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Finite Temperature Shwinger ModelwithChirality Breaking Boundary ConditionsS. D�urrInstitute for Theoretial PhysisUniversity of Z�urih (Irhel)CH - 8057 Z�urih (Switzerland)email: duerr�physik.unizh.hA. WipfTheoretish-Physikalishes InsititutFriedrih-Shiller University of JenaD - 07743 Jena (Germany)email: aww�hpfs1.physik.uni-jena.deAbstratThe Nf -avour Shwinger Model on a �nite spae 0 � x1 � L and subjet to bag-typeboundary-onditions at x1 = 0 und x1 = L is solved at �nite temperature T = 1=�. Theboundary onditions depend on a real parameter � and break the axial avour symmetry.We argue that this approah is more appropriate to study the broken phases than intro-duing small quark masses, sine all alulations an be performed analytially.In the imaginary time formalism we determine the thermal orrelators for the fermion-�elds and the determinant of the Dira-operator in arbitrary bakground gauge-�elds. Weshow that the boundary onditions indue a CP -odd �-term in the e�etive ation.The hiral ondensate, and in partiular its T - and L- dependene, is alulated for Nffermions. It is seen to depend on the order in whih the two lengths � = 1=T and L aresent to in�nity.



1 IntrodutionOver the past deades the Shwinger model [1℄ has proved to be an exellent laboratory for�eld theory beause it turned out to shed some light on a ouple of questions whih naturallyarise in realisti gauge-�eld theories, but lead to immense diÆulties as soon as one tries toattak them diretly. Longstanding problems of this type are the wellknown U(1)A-problem[30℄, the question whether QCD in the hiral limit shows a spontaneous breakdown of thehiral symmetry and the question about the nature of the hiral phase transition at � 200MeV [2, 31℄.The Shwinger model is known to be the most simple model �eld theory whih exhibitshiral symmetry breaking. However the quantization on the plane su�ers from the de�it,that a naive alulation of the ondensates h  i and h 5 i gives zero results and the orretvalues an be derived only a posteriori by using the lustering theorem [6℄. Whenever asymmetry is expeted to be broken it is most reommendable to break it expliitly and totry to determine how the system behaves in the limit when the external trigger is softlyremoved. Thus it is most natural for both the Shwinger model and QCD to break expliitlythe axial avour symmetry and to investigate how observables do behave in the limit wherethe symmetry is restored.The most diret way to do this is to introdue small fermion masses and to try to determinehow the hiral orrelators behave in the limit where these fermion masses tend to be negligibleas ompared to the intrinsi energy sale of the gauge-interation. One these alulationsdo predit nonvanishing hiral ondensates in the thermodynami limit one an be sure thata spontaneous breaking of the axial avour symmetry SU(Nf )A really takes plae - howeverthis is not a onditio sine qua non. There is however a tehnial obstale to this approah: thevalue of the hiral ondensates is related to the mean level density of the eigenvalues of theDira operator [7℄ in the infrared. Unfortunately, the spetral density of the massive Diraoperator is only known for very speial bakground gauge-�elds.In this paper we shall break the hiral symmetry expliitly by boundary onditions forthe fermions instead of giving them a small mass. Although this version seems at �rst sightless natural, it has many advantages - both oneptual and alulational in nature. Themost important point is learly the fat that it allows for an entirely analytial treatment.In a previous paper [5℄ we investigated QCD-type theories with Nf massless avours on aneven-dimensional (d=2n) eulidean manifold M with boundary �M on whih the boundaryonditions studied by Hrasko and Balog [4℄ have been applied. These hirality-breaking-(CB-) boundary-onditions relate the di�erent spin omponents of one avour on �M andare neutral with respet to vetor-avour transformations - so that the (gauge-invariant)fermioni determinant is the same for all avours. For a simply onneted M , e.g. a ball, theinstanton number, whih in four dimensions takes the formq = 132�2 Z F a�� ~F a�� d4x; (1)is not quantized and may take any real value [5℄. Contrary to the situation on a ompatmanifold without boundary, on whih q is integer [10℄, the on�guration spae is topologiallytrivial (i.e. without disonneted instanton setors) [5℄. In addition there are no fermionizero modes [5, 11℄ whih usually tend to ompliate the quantization onsiderably [3℄.Our previously ited work foused on the eulidean Nf -avour U(N)- or SU(N)- gauge-theories inside 2n-dimensional balls of radius R. We omputed that part of the e�etive1



ation reeting the interation of the partiles with the boundary S2n�1R . Here we investigatewhether the approah of breaking the SU(Nf )A symmetry by boundary onditions an beextended to gauge-systems in thermal equilibrium states. In the imaginary time formalismspaetime is then a ylindrial manifolds M = [0; �℄ � fspaeg and (anti)periodi boundaryonditions for the (fermi)bose-�elds in the eulidean time x0 with period � = 1=T are imposed.Note that at �nite temperature it is only the boundary of spae and not of spae-timewhere hirality is broken and it is a priori an open question whether this is suÆient to trigger ahiral symmetry breaking even in the one avour ase. In addition there is a tehnial obstaleto extending the CB-boundary-ondition approah to non-simply onneted manifolds, e.g aylinder. On ylinders the standard deomposition for the Dira operator, on whih theanalyti treatment heavily relies, must be modi�ed. The present paper is a tehnial one -mostly devoted to show how this diÆulty an be overome. From the physial point of viewit is our aim to investigate how the breakdown of the hiral symmetry - when triggered byboundary onditions - in the one- and the multi-avour ases is a�eted by �nite temperaturee�ets.Here we shall quantize the Shwinger Model with ationS[A; y;  ℄ = SB [A℄ + SF [A; y;  ℄SB = 14 RM F��F�� ; SF = NfPn=1 RM  yniD=  n (2)on the manifold M = [0; �℄ � [0; L℄ 3 (x0; x1) (3)with volume V = �L. At �nite temperature the �elds A and  are periodi and antiperiodiin eulidean time with period � and hene x0 = 0 and x0 = � are identi�ed. This means that[0; �℄ � [0; L℄ is a ylinder with irumferene � = 1=T . At the spatial ends of the ylinder(i.e. at x1 = 0 and x1 = L) spei� CB-boundary-onditions are applied. Then there are nofermioni zero modes (see next setion) and the generating funtional for the fermions in agiven gauge-�eld bakground A is given by the textbook formulaZF [A; �y; �℄ = det(iD=) e R �y(iD=)�1�: (4)We shall see that these CB-boundary-onditions indeed generate hiral ondensates forany �nite length L of the ylinder. However in the limit � ! 1; L ! 1 the ondensateswill only survive for the one avour ase and this only if the limit � !1 is taken before thelimit L!1.During the alulations the following abbreviations are used for notational simpliity:� = �2L ; � = x1 + y1L ; � = x1L : (5)This paper is organized as follows : In setion 2 we disuss the CB-boundary-onditionsto be applied together with some immediate onsequenes for the spetrum of the Diraoperator iD=. Setion 3 is devoted to the question of how to deompose an arbitrary gauge-�eld on a ylinder. In setion 4 we ompute the fermioni Green's funtion with respet toCB-boundary-onditions in arbitrary external �elds. In setion 5 we determine the e�etiveation after the fermions have been integrated out. Using the results of the two previous steps2



the hiral ondensates are alulated in setion 6. In setion 7 we show that the value of thehiral ondensate ruially depends not only on the number of avours but also on the orderin whih the two limits � ! 1 and L ! 1 are performed. Finally we ompare our resultwith the ondensate generated by fratons on a torus of idential size and with analogousresults of nonommutativity of the limits m! 0, L!1 in the the usual small-quark-massapproah. In the appendies we derive the boundary Seeley-DeWitt oeÆient used in thebody of the paper.2 Chirality Breaking Boundary ConditionsIn this setion we shall shortly review the boundary onditions as disussed by Hrasko andBalog [4℄ together with their most important onsequenes [5, 26℄.Sine ZF should be real we want iD= to be symmetri under the salar produt(�; ) := ZM �y from whih we get the ondition(�; iD= ) � (iD=�;  ) = i I�M �yn � 0 : (6)Imposing loal linear boundary onditions whih ensure this requirement amounts to have�yn = 0 on �M for eah pair, whih is ahieved by = B on �M with BynB = �n ; B2 = 1; (7)where n = (; n) = n�� = n= and n� is the outward oriented normal vetor�eld on �M .We shall hoose the one-parametri family of boundary operators [4℄B � B� :� i5e�5n (8)whih is understood to at as the identity in avour spae. These CB-boundary-onditionsbreak the 5 invariane of the theory, making the Nf avour theory invariant under SU(Nf )Vinstead of SU(Nf )L � SU(Nf )R. Later they will be supplemented by suitable boundaryonditions for the gauge-�eld. These boundary onditions imply that there is no net U(1)-urrent leaking through the boundary, sine n � j =  yn = 0 on �M .In the following we shall make use of a Feynman Hellmann [16℄ boundary formula, whihmay be derived from (6,7,8) [5℄dd��k = i2 I  yk( � n)5 k = ��k( k; 5 k) ; (9)where the �k denote the eigenvalues of iD=.We hoose the hiral representation 0 = �1; 1 = �2 and 5 = �3 . Then the boundaryoperators at the two ends of the ylinder readBL = � 0 e�e�� 0 ! (at x1=0) and BR = + 0 e�e�� 0 ! (at x1=L) : (10)3



The most important properties of these boundary onditions are summarized as follows [5℄:(1) The Dira operator has a purely disrete real spetrum whih is not symmetri with respetto zero.(2) The Dira operator has no zero modes.(3) The instanton number q = 14� R ���F�� = 12� R E is not quantized . The seond propertyallows us to alulate expetation values of gauge-invariant operators ashOi = Z hOiA d��[A℄; where (11)d��[A℄ = 1ZF det�(iD= ) e�SB [A℄ D[A℄: (12)Here D[A℄ is assumed to ontain the gauge-�xing fator inluding the orresponding Fadeev-Popov determinant and hOiA denotes the expetation value of O in a �xed bakgroundhOiA = 1det�(iD=) � Z D yD O e� R  yiD=  : (13)Throughout � is the free parameter in boundary operators (10). We shall see that the �-dependene of the fermioni determinant det�(iD=) an be alulated analytially.3 Deomposition and Deformation tehniquesIn this setion we present the deomposition and deformation tehniques needed to determinethe funtional determinant of the Dira operator on the ylinder with CB-boundary-onditionsas given by (7) and (10) .On simply onneted regions we have the deomposition eA� = �������+ ��� suh thateF01 = 4�. On the ylinder there is a one to one orrespondene between � and eF01 if �obeys Dirihlet boundary onditions at the two ends of the ylinder. But ylinders are notsimply onneted, �1(M) = Z, and as a result the Polyakov-loop operatorseie R �0 A0 dx0 =: e2�i;i.e. e R �0 A0 mod 2�, are gauge-invariant. On the other hand, using the �-periodiity of� and the Dirihlet boundary onditions on �, the above deomposition would imply thatR �0 R L0 A0 = 0, a ondition whih does not hold in general (take a onstant A0). This simpleobservation already indiates, that the orret deomposition of A� on the ylinder readseA0 = ��1�+ �0� +2�� eA1 = +�0�+ �1�; (14)where � obeys Dirihlet boundary onditions at x1 = 0; L and � ful�lls �(0) + �(L) = 0 and 2 [0; 1[ is the onstant harmoni part. To prove (14) one Fourier deomposes the various�elds and arefully handles the zero-modes of the Laplaian. The harmoni part an then bereonstruted from its values on the boundaries.The Dira operator iD= = i�(�� � ieA�) may be fatorized aording toiD= = GyiD= 0G; where iD= 0 = 0(i�0 + 2�=�) + 1i�1; (15)4



and G =  g��1 00 g ! ; g :� e�(�+i�): (16)The prepotential g is an element of the omplexi�ed gauge-group U(1)� = S1 �R+. Now wedeform the prepotential and Dira operator asg� :� e��(�+i�) and iD=� = Gy� iD= 0 G� (17)suh the deformed operator interpolates between the free and full ones: iD=�=1 = iD= andiD=�=0 = iD= 0. By usingdd�G� = �G�H ; H =  �h� 00 h ! = ��5 + i�I : (18)one �nds for the �-variation of the integrated heatkernel of (iD=�)2dd� ( tr fetD=2�g) = 2t tr fetD=2�(H +Hy)(iD=�)2g = 2t ddt ( tr fet(D=�)22�5g) (19)and this formula will prove to be useful in setion 5.4 Fermioni Propagator w.r.t. Boundary ConditionsIn order to alulate the ondensates we need the Green's funtion S� of the Dira operatoriD= on the ylinder subjet to the CB-boundary onditions. This Green's funtion obeys(iD= S�)(x; y) = Æ(x � y) (20)S�(x0+�; x1; y) = �S�(x; y) (21)(BL S�)(x0; x1=0; y) = S�(x0; x1=0; y) (22)(BR S�)(x0; x1=L; y) = S�(x0; x1=L; y) (23)plus the adjoint relations with respet to y. The dependene of the gauge-potential has notbeen made expliit and the boundary operator BL=R is the one de�ned in (10). From thefatorization property (15) for the Dira operator it follows at one, that S� is related to theGreen's funtion ~S� of iD= 0 asS�(x; y) = G�1(x) ~S�(x; y)Gy �1(y) : (24)Indeed, sine the �eld � obeys Dirihlet boundary onditions at the ends of the ylinder, g isunitary there and the boundary onditions (21-23) transform into the idential ones for~S�(x; y) =  ~S++ ~S+�~S�+ ~S�� ! ;where the indies refer to hirality.The free Green's funtion on the ylinder of in�nite length~Sther(x; y) = 12�i Xn2Z(�1)ne2�i(�0�n�)=� �0B� 0 1�0 + i�1 � n�1�0 � i�1 � n� 0 1CA ;5



where �� = x��y�, is purely o�-diagonal and thus hirality preserving, as expeted, sine ther-mal boundary onditions are hirality-neutral. To implement the hirality-breaking boundaryonditions at the ends of the ylinder on an either augment ~Sther by piees built from the zeromodes (whih themselves annot obey the L/R onditions simultaneously) or by exploitinganalytiity arguments. In either ase we end up with~S�(x; y) = i2� � Xm;n2Z�Z(�1)(m+n) � e2�i(�0=��n) � � e�=rnm �(1=snm)�(1=�snm) e��=�rnm � ; (25)where rnm = �0+ i�� (n�+2imL) and snm is the same expression with � � x1+ y1 replaedby �1. From this expliit expression one sees at one that the o�-diagonal elements onlydepend on x��y� and beome singular for x! y , whereas the diagonal elements depend onboth x� and y� separately but are regular at oiniding points inside the ylinder. The sumover m respetively n in (25) an be performed by using [27℄XZ (�1)m eimxm+ ia = � i�sinha�eax (�� � x � �) (26)with the results~S�(x; y) = ie2�i�0=�4L �XZ (�1)ne�2�in �0BB� e�sinh(�rn0=2L) � 1sinh(�sn0=2L)� 1sinh(��sn0=2L) e��sinh(��rn0=2L) 1CCA ; (27)or ~S�(x; y) = ie2�i�0=�2� �XZ (�1)m �0BB� e�e�2�ir0m=�sin(�r0m=�) � e�2�is0m=�sin(�s0m=�)� e�2�i�som=�sin(��s0m=�) e��e�2�i�rom=�sin(��r0m=�) 1CCA : (28)valid for  2 [�12 ; 12 ℄. For alulating the hiral ondensates we shall need the ++ and ��elements at oiniding points inside the ylinder. From (27) we �nd the expression~S�(x; x)�� = �e��4L Xn2Z(�)n e�2in�sin(�[� � in� ℄) : (29)whih rapidly onverges for low temperature, and from (28) the alternative form~S�(x; x)�� = �e��2� Xm2Z(�)m e�2�(�+m)=�sinh(�[� +m℄=�) (30)whih is adequate for high temperature.With (24) we end up with the following expressions for hirality violating entries of thefermioni Green's funtion on the diagonalS�(x;x)�� = e�2�(x) ~S�(x;x)�� : (31)The free Green's funtions ~S�� have been omputed in (29) and (30). They depend only onthe harmoni part  in the deomposition (14) of the gauge-potential.6



5 Fermioni Determinant w.r.t. Boundary ConditionsIn this setion we shall ompute the �-dependene of the fermioni determinant. We shallsee that the sattering of the fermions o� the boundary generates a CP-odd �-term in thee�etive ation for the gauge-bosons.5.1 Zetafuntion De�nitionThe Dira operator and the boundary onditions are both avour neutral. Thus the deter-minant is the same for all avours and it is suÆient to alulate it for one avour. For theexpliit alulations we shall use the gauge-invariant �-funtion de�nition of the determinant[17, 18℄ log det �(iD=) :� 12 log det �(�D=2) :� �12 dds ����s=0��(�D=2; s) (32)and alulate the �-dependene of the �-funtion by means of the boundary Feynman Hell-mann formula (9). Denoting f�kjk 2 Ng the (positive) eigenvalues of �D=2, the orresponding�-funtion is de�ned and rewritten as a Mellin transform in the usual way��(s) :� ��(�D=2; s) :�Xk ��sk = 1�(s) 1Z0 ts�1 tr �(e�t(�D=2)) dt (33)for Re(s) > d=2 = 1 and its analyti ontinuation to Re(s) � 1.5.2 Stepwise CalulationWe will study how det�(iD=�;) varies with �, � and  to ompute the normalized determinantdet�(iD=)det0(i�=) � det�(iD=�=1;)det0(iD=�=0;0) : (34)The alulation is done in three steps. We shall alulate all three fators indet�(iD=�=1;)det0(iD=�=0;0) � det�(iD=�=1;)det0(iD=�=1;) � det0(iD=�=1;)det0(iD=�=0;) � det0(iD=�=0;)det0(iD=�=0;0) (35)in turn.From the generalized Feynman-Hellmann formula (9) and the fat that iD= has no zeromodesso that the various partial integrations are justi�ed, the �-variation of (33) is found to bedd���(s) = 2s�(s) 1Z0 ts�1 tr �(etD=25) : (36)Now one an use the asymptoti small-t-expansion for etD=2f , where f is a testfuntion,tr �(etD=2f) = 12�t Xm=0;1;::: tm=2 tr � �Z am=2(f) + I bm=2(f)� ; (37)and where the am=2; bm=2 denote the orresponding volume and boundary Seeley DeWittoeÆients respetively. Plugging this into the expression (36) yields [19, 20, 21℄dd� 12 log det �(�D=2) = � 14� Z tr (a1(5))� 14� I tr (b1(5)) : (38)7



For the squared Dira operator �D=2 that part of a1 whih leads to a nonvanishing 5-trae isknown [22℄ to be eF01=2�, i.e. independent of �. On the other hand H b1(:), whih dependson the boundary onditions, is alulated expliitly in the appendix to beI b1(f) = I 12� 1 00 1 !� log(e�)sinh(�)  e� �1�1 e�� !� �nf (39)and does not ontribute for f = 5.Integrating with respet to � yields the following �rst fator in (35)det�(iD=�=1;)det0(iD=�=1;) = expf� �2� Z F01g = expf� �2� Z 4�g: (40)To �nd the �-variation leading to the seond fator we use (19) in (33) with the resultdd���(�D=2�;; s) = � 2s�(s) 1Z0 ts�1 tr �(etD=2�2�5); (41)where we integrated by parts. Again we use the small-t-expansion (37) of the heat kernel,but now with test funtion f = 2�5. Thusdd� 12 log det �(�D=2�;) = 14� Z tr (a1(2�5)) + 14� I tr (b1(2�5)) (42)where the universal a1(:) yields the wellknown Shwinger term [22℄. Sine now the normalderivative of the testfuntion on the boundary in non-zero, the last surfae term ontributes.Using (39) we end up withdd� 12 log det �(�D=2�;) = 14� ZM 2�4�� 12� I�M log(e�) �n�: (43)Setting � = 0 and integrating with respet to � yields the following seond fator in (35):det0(iD=�=1;)det0(iD=�=0;) = e 12� R �4�: (44)We are left with the task to alulate the third fatorlog det0(iD=�=0;)det0(iD=�=0;0) = �12 Z0 dds ����s=0 dd~ �0(�D=2�=0;~ ; s) d~ : (45)For that we omputed the heatkernel of the operator�D= 2�=0;~ = ��(�0 � 2�i~=�)2 + �21�I2for � = 0. The expliit result isK(t; x; y) = 14�t XZ�Z(�1)m+ne�(�0�n�)2=4te2�i~(�0�n�)=� e�(�1�2mL)2=4t �e�(��2mL)2=4t�e�(�+2mL)2=4t e�(�1+2mL)2=4t ! (46)8



whih results in the trae (V = �L)ZM tr�=0 (K(t; x; x)) = V2�t�1 +X0(�1)m+ne� (n�)2+(2mL)24t os(2�n~)� ; (47)where the prime denotes the omission of the (m;n) = (0; 0) term. The ~-derivative of theMellin transform, after substituting t! 1=t, readsdd~�0(�D=2�=0;~ ; s) = V2��(s) 1Z0 X0(�1)m+ne�t[(n�=2)2+(mL)2 ℄ dd~ os(2�n~) t�s dt (48)whih may be integrated by parts (for s > 0) to givedd~�0(�D=2�=0;~ ; s) = �2V� s�(s) 1Z0 X0(�1)m+n e�t [(n�=2)2+(mL)2℄[(n�)2 + 4(mL)2℄ dd~ os(2�n~) t�s�1 dt :Only the pole of order one of the integral at s = 0 an ontribute to the s-derivative at s = 0of the �-funtion. Sine this pole entirely stems from the lower limit of the integral we maysplit the latter into two partsdd~�0(�D=2�=0;~ ; s # 0) = �2V� s�(s)(Z �0 : : : + Z 1� : : :)= 2V� (s+s2+: : :) �X0(�1)m+n dd~ os(2�n~)[(n�)2 + 4(mL)2℄��s + : : :to obtain dds ����s=0 dd~�0(�D=2�=0;~; s) = 2V� X0(�1)m+n dd~ os(2�n~)(n�)2 + (2mL)2 : (49)Plugging this result into (45) we end up with the expression��() � log det0(iD=�=0;)det0(iD=�=0;0) = �V� X0(�1)m+n os(2�n)� 1(n�)2 + (2mL)2 (50)for the third fator of the funtional determinant (34) in the fatorization (35). With thehelp of Im(�)� X0 e2�i(ma1+na2)jm+ �nj2 = �2 log ��� 1�(�)� " 12 + a1a2 # ���this result an be rewritten as [29℄e��() = det0(iD=�=0;)det0(iD=�=0;0) = 8>><>>: �3(;i�)�3(0;i�)e��2=� �3(i=�;i=�)�3(0;i=�) : (51)These two equivalent forms will be useful in the low- and high- temperature expansion of theondensates.
9



5.3 E�etive AtionNow we an ombine the lassial (eulidean) ation of the photon �eld, rewritten in the newvariables (14) 14F��F�� = 12e24�4� � : SB[�℄ (52)with our expliit result for the funtional determinant (34). Colleting the ontributions(40,44,51) and adding the lassial ation (52) we end up with the e�etive ation� � ��[; �℄ � Nf�() + ��[�℄ (53)where �() has been given in (51) and ��[�℄ is��[�℄ � 12e2�ZM �42�� �2ZM �4�+ � � �2 ZM 4�� (54)and � : � sNfe2� (55)is the analog of the �0-mass in QCD. We have used that the funtional determinant is thesame for all avours. The funtional measure takes the formd��[A℄ = 1Z� e��� [;�℄ d D� Æ(�) D� : (56)We have taken into aount that the gauge-variation of the Lorentz gauge-onditionF :� ��A� = 4�and the Jaobian of the transformation from fAg to the new variables f�; ; �g are indepen-dent of the �elds. Atually, the orresponding determinants anel eah other.We onlude that the expetation value of any gauge-invariant operator O (whih will notdepend on �) is given by hOi = R d D� O e���[;�℄R d D� e��� [;�℄ (57)with ��[; �℄ from (53,54).6 Chiral CondensatesOur result (57) may be applied to alulate the hiral ondensates ash y(x)P� (x)i = R dD� S�(x; x)�� e���[;�℄R dD� e���[;�℄ (58)with S� from (31) and �� from (53). Both the (exponentiated) ation and the Green's funtionfatorize into parts whih only depend on  and on �, respetively. Thus (58) fatorizes ash y(x)P� (x)i = C�(x) �D�(x) (59)with x0-independent fatorsC�(x1) = R d ~S�(x; x)�� e�Nf�()R d e�Nf�() ; D�(x1) = R D� e�2�(x)��� [�℄R D� e��� [�℄ (60)whih depend on the parameters �;Nf ; �; L. Here and below the -integrals extend over oneperiod, e.g. [�1=2; 1=2℄. 10



6.1 Harmoni IntegralNow we shall see, how far we an evaluate the �rst fator in (59) whih ontains the integralsover the harmoni part of the gauge-�eld.Plugging in the Green's funtion (25,31) as well as (50) we obtain the unevaluated expres-sionC�(x1) = � e��4�L XZ�Z(�1)m+n �+m(�+m)2+(n�)2 � 1=2R�1=2 os(2�n)e�Nf2� P0(�1)k+l os(2�l)�1k2=�+l2�� d1=2R�1=2 e�Nf2� P0(�1)k+l os(2�l)�1k2=�+l2�� d :(61)To investigate the low-temperature expansion we use (29) and the upper line in (51) andarrive at C�(x1) = �e��4L Xn2Z (�1)nsin(�[� � in� ℄) � R d e�2�in �Nf3 (; i�)R d �Nf3 (; i�) ; (62)Alternatively, for the high-temperature expansion we use (30) and the lower line in (51), sothatC�(x1) = �e��2� Xm2Z (�1)msinh(�[� +m℄=�) � R d e��[Nf�2(�+m)℄=� �Nf3 (i=�; i=�)R d e��2Nf=� �Nf3 (i=�; i=�) : (63)For one avour the -integral in (62) is easily alulated and one �ndsC�(x1) = �e��4L Xn2Z (�1)ne���n2sin(�[� � in� ℄) : (64)6.2 Nonharmoni IntegralNow we shall ompute the seond fator in (59) as de�ned in (60). We reall that theintegration extends over �elds �, whih are periodi in the x0 and satisfy Dirihlet boundaryonditions at the ends of the ylinder, i.e. at x1 = 0; L.Doing the gaussian integrals one ends up withD�(x1) = expn 2�NfK�2(x; x)o � expn� �2 �Z 40K�2(x; x0)� �2 �Z 40K�2(x0; x)o (65)where the integration is over x0 and the kernelK�2(x; y) = hxj �2�4(�4+ �2) jyi = hxj 1�4jyi � hxj 1�4+ �2 jyi (66)is with respet to Dirihlet boundary onditions. Being the di�erene of two Green's funtionswith the same singular behaviour it is �nite at oiniding arguments.The expliit form of the kernel isK�2(x; y) = V�2 X 0m;n2Z � 1(2mL)2+(n�)2 � 1(2mL)2+(n�)2+(�V=�)2� �os �2�m�0� � sin��nx1L � sin��ny1L � ; (67)11



where the prime indiates the omission of the term withm = n = 0. For oiniding argumentsK beomes x0-independent as required by translational invariane. For performing either thesum over m or over n in (67) one uses the formulaXj2Z os(jx)j2 + a2 = �a osh(a(� � x))sinh(a�) (x 2 [0; 2�℄)to end up either with the expressionK�2(x; x) = 12� Xn�1�th(n��)n � (n! qn2 + (�L=�)2)��1� os(2�n�)� ; (68)whih is useful for the low temperature expansion, or alternatively with the expressionK�2(x; x) = 12� Xm�1 osh(m�=�) � osh(m�(1� 2�)=�)m sinh(m�=�) � (m! qm2 + (��=2�)2)+ �(1� �)2� + osh(�L(1� 2�)) � osh(�L)2�� sinh(�L) ; (69)whih is useful for the high temperature expansion. Both expressions (68) and (69) do indeedvanish as x1 reahes the boundary in aordane with the imposed boundary onditions.One we have the expliit formula (67) at hand we an ompute in a straightforward waythe expression Z 4zK�2(z; x) dz = � 4� Xn=1;3;::: ( 1n � nn2 + (�L=�)2 ) sin(�n�): (70)Applying the formulaXn=1;3;::: n sin(nx)n2 + a2 = �4 sh(a(� � x)) + sh(ax)sh(a�) ( x 2 ℄0; �[ ) (71)the expression (70) is seen to take the simple formZ 4zK�2(z; x) dz = sinh(�L(1� �)) + sinh(�L�)sinh(�L) � 1 : (72)6.3 Final ResultNow all piees to ompute the hiral ondensate (59) have been alulated. For C� we havethe two alternative forms (62) and (63), and D� is given by (65) wherein we an use one ofthe equivalent representations (68) or (69) for K�2 together with (72). Thus we haveh yP� i(x1) = � 14L Xn2Z (�1)nsin(�[� � in� ℄) � R d e�2�in �Nf3 (; i�)R d �Nf3 (; i�) �expf 1Nf Xn�1�th(n��)n � (n! sn2 + (�L� )2)��1� os(2�n�)�g �
12



expf�� � sinh(�L(1� �)) + sinh(�L�)sinh(�L) g (73)h yP� i(x1) = � 12� Xm2Z (�1)msinh(�[� +m℄=�) � R d e��[Nf�2(�+m)℄=� �Nf3 (i=�; i=�)R d e��2Nf=� �Nf3 (i=�; i=�) �expf 1Nf Xm�1 osh(m�=�)� osh(m�(1�2�)=�)m sinh(m�=�) � (m! sm2+(��2� )2)g �expf 2�Nf ��(1� �)2� + osh(�L(1� 2�))� osh(�L)2�� sinh(�L) �g �expf�� � sinh(�L(1� �)) + sinh(�L�)sinh(�L) g (74)with exellent onvergene properties in the low- and high-temperature regime, respetively.This result is one of the two main results of this artile. To simplify the analysis we shallnow study the ondensates at the midpoints of the ylinder.6.4 h yP� i at MidpointsIf a ondensate survives at the midpoints when the boundaries are taken to in�nity then thehiral symmetry is broken.For x1 = L=2 the formulas (62), (63) simplify toC�(L2 ) = �e��4L  1 + 2Xn�1(�1)n R os(2�n) �Nf3 (; i�)dosh(n��) R �Nf3 (; i�) d ! (75)C�(L2 ) = �e��� Xm�0(�1)m R osh((2m+1)�=�) e��Nf 2=��Nf3 (i=�; i=�) dsinh((2m+1)�=2�)R e��Nf 2=��Nf3 (i=�; i=�) d : (76)The formulas (68) and (69) simplify toK�2(L2 ) = 1� Xn=1;3;:::�th(n��)n � (n! sn2 + (�L� )2 )� (77)K�2(L2 ) = 12� Xm�1�h(m�=�)� 1m sh(m�=�) � (m! sm2 + (��2� )2 )�+ 18� � 12�� h(�L)� 1sh(�L) : (78)Depending on whih one of the equivalent forms (68) and (69) for K�2 on the diagonal is usedthe fator D� at the midpoints is found to readD�(L2 ) = expn 2Nf Xn=1;3;::: th(n��)n � (n! sn2 + (�L� )2 )o �expn� ��1� 1=h(�L=2)�o (79)D�(L2 ) = expn 1Nf Xm�1 th(m�=2�)m � (m! sm2 + (��2� )2 )o �expn �Nf � 14� � th(�L=2)�� �o � expn� ��1� 1=h(�L=2)�o (80)whih an be used to derive the low and high temperature expansions, respetively.13



7 Nonommutativity of the Limits ��1! 0 and L!1In this setion we show that the ondensates at the midpoints, h yP� i�(L2 ), depend on theorder in whih the limits � !1 and L!1 are taken; for Nf = 1 the ondensates surviveonly if we �rst let � !1.7.1 Limit � !1 for �nite spatial length LHere we derive the low temperature limit, i.e. the ondensates for � large ompared to the�xed spatial length L and the indued mass �.From the expliit expression (75) we see at one thatC�(L2 ) = �e��4L (1 +O(e�2���=2L)) (81)for any number of avours.In order to get the orresponding limit for the seond fator D�(L2 ) in (59) we use (79)and perform the asymptoti expansion of the oth to getD�(L2 ) = expn 2Nf Xn=1;3;:::� 1n � 1pn2 + (�L=�)2�o �expn 4Nf Xn=1;3;:::Xk�1�e�2k�n��2Ln � e�2kpn2+(�L=�)2 ��2Lpn2 + (�L=�)2 �o �expn� �(1� 1=h(�L=2))o (82)adapted to � � L as an intermediate result. Using the identity [27℄Xn=1;3::: 1n � 1pn2 + (x=�)2 = 2 + 12 ln(x� )�Xj�1(�)jK0(jx) (83)valid for x > 0, where  denotes the Euler Maseroni onstant and K0 the zeroth Besselfuntion the seond fator an be rewritten asD�(L2 ) = e=Nf��L=��1=Nf expn� 2Nf Xj�1(�1)jK0(j�L)o �expn� �(1� 1=h(�L=2))o � O(exp( 4Nf e�2���=2L)) : (84)Combining (81) and (84) we get the resulth yP� i�(L2 ) = � 14L(�L2� )1=Nf e=Nf expn� 2Nf Xj�1(�1)jK0(j�L) o �expn� �=h(�L=2)o � (1 +O(e�2���=2L)) (85)where the � dependenies are found to anel up to exponentially small remainders. Inpartiular we have found a nonzero value for h yP� i for midpoints at zero temperature forany Nf for �nite spatial length L. 14



7.2 Limit L!1 for �nite temperatureHere we give the large volume expansion of (59) valid for length L whih is large as omparedto the �xed inverse temperature � and ��1.The �rst task is to derive the high temperature asymptotis for the �rst fator C� in (59).By a variety of manipulations inluding in�nite produt representations for the exponentialfators onstituting the measure we arrived at the asymptoti result [24℄C�(L2 ) = 8>>>>>>>>><>>>>>>>>>:
� e��� � p��p2Le� 52 �L� (Nf = 1)� e��� � 2e�3�L� (Nf = 2)� e��� � 4e�2 2Nf�1Nf �L� (Nf � 3) (86)whih is an exponential deay whih goes faster as the number of avours inreases.Also, we performed the asymptoti expansions of the hyperboli funtions in (80) andarrived at D�(L2 ) = expn 1Nf � + ��� + ln(��4� )� 2Xj�1K0(j��)�o �expn 2Nf Xm�1Xl�1(�1)l�e�l m�=�m � e�l�pm2+(��=2)2=�pm2 + (��=2)2 �o �expn 1Nf �4� �1� 1 + 2 Pl�1(�1)le�l�L�L=2 �o �expn� � � 2�Xl�0(�1)le�(2l+1)�L=2o (87)where everything is at least exponentially suppressed as ompared to the growing fator inthe seond-last line.Combining (86) and (87) we end up with the resulth yP� i(L2 ) = � 8>>>><>>>>: 1�p2�L � e� 52 �L� (Nf = 1)2� � e�3�L� (Nf = 2)4� � e�2 2Nf�1Nf �L� (Nf � 3) 9>>>>=>>>>; � e 1Nf �L2� � e=Nf � ���4� �1=Nfexpn� 2Nf Xj�1K0(j��)o �O� expn� 2Nf e�2�L=�o� � (88)expn� 1Nf 2���Xl�1(�1)le�l�Lg � expn� 2�Xl�0(�1)le�(2l+1)�L=2owhih gives a deay h yP� i(L2 ) � 8>>><>>>: �onst � 1pLe�2�L� (Nf = 1)�onst � e� 8Nf�52Nf �L� (Nf � 2) (89)
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for spatial lengths L whih are large ompared to the inverse temperature � and the inverseharge e�1.7.3 Nonommutativity of the limits � !1 and L!1Using the results of the previous subsetions it is easy to show that the two limits � ! 1and L!1 do not ommute.Reall that h yP� i(L2 ) is a shorthand for h yP� i�;Nf ;�;L(x1 := L2 ).Now the formulas (85), (89) implylimL!1 lim�!1 h yP� i(L2 ) = 8><>: � 14�eq Nf e2� (Nf = 1)0 (Nf � 2) (90)lim�!1 limL!1 h yP� i(L2 ) = 0 ( 8 Nf � 1) (91)respetively, whih is the other main result of this paper.From a physial point of view this means that the system under onsideration shows adistintive hysteresis phenomenon: When both of � and L are sent to in�nity, the one-avoursystem keeps the knowledge of whih limit was performed �rst in the atual value of its hiralondensate. Obviously there is no suh non-ommutativity for �nite hanges of the lengths� and L. We shall further omment on this interesting behaviour in the onlusions.8 Disussion and ConlusionsIn this paper we have performed in a funtional framework the quantization of the Nf avoureulidean Shwinger model inside a �nite temperature ylinder with SU(Nf )A breaking loalboundary onditions at the two spatial ends to trigger hiral symmetry breaking. We havedetermined the e�etive ation for the bosoni subsystem subjet to these boundary ondi-tions, whih arises after integrating out the fermions. We have shown the way the expetationvalue of an arbitrary gauge-invariant operator an be omputed and in partiular we haveperformed the alulation of the ondensates h yP� i(x) (to be used as the most simple orderparameters) for any point x inside the ylinder and any value of the inverse temperature �and spatial length L.The quantization was greatly simpli�ed by the fat that the boundary onditions hosen(the CB-boundary-onditions) ompletely ban the zero modes. One more we emphasize thefat that our results have been obtained purely analytially and without doing 'instantonphysis'. The tehnial aspets are rather di�erent as those one enounters when quantizingthe theory on a sphere [15℄ or on a torus [3, 14, 23℄.Nevertheless our results are in full agreement with the earlier instanton-type and small-quark-mass alulations. Thus it seems that the CB-boundary-onditions applied at the twospatial ends of the ylinder give a perfet substitute for introduing small quark masses totrigger the hiral symmetry breaking and a real alternative to the study of torons [12℄ orfratons [8℄ or singular gauge-�elds on S4 [13℄. The real advantage is of ourse the fatthat they onstitute almost exatly the border of what an be alulated analytially. Thefuntional integral over the prepotential is gaussian, whereas, in general, the integration over16



the harmoni part of the gauge-potential is not. However the latter redues to gaussianintegrals in the low and high temperature expansions.In the low temperature limit ��1 = 1=qNfe2=� � L� � = T�1 we found for the hiralondensate the asymptoti valueh yP� i(L2 ) = � 14Le=Nf��L� �1=Nf = � 14Le=Nf�qNfe2=� L� �1=Nf (92)whih, when restrited to the two-avour ase redues toh yP� i(L2 ) = ��ep2e2=�16�L �1=2 : (93)This expression is idential to the result of Shifman and Smilga [8℄, who allowed for fratonon�gurations on the torus.In the high temperature limit T = ��1 � qNfe2=� � L�1 we found for the hiralondensate an exponential deay with T .For intermediate temperatures T = ��1 ' qNfe2=� and �nite L one has to retreatto numerial methods to evaluate the remaining sum and the integrals in (75) and (79) orequivalently in (76) and (80). One realizes that the observable h P� i viewed as a funtion ofT strongly resembles the behaviour of an order parameter in a system whih su�ers a seondorder phase transition for the ase Nf � 2. However, the hiral ondensate does not reallyvanish at any �nite temperature, it is just exponentially lose to zero for temperatures largerthan the indued mass � = qNfe2=�. Thus, in a strit sense, the hiral symmetry remainsbroken even for Nf � 2 at all �nite temperatures as long as L stays �nite, as has been arguedto be a general fat by Dolan and Jakiw [9℄. However, if L is sent to in�nity for �nite �, theondensate exponentially drops to zero.Our main result is the fat that the limits � ! 1 and L ! 1 do not ommute for theobservable h yP� i in the Nf =1 ase, sinelimL!1 lim�!1 h yP� i(L2 ) = � 14�ese2� (Nf = 1) (94)lim�!1 limL!1h yP� i(L2 ) = 0 ( 8 Nf � 1) (95)whih implies that there is no unique in�nite volume limit. Thus it seems that the ombinationof �nite-temperature and CB- boundary onditions provides an interesting tool for drivingthis system either into the true or the wrong vauum state. The result (94,95) is ratherremarkable, sine it means that the one-avour system shows some hysteresis phenomenon:As far as we are aware of the literature, suh phenomena are known for spin systems but theyare rather untypial for analytially solvable �eld theories. However one of the interestingnew results in this respet is the work by Hetrik, Hosotani and Iso about the massive multi-avour Shwinger model on the zero temperature ylinder [25℄. They analyzed the situationfor small quark masses and �nite (yli) spatial length L. In partiular they found that thetwo limits m ! 0 and L ! 1 fail to ommute. Thus we onlude that hirality breakingboundary onditions give an interesting alternative to introduing small quark masses.17



AknowledgmentsOne of the authors (S.D.) wishes to thank Daniel Wyler for his ontinued interest and manyinteresting disussions. In addition useful onversations with Christian Wiesendanger andOthmar Brodbek are aknowledged.This work has been supported by the Swiss National Siene Foundation (SNF).A Expliit Constrution of the Fermioni Heat KernelIn this appendix we sketh the onstrution of the heat kernel of the squared Dira operator(iD= j�=0)2 = (i�= + 2�=�0)2 on a thermal manifold, whih allows to ompute the relevantSeeley DeWitt oeÆient, a task, whih itself is postponed to appendix B. For that we on-strut the heat kernel ~K on the �nite ylinder f(x0; x1) j x0 2 [0; �[ ; x1 � 0 g whih obeys(besides the usual heat kernel relations) the boundary onditions(B� ~K)(t; x0; 0; y) = ~K(t; x0; 0; y) (96)(B�i�= ~K)(t; x0; 0; y) = (i�= ~K)(t; x0; 0; y) (97)~K(t; x0+�; x1; y) = � ~K(t; x0; x1; y) (98)as well as the adjoint relations with respet to y, where B� is a shorthand for BL(�) de�nedin (10).The trik is to start onsiderations on the half plane f(x0; x1) j x1 � 0g, sine here the abovesquared Dira operator an be deomposed as(i�=x + 2�=� � �1)2 = e2�ix0=�(i�=x)2e�2�ix0=� (99)and orrespondingly the free heat kernel takes the simple form14�te�((�0)2+(�1)2)=4te2�i�0=� = 14�te�((�0�4�it=�)2+(�1)2)=4te�4�22t=�2 (100)where �0 = x0� y0; �1 = x1� y1. Using that the kernel an be Fourier transformed and fromthe mirror priniple one is led to onsider the expression1(2�)2 1Z�1 1Z�1 e�(k20+k21)teik0�0+ik1�1 dk0dk1+ 1(2�)2 1Z�1 1Z�1 e�(k20+k21)t  f(k0; k1) g(k0; k1)g(k0; k1) h(k0; k1) ! eik0�0+ik1� dk0dk1as an ansatz for the heat kernel of the operator (i�=)2 = �� � I2 on the half plane. Theboundary ondition at x1 = 0 immediately transforms into an algebrai relation among f; g; hwhih is solved by the expressionsf(k0; k1) = �e2�(k0�ik1)� (k0�ik1)e2�(k0+ik1)� (k0�ik1)g(k0; k1) = � 2e� ik1e2�(k0+ik1)� (k0�ik1)h(k0; k1) = �e2�(k0+ik1)� (k0+ik1)e2�(k0+ik1)� (k0�ik1) :18



The resulting integrals an be done in two steps. First only the numerators of the funtionsf; g; h are taken into aount and the resulting expressions are integrated over. Seond thefull expressions have to be read as di�erential equations in x0; x1 in the manner indiated bythe previously omitted denominators of the funtions f; g; h. There is a unique solution tothis proedure whih falls o� in both x0 plus the positive x1 diretions (note � 2 R) :14�t e� (�0)2+(�1)24t + 14�t  e�sh� �h��h� �e��sh� ! e� (�0)2+�24t+ i8�1=2t3=2  e�sh� �sh��sh� e��sh� ! � ��0h� + i� sh�� �e� (�0h�+i� sh�)24t � �1 + erf( i�0sh��� h�2t1=2 )� :Sine on the half-plane the operator (i�= + 2��1=�)2 has the deomposition (99) this im-mediately yields its heat kernel ( to be denoted ~K ) by just inluding a fator e2�i�0=� ineah term. Finally the �nite temperature boundary ondition (98) is taken into aount bysubstituting �0 by �0�n�, inluding an additional (�1)n and performing the sum over n 2 Z.The heat kernel ~K�=0 of (iD= j�=0)2 = (i�=+2��1=�)2 subjet to the boundary onditions(96) - (98) on the half ylinder f (x0; x1) j x02 [0; �[ ; x1 � 0 g takes the �nal form~K = X(�1)n 14�t e� (�0�n�)2+(�1)24t e2�i(�0�n�)=�+ X(�1)n 14�t  e�sh� �h��h� �e��sh� ! e� (�0�n�)2+�24t e2�i(�0�n�)=�+ X(�1)n i8�1=2t3=2  e�sh� �sh��sh� e��sh� ! � �(�0�n�)h� + i� sh�� �e�((�0�n�)h�+i� sh�)24t �  1 + erf( i(�0�n�)sh��� h�2t1=2 )! (101)where the sums run over n2Z and an be seen to onverge absolutely and thus uniformely.B Extration of the Relevant Heat Kernel CoeÆientsIn this appendix we shall ompute the surfae Seeley DeWitt oeÆient b1 of the operator�D=2 whih enters the alulation of it's funtional determinant. We �rst note that in generalH tr (bm(')) with a smooth test funtion ' on a d dimensional manifoldM has the expansionI�M tr (bm(')) = d�1Xp=0 I�M tr (bm:p(R;�; F::) � �pn') ;where bm:p is a gauge-invariant and Lorentz-ovariant loal polynomial in the intrinsi andextrinsi urvatures of the boundary as well as in the �eld strength and its ovariant derivativeson the boundary. Here �pn' denotes the p fold derivative of the test funtion ' along the19



(outward oriented) normal of the boundary. In the ase of a two dimensional manifold withHrasko Balog boundary onditions (10) the expansion of H tr (b1(')) simpli�es toI tr (b1(')) = I tr (b1:0(�)� � ') + I tr (b1:1(�) � �n') :For our purposes it is suÆient to know the oeÆient b1:1, sine the �rst term does notontribute to (42) (due to ' :� H+Hy = 0 on �M) and in (38) it would yield an uninterestingonstant whih �nally anels in expetation values of gauge-invariant operators. The funtionb1:1 an be determined from the heat kernel on the diagonal, K(t; x; x) of �D=2 = �D=2j�=1whih is idential to ~K(t; x; x) of �D=2j�=0 by alulatingZM K(t; x; x) � '(x) = ZM ~K(t; x; x) � '(x) � 1Z0 ~K(t; x; x) � �'(x0; 0) + x1 � �1'(x0; 0) + :::� dx1where ~K denotes the heat kernel (101) alulated in appendix A. In writing this expansion wehave antiipated that for small t the heat kernel on the diagonal is sharply peaked about theboundary whereupon it is justi�ed to expand the test funtion ' about x1 = 0. Using thisresult and denoting '0(x0; :) the �rst derivative of ' with respet to it's seond argument onehas to ompute an expression whose �rst few terms in the small t expansion take the formXn2Z(�1)n  1 00 1 ! � 14�t e�n2�24t e�2�in � 1Z0 '(x0; x) dx+Xn2Z(�1)n  e�sh �h�h �e��sh ! � 14�t e�n2�24t e�2�in � 1Z0 e�x2=tdx � '(x0; 0)+Xn2Z(�1)n  e�sh �h�h �e��sh ! � 14�t e�n2�24t e�2�in � 1Z0 x e�x2=tdx � '0(x0; 0)+Xn2Z(�1)n  e�sh �sh�sh +e��sh ! � 1Z0 1 hn� � 2ishx8�1=2it3=2 e� (hn��2ishx)24t ��1� erf(h2x+ ishn�2t1=2 )� e�2�in dx � '(x0; 0)+Xn2Z(�1)n  e�sh �sh�sh +e��sh ! � 1Z0 x hn� � 2ishx8�1=2it3=2 e� (hn��2ishx)24t ��1� erf(h2x+ ishn�2t1=2 )� e�2�in dx � '0(x0; 0)where the �rst line gives the usual a0 oeÆient whereas the remaining four integrals ontaininformation about the b1=2 and b1 oeÆients. Here and below we use the abbreviationssh = sh�; h = h�.The �rst and seond integrals are easily evaluated using the formulasI1 := 1Z0 e�x2t dx = p�t2 ; I2 := 1Z0 x � e�x2t dx = t2 :20



The third and fourth integrals are handled using the formulasI3 : = 1Z0 hn� � 2ishx8�1=2it3=2 e� (hn��2ishx)24t (1� erf(h2x+ ishn�2t1=2 )) dx= � 18�1=2t1=2 hsh e�n2�24t + 18�1=2t1=2 1sh � e� h2 n2�24t erf( ishn�2t1=2 )I4 : = 1Z0 x hn� � 2ishx8�1=2it3=2 e� (hn��2ishx)24t (1� erf(h2x+ ishn�2t1=2 )) dx= � 18� hsh e�n2�24t + 18�1=2t1=2 1sh � 1Z0 e� (hn��2ishx)24t erf(h2x+ ishn�2t1=2 ) dxwhih result in the small t asymptotisI3 �= 8>>>>><>>>>>: � 18�1=2t1=2 hsh e�n2�24t � i4�sh2 e�n2�24t (1 +O(t)) (n > 0)� 18�1=2t1=2 hsh + 18�1=2t1=2 1sh (n = 0)� 18�1=2t1=2 hsh e�n2�24t + i4�sh2 e�n2�24t (1 +O(t)) (n < 0) (102)
I4 �= 8>>>>>><>>>>>>: � 18� hsh e�n2�24t � it1=28�1=2sh2n� e�n2�24t (1 +O(t1=2)) (n > 0)� 18� hsh + 18� log(h+sh)�log(h�sh)2sh2 (n = 0)� 18� hsh e�n2�24t � it1=28�1=2sh2n� e�n2�24t (1 +O(t1=2)) (n < 0) (103)where the result for I3 immediately follows from the asymptoti expansion [28℄p� z ez2erf(z) �= 1 + 1Xk=1(�1)k 1 � 3 � : : : � (2k�1)(2kz2k) (z !1; jargzj < 3�4 ) (104)whereas the expression for I4 results from a omputation establishing the asymptoti be-haviour f(w) = 1Z0 e�(hw�ishx)2erf(hx+ ishw)dx= e�w2�� i2sh � 1w + h2�1=2sh2 � 1w2 + i4sh � 1w3 +O( 1w4 )� (105)for w � 1.Putting everything together we arrive at the small t expansion of the heat kernelZM K(t; x; x)'(x) dx �O(t1=2) = (106)
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