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Chapter 1IntrodutionQuantum �eld theory has been suessfully applied in various formal shemes. Highenergy experiments often deal with sattering proesses, where the interation an betreated as a perturbation. It is therefore not surprising that their theoretial desriptionmakes use of methods, suh as the S-matrix or path integral approah, whih are wellsuited for perturbation theory. There is, however, an inreasing area of appliationswhere suh methods are of limited use. Among these are the on�nement problem inQCD, anomalies, and large gauge transformations, to mention only a few. In theseappliations the language of wave funtionals and the funtional Shr�odinger equationhas provided valuable insights (see, e. g., [1℄ and [2℄ for a review). One big advantageof this language is that the intuitive piture of evolving wave funtions, so suessful inquantum mehanis, an be extended to problems in �eld theory. It is of ourse still anopen problem whether the existene of the Shr�odinger piture an be proven rigorously.At least in the ase of renormalizable salar �eld theories it has been demonstratedthat a funtional Shr�odinger equation with respet to a global time parameter existsat eah order of perturbation theory [3℄. For arbitrary loal time variations an expliitalulation has veri�ed the validity of the Shr�odinger equation up to two loops [4℄.An important �eld of appliation is quantum gravity. Sine quantum general rela-tivity is nonrenormalizable at the perturbative level, one has to develop nonperturbativemethods, provided the theory is viable at all. There have been remarkable develop-ments in anonial quantum gravity in reent years whih have so far ulminated in thedisovery, by using the funtional Shr�odinger piture, of exat formal solutions to allonstraint equations [5℄. The use of wave funtionals has also been useful in performingsemilassial approximations, for example in the derivation of formal orretion termsto the Shr�odinger equation from quantum gravity [6℄. It may thus turn out to be veryuseful for later appliations to explore the potentialities of the funtional Shr�odingerpiture in ordinary �eld theory.In a reent paper [7℄ one of us has disussed various aspets of salar QED in thisframework, suh as the semilassial approximation and external �eld problems likepartile reation. In the present paper we extend this work to the oupling of fermionimatter to gauge �elds. Apart from the last setion we limit ourselves to the ase wherethe gauge �eld an be treated semilassially, i.e. we disuss the funtional Shr�odingerequation for the fermioni wave funtional in a presribed external gauge �eld. Mostof our work deals with QED but we also give some results for the non-abelian ase.1



We start by giving a brief review of the funtional Shr�odinger equation for fermionsfollowing, with elaborations, the work of Floreanini and Jakiw [8℄ (setions 2.1 and2.2). Gaussian states are used as generalized vauum states, but ontrary to the bosoniase one has to �x a �lling presription for the Dira sea to selet a partiular vauum.Setion 2.3 is onerned with the time-dependent Shr�odinger equation. We give itsformal solution for arbitrary external �elds in terms of solutions of the (�rst-quantized)Dira equation.We then proeed to alulate the exat ground state for arbitrary external �elds intwo dimensional QED in both the massless and the massive ase (setion 3). We giveexpliit expressions for the expetation values of the Hamiltonian, the eletri harge,and the axial harge with respet to this ground state. Regularization is performedthrough gauge-invariant point splitting. All results are given for the ase of �niteas well as in�nite spae intervals. The �nite ase allows a areful disussion of thedependene of the Casimir energy on the hosen boundary onditions.The extension to non-abelian �elds in two dimensions is straightforward (setion 4).We give the exat ground state as well as the expetations values for the Hamiltonian,the eletri and axial harges.We then proeed to disuss appliations of the time - dependent Shr�odinger equa-tion (setion 5). The partile reation rate for onstant external eletri �elds is al-ulated in this framework and the lassial result found by Shwinger is reovered(setion 5.1). In the massless ase in two dimensions we alulate the anomalous par-tile prodution rate for arbitrary external �elds. Its interpretation in the funtionallanguage is very transparent { the anomalous prodution rate is basially due to thedependene of the �lling presription on the external �eld (setion 5.2).In the �nal setion we go beyond the external �eld approximation and disuss brieysome subtleties onneted with the interpretation of Gauss law (setion 6). We showthat, exept for the ase when anomalies violating gauge invariane are present, theinterpretation of the Gauss onstraint as a generator of gauge transformation an beresued even if it does no longer annihilate gauge invariant states. We also present abrief outlook on possible future work.
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Chapter 2Funtional Shr�odinger equationfor fermions2.1 Commutation relations and inner produtIn this setion we give a brief review of the anonial formalism for QED and thefuntional Shr�odinger piture. Unless otherwise stated, the dimension D of spaetimeis left arbitrary. The Lagrangian density is given byL = �14F��F �� + i � (D�� �m) ; (2.1)where D� = �� + ieA� (2.2)is the ovariant derivative assoiated with the eletromagneti potentialA�. The anon-ial momenta read �0 = 0; �i = Fi0 � Ei; � = i y (2.3)so that the total Hamiltonian is given byH = Z dx�12E2 + 14F ijFij�+ Z dxdy y(x)h(x; y) (y)+ Z dxA0(e y �rE); (2.4)where h(x; y) = �i0i ��xi Æ(x � y) + 0(m+ eiAi)Æ(x � y) (2.5)plays the role of a �rst quantized Dira Hamiltonian in an external eletromagneti�eld. We will denote with h(0) the �rst quantized Hamiltonian without external �eld.We note that x and y is a shorthand notation for a vetor in (D�1) dimensional spae,and the metri onvention for spaetime is diag(1;�1 � 1; :::). Variation of (2.4) withrespet to A0 yields the Gauss onstraintrE = e y : (2.6)3



In the following we use the gauge ondition A0 = 0. The ommutation relations read[Ai(x); Ej(y)℄ = iÆji Æ(x� y) (2.7)for the eletromagneti �eld, andf �(x);  y�(y)g = Æ��Æ(x� y) (2.8)for the fermion �elds. All other ommutators (antiommutators) vanish.In the funtional Shr�odinger piture we represent these ommutation relations byating with the �eld operators on physial states 	[u; uy;A℄ aording toEj ! 1i ÆÆAj ; (2.9) � ! 1p2  u� + ÆÆuy�! ; (2.10) y� ! 1p2 �uy� + ÆÆu�� ; (2.11)and A is represented by multipliation. Note that u� and uy� are Grassmann variables,and 	 is not an eigenstate of either  or  y. An alternative representation has beenused, for example, in [9℄, where  is represented, as in the bosoni ase, by multipliationwith u, and  y is represented by Æ=Æu. Sine, however, the Hermitean onjugate of u inthat representation is not given by uy, but by Æ=Æu, we �nd it easier for our disussionto resort to the representation (2.10) and (2.11).The Grassmann harater of the fermion �elds requires a areful treatment of theinner produt [8℄. If one de�nes the inner produt by the funtional integration (wedo in the following not expliitly write out the eletromagneti �eld and the spinorindies) h	1j	2i � Z DuyDu	�1	2 = h	2j	1i�; (2.12)the dual 	� of a state 	 is not given by ordinary omplex onjugation, but by theexpression 	�[u; uy℄ = Z D�uyD�u exp��uuy + �uyu� �	[�u; �uy℄: (2.13)Here, �	 is the hermitean onjugate of 	. We have used a ompat notation, i. e.,�uu � R dx�u�(x)u�(x), et. Note the analogy to the Bargmann representation for theharmoni osillator in quantum mehanis.A speial role is played by Gaussian states,	 = exp �uy
u� ; (2.14)sine this generalizes the notion of a Fok vauum; 
 is sometimes alled the \ovari-ane."If we apply the above rules to suh a state we �nd�	[�u; �uy℄ = exp ��uy
y�u� ; (2.15)4



and for the dual, applying the familiar rules of Grassmann integration,	�[u; uy℄ = Z D�uyD�u exp��uuy + �uyu+ �uy
y�u�= det(�
y) exp �uy(
y)�1u� : (2.16)One then �nds for h	j	i the expressionh	j	i = det(�
y) Z DuyDu exp �uy h(
y)�1 +
iu�= det(1 + 
y
): (2.17)An important di�erene to the bosoni ase is the fat that the state 	[u; uy℄ is not anoverlap with �elds states, 	[u; uy℄ 6= hu; uyj	i, sine the inner produt is an ordinarynumber, whereas 	 an be expanded in terms of Grassmann variables.2.2 Solution of the stationary Shr�odinger equationIn this setion we look for the ground state of the Dira Hamiltonian in an externaleletromagneti �eld, i. e., we solve the stationary Shr�odinger equation�Z dxdy y(x)h(x; y) (y)�	 � H 	 = E0	: (2.18)If  n are the eigenmodes of the �rst quantized Hamiltonian h,h n = En n; (2.19)we an expand the �eld operators  and  y as =Xn an n;  y =Xn ayn yn; (2.20)where an (ayn) is the usual annihilation (reation) operator. Then,H =Xn Enaynan: (2.21)We an also expand u and uy in terms of these eigenmodesu(x) =Xn un n(x); uy(x) =Xn uyn yn(x): (2.22)Note that ÆÆu(x) =Xn  yn(x) ÆÆun (2.23)to guarantee that Æu(x)=Æu(y) = Æ(x�y). Inserting these expansions into the expressionfor H , we �nd H = 12Xn En �uyn + ÆÆun� un + ÆÆuyn! : (2.24)5



We want to apply this Hamiltonian on the Gaussian state (2.14). To that purpose wenote that uy
u =Xn;muyn
nmum (2.25)with 
(x; y) =Xn;m
nm n(x) ym(y): (2.26)We then �nd H 	 = 12Trh(1 + 
)	+12 Xk;l;nuyn(Ænk � 
nk)Ek(Ækl +
kl)ul	: (2.27)Upon omparison with (2.18) we see that the ground state energy is given byE0 = 12Trh(1 + 
) = 12Xn En(1 + 
nn); (2.28)and that, sine the seond term in (2.27) must vanish, the elements of 
nn are givenby 
nm = �Ænm: (2.29)There still remains some arbitrariness how one distributes the numbers 1 and �1 amongthe elements of 
. This arbitrariness an be removed by the use of the annihilationoperators introdued above. We haveaynan	 = �uyn + ÆÆun� un + ÆÆuyn!	= 12(1 + 
nn)	: (2.30)We demand that the ground state 	 be annihilated by an for positive energies En, i.e., aynan	 = ( 0 if 
nn = �1$ En > 0	 if 
nn = +1$ En < 0 (2.31)This selets a spei� ground state and is equivalent to say, in a more heuristi language,that a spei� presription for the �lling of the Dira sea has been hosen. From (2.26)we thus �nd for the ovariane
(x; y) = XEn<0 n(x) yn(y)� XEn>0 n(x) yn(y): (2.32)It is very onvenient, and we will make extensive use of it later on, to express thisrelation in terms of projetors, 
 � P� � P+; (2.33)where P� � 1�
2 (2.34)6



projet on positive and negative energies, respetively:P+P� = P�P+ = 0; P 2+ = P+; P 2� = P�; P+ + P� = 1: (2.35)We also note the operator expression for 
, whih follows from the vanishing of theseond term in (2.27), reads:14(1� 
)h(1 + 
) = 0 = P+hP�: (2.36)In ase that the external eletromagneti �eld vanishes we an give easily an expliitexpression for 
. In momentum spae, the solution orresponding to the �lling pre-sription (2.31) reads 
(0)(p; p0) = � h(0)pp2 +m2 Æ(p� p0); (2.37)where h(0) is the A-independent part of (2.5). This an most easily be seen by alu-lating the vauum energy E0. From (2.28) we have, sine h(0) has vanishing trae,E0 = 12Trh(0)
(0) = 12Xn En
nn = �12Xn jEnj= �12Trqp2 +m2 = �12 V(2�)3 Z d3pqp2 +m2: (2.38)Use has been made here of the fat that the square of h is given byh2(0) = p2 +m2: (2.39)For later use we give the expliit result for two and four spaetime dimensions. In twodimensions we have, in the hiral representation,
(0) = � 1pp2 +m2  �p mm p ! ; (2.40)and in the Dira representation
(0) = 1pp2 +m2  �m pp m ! : (2.41)In the four dimensional ase we have, in the Dira representation,
(0) = � 1pp2 +m2  m � � p� � p �m ! ; (2.42)where � are the Pauli matries.We onlude this setion with a disussion of the two-point funtionh �(x) y�(y)i, where the expetation value is omputed with respet to the above
7



ground state. For this we need the two-point funtion of uuy whih we now alu-late, using (2.14) and (2.16),hu�(x)uy�(y)ih	j	i = det(�
y)h	j	i Z DuyDuu�(x)uy�(y)� exp �uy[(
y)�1 +
℄u� (2.43)= det(�
y)h	j	i Æ2Æ��(x)Æ�y�(y) Z DuyDu� exp �uy[(
y)�1 +
℄u+ �u+ �yuy� j�=�y=0= det(1 + 
y
)h	j	i Æ2Æ��(x)Æ�y�(y) exp ��[(
y)�1 +
℄�1�y� j�=�y=0= �[(
y)�1 +
℄�1��(x; y); (2.44)where (2.17) has been used. In the present ase, where 
 = 
y and 
2 = 1, this readshu�(x)uy�(y)ih	j	i = �12
��(x; y): (2.45)If we apply  �(x) y�(y) on the ground state, we �nd �(x) y�(y)	 = 12(Æ��Æ(x� y)�
��(x; y))	+12(u�(x) + 
�Æ(x;w)uÆ(w))(uy�(y)� uy(z)
�(z; y))	;where a summation (integration) over repeated indies (variables) is understood.Using the result (2.45) we �nd eventually for the desired two-point funtion theexpression h �(x) y�(y)ih	j	i = 12(Æ��Æ(x � y)� 
��(x; y)); (2.46)or, in operator notation and with respet to a normalized state,h (x) y(y)i = 12(1� 
(x; y)) = P+(x; y): (2.47)Thus, if one knows the ovariane, one an alulate all two-point funtions, and vieversa. We �nally note that exited states an be easily generated by applying the abovereation operator ayn on the ground state, leading to a Gaussian times some polynomial.2.3 Solution of the time-dependent Shr�odinger equationIn this setion we disuss the solution of the funtional Shr�odinger equation forfermions in an external eletromagneti �eld,�Z dxdy y(x)h(x; y) (y)�	 � H 	 = i _	; (2.48)8



where, again, h is given expliitly by (2.5). Equation (2.48) follows from a semilassialexpansion of the full funtional Shr�odinger equation [7℄. We make again a Gaussianansatz, 	 = N(t) exp�uy
(t)u� ; (2.49)where 
 and N now depend on time. The state (2.49) may be thought as an evolvingvauum state. Inserting this ansatz into (2.48) we �nd two equations for N and 
whih read, in operator notation,id lnNdt = 12Trh
 (2.50)i _
 = 12(1� 
)h(1 + 
): (2.51)An important speial ase is given if 
 an be written in terms of the projetors (2.33,2.34). As in the ase of the stationary equation this is equivalent to 
2 = 1.One physial appliation we have in mind is to hoose the free solution in, say, theasymptoti past and study its evolution under the inuene of an external eletromag-neti �eld aording to (2.48). It is important to note that (2.51) preserves the property
2 = 1. Thus, 
(t) an always be written as in (2.33) provided 
2(t0) = 1 for some\initial time" t0. This an easily be seen: One �rst veri�es that the inverse of 
, 
�1,obeys the same di�erential equation as (2.51). From the uniqueness of the solution wethus have 
(t0) = 
�1(t0)) 
(t) = 
�1(t), 
2(t) = 1.Eq. (2.51) is solved by 
(t) = (Q(t)� C) (Q(t) + C)�1 ; (2.52)where C is a time-independent operator, and the operator Q(t) satis�esi _Q = hQ: (2.53)One may wish, for example, to hoose for 
 the \free solution" (2.32) in the asymptotipast, i.e., one demands that 
 approahes 
0 = P� � P+ for t ! �1. This wouldorrespond to the hoie C = P+; (2.54)Q(t) t!�1�! P�: (2.55)The time evolution aording to (2.48) will then in general indue a time dependeneof 
 whih may deviate, at late times, from the asymptoti \free" solution. This anthen be interpreted as partile reation and will be expliitly disussed below.The signi�ane of the result (2.52), (2.53) onsists in the redution of the solutionof the full funtional equation (2.48) to the solution of a \�rst quantized" problem {Eq. (2.53) is nothing but the Dira equation with an external eletromagneti �eld.After the solution for 
 has been found, the prefator N an be immediately deter-mined from (2.50) to readN(t) = N0 exp�� i2 Z t Tr(h
)ds� : (2.56)9



The time-independent fator N0 an be �xed if 	 is normalized, i. e. h	j	i = 1, andone �nds, using (2.17),N(t) = det�1=2(1 + 
y
) exp�� i2 Z tRe Tr(h
)ds� : (2.57)We now address the question of partile reation. We �rst note that the absolute squareof the matrix element of two Gaussians, 	1 and 	2, with orresponding ovarianes 
1and 
2, is given by the expressionjh	1j	2ij2 = det(1 + 
y1
2)(1 + 
y2
1)(1 + 
y1
1)(1 + 
y2
2) : (2.58)In the following we will take for 	1 the time-evolved in-vauum and for 	2 the vauumstate at late times. The orresponding ovarianes will be alled 
(t) and 
0, respe-tively. As disussed above, we demand 
(t) to approah the \free ovariane" 
0 att! �1. Sine 
0 = 
y and 
20 = 1, the desired transition element (2.58) readsjh	1j	2ij2 = det(1 + 
0
(t))(1 + 
y(t)
0)2(1 + 
y(t)
(t)) : (2.59)To get the desired expression (2.52) for 
, whih for the present ase reads
(t) = (Q(t)� P+) (Q(t) + P+)�1 ; (2.60)it is �rst neessary to solve (2.53) for Q(t). This is most onveniently done by theansatz Q(t) =Xn �n(t)�yn; (2.61)where �n (without argument) denotes a negative frequeny eigenfuntion of the DiraHamiltonian h, and �n(t) denotes the solution of (2.53) whih approahes �n in theasymptoti limit t! �1. Therefore,Q(t) t!�1�! Xn �n�yn � P�;as required.It will prove to be onvenient if one expands �n(t) as follows,�n(t) = �nm(t)�m + �nm(t) m; (2.62)where  m is a positive frequeny eigenfuntion of h, and �, � are the time-dependentBogolubov oeÆients assoiated with this expansion. Sine h is hermitean, the norm(�n(t); �m(t)) is onserved, and we hoose it to be equal to one. The Bogolubov oef-�ients are then normalized aording toj�j2 + j�j2 = 1: (2.63)Note that this is di�erent from the bosoni ase where the analogous expression ontainsa minus sign. 10



The operator Q(t) + P+ in (2.60) is then given by the expressionQ(t) + P+ =Xn;m��nm�m�yn + �nm m�yn�+Xn  n yn; (2.64)from where its inverse is found to read(Q(t) + P+)�1 =Xn  n yn �Xn;s;t n��1st �tn�yn +Xn;s �n��1sn �ys: (2.65)One an then write down the desired expression for 
(t),
(t) = Xn (�n�yn �  n yn) + 2Xn;s;t n��1st �tn�ys= 
0 + 2Xn;s;t n��1st �tn�ys� 
0 + 2B; (2.66)where we have introdued an operator B, whih in the position representation is givenby B(x; y) = Xn;s;t n(x)��1st �tn�ys(y): (2.67)It maps negative energy eigenfuntions into positive ones, and it annihilates positiveenergy eigenfuntions. Conversely, its adjointBy(x; y) = Xn;s;t�s(x)���1st ��tn yn(y) (2.68)maps positive energy eigenfuntions into negative ones and annihilates negative energyeigenfuntions. Note that B and By are nilpotent operators.One then �nds for the various terms in the transition element (2.59) the expressions
y(t)
0 = 1� 2By;
0
(t) = 1� 2B;
y(t)
(t) = 1� 2B � 2By + 4ByB; (2.69)and one has jh	1j	2ij2 = det (1�B)(1�By)(1�B �By + 2ByB) : (2.70)Written in the basis ( ; �)T , the various operators in (2.69) are given by the matrixexpressions B =  0 ��1�0 0 ! ;By =  0 0(��1�)y 0 ! ;ByB =  0 00 (��1�)y��1� ! : (2.71)11



One immediately veri�es that det(1�B) = det(1�By) = 1. Therefore, using (2.63),jh	1j	2ij2 = det�1(1�B �By � 2ByB)= det�1(1 + ��1��y��1y) = det�1(1 + �y(1� ��y)�1�)= det�1��1(1� ��y)�1� = det(1� ��y): (2.72)The interpretation of this result is obvious. The determinant is less than one fornon-vanishing Bogolubov oeÆient �, whih signals partile reation. Note that theanalogous expression in the bosoni ase reads [7℄ det�1(1+��y), whih is only equal to(2.72) for small �. We will apply the above result to the alulation of partile reationin an external eletri �eld in setion 5.
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Chapter 3Ground state for two-dimensionalQED3.1 The massless ase3.1.1 Calulation of the ovarianeIn the following we shall give expliit results for the ground state of two-dimensionalQED in arbitrary external eletromagneti �elds by applying the method developedin the last setion. Two-dimensional massless QED is also known as the Shwingermodel [10℄. It has been expliitly solved and found to be equivalent to the theory of afree massive salar �eld (see [11℄ for some literature on the Shwinger model). In thispaper we also address some issues for the Shwinger model on a �nite spae [12℄. TheHamiltonian formalism for the Shwinger model has been disussed in [13℄ and [14℄.It is onvenient to disuss the massless and the massive ase separately sine it isadequate to use the hiral representation for the Gamma matries in the massless aseand the Dira representation in the massive ase. For m = 0 we thus use0 =  0 11 0 ! ; 1 =  0 1�1 0 ! ; 01 =  �1 00 1 ! : (3.1)The �rst-quantized Hamiltonian h (2.5) is then given expliitly by (with A1 � A)h(x; y) =  i ��x � eA(x) 00 �i ��x + eA(x) ! Æ(x� y): (3.2)To �nd the ground state of the stationary Shr�odinger equation we have to solve the"�rst-quantized" problem (2.19), i. e., to �nd the spetrum of (3.2),h n = En n: (3.3)We quantize the �elds in a �nite interval, x 2 [0; L℄, and impose the boundary ondition n(x+ L) = e2�i(�+�5) n(x); (3.4)13



where � and � are the vetorial and hiral twists, respetively. Writing n =  'n�n ! ; (3.5)the diagonality of h yields two deoupled equations for 'n and �n, orresponding to adeomposition into right- and left handed fermions. One �nds from (3.3) for the righthanded part 'n(x) = 1pL exp ��i�ERn x+ e Z x0 A�� ;ERn = 2�L (n� �� �)� eL Z L0 A � 2�L (n� �); (3.6)and for the left handed part�n(x) = 1pL exp �i�ELnx� e Z x0 A�� ;ELn = �2�L (n� �+ �) + eL Z L0 A � �2�L (n� ~�): (3.7)Here we have introdued � = �+ � + e2� Z L0 A (3.8)~� = �� � + e2� Z L0 A: (3.9)The ovariane (2.32) also splits into a right- and left handed part
(x; y) =  
+(x; y) 00 
�(x; y) ! ; (3.10)where 
+(x; y) = XERn<0'n(x)'yn(y)� XERn>0'n(x)'yn(y);
�(x; y) = XELn<0�n(x)�yn(y)� XELn>0�n(x)�yn(y): (3.11)From (3.6) and (3.7) one reognizes that ERn > 0 for n > � and ELn > 0 for n < ~�.Inserting all this into (3.11) one �nds
+(x; y) = 1L XERn<0 exp�iERn (y � x) + ie Z yx A�� 1L XERn>0 exp�iERn (y � x) + ie Z yx A�= 1L exp�ie Z yx A+ i2��L (x� y)��14



0�Xn<� exp ��2�inL (x� y)��Xn>� exp ��2�inL (x� y)�1A= iL exp�ie Z yx A+ 2�iL (�� [�℄� 12)(x� y)��1sin �L(x� y) ; (3.12)where [�℄ denotes the biggest integer smaller or equal than �.The left handed part, 
�(x; y), is alulated in the same way, and found to read
�(x; y) = � iL exp�ie Z yx A+ 2�iL ( ~�� [ ~�℄� 12)(x� y)� 1sin �L(x� y) : (3.13)In the limit L!1 the ovariane is given by the expression
(x; y) = i� exp�ie Z yx A�P � 1x� y� 1 00 �1 ! ; (3.14)where P denotes the prinipal value. This result is in aordane with [8℄. We make a�nal remark on the existene of large gauge transformations, i. e. gauge transformationswhih annot be obtained from the identity in a ontinuous way. As an be seen fromthe expressions for the energy, (3.6) and (3.7), suh gauge transformations hangethe uxes � and ~� by an integer. Sine the eigenfuntions in (3.6) and (3.7) remainunhanged, and the ovariane ontains only the frational part of the ux (see (3.12)and (3.13)), the wave funtional (2.14) remains invariant.3.1.2 Charges and energyIn this subsetion we shall alulate the expetation values of the harge, hiral harge,and energy with respet to the ground state derived above.The omponents of the eletri urrent are given byj0 =  y = 'y'+ �y� � j+ + j�; (3.15)j1 =  y01 = �'y'+ �y� � �j+ + j�: (3.16)The total harge is thus given byQ = Z dxj+ + Z dxj� � Q+ +Q�; (3.17)and the hiral harge by Q5 = Q+ �Q�: (3.18)These expressions ontain produts of the �eld operators and thus require a regular-ization presription. The proedure employed here is to �rst perform a point splittingand then to subtrat the expetation value for vanishing external �eld. After the pointsplitting is removed, one is left with a �nite result. The ruial point to note is that the15



point splitting has to be done in a gauge invariant way. We thus de�ne the following\point splitted" quantities�+(x; y) = 'y(x) exp�ie Z yx A�'(y) (3.19)��(x; y) = �y(x)exp�ie Z yx A��(y): (3.20)They are expliitly gauge invariant. Applying �+ on the vauum state (2.14) we �nd�+	 = 12 exp�ie Z yx A��uy1(x) + ÆÆu1(x)� u1(y) + ÆÆuy1(y)!	= 12 exp�ie Z yx A� (Æ(x � y) + 
+(y; x))	+12 exp�ie Z yx A� (uy1(x)� 
+(z; x)uy1(z)) �(u1(y) + 
+(y; z)u(z))	; (3.21)where, again, an integration over repeated variables is understood. If we set x = yand integrate over x, the last term on the right-hand side of (3.21) vanishes sine(1� 
+)(1 + 
+) = 0 aording to (2.36). Subtrating the expression for vanishing A�eld, the �rst term after the seond equation sign on the right-hand side of (3.21) reads12 exp�ie Z yx A�
+(y; x)� 12
(0)(y; x)= i2� exp�2�iL (�� [�℄� 12)(y � x)� 1y � x � �$ �0 +O(x� y); (3.22)where we have expanded the sine in the expression (3.12) for the ovariane and keptonly the term proportional to (x� y)�1. We have also introdued�0 = �+ � (3.23)so that � = �0 + e2� Z L0 A � �0 + ' (3.24)(ompare (3.8)). Expanding also the exponential in (3.22) we note that the terms whihbeome singular in the limit x ! y drop out. We an thus remove the point splittingand perform the x integration to �ndhQ+i = [�℄� �� ([�0℄� �0): (3.25)The left handed setor is alulated analogously, with the resulthQ�i = [~�℄� ~�� ([ ~�0℄� ~�0); (3.26)where ~�0 = �� � (3.27)16



so that ~� = ~�0 + e2� Z L0 A � ~�0 + ' (3.28)(ompare (3.9)).The results for the expetation values of the total harge and hiral harge are thengiven by hQi = hQ+i+ hQ�i= [�+ � + '℄� [�+ �℄� [�� � + '℄ + [�� �℄ (3.29)and hQ5i = hQ+i � hQ�i= [�+ � + '℄� [�+ �℄ + [�� � + '℄� [�� �℄� 2': (3.30)Note that < Q >= 0 for vanishing hiral twist, � = 0 (see (3.4)), and that < Q5 >=2(['℄ � ') for � = � = 0. The above expetation values have been alulated, usingzeta regularization, by [14℄ for the speial ase � = 1=2 and � = 0. Their result is inagreement with ours.We now proeed to alulate the expetation value of the Hamiltonian H (2.24).We �rst operate with H on the ground state wave funtional to �nd the expression(2.27). We then use the expliit solution (2.29) for the ovariane to reognize thatonly the �rst term in (2.27) ontributes to the expetation value < H >:hH i = 12Xn En(1 + 
nn): (3.31)We regularize again by point splitting. We thus introdue a "point splitted" expetationvalue whih for the ontribution from the right handed setor readsh	jHy (x; y)j	i = 12 exp��ie Z yx A�hxXn (1 + 
nn)'n(x)'yn(y): (3.32)Note that this expression is expliitly gauge-invariant and redues to (3.31) after settingx = y and integrating over x (the ation of the �rst-quantized Hamiltonian hx �i�=�x� eA(x) just produes the energy En when ating on the  n). The ompletenessof the 'n, as well as (2.26), enables one to write (3.32) ash	jHy (x; y)j	i = 12 exp��ie Z yx A� hx(Æ(x � y) + 
+(x; y)): (3.33)Using the expliit expression (3.12) for 
+(x; y) one �nds, up to order x� y,exp��ie Z yx A� hx
+(x; y) =�� 2iL(x� y)(�� [�℄� 12) + 1�(x� y)2 � �6L2��exp�2�iL (�� [�℄� 12)(x� y)�+O(x� y):17



Expanding also the exponential, this readsexp��ie Z yx A� hx
+(x; y) = 1�(x� y)2 � �6L2 + 2�L2 (�� [�℄� 12)2 +O(x� y);so that we �ndh	jHy (x; y)j	i = 12 exp��ie Z yx A� (i ��x � eA)Æ(x � y)+ 12�(x� y)2 � �12L2 + �L2 (�� [�℄� 12)2 +O(x� y):Sine exp��ie Z yx A� i ��xÆ(x � y) = iÆ0(x� y) + eA(x)Æ(x � y);we haveh	jHy (x; y)j	i = i2Æ0(x�y)+ 12�(x� y)2 � �12L2 + �L2 (�� [�℄� 12)2+O(x�y): (3.34)From this expression one has to subtrat the expetation value for vanishing external�eld. To retain �nite-size e�ets we subtrat the "free" value for L!1. This removesthe divergent terms in (3.34). Setting x = y and integrating over x, one �nds the resulthHy i = �L ��� [�℄� 12�2 � �12L: (3.35)This vanishes in the limit L ! 1. The expression for �nite L is nothing but theCasimir energy whih is also present for vanishing external �eld:hHy i = �L ��0 � [�0℄� 12�2 � �12L:Note that the resulting fore between the boundaries at x = 0 and x = L an be at-trative or repulsive, depending on the hosen boundary onditions. For the onditionshosen in [14℄ the expetation value is given by ��=12L and thus leads to an attrativefore.The expetation value of the Hamiltonian in the left handed setor is alulated inthe same way by making use of (3.13) and using �hx = �i�=�x + eA(x). Instead of(3.35) one �nds hH� i = �L �~�� [ ~�℄� 12�2 � �12L: (3.36)The total Casimir energy is the sum of the expressions (3.35) and (3.36).3.2 The massive ase3.2.1 Calulation of the ovarianeIn the massive ase we use the Dira representation for the Gamma matries, i. e.,0 =  1 00 �1 ! ; 1 =  0 �11 0 ! ; 01 =  0 �1�1 0 ! : (3.37)18



The �rst-quantized Hamiltonian is then given by the expressionh(x; y) =  m i ��x � eA(x)i ��x � eA(x) �m ! Æ(x � y): (3.38)We are again looking for the eigenfuntions of h,h n = En n: (3.39)If we make the ansatz  n = 1pL exp��ie Z x0 A� i�nx� n; (3.40)Eq. (3.39) yields an algebrai equation for n, m�En �n�n �m�En ! n;1n;2 ! = 0: (3.41)The boundary ondition  n(x+ L) = e2�i� n(x) (3.42)yields a quantization ondition for the �n,�n = 2�L  n� �� e2� Z L0 A! � 2�L (n� �); (3.43)where n 2 Z. From (3.41) one then �nds the values for the energy,En = �qm2 + �2n = �sm2 + 4�2L2 (n� �)2 � �!n: (3.44)We already note at this point that the massless limit of (3.44) yields En = �2�L jn� �jinstead of En = �2�L (n � �) whih was found by starting from m = 0 ab initio. Thiswill be relevant for the disussion of anomalies in hapter 5.The normalized eigenfuntions  n read n;+ = 1p2!n(!n +m)L  !n +m�n ! exp��i�nx� ie Z x0 A� (3.45)for En = !n, and n;� = 1p2!n(!n +m)L  ��n!n +m ! exp��i�nx� ie Z x0 A� (3.46)for En = �!n.We now use again (2.32) and the �lling presription (2.31) to alulate the ovari-ane, 
(x; y) = Xn  n;�(x) yn;�(y)�Xn  n;+(x) yn;+(y)� P� � P+: (3.47)19



Noting that �n = (!n +m)(!n �m), we �ndP+(x; y) = 12L exp��ie Z xy A�Xn e�i�n(x�y)!n  !n +m �n�n !n �m ! (3.48)and P�(x; y) = 12L exp��ie Z xy A�Xn e�i�n(x�y)!n  !n �m ��n��n !n +m ! : (3.49)To evaluate the various sums in these expressions we make use of Poisson's summationformula: 2� 1Xn=�1 f(2�n) = 1Xn=�1F (n); (3.50)where F (u) = Z 1�1 dzf(z)eizu: (3.51)We then have Xn �n!n e�2�in(x�y)=L �Xn f(2�n) (3.52)and Xn 1!n e�2�in(x�y)=L �Xn ~f(2�n); (3.53)where f(z) = z � 2��p(z � 2��)2 +m2L2 e�i(x�y)z=L (3.54)and ~f(z) = Lp(z � 2��)2 +m2L2 e�i(x�y)z=L: (3.55)From (3.51) we then �ndF (u) = e2�i�(u�(x�y)=L) Z 1�1 dppeip(u�(x�y)=L)pp2 +m2L2= 2ie2�i�(u�(x�y)=LmLK1(mLu�m(x� y)) (3.56)and ~F (u) = Le2�i�(u�(x�y)=L) Z 1�1 dpeip(u�(x�y)=L)pp2 +m2L2= 2Le2�i�(u�(x�y)=LK0(mLu�m(x� y)): (3.57)Here K0 and K1 denote Bessel funtions and use has been made of [15℄ to evaluate theintegrals. From (3.50) we then �nd for the sumsXn �n!n e�2�in(x�y)=L = � imL� e�2�i�(x�y)=LXn e�2�in�K1(mLn+m(x� y)) (3.58)20



and Xn 1!n e�2�in(x�y)=L = L� e�2�i�(x�y)=LXn e�2�in�K0(mLn+m(x� y)): (3.59)In the expressions below we will for simpliity not expliitly write out the argumentmLn+m(x� y) of the Bessel funtions K0 and K1. For the remaining sum we haveXn e� 2�inL (x�y) = LXn Æ(x� y � nL) = LÆ(x� y) (3.60)sine jx � yj < L. Inserting all these results into the expressions (3.48) and (3.49) we�nd P+ = 12Æ(x � y)I+ m2� exp��ie Z xy A��Xn  K0 �iK1�iK1 �K0 ! e�2�in� (3.61)and P� = 12Æ(x � y)I� m2� exp��ie Z xy A��Xn  K0 �iK1�iK1 �K0 ! e�2�in�: (3.62)We verify that P+ +P� = I. Our �nal result for the ovariane (2.33) is then given bythe expression 
(x; y) = P� � P+ = m� exp��ie Z xy A��Xn  �K0 iK1iK1 K0 ! e�2�in�: (3.63)In the limit L!1 we �nd
(x; y) = m� exp��ie Z xy A� �K0(m(x� y)) iK1(m(x� y))iK1(m(x� y)) K0(m(x� y)) ! : (3.64)Using the asymptoti expressions for the Bessel funtions one veri�es that 
 approahesthe result (3.14) in the limit of vanishing mass. Furthermore, in the opposite limit oflarge mass (or large jx� yj) the ovariane reads
(x; y) = s m2�jx� yj exp��ie Z xy A� exp (�mjx� yj) �1 ii 1 ! : (3.65)In summary, we have found in this setion the exat ground state for arbitrary external�elds in the massive Shwinger model. The exited states, 	n, an then be onstrutedin the usual way through the appliation of the reation operator. A general state,	, of the fully quantized theory an then be expanded into these energy eigenstatesaording to 	[A; u; uy℄ =Xn 'n[A℄	n[A; u; uy℄;where the funtionals 'n[A℄ an be determined from the full funtional Shr�odingerequation whih ontains the kineti term �Æ2=2ÆA2 in the Hamiltonian.21



3.2.2 Charges and energyWe de�ne again a "point splitted" harge operator�(x; y) =  y(x) exp�ie Z yx A� (y) (3.66)and �nd for its ation on the vauum state an expression analogous to (3.21) (there isnow no distintion between a left and a right handed setor):�(x; y)	 = 12 exp�ie Z yx A� (2Æ(x � y) + 2X�=1
��(y; x))	+12 exp�ie Z yx A� (uy�(x)� 
��(z; x)uy�(z))�(u�(y) + 
�(y; z)u(z))	; (3.67)where a summation (integration) over repeated indies (variables) is understood. Likein the massless ase, the seond term on the right-hand side of (3.67) vanishes aftersetting x = y and integrating over x. The �rst term is again regularized by subtratingits value for vanishing external �eld. This yields for the vauum expetation value ofthe total harge hQi = 12 2X�=1 Z L0 dx limx!y �
��(y; x)� 
(0)��(y; x)� = 0; (3.68)sine the ovariane (3.63) is traeless with respet to the spinor indies. The result(3.68) has of ourse been expeted sine the total harge should annihilate the vauumstate (see also the disussion in setion 6). This is true in any number of dimensions.For the hiral harge we give �rst a general expression whih is valid in any evendimension. We de�ne the \point splitted" hiral harge�5(x; y) = � (x)50 exp�ie Z yx A� (y)= � y(x)5 exp�ie Z yx A� (y): (3.69)Operating with this on the vauum state yields (ompare (3.21))�5(x; y)	 = �12 exp�ie Z yx A�Tr5(Æ(x � y) + 
(y; x))	�12 exp�ie Z yx A�Z dvdwuy(v) (Æ(v � x)� 
(v; x)) 5 �(Æ(y � w) + 
(y;w)) u(z)	: (3.70)The seond term an be written, after setting x = y, integrating over x, and performingthe expetation value, as �2TrP+5P� = 022



sine P+P� = 0 (ompare (3.35)), and use has been made of (2.45). We are thus leftwith h	jQ5j	i = �12Tr Z L0 dx limx!y 5
(y; x) exp�ie Z yx A� ; (3.71)from where the result for A = 0 has to be subtrated. Using the expliit results in twodimensions we �nd �12 Tr 5
(y; x) exp�ie Z yx A�= im� Xn K1(mLn+m(y � x))e�2�in�:Subtrating from this the expression with A = 0 we getim� Xn �K1(m(y � x) + nmL)e�2�in� �K1(m(y � x) + nmL)e�2�in��so that we have hQ5i = im� Z L0 dxXn 6=0K1(nmL)�e�2�in� � e�2�in��= 2mL� Xn>0K1(nmL)(sin(2�n�)� sin(2�n�)): (3.72)In the limit m! 0 we obtainlimm!0hQ5i = 2� Xn>0 1n(sin(2�n�)� sin(2�n�))= 2([�℄ � �+ 12)� 2([�℄ � �+ 12)= 2([� + '℄ + [�℄� '): (3.73)This is equal to our earlier result (3.30) when evaluated for � = 0 (' was de�ned in(3.28)). Realling the asymptoti formula for K1 in the limit of large arguments one�nds that hQ5i L!1� s2mL� (sin(2�n�)� sin(2�n�))e�mL L!1! 0: (3.74)We �nally alulate the vauum expetation value of the Hamiltonian H (2.24) inthe massive ase. We start from the expetation value (3.33) for the point splittedHamiltonian but insert in that expressionhx = �i01(�x � iA) +m0 (3.75)as well as the full ovariane 
 instead of 
+. With our result (3.63) for the ovarianewe then �ndexp�ie Z xy A� hx
(x; y) = � im2� 01Xn  �K 00 iK 01iK 01 K 00 ! e�2�in�+m2� 0 exp��ie Z xy A�Xn  �K0 iK1iK1 K0 ! e�2�in�:23



Thus, h	jH (x; y)j	i = 12Tr exp��ie Z xy A� (hx
(x; y) + hxÆ(x � y))= Tr(m22� Xn  �K0 �K 01 iK1 + iK 00�iK1 � iK 00 �K 01 �K0 ! e�2�in�+12  0 11 0 ! iÆ0(x� y) + m2  1 00 �1 ! Æ(x� y)) : (3.76)From this we subtrat the expetation value for L ! 1 and vanishing A. Using therelations K 01(�) +K0(�) = �K1(�)� ; K1 = �K 00;this yields hH i = Z L0 dx limx!y (h	jH (x; y)j	i � h	0jH (x; y)j	0i)= m2� Z L0 dx limx!y Xn e�2�in�m(x� y)K1(m(x� y))� 1m(x� y) + nmLK1(m(x� y) + nmL)�= m� Xn 6=0 1nK1(nmL)e�2�in�= 2m� Xn>0 1nK1(nmL) os(2�n�): (3.77)This vanishes in the limit L ! 1 but remains �nite for �nite L even for vanishingeletromagneti �eld where we havehH iA=0 = 2m� Xn>0 1nK1(nmL) os(2�n�): (3.78)In the limit of vanishing mass we obtain from (3.77) the result of setion 3.1.2. Theexpetation value of the Hamiltonian vanishes for L ! 1 as an be easily seen from(3.77).
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Chapter 4Non-abelian gauge �elds4.1 Calulation of the ovarianeWe onsider the LagarangianL = �14F��F �� + � (iD�� �m) ; (4.1)where F�� = ��A� � ��A� + i[A�; A� ℄ (4.2)D� = �� + iA�: (4.3)We have introdued here the matrix-valued vetor �eld, A�(x), whih is de�ned byA� = Ai�Ti; (4.4)where Ti are the (hermitean) generators of a Lie group, whih are normalized aordingto (Ti; Tj) = Æij : (4.5)The gauge oupling onstant has been set equal to one. In two dimensions the disussionis greatly simpli�ed sine the gauge A0 = 0 removes the ommutator in (4.2). Thisenables us to proeed analogously to the abelian ase. Denoting A1 � A, the totalHamiltonian density reads expliitlyH = 12�2A � i y01(�x + iA) +m y0 � 12�2A +  yh : (4.6)The �rst-quantized Hamiltonian readsh = gh(0)g�1; (4.7)where h(0) = �i01�x +m0 (4.8)25



and g(x) = P exp��i Z x0 A� ; (4.9)where P denotes path-ordering (we will suppress this letter in the following). It followsimmediately that if  (0) is an eigenfuntion of h(0) with eigenvalue E then  = g (0) isan eigenfuntion of h with the same eigenvalue E. From (3.45) and (3.46) we see thatthe free eigenfuntions are given by (0)n;+ = fn;  (0)n;� = gn; (4.10)where  is a onstant vetor in the representation spae of the above generators, andfn(x) = 1p2!n(!n +m)L  !n +m�n ! exp (�i�nx) (4.11)and gn(x) = 1p2!n(!n +m)L  ��n!n +m ! exp (�i�nx) : (4.12)We also have to implement the boundary onditions (L) = e2�i� (0) = g(L) (0)(L) = g(0)e2�i� (0)(0): (4.13)We note that g�1(L)g(0) = exp i Z L0 A! � exp (iB) : (4.14)Sine B is a hermitean matrix it an be diagonalized:Bea = �aea; (4.15)(ea; eb) = Æab; (4.16)where a and b run form 1 to the dimension of the representation. We thus haveg�1(L)g(0)ea = exp (i�a) ea: (4.17)Choosing  = ea we �nd from (4.13) the quantization ondition�n;a = 2�L (n� �)� �aL ; (4.18)and the energies are given byEn;a = �qm2 + �2n;a � �!n;a (4.19)in analogy to the abelian result (3.44). From (4.10) and  = g (0) the positive energysolutions are given by  an;+ = g(x)ea 
 fan ; (4.20)and the negative energy solutions by an;� = g(x)ea 
 gan; (4.21)26



(no summation over a). These solutions are orthonormal sine( an;+;  bm;+) = (g(x)ea 
 fan ; g(x)eb 
 f bm) = ÆabÆnm; et. (4.22)Under a gauge transformation mediated by U(x) the following transformation lawshold:  ! ~ = U(x) ; (4.23)A ! ~A = UAU�1 + i(�xU)U�1; (4.24)g ! ~g = U(x)g(x)U�1(0); (4.25) (0) ! ~ (0) = U(0) (0): (4.26)Sine gauge transformations should respet the boundary onditions, we must haveU(0) = U(L). Sine the "boundary operator" g�1(L)g(0) transforms asg�1(L)g(0) ! U(0)g�1(L)g(0)U�1(0)the quantities �a appearing in (4.17) are gauge invariant.We now proeed to alulate the ovariane of the ground state. For the projetoron positive energies one �nds, making use of the result (3.48) for the abelian ase,P+(x; y) = Xa;n  an;+(x) a+n;+(y)= 12Lg(x) "Xa eaeya exp� iL(2�� + �a)(x� y)��Xn e�2�in(x�y)=L!n  !n +m �n�n !n �m !# gy(y): (4.27)Applying Poisson's summation formula (3.50) one �nds, in analogy to (3.61),P+(x; y) = 12Æ(x� y)I� m2�g(x) "Xa;n ea exp �in Z L0 �a! eya� �K0 iK1iK1 K0 ! e�2�in�# gy(y): (4.28)and P�(x; y) = Æ(x� y)I� P+(x; y): (4.29)It is onvenient to de�ne the "diagonal matrix"D =Xa exp (i�a) eaeya (4.30)whih obeys Dn =Xa exp (in�a) eaeya: (4.31)The ovariane an thus be written as
(x; y) = P� � P+ = m� g(x) "Xn D�ne�2�in�  �K0 iK1iK1 K0 !# gy(y): (4.32)27



In the abelian ase we have � = Z L0 A (4.33)so that the result (4.32) equals our earlier result (3.63).4.2 Charges and energyThe point splitted version of the non-abelian urrent operator reads, in any number ofdimensions, j�i (x; y) =  y(x) exp�i Z yx A�Ti0� (y): (4.34)Its ation on the vauum state 	 an be found in the same way as for the abelian ase(3.67). The result isj�i (x; y)	 = 12Tr exp�i Z yx A�Ti0�(Æ(x � y) + 
(y; x))	+12 Z dvdwuy(v)(Æ(v � x)� 
(v; x)) exp�i Z yx A��Ti0�(Æ(y � w) + 
(y;w))u(w)	: (4.35)Taking the expetation value of the seond term in (4.35) with respet to 	, one gets,making use of (2.45) and (2.35)14Tr Z dvdw (Æ(v � x)� 
(v; x)) exp�i Z yx A��Ti0�(Æ(y � w) + 
(y;w))
(w; v)= 14Tr Z dv(Æ(y � v) + 
(y; v))(Æ(v � x)� 
(v; x)) �exp�i Z yx A�Ti0� = 0: (4.36)The expetation value of the point splitted urrent with respet to 	 is thus given byh	jj�i (x; y)j	i = 12Tr exp�i Z yx A�Ti0�(Æ(x � y) + 
(y; x)): (4.37)For the axial urrentj�5i(x; y) =  y(x) exp�i Z yx A� Ti05� (y) (4.38)the analogous result is (ompare also (3.70))h	jj�5i(x; y)j	i = �12Tr exp�i Z yx A� Ti50�(Æ(x� y) + 
(y; x)): (4.39)Like in the abelian ase (see (3.68)) one �nds from (4.37) that < Q >= 0, where Qis the total harge (the �rst term in (4.37) vanishes after the subtration of the "free"28



expetation value, the seond term vanishes sine 
 is traeless in spinor spae - see(4.32)).In the following we expliitly evaluate the vauum expetation value of the hiralharge in two spaetime dimensions. From (4.39) we haveh�5i (x; y)i = �12Tr exp�i Z yx A�Ti01(
(y; x)� 
(0)(y; x)): (4.40)The trae in (4.40) onsists atually of two traes: a trae TrS in spinor spae and atrae TrC in the representation spae of the Lie group. We evaluate the spinor traeby making use of (3.37) and (4.32):�12TrS01
(y; x) = im� g(y)Xn e�2�i�nD�nK1(m(x� y) +mnL)gy(x):Eq. (4.40) then beomesh�5i (x; y)i = im� Xn e�2�i�n �TrC exp�i Z yx A� Tig(y)D�ngy(x)�TrCTi)K1(m(x� y) +mnL): (4.41)The singular terms whih arise for n = 0 anel. The remaining terms are non singularin the oinidene limit x ! y, and one �nds for the expetation value of the totalhiral harge hQ5i i = im� Z L0 Xn 6=0 e�2�i�n �TrCgy(x)Tig(x)D�n�TrCTi)K1(mnL): (4.42)This is the non-abelian version of our earlier result (3.72). In the limit of vanishingmass one �nds, using (4.31) and K1(x) � 1=x,hQ5i i � 2mL Z L0 dxTrCgy(x)Tig(x)Xa eaeya([�a℄ + 12 � �a)�TrCTi([�℄ + 12 � �): (4.43)Note that for semisimple groups the trae of the Ti vanishes. We emphasize thatthe urrents in the nonabelian theory are not gauge invariant quantities but insteadtransform under the adjoint representation of the gauge group.We �nally ome to the alulation of the vauum expetation value for the energy.This losely parallels the disussion of the abelian ase whih was disussed in setion 3so that we an be brief in the present ase. The point splitted version of the expetationvalue now reads, in analogy to (3.33),h	jH (x; y)j	i = 12Tr Z dx exp��i Z yx A� hx(Æ(x � y) + 
(x; y): (4.44)We reall that the exponential stands for a path ordered produt. Inspetion of theexpliit form of the ovariane, Eq. (4.32), exhibits that, as in the abelian ase, the29



fators g(x) and gy(y) are exatly anelled by the exponential in (4.44). In analogy to(3.77) we then �nd, after the subtration of the expetation value for vanishing external�eld, hH i = 2m� Xa Xn>0 1nK1(nmL) os(2�n�+ n�a): (4.45)In the limit of vanishing mass this beomeshH im=0 = 2�L Xa ��+ �a2� � [�+ �a2� ℄� 12�2 � �6LN; (4.46)where N is the number of avors.
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Chapter 5Partile Creation5.1 Constant eletri �eld in four dimensionsIn this setion we demonstrate how the well known expression for the reation offermions in a onstant external eletri �eld [16℄ an be reovered in the funtionalShr�odinger piture. The physial piture is the following: We start with a fermionivauum state in the far past (\in - region") and let it evolve under the inuene ofthe external �eld, using the Shr�odinger equation, into the far future (\out - region").There we alulate the overlap with the vauum in the out - region and interpret thedeviation from one as the probability for partile reation. The state remains, of ourse,Gaussian but its exat form (and thus the notion of the vaum) hanges under theevolution of the external �eld. It would be physially reasonable to swith on the �eldsomewhere in the past and swith it o� again in the future sine no �elds last in�nitelylong. In the present ase of a onstant eletri �eld it will prove advantageous to treatan idealized situation by making use of the notion of an adiabati vauum state whihis approahed in the asymptoti regions. This is possible sine _h=h, where _h is thetime-derivative of the �rst-quantized Hamiltonian h (2.5), approahes zero in both theasymptoti past and future. The onept of adiabati states is also suessfully ap-plied in traditional disussions of partile reation [17℄ and �nds in partiular a fruitfulappliation in quantum theory on urved spaetimes [18℄.We thus have for the in - vaum state	in = N exp �uy
in(ad)u� ; (5.1)and for the out - vauum state	out = N exp�uy
out(ad)u� : (5.2)The \adiabati" ovariane 
(ad) an be obtained from the \free" ovariane 
(0) (see(2.42)) by replaing the momentum p with p+eA. It turns out to be onvenient, in spiteof the nonvanishing mass, to use the hiral representation for the Dira matries. Thereason is that the mass terms in the expressions for the ovariane beome unimportantin the asymptoti regions. We thus have, instead of (2.42),
(ad) = 1p~p2 +m2  �� � ~p mm � � ~p ! ; (5.3)31



where ~p � (px; py; pz + eAz); (5.4)and the eletri �eld points in z - diretion, E = Eez, so that Az = Et. For simpliitywe denote the transversal momentum by p? so that p2? = p2x + p2y. It will also beonvenient to introdue the dimensionless quantity� � peE �t+ pzeE� : (5.5)We now give the expliit expression for 
(ad) in both the asymptoti past and future.In the limit � ! �1, (5.3) reads (�i are the Pauli matries)
(ad) = 1qp2? + eE�2 +m2  ��? � p? � �z � peE� mm �? � p? + �z � peE� !�!�1�!  �z 00 ��z ! � 
in(ad): (5.6)Analogously, 
out(ad) =  ��z 00 �z ! = �
in(ad): (5.7)Before we proeed to alulate the pair reation rate aording to the general formula(2.72), we have to disuss one subtlety whih arises through the use of asymptotivauum states. As an be immediately seen by omparing (5.6) and (5.7), the adia-bati ovarianes 
out(ad) and 
in(ad) di�er in their sign. Consequently, from the generalexpression (2.32), the positive (negative) frequeny eigenfuntions in the far future arethe negative (positive) frequeny eigenfuntions of the far past. An observer in the farfuture would replae the expansion (2.62) by�n(t) = �fnm�fm + �fnm fm = �fnm m + �fnm�m; (5.8)where the supersript f refers to \far future." Comparing (5.8) with (2.62) we see that�fnm = �nm and �fnm = �nm. Nevertheless, one an still use the expression (2.72) toalulate the transition element. The reason is that one now has to use 
out(ad) = �
in(ad)instead of 
0 = 
in(ad) in (2.59). This would amount to replae �nm in (2.72) by�nm = �fnm. Thus, the partile reation rate is still given by (2.72) with �nm replaedby �fnm as it was introdued in (5.8) (in the following we will for simpliity omit thesupersript f).The general expression (2.60) for the ovariane 
(t) ontains, via (2.61), the fun-tions �n(t) whih obey i _�n(t) = h�n(t); (5.9)where the �rst-quantized Hamiltonian h is given expliitly byh =  � � ~p �m�m �� � ~p ! : (5.10)32



Note that h2 = (p2?+m2+E�2)I, and n has to be replaed by p. Di�erentiating (5.9)by t and using (5.9) again, one arrives at a seond order equation for the �n. The �rstand fourth omponent of the �p obeys (we omit the index p in the following) d2d�2 + �2 +�+ i!�1;4 = 0; (5.11)while the seond and third omponent obeys d2d�2 + �2 +�� i!�2;3 = 0: (5.12)We have introdued in these expressions the quantity� = p2? +m2jeEj : (5.13)The disussion is greatly simpli�ed if we treat the ase of two spaetime dimensions�rst and reover the four-dimensional ase by some simple manipulations from the �nalresult. Instead of (5.11) and (5.12) we have then to deal with the equations d2d�2 + �2 + � + i!�1 = 0; (5.14) d2d�2 + �2 + � � i!�2 = 0; (5.15)where, obviously, � = m2jeEj : (5.16)Sine � obeys the �rst-order equation (5.9), the equations (5.14) and (5.15) annot besolved independently. If we hoose, say, for �1 the general solution of (5.14), we �ndfrom (5.9) that �2 = 1p� �id�1d� � ��1� : (5.17)The general solution of (5.14) is then given by a sum of paraboli ylinder funtions[19℄ �1 = A1D�i�=2[(1 + i)� ℄ +B1D�i�=2[�(1 + i)� ℄: (5.18)We now have to impose the boundary ondition that � approahes a negative frequenyeigenfuntion for � ! �1. For this we need the asymptoti expansion of (5.18) whihreads [19℄ �1 �!�1� A1 �e� i�22 [(1 + i)� ℄� i�2� p2��( i�2 )e���2 + i�22 [(1 + i)� ℄ i�2 �1!+B1e� i�22 [�(1 + i)� ℄� i�2 : (5.19)33



The usual de�nition of positive and negative frequenies involves the phase of the�rst-quantized eigenfuntions: For a positive frequeny funtion the phase dereaseswith inreasing time, while for a positive frequeny funtion it inreases [17℄. Theexpression (5.19) thus should only ontain terms proportional to exp(�i�2=2). Wethus have A1 = 0 and one is left with�1 = B1D�i�=2 [�(1 + i)℄ : (5.20)From (5.17) one then gets�2 = �B1p�2 (1 + i)D�i�=2�1 [�(1 + i)℄ : (5.21)We want to normalize the solution � = (�1; �2)T . Sine the norm is onserved (h in(5.9) is hermitean), it is suÆient to perform the normalization in the asymptoti pastwhere �1 �!�1�! B1e� i�22 j� j� i�2 2� i�4 e��8 ; (5.22)�2 �!�1�! 0: (5.23)Thus, the hoie B1 = e���8 (5.24)yields �y� � j�1j2 + j�2j2 = 1.To make use of (5.8) we have to �nd the positive and negative frequeny funtionsin the asymptoti future, i.e. for � !1. The orretly normalized negative frequenysolution �f to (5.14) and (5.17) reads�f1 = s�2e���8 Di�=2�1 [(1� i)� ℄ ; (5.25)�f2 = � i+ 1p2 e���8 Di�=2 [(1� i)℄ : (5.26)This is easily seen from the asymptoti expansion of the paraboli ylinder funtions[19℄. Similarly, the positive frequeny funtions are found to read f1 = e���8 D�i�=2 [(1 + i)� ℄ ; (5.27) f2 = p�2 (i+ 1)e���8 D�i�=2�1 [(1 + i)� ℄ : (5.28)Making now use of the identity [19℄D�(z) = e��iD�(�z) + p2��(��)e�(�+1)i=2D���1(�iz); (5.29)we an expand the solution (5.20), (5.21), (5.24) aording to (5.8) into the asymptotipositive and negative frequeny solutions, respetively:�(�) = p���( i�2 + 1)e���4 �f + e���2  f : (5.30)34



The Bogolubov oeÆients an be easily read o� from this equation,� = p���( i�2 + 1)e���4 ; � = e���2 ; (5.31)and it is easily heked that j�j2 + j�j2 = 1. Finally, one then �nds for the matrixelement (2.72) jh	1j	2ij2 = det(1� j�j2)= expTr ln(1� e���)= exp �TrXn 1ne��n�! : (5.32)In two dimensions the trae readsTr �! L2� Z eEtouteEtin dp = eELT2� ;where T � tout � tin is the time di�erene between two asymptoti times tout and tin.This, as well as the length L, has been introdued as an infrared regulator [17℄, [7℄.Thus, jh	1j	2ij2 = exp �eELT2� 1Xn=1 1ne�n�m2eE ! : (5.33)(If eE is negative, one has to take its absolute value.) To �nd the orrespondingexpression in four spaetime dimensions, we have to replae � by �, see (5.13). Onethus has j�j2 = e��� = e��(m2+p2?)eE (5.34)and Tr �! V(2�)3 Z eEtouteEtin dpz Z 2�p?dp?:Moreover, one gets an additional fator of 2 from the disrete part of the determinantin (5.32) over the spinor indies sine one now deals with four spinors instead of twospinors. Thus, jh	1j	2ij2 = exp �2Tr 1Xn=1 1ne��n�!= exp �2(eE)2V T(2�)3 1Xn=1 1n2 e�n�m2eE ! : (5.35)This is in agreement with the lassial result of Shwinger [16℄.5.2 Arbitrary external �elds for massless QED in two di-mensionsWe now proeed to alulate the vauum - to - vauum transition rate (2.58) in thease of massless fermions for arbitrary external eletromagneti �elds in two spaetime35



dimensions. In ontrast to the previous setion we shall assume that the eletri �eldis swithed o� for some time t < t1 in the past and t > t2 in the future. While one anonsistently assume that the vetor potential vanishes for t < t1, this is not possiblefor t > t2 sine the uxZ L0 dx Z t2t1 dtE = Z dxdt _A = Z dx (A(x; t2)�A(x; t1)) = 2�'(t2) (5.36)need not vanish. In fat, this will give rise to the nontrivial features whih will bedisussed in this setion. We an, however, assume that A does not depend on x fort > t2.To determine the ovarianes 
1 and 
2 in (2.58) we need to solve the time-dependent Dira equation, i _ = h = �i5(�x + iA) : (5.37)We make the ansatz  (x; t) = exp(i�(x; t) + iÆ(x; t)5) 0(x; t) (5.38)and hoose � and Æ suh that  0 obeys the free Dira equation (without A- �eld).Inserting (5.38) into (5.37) one reognizes that this an be ahieved if_�+ Æ0 = 0;�0 + _Æ = �A: (5.39)The formal solution reads � = 12A0;Æ = � 12E: (5.40)The solution of the free equation for  0,i _ 0 = �i5�x 0; (5.41)an of ourse be immediately written down by making use of (3.4) - (3.7) (we hoose� = 0 for simpliity):  0;n =  '0;n�0;n ! (5.42)with '0;n = 1pL exp (�ikn(x+ t)) (5.43)�0;n = 1pL exp (�ikn(x� t)) ; (5.44)where kn � 2�L (n� �): (5.45)36



The positive energy (negative energy) solutions are obtained for kn > 0 (kn < 0) in(5.43) and for kn < 0 (kn > 0) in (5.44) (reall (3.6) and (3.7)). The solutions of (5.37)thus read  n(x; t) = exp(i�+ iÆ5) 0;n: (5.46)The omponents of the ovariane are alulated in full analogy to Eq. (3.11). One�nds 
+(x; y; t) = exp(i�(x; t) � iÆ(x; t))
(0)+ (x; y) exp(�i�(y; t) + iÆ(y; t)) (5.47)and 
�(x; y; t) = exp(i�(x; t) + iÆ(x; t))
(0)� (x; y) exp(�i�(y; t)� iÆ(y; t)); (5.48)where 
(0)+ and 
(0)� are obtained from (3.12) and (3.13) by setting the A- �eld equalto zero:
(0)+ (x; y) = �
(0)� (x; y) = iL exp�2�iL (�� [�℄ � 12)(x� y)� 1sin �L(x� y) : (5.49)Sine A = 0 for t < t1 one an hoose � = Æ = 0 for t < t1. This orresponds to thehoie of the retarded Green funtion in (5.40). We thus have 
 = 
(0) for t < t1.We now proeed to alulate the overlap (2.58) between the out - vauum and theout - state whih results from evolving the in - vauum (whih is the free state) withthe Shr�odinger equation. In the out - region (t!1) we an hoose A to be onstant.From (5.39) we an hoose � = 0 and Æ = �At. The one partile wave funtions (5.46)then read  n(x; t) = exp(�iAt5) 0;n(x; t): (5.50)The out - vauum is alulated from the wave funtions (3.6) and (3.7) forA = onstant.As an be reognized from these expressions, A drops out and one is left with the freewave funtions  0;n. Does this also mean that the out - vauum state is idential withthe free vaum state? This is not the ase sine in the general expression for theovariane, Eq. (2.32), one has to distinguish between positive and negative energysolutions. For nonvanishing (even onstant) A- �eld this distintion is �eld-dependentsine the energy values are given byEn = �2�L (n� �); (5.51)where the upper sign is for the right- handed part and the lower sign for the left- handedpart (ompare (3.6) and (3.7)). Let us fous in the following on the right-hand part. Inthe expression (2.58) for the overlap we hoose for 
1 the ovariane whih orrespondsto the out - vauum, i. e.,
1(x; y) = Xn�� 0;n(x) y0;n(y)�Xn>� 0;n(x) y0;n(y); (5.52)where we have inluded the zero energy eigenfuntion in the �rst sum. Sine t hasdropped out in this expression, we have skipped it in the aruments for the wave fun-tions. Sine the phase fator in (5.50) is spae-independent, the time-evolved in -37



ovariane (whih plays the role of 
2) is just given by
2(x; y) = Xn�� 0;n(x) y0;n(y)�Xn>� 0;n(x) y0;n(y): (5.53)It is lear that this satis�es the time-dependent Shr�odinger equation (2.51) triviallywith the orret boundary ondition at t < t1. We then �nd for the operator produt
1
2 in (2.58)
1
2 = Z dz0�Xn�� 0;n(x) y0;n(z)Xl�� 0;l(z) y0;l(y)+Xn>� 0;n(x) y0;n(z)Xl>� 0;l(z) y0;l(y)�Xn>� 0;n(x) y0;n(z)Xl�� 0;l(z) y0;l(y)�Xn�� 0;n(x) y0;n(z)Xl>� 0;l(z) y0;l(y)1A : (5.54)We may assume without loss of generality that � > �. The �rst and seond term in(5.54) give together0�Xn��+Xn>�1A 0;n(x) y0;n(y) = Æ(x� y)� X�<n�� 0;n(x) y0;n(y):The third term vanishes for � > �, and the last term gives� X�<n�� 0;n(x) y0;n(y):We thus have 
1
2 = Æ(x� y)� 2 X�<n�� 0;n(x) y0;n(y):The determinant in the overlap (2.58) thus ontains the operatorA � 12(1 + 
1
2) = Æ(x� y)� X�<n�� 0;n(x) y0;n(y):By ating with A on  0;k one reognizes that A has a zero eigenvalue if � < n � �.In this ase, therefore, the overlap in (2.58) vanishes! This means that the probabilityfor the vauum to remain a vauum is zero { partiles are always reated. Sineboth states 	1 and 	2 are, however, Gaussians it follows that these states belong todi�erent Hilbert spaes { in the ase of in�nitely many degrees of freedom the overlapbetween Gaussians an vanish [1℄. How an one ope with this situation? The key to aproper treatment is provided by the observation that the energy eigenvalues En of the�rst-quantized eigenfuntions exhibit a spetral ow { some of them pass through zerobetween the in- and out - region. This is peuliar to the massless ase sine the energyvalues En do not hange sign for m 6= 0, see (3.44). As a onsequene of the spetralow the time - evolved in - state ontains, in the out - region, either oupied positive38



energy states or empty negative energy states (for de�niteness we assume that thereexist oupied positive energy states). Our original �lling presription says, however,that for the vauum state all positive energy states are empty. To have all states inthe same Hilbert spae (Fok spae), one has thus to de�ne the out - vauum state byapplying as many annihilation operators on the out - Gaussian as there are oupiedenergy states, i.e., j0; outi � N ['℄Yk=1 ak exp(uy
1u): (5.55)Again, ' = (R L0 A)=(2�) is the ux. The time - evolved in - state an thus be writtenas 	in t!1�! N exp(uy
1u) = ['℄Yk=1 aykj0; outi: (5.56)This state thus ontains ['℄ partiles with respet to the out - vauum, a result whih isof ourse well known (see, e. g., [20℄). The partile reation rate expressed by (5.56) isdiretly related to the anomaly in the axial urrent, and there is a general relationshipbetween the spetral ow of the �rst - quantized Dira hamiltonian, the topologialharge, and the anomalous partile prodution. This is very learly disussed, forexample, in [21℄. The important di�erene to the previous subsetion is the fat that inthe present ase a de�nite number of partiles has been produed (as given by the uxof the external �eld), whereas in the previous ase there is a nonvanishing probabilityfor the prodution of any number of partiles. The Shr�odinger piture thus provides uswith an intuitive explanation for the anomaly: The �lling presription, whih is ruialfor the spei�ation of the ground state, hanges in dependene on the external �eld.Consequently, the notions of vauum and exited states hange under the inuene ofthe external �eld.
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Chapter 6Disussion and OutlookThe use of di�erent formal approahes to the same theory may not only be importantfor making di�erent appliations but may also ontain the potentiality to extend thetheory into di�erent new diretions. In the present paper we have disussed the fun-tional Shr�odinger piture for fermioni �elds and some of its appliations. Broadlyspeaking, there are two main advantages of this. First, the use of wave funtionalsgives an intuitive piture of the physis involved, in partiular with regard to onep-tual questions. This beame espeially lear in our disussion of partile reation andanomalies. Seond, this piture may possess tehnial advantages in some appliations,suh as the alulation of expetation values or anomalous partile prodution rates.One might therefore expet this piture to be of some use in other branhes of quan-tum �eld theory where less results are known than in QED. In fat, among the nextappliations we have in mind are fermions in a gravitational bakground as well as ou-pled to a quantized gravitational �eld, espeially in the framework of the new variablesin anonial general relativity [5℄. This ould shed some light on the �nal stages ofblak hole evaporation. Further possible appliations inlude non-abelian �elds in fourdimensions [22℄, deoherene [23℄, the semilassial approximation [7℄, bosonization, aswell as the extension to problems where non-Gaussian states play a role.In the bulk of this paper we have restrited ourselves to the ase where the exter-nal eletromagneti �eld an be treated semilassially. This is formally expressed bynegleting terms ontaining Æ=ÆA(x) in the full Hamiltonian (2.4). We want to relaxthis restrition now and onlude our paper with a brief disussion of some subtletieswhih arise when the Gauss onstraint (2.6) is realized on wave funtionals 	[A; u; uy℄in the full theory. Applying the Gauss operatorG(x) = rE� e y (6.1)on states 	 we �nd, using the realization (2.9) - (2.11) for the �eld operators,G(x)	 =  1ir ÆÆA � e2 [uyu+ Æ2ÆuÆuy+uy ÆÆuy � u ÆÆu ℄�	[A; u; uy℄ = 0: (6.2)Classially, the Gauss operator generates loal gauge transformations. This also holds40



in the quantum theory, in the sense that�Z dx�(x)G(x);  (y)� = e�(y) (y); et: (6.3)with an appropriate test lass funtion �(x). The surprise omes if one evaluates theexpression (6.2) for the Gaussian state (2.14). This yieldsG(x)	 = �12 Z dydzuy�(y)[Æ(y � x)Æ�� +
��(y; x)℄ �[Æ(x� z)Æ� � 
�(x; z)℄u(z)	 6= 0: (6.4)Thus, although 	 is expliitly gauge - invariant, it is not annihilated by the Gauss op-erator. This an also be reognized from a di�erent perspetive. Under an in�nitesimalgauge transformation a state 	 hanges as follows:	[A; u; uy℄ ! 	[A; u; uy℄� Z dx�(x)�r ÆÆA + ieu ÆÆu�ieuy ÆÆuy�	: (6.5)The state therefore remains invariant if�1ir ÆÆA + eu ÆÆu � euy ÆÆuy�	 � ~G(x)	 = 0: (6.6)Obviously, ~G di�ers from G. The formal reason is the fermioni harater of the matter�elds whih allows the realization of the �eld operators as in (2.10) and (2.11). Infat, in the bosoni ase one has ~G � G [7℄. Note that the integrated Gauss operatorannihilates 	, i. e., Z dxG(x)	 = Z dx ~G(x)	 = 0: (6.7)The interpretation of (6.4) was given by Floreanini and Jakiw [8℄. The Gauss operatorG may produe states whih lie outside the original Fok spae from whih one started,sine the spae spanned by u and uy is muh bigger than the spae obtained fromthe ground state through appliation of the �eld operators  and  y. They an onlyprodue polynoms in (1 + 
)u � u+; uy(1� 
) � uy�; (6.8)whereas in (6.4) one reognizes their adjoints u� and uy+:G(x)	 = �12uy+(x)u�(x)	: (6.9)The presription we impose here is to projet the ation of the Gauss operator bakonto the original Fok spae, G ! PFG � 14u+uy�G:Sine the state (6.9) is orthogonal to eah state in this spae, one has of oursePFG(x)	 = 0: (6.10)41



In partiular, one �nds that the expetation value of the Gauss operator vanishes,h	jG(x)	i = 0.There is only one possible obstrution to this presription: it may happen that thepresene of an anomaly spoils the ommutativity of two Gauss operator (this anomalyshould not be onfused with the anomaly of the axial urrent disussed in the lastsetion). In this ase our presription would lead to a ontradition sine the projetedGauss operators always ommute with eah other. An example where suh anomaliesour are hiral fermions in an external eletromagneti �eld [8℄. In suh a ase oneannot identify a state 	 with its projeted state, u+uy�	=4. Here, however, we dealwith Dira fermions where the anomaly onneted with the left - handed part anelsthe orresponding anomaly of the right - handed part. It is thus perfetly onsistent toidentify states with their projeted version.In this respet the situation is analogous to the Gupta - Bleuler quantization ofeletrodynamis where one an get rid of negative norm states by identifying stateswith zero norm.We have thus shown that the Gauss operator for fermions an be onsistently inter-preted in the funtional Shr�odinger piture if no gauge violating anomalies are present.AknowledgementWe thank the referee for pointing out an error in a preliminary version of this paper.This artile was supported by the Swiss National Siene Foundation.
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