t2 � 16k2 � 12k � 2� �) lnP (A.45)+ (2k + 1)(6t2 � 2k (2k + 1)� �2)� ;where we have usedP = �2 + (4(2k + 1)2 � 8t2) � + 4(2k + 1)4 + 16t4 ;59



�=Phase[(2k + 1)2 + �=2� 2t2 + i 2(2k + 1)t℄ ; (A.46)and �� <Phase[x + iy℄ � � is the phase of the 
omplex number. Next,W(�; t)= f((2k + 1)2 � 4 t �) lnQ (A.47)+ 4 (t� �)(2k + 1)	g � f(t; �)$ (t;��)g (A.48)withQ=16 (t2 + � 2)2 + (� + 2)2 � 8� (t2 + � 2) + 128 (k2 + k + 14) t �+16 k(k + 1) � + 32 k(k + 1)(2k2 + 2k + 1);	=Phase[(2k + 1)2 + �=2� 2 (t2 + � 2) + i 2 (2k + 1)(t� �)℄ : (A.49)Finally, the 
ontribution of the 
ut isS = 4� 1Z�� d�e2�� � 1 1Z0 = (2k + 1� 2i�)(2z(�) + 1 + 2it)e2�(t�iz(�)) � 1 dt ; (A.50)where z(�) = �12 +q4� 2 � (2k + 1)2 � � + 4i(2k + 1)� , and <(z(��)) = k.We now use the formulas above in order to evaluate Z 0(2;�10j0), whi
h valueis needed in the main text. Setting k = 2 and � = �10 we obtain for the�rst term on the right in (A.43) H = 1:9445. The se
ond term, 
ontainingthe integral over t, is evaluated numeri
ally to give �19:9469. The numeri
alvalue of the term 
ontaining the double integral is �0:1294. As for the lastterm, S, it is exponentially small and is of the order of 10�12. This is be
ause,as one 
an see from (A.50), the value of S is suppressed by the fa
tor ofexpf�2�(�� + =(z(��))g = expf�4�p5g.Summing everything up, we obtain� � Z 0(2;�10j0) = �18:3118 : (A.51)Referen
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