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Chapter 1Introdu
tionQuantum �eld theory has been su

essfully applied in various formal s
hemes. Highenergy experiments often deal with s
attering pro
esses, where the intera
tion 
an betreated as a perturbation. It is therefore not surprising that their theoreti
al des
riptionmakes use of methods, su
h as the S-matrix or path integral approa
h, whi
h are wellsuited for perturbation theory. There is, however, an in
reasing area of appli
ationswhere su
h methods are of limited use. Among these are the 
on�nement problem inQCD, anomalies, and large gauge transformations, to mention only a few. In theseappli
ations the language of wave fun
tionals and the fun
tional S
hr�odinger equationhas provided valuable insights (see, e. g., [1℄ and [2℄ for a review). One big advantageof this language is that the intuitive pi
ture of evolving wave fun
tions, so su

essful inquantum me
hani
s, 
an be extended to problems in �eld theory. It is of 
ourse still anopen problem whether the existen
e of the S
hr�odinger pi
ture 
an be proven rigorously.At least in the 
ase of renormalizable s
alar �eld theories it has been demonstratedthat a fun
tional S
hr�odinger equation with respe
t to a global time parameter existsat ea
h order of perturbation theory [3℄. For arbitrary lo
al time variations an expli
it
al
ulation has veri�ed the validity of the S
hr�odinger equation up to two loops [4℄.An important �eld of appli
ation is quantum gravity. Sin
e quantum general rela-tivity is nonrenormalizable at the perturbative level, one has to develop nonperturbativemethods, provided the theory is viable at all. There have been remarkable develop-ments in 
anoni
al quantum gravity in re
ent years whi
h have so far 
ulminated in thedis
overy, by using the fun
tional S
hr�odinger pi
ture, of exa
t formal solutions to all
onstraint equations [5℄. The use of wave fun
tionals has also been useful in performingsemi
lassi
al approximations, for example in the derivation of formal 
orre
tion termsto the S
hr�odinger equation from quantum gravity [6℄. It may thus turn out to be veryuseful for later appli
ations to explore the potentialities of the fun
tional S
hr�odingerpi
ture in ordinary �eld theory.In a re
ent paper [7℄ one of us has dis
ussed various aspe
ts of s
alar QED in thisframework, su
h as the semi
lassi
al approximation and external �eld problems likeparti
le 
reation. In the present paper we extend this work to the 
oupling of fermioni
matter to gauge �elds. Apart from the last se
tion we limit ourselves to the 
ase wherethe gauge �eld 
an be treated semi
lassi
ally, i.e. we dis
uss the fun
tional S
hr�odingerequation for the fermioni
 wave fun
tional in a pres
ribed external gauge �eld. Mostof our work deals with QED but we also give some results for the non-abelian 
ase.1



We start by giving a brief review of the fun
tional S
hr�odinger equation for fermionsfollowing, with elaborations, the work of Floreanini and Ja
kiw [8℄ (se
tions 2.1 and2.2). Gaussian states are used as generalized va
uum states, but 
ontrary to the bosoni

ase one has to �x a �lling pres
ription for the Dira
 sea to sele
t a parti
ular va
uum.Se
tion 2.3 is 
on
erned with the time-dependent S
hr�odinger equation. We give itsformal solution for arbitrary external �elds in terms of solutions of the (�rst-quantized)Dira
 equation.We then pro
eed to 
al
ulate the exa
t ground state for arbitrary external �elds intwo dimensional QED in both the massless and the massive 
ase (se
tion 3). We giveexpli
it expressions for the expe
tation values of the Hamiltonian, the ele
tri
 
harge,and the axial 
harge with respe
t to this ground state. Regularization is performedthrough gauge-invariant point splitting. All results are given for the 
ase of �niteas well as in�nite spa
e intervals. The �nite 
ase allows a 
areful dis
ussion of thedependen
e of the Casimir energy on the 
hosen boundary 
onditions.The extension to non-abelian �elds in two dimensions is straightforward (se
tion 4).We give the exa
t ground state as well as the expe
tations values for the Hamiltonian,the ele
tri
 and axial 
harges.We then pro
eed to dis
uss appli
ations of the time - dependent S
hr�odinger equa-tion (se
tion 5). The parti
le 
reation rate for 
onstant external ele
tri
 �elds is 
al-
ulated in this framework and the 
lassi
al result found by S
hwinger is re
overed(se
tion 5.1). In the massless 
ase in two dimensions we 
al
ulate the anomalous par-ti
le produ
tion rate for arbitrary external �elds. Its interpretation in the fun
tionallanguage is very transparent { the anomalous produ
tion rate is basi
ally due to thedependen
e of the �lling pres
ription on the external �eld (se
tion 5.2).In the �nal se
tion we go beyond the external �eld approximation and dis
uss brie
ysome subtleties 
onne
ted with the interpretation of Gauss law (se
tion 6). We showthat, ex
ept for the 
ase when anomalies violating gauge invarian
e are present, theinterpretation of the Gauss 
onstraint as a generator of gauge transformation 
an beres
ued even if it does no longer annihilate gauge invariant states. We also present abrief outlook on possible future work.
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Chapter 2Fun
tional S
hr�odinger equationfor fermions2.1 Commutation relations and inner produ
tIn this se
tion we give a brief review of the 
anoni
al formalism for QED and thefun
tional S
hr�odinger pi
ture. Unless otherwise stated, the dimension D of spa
etimeis left arbitrary. The Lagrangian density is given byL = �14F��F �� + i � (D�
� �m) ; (2.1)where D� = �� + ieA� (2.2)is the 
ovariant derivative asso
iated with the ele
tromagneti
 potentialA�. The 
anon-i
al momenta read �0 = 0; �i = Fi0 � Ei; � = i y (2.3)so that the total Hamiltonian is given byH = Z dx�12E2 + 14F ijFij�+ Z dxdy y(x)h(x; y) (y)+ Z dxA0(e y �rE); (2.4)where h(x; y) = �i
0
i ��xi Æ(x � y) + 
0(m+ e
iAi)Æ(x � y) (2.5)plays the role of a �rst quantized Dira
 Hamiltonian in an external ele
tromagneti
�eld. We will denote with h(0) the �rst quantized Hamiltonian without external �eld.We note that x and y is a shorthand notation for a ve
tor in (D�1) dimensional spa
e,and the metri
 
onvention for spa
etime is diag(1;�1 � 1; :::). Variation of (2.4) withrespe
t to A0 yields the Gauss 
onstraintrE = e y : (2.6)3



In the following we use the gauge 
ondition A0 = 0. The 
ommutation relations read[Ai(x); Ej(y)℄ = iÆji Æ(x� y) (2.7)for the ele
tromagneti
 �eld, andf �(x);  y�(y)g = Æ��Æ(x� y) (2.8)for the fermion �elds. All other 
ommutators (anti
ommutators) vanish.In the fun
tional S
hr�odinger pi
ture we represent these 
ommutation relations bya
ting with the �eld operators on physi
al states 	[u; uy;A℄ a

ording toEj ! 1i ÆÆAj ; (2.9) � ! 1p2  u� + ÆÆuy�! ; (2.10) y� ! 1p2 �uy� + ÆÆu�� ; (2.11)and A is represented by multipli
ation. Note that u� and uy� are Grassmann variables,and 	 is not an eigenstate of either  or  y. An alternative representation has beenused, for example, in [9℄, where  is represented, as in the bosoni
 
ase, by multipli
ationwith u, and  y is represented by Æ=Æu. Sin
e, however, the Hermitean 
onjugate of u inthat representation is not given by uy, but by Æ=Æu, we �nd it easier for our dis
ussionto resort to the representation (2.10) and (2.11).The Grassmann 
hara
ter of the fermion �elds requires a 
areful treatment of theinner produ
t [8℄. If one de�nes the inner produ
t by the fun
tional integration (wedo in the following not expli
itly write out the ele
tromagneti
 �eld and the spinorindi
es) h	1j	2i � Z DuyDu	�1	2 = h	2j	1i�; (2.12)the dual 	� of a state 	 is not given by ordinary 
omplex 
onjugation, but by theexpression 	�[u; uy℄ = Z D�uyD�u exp��uuy + �uyu� �	[�u; �uy℄: (2.13)Here, �	 is the hermitean 
onjugate of 	. We have used a 
ompa
t notation, i. e.,�uu � R dx�u�(x)u�(x), et
. Note the analogy to the Bargmann representation for theharmoni
 os
illator in quantum me
hani
s.A spe
ial role is played by Gaussian states,	 = exp �uy
u� ; (2.14)sin
e this generalizes the notion of a Fo
k va
uum; 
 is sometimes 
alled the \
ovari-an
e."If we apply the above rules to su
h a state we �nd�	[�u; �uy℄ = exp ��uy
y�u� ; (2.15)4



and for the dual, applying the familiar rules of Grassmann integration,	�[u; uy℄ = Z D�uyD�u exp��uuy + �uyu+ �uy
y�u�= det(�
y) exp �uy(
y)�1u� : (2.16)One then �nds for h	j	i the expressionh	j	i = det(�
y) Z DuyDu exp �uy h(
y)�1 +
iu�= det(1 + 
y
): (2.17)An important di�eren
e to the bosoni
 
ase is the fa
t that the state 	[u; uy℄ is not anoverlap with �elds states, 	[u; uy℄ 6= hu; uyj	i, sin
e the inner produ
t is an ordinarynumber, whereas 	 
an be expanded in terms of Grassmann variables.2.2 Solution of the stationary S
hr�odinger equationIn this se
tion we look for the ground state of the Dira
 Hamiltonian in an externalele
tromagneti
 �eld, i. e., we solve the stationary S
hr�odinger equation�Z dxdy y(x)h(x; y) (y)�	 � H 	 = E0	: (2.18)If  n are the eigenmodes of the �rst quantized Hamiltonian h,h n = En n; (2.19)we 
an expand the �eld operators  and  y as =Xn an n;  y =Xn ayn yn; (2.20)where an (ayn) is the usual annihilation (
reation) operator. Then,H =Xn Enaynan: (2.21)We 
an also expand u and uy in terms of these eigenmodesu(x) =Xn un n(x); uy(x) =Xn uyn yn(x): (2.22)Note that ÆÆu(x) =Xn  yn(x) ÆÆun (2.23)to guarantee that Æu(x)=Æu(y) = Æ(x�y). Inserting these expansions into the expressionfor H , we �nd H = 12Xn En �uyn + ÆÆun� un + ÆÆuyn! : (2.24)5



We want to apply this Hamiltonian on the Gaussian state (2.14). To that purpose wenote that uy
u =Xn;muyn
nmum (2.25)with 
(x; y) =Xn;m
nm n(x) ym(y): (2.26)We then �nd H 	 = 12Trh(1 + 
)	+12 Xk;l;nuyn(Ænk � 
nk)Ek(Ækl +
kl)ul	: (2.27)Upon 
omparison with (2.18) we see that the ground state energy is given byE0 = 12Trh(1 + 
) = 12Xn En(1 + 
nn); (2.28)and that, sin
e the se
ond term in (2.27) must vanish, the elements of 
nn are givenby 
nm = �Ænm: (2.29)There still remains some arbitrariness how one distributes the numbers 1 and �1 amongthe elements of 
. This arbitrariness 
an be removed by the use of the annihilationoperators introdu
ed above. We haveaynan	 = �uyn + ÆÆun� un + ÆÆuyn!	= 12(1 + 
nn)	: (2.30)We demand that the ground state 	 be annihilated by an for positive energies En, i.e., aynan	 = ( 0 if 
nn = �1$ En > 0	 if 
nn = +1$ En < 0 (2.31)This sele
ts a spe
i�
 ground state and is equivalent to say, in a more heuristi
 language,that a spe
i�
 pres
ription for the �lling of the Dira
 sea has been 
hosen. From (2.26)we thus �nd for the 
ovarian
e
(x; y) = XEn<0 n(x) yn(y)� XEn>0 n(x) yn(y): (2.32)It is very 
onvenient, and we will make extensive use of it later on, to express thisrelation in terms of proje
tors, 
 � P� � P+; (2.33)where P� � 1�
2 (2.34)6



proje
t on positive and negative energies, respe
tively:P+P� = P�P+ = 0; P 2+ = P+; P 2� = P�; P+ + P� = 1: (2.35)We also note the operator expression for 
, whi
h follows from the vanishing of these
ond term in (2.27), reads:14(1� 
)h(1 + 
) = 0 = P+hP�: (2.36)In 
ase that the external ele
tromagneti
 �eld vanishes we 
an give easily an expli
itexpression for 
. In momentum spa
e, the solution 
orresponding to the �lling pre-s
ription (2.31) reads 
(0)(p; p0) = � h(0)pp2 +m2 Æ(p� p0); (2.37)where h(0) is the A-independent part of (2.5). This 
an most easily be seen by 
al
u-lating the va
uum energy E0. From (2.28) we have, sin
e h(0) has vanishing tra
e,E0 = 12Trh(0)
(0) = 12Xn En
nn = �12Xn jEnj= �12Trqp2 +m2 = �12 V(2�)3 Z d3pqp2 +m2: (2.38)Use has been made here of the fa
t that the square of h is given byh2(0) = p2 +m2: (2.39)For later use we give the expli
it result for two and four spa
etime dimensions. In twodimensions we have, in the 
hiral representation,
(0) = � 1pp2 +m2  �p mm p ! ; (2.40)and in the Dira
 representation
(0) = 1pp2 +m2  �m pp m ! : (2.41)In the four dimensional 
ase we have, in the Dira
 representation,
(0) = � 1pp2 +m2  m � � p� � p �m ! ; (2.42)where � are the Pauli matri
es.We 
on
lude this se
tion with a dis
ussion of the two-point fun
tionh �(x) y�(y)i, where the expe
tation value is 
omputed with respe
t to the above
7



ground state. For this we need the two-point fun
tion of uuy whi
h we now 
al
u-late, using (2.14) and (2.16),hu�(x)uy�(y)ih	j	i = det(�
y)h	j	i Z DuyDuu�(x)uy�(y)� exp �uy[(
y)�1 +
℄u� (2.43)= det(�
y)h	j	i Æ2Æ��(x)Æ�y�(y) Z DuyDu� exp �uy[(
y)�1 +
℄u+ �u+ �yuy� j�=�y=0= det(1 + 
y
)h	j	i Æ2Æ��(x)Æ�y�(y) exp ��[(
y)�1 +
℄�1�y� j�=�y=0= �[(
y)�1 +
℄�1��(x; y); (2.44)where (2.17) has been used. In the present 
ase, where 
 = 
y and 
2 = 1, this readshu�(x)uy�(y)ih	j	i = �12
��(x; y): (2.45)If we apply  �(x) y�(y) on the ground state, we �nd �(x) y�(y)	 = 12(Æ��Æ(x� y)�
��(x; y))	+12(u�(x) + 
�Æ(x;w)uÆ(w))(uy�(y)� uy
(z)

�(z; y))	;where a summation (integration) over repeated indi
es (variables) is understood.Using the result (2.45) we �nd eventually for the desired two-point fun
tion theexpression h �(x) y�(y)ih	j	i = 12(Æ��Æ(x � y)� 
��(x; y)); (2.46)or, in operator notation and with respe
t to a normalized state,h (x) y(y)i = 12(1� 
(x; y)) = P+(x; y): (2.47)Thus, if one knows the 
ovarian
e, one 
an 
al
ulate all two-point fun
tions, and vi
eversa. We �nally note that ex
ited states 
an be easily generated by applying the above
reation operator ayn on the ground state, leading to a Gaussian times some polynomial.2.3 Solution of the time-dependent S
hr�odinger equationIn this se
tion we dis
uss the solution of the fun
tional S
hr�odinger equation forfermions in an external ele
tromagneti
 �eld,�Z dxdy y(x)h(x; y) (y)�	 � H 	 = i _	; (2.48)8



where, again, h is given expli
itly by (2.5). Equation (2.48) follows from a semi
lassi
alexpansion of the full fun
tional S
hr�odinger equation [7℄. We make again a Gaussianansatz, 	 = N(t) exp�uy
(t)u� ; (2.49)where 
 and N now depend on time. The state (2.49) may be thought as an evolvingva
uum state. Inserting this ansatz into (2.48) we �nd two equations for N and 
whi
h read, in operator notation,id lnNdt = 12Trh
 (2.50)i _
 = 12(1� 
)h(1 + 
): (2.51)An important spe
ial 
ase is given if 
 
an be written in terms of the proje
tors (2.33,2.34). As in the 
ase of the stationary equation this is equivalent to 
2 = 1.One physi
al appli
ation we have in mind is to 
hoose the free solution in, say, theasymptoti
 past and study its evolution under the in
uen
e of an external ele
tromag-neti
 �eld a

ording to (2.48). It is important to note that (2.51) preserves the property
2 = 1. Thus, 
(t) 
an always be written as in (2.33) provided 
2(t0) = 1 for some\initial time" t0. This 
an easily be seen: One �rst veri�es that the inverse of 
, 
�1,obeys the same di�erential equation as (2.51). From the uniqueness of the solution wethus have 
(t0) = 
�1(t0)) 
(t) = 
�1(t), 
2(t) = 1.Eq. (2.51) is solved by 
(t) = (Q(t)� C) (Q(t) + C)�1 ; (2.52)where C is a time-independent operator, and the operator Q(t) satis�esi _Q = hQ: (2.53)One may wish, for example, to 
hoose for 
 the \free solution" (2.32) in the asymptoti
past, i.e., one demands that 
 approa
hes 
0 = P� � P+ for t ! �1. This would
orrespond to the 
hoi
e C = P+; (2.54)Q(t) t!�1�! P�: (2.55)The time evolution a

ording to (2.48) will then in general indu
e a time dependen
eof 
 whi
h may deviate, at late times, from the asymptoti
 \free" solution. This 
anthen be interpreted as parti
le 
reation and will be expli
itly dis
ussed below.The signi�
an
e of the result (2.52), (2.53) 
onsists in the redu
tion of the solutionof the full fun
tional equation (2.48) to the solution of a \�rst quantized" problem {Eq. (2.53) is nothing but the Dira
 equation with an external ele
tromagneti
 �eld.After the solution for 
 has been found, the prefa
tor N 
an be immediately deter-mined from (2.50) to readN(t) = N0 exp�� i2 Z t Tr(h
)ds� : (2.56)9



The time-independent fa
tor N0 
an be �xed if 	 is normalized, i. e. h	j	i = 1, andone �nds, using (2.17),N(t) = det�1=2(1 + 
y
) exp�� i2 Z tRe Tr(h
)ds� : (2.57)We now address the question of parti
le 
reation. We �rst note that the absolute squareof the matrix element of two Gaussians, 	1 and 	2, with 
orresponding 
ovarian
es 
1and 
2, is given by the expressionjh	1j	2ij2 = det(1 + 
y1
2)(1 + 
y2
1)(1 + 
y1
1)(1 + 
y2
2) : (2.58)In the following we will take for 	1 the time-evolved in-va
uum and for 	2 the va
uumstate at late times. The 
orresponding 
ovarian
es will be 
alled 
(t) and 
0, respe
-tively. As dis
ussed above, we demand 
(t) to approa
h the \free 
ovarian
e" 
0 att! �1. Sin
e 
0 = 
y and 
20 = 1, the desired transition element (2.58) readsjh	1j	2ij2 = det(1 + 
0
(t))(1 + 
y(t)
0)2(1 + 
y(t)
(t)) : (2.59)To get the desired expression (2.52) for 
, whi
h for the present 
ase reads
(t) = (Q(t)� P+) (Q(t) + P+)�1 ; (2.60)it is �rst ne
essary to solve (2.53) for Q(t). This is most 
onveniently done by theansatz Q(t) =Xn �n(t)�yn; (2.61)where �n (without argument) denotes a negative frequen
y eigenfun
tion of the Dira
Hamiltonian h, and �n(t) denotes the solution of (2.53) whi
h approa
hes �n in theasymptoti
 limit t! �1. Therefore,Q(t) t!�1�! Xn �n�yn � P�;as required.It will prove to be 
onvenient if one expands �n(t) as follows,�n(t) = �nm(t)�m + �nm(t) m; (2.62)where  m is a positive frequen
y eigenfun
tion of h, and �, � are the time-dependentBogolubov 
oeÆ
ients asso
iated with this expansion. Sin
e h is hermitean, the norm(�n(t); �m(t)) is 
onserved, and we 
hoose it to be equal to one. The Bogolubov 
oef-�
ients are then normalized a

ording toj�j2 + j�j2 = 1: (2.63)Note that this is di�erent from the bosoni
 
ase where the analogous expression 
ontainsa minus sign. 10



The operator Q(t) + P+ in (2.60) is then given by the expressionQ(t) + P+ =Xn;m��nm�m�yn + �nm m�yn�+Xn  n yn; (2.64)from where its inverse is found to read(Q(t) + P+)�1 =Xn  n yn �Xn;s;t n��1st �tn�yn +Xn;s �n��1sn �ys: (2.65)One 
an then write down the desired expression for 
(t),
(t) = Xn (�n�yn �  n yn) + 2Xn;s;t n��1st �tn�ys= 
0 + 2Xn;s;t n��1st �tn�ys� 
0 + 2B; (2.66)where we have introdu
ed an operator B, whi
h in the position representation is givenby B(x; y) = Xn;s;t n(x)��1st �tn�ys(y): (2.67)It maps negative energy eigenfun
tions into positive ones, and it annihilates positiveenergy eigenfun
tions. Conversely, its adjointBy(x; y) = Xn;s;t�s(x)���1st ��tn yn(y) (2.68)maps positive energy eigenfun
tions into negative ones and annihilates negative energyeigenfun
tions. Note that B and By are nilpotent operators.One then �nds for the various terms in the transition element (2.59) the expressions
y(t)
0 = 1� 2By;
0
(t) = 1� 2B;
y(t)
(t) = 1� 2B � 2By + 4ByB; (2.69)and one has jh	1j	2ij2 = det (1�B)(1�By)(1�B �By + 2ByB) : (2.70)Written in the basis ( ; �)T , the various operators in (2.69) are given by the matrixexpressions B =  0 ��1�0 0 ! ;By =  0 0(��1�)y 0 ! ;ByB =  0 00 (��1�)y��1� ! : (2.71)11



One immediately veri�es that det(1�B) = det(1�By) = 1. Therefore, using (2.63),jh	1j	2ij2 = det�1(1�B �By � 2ByB)= det�1(1 + ��1��y��1y) = det�1(1 + �y(1� ��y)�1�)= det�1��1(1� ��y)�1� = det(1� ��y): (2.72)The interpretation of this result is obvious. The determinant is less than one fornon-vanishing Bogolubov 
oeÆ
ient �, whi
h signals parti
le 
reation. Note that theanalogous expression in the bosoni
 
ase reads [7℄ det�1(1+��y), whi
h is only equal to(2.72) for small �. We will apply the above result to the 
al
ulation of parti
le 
reationin an external ele
tri
 �eld in se
tion 5.
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Chapter 3Ground state for two-dimensionalQED3.1 The massless 
ase3.1.1 Cal
ulation of the 
ovarian
eIn the following we shall give expli
it results for the ground state of two-dimensionalQED in arbitrary external ele
tromagneti
 �elds by applying the method developedin the last se
tion. Two-dimensional massless QED is also known as the S
hwingermodel [10℄. It has been expli
itly solved and found to be equivalent to the theory of afree massive s
alar �eld (see [11℄ for some literature on the S
hwinger model). In thispaper we also address some issues for the S
hwinger model on a �nite spa
e [12℄. TheHamiltonian formalism for the S
hwinger model has been dis
ussed in [13℄ and [14℄.It is 
onvenient to dis
uss the massless and the massive 
ase separately sin
e it isadequate to use the 
hiral representation for the Gamma matri
es in the massless 
aseand the Dira
 representation in the massive 
ase. For m = 0 we thus use
0 =  0 11 0 ! ; 
1 =  0 1�1 0 ! ; 
0
1 =  �1 00 1 ! : (3.1)The �rst-quantized Hamiltonian h (2.5) is then given expli
itly by (with A1 � A)h(x; y) =  i ��x � eA(x) 00 �i ��x + eA(x) ! Æ(x� y): (3.2)To �nd the ground state of the stationary S
hr�odinger equation we have to solve the"�rst-quantized" problem (2.19), i. e., to �nd the spe
trum of (3.2),h n = En n: (3.3)We quantize the �elds in a �nite interval, x 2 [0; L℄, and impose the boundary 
ondition n(x+ L) = e2�i(�+�
5) n(x); (3.4)13



where � and � are the ve
torial and 
hiral twists, respe
tively. Writing n =  'n�n ! ; (3.5)the diagonality of h yields two de
oupled equations for 'n and �n, 
orresponding to ade
omposition into right- and left handed fermions. One �nds from (3.3) for the righthanded part 'n(x) = 1pL exp ��i�ERn x+ e Z x0 A�� ;ERn = 2�L (n� �� �)� eL Z L0 A � 2�L (n� �); (3.6)and for the left handed part�n(x) = 1pL exp �i�ELnx� e Z x0 A�� ;ELn = �2�L (n� �+ �) + eL Z L0 A � �2�L (n� ~�): (3.7)Here we have introdu
ed � = �+ � + e2� Z L0 A (3.8)~� = �� � + e2� Z L0 A: (3.9)The 
ovarian
e (2.32) also splits into a right- and left handed part
(x; y) =  
+(x; y) 00 
�(x; y) ! ; (3.10)where 
+(x; y) = XERn<0'n(x)'yn(y)� XERn>0'n(x)'yn(y);
�(x; y) = XELn<0�n(x)�yn(y)� XELn>0�n(x)�yn(y): (3.11)From (3.6) and (3.7) one re
ognizes that ERn > 0 for n > � and ELn > 0 for n < ~�.Inserting all this into (3.11) one �nds
+(x; y) = 1L XERn<0 exp�iERn (y � x) + ie Z yx A�� 1L XERn>0 exp�iERn (y � x) + ie Z yx A�= 1L exp�ie Z yx A+ i2��L (x� y)��14



0�Xn<� exp ��2�inL (x� y)��Xn>� exp ��2�inL (x� y)�1A= iL exp�ie Z yx A+ 2�iL (�� [�℄� 12)(x� y)��1sin �L(x� y) ; (3.12)where [�℄ denotes the biggest integer smaller or equal than �.The left handed part, 
�(x; y), is 
al
ulated in the same way, and found to read
�(x; y) = � iL exp�ie Z yx A+ 2�iL ( ~�� [ ~�℄� 12)(x� y)� 1sin �L(x� y) : (3.13)In the limit L!1 the 
ovarian
e is given by the expression
(x; y) = i� exp�ie Z yx A�P � 1x� y� 1 00 �1 ! ; (3.14)where P denotes the prin
ipal value. This result is in a

ordan
e with [8℄. We make a�nal remark on the existen
e of large gauge transformations, i. e. gauge transformationswhi
h 
annot be obtained from the identity in a 
ontinuous way. As 
an be seen fromthe expressions for the energy, (3.6) and (3.7), su
h gauge transformations 
hangethe 
uxes � and ~� by an integer. Sin
e the eigenfun
tions in (3.6) and (3.7) remainun
hanged, and the 
ovarian
e 
ontains only the fra
tional part of the 
ux (see (3.12)and (3.13)), the wave fun
tional (2.14) remains invariant.3.1.2 Charges and energyIn this subse
tion we shall 
al
ulate the expe
tation values of the 
harge, 
hiral 
harge,and energy with respe
t to the ground state derived above.The 
omponents of the ele
tri
 
urrent are given byj0 =  y = 'y'+ �y� � j+ + j�; (3.15)j1 =  y
0
1 = �'y'+ �y� � �j+ + j�: (3.16)The total 
harge is thus given byQ = Z dxj+ + Z dxj� � Q+ +Q�; (3.17)and the 
hiral 
harge by Q5 = Q+ �Q�: (3.18)These expressions 
ontain produ
ts of the �eld operators and thus require a regular-ization pres
ription. The pro
edure employed here is to �rst perform a point splittingand then to subtra
t the expe
tation value for vanishing external �eld. After the pointsplitting is removed, one is left with a �nite result. The 
ru
ial point to note is that the15



point splitting has to be done in a gauge invariant way. We thus de�ne the following\point splitted" quantities�+(x; y) = 'y(x) exp�ie Z yx A�'(y) (3.19)��(x; y) = �y(x)exp�ie Z yx A��(y): (3.20)They are expli
itly gauge invariant. Applying �+ on the va
uum state (2.14) we �nd�+	 = 12 exp�ie Z yx A��uy1(x) + ÆÆu1(x)� u1(y) + ÆÆuy1(y)!	= 12 exp�ie Z yx A� (Æ(x � y) + 
+(y; x))	+12 exp�ie Z yx A� (uy1(x)� 
+(z; x)uy1(z)) �(u1(y) + 
+(y; z)u(z))	; (3.21)where, again, an integration over repeated variables is understood. If we set x = yand integrate over x, the last term on the right-hand side of (3.21) vanishes sin
e(1� 
+)(1 + 
+) = 0 a

ording to (2.36). Subtra
ting the expression for vanishing A�eld, the �rst term after the se
ond equation sign on the right-hand side of (3.21) reads12 exp�ie Z yx A�
+(y; x)� 12
(0)(y; x)= i2� exp�2�iL (�� [�℄� 12)(y � x)� 1y � x � �$ �0 +O(x� y); (3.22)where we have expanded the sine in the expression (3.12) for the 
ovarian
e and keptonly the term proportional to (x� y)�1. We have also introdu
ed�0 = �+ � (3.23)so that � = �0 + e2� Z L0 A � �0 + ' (3.24)(
ompare (3.8)). Expanding also the exponential in (3.22) we note that the terms whi
hbe
ome singular in the limit x ! y drop out. We 
an thus remove the point splittingand perform the x integration to �ndhQ+i = [�℄� �� ([�0℄� �0): (3.25)The left handed se
tor is 
al
ulated analogously, with the resulthQ�i = [~�℄� ~�� ([ ~�0℄� ~�0); (3.26)where ~�0 = �� � (3.27)16



so that ~� = ~�0 + e2� Z L0 A � ~�0 + ' (3.28)(
ompare (3.9)).The results for the expe
tation values of the total 
harge and 
hiral 
harge are thengiven by hQi = hQ+i+ hQ�i= [�+ � + '℄� [�+ �℄� [�� � + '℄ + [�� �℄ (3.29)and hQ5i = hQ+i � hQ�i= [�+ � + '℄� [�+ �℄ + [�� � + '℄� [�� �℄� 2': (3.30)Note that < Q >= 0 for vanishing 
hiral twist, � = 0 (see (3.4)), and that < Q5 >=2(['℄ � ') for � = � = 0. The above expe
tation values have been 
al
ulated, usingzeta regularization, by [14℄ for the spe
ial 
ase � = 1=2 and � = 0. Their result is inagreement with ours.We now pro
eed to 
al
ulate the expe
tation value of the Hamiltonian H (2.24).We �rst operate with H on the ground state wave fun
tional to �nd the expression(2.27). We then use the expli
it solution (2.29) for the 
ovarian
e to re
ognize thatonly the �rst term in (2.27) 
ontributes to the expe
tation value < H >:hH i = 12Xn En(1 + 
nn): (3.31)We regularize again by point splitting. We thus introdu
e a "point splitted" expe
tationvalue whi
h for the 
ontribution from the right handed se
tor readsh	jHy (x; y)j	i = 12 exp��ie Z yx A�hxXn (1 + 
nn)'n(x)'yn(y): (3.32)Note that this expression is expli
itly gauge-invariant and redu
es to (3.31) after settingx = y and integrating over x (the a
tion of the �rst-quantized Hamiltonian hx �i�=�x� eA(x) just produ
es the energy En when a
ting on the  n). The 
ompletenessof the 'n, as well as (2.26), enables one to write (3.32) ash	jHy (x; y)j	i = 12 exp��ie Z yx A� hx(Æ(x � y) + 
+(x; y)): (3.33)Using the expli
it expression (3.12) for 
+(x; y) one �nds, up to order x� y,exp��ie Z yx A� hx
+(x; y) =�� 2iL(x� y)(�� [�℄� 12) + 1�(x� y)2 � �6L2��exp�2�iL (�� [�℄� 12)(x� y)�+O(x� y):17



Expanding also the exponential, this readsexp��ie Z yx A� hx
+(x; y) = 1�(x� y)2 � �6L2 + 2�L2 (�� [�℄� 12)2 +O(x� y);so that we �ndh	jHy (x; y)j	i = 12 exp��ie Z yx A� (i ��x � eA)Æ(x � y)+ 12�(x� y)2 � �12L2 + �L2 (�� [�℄� 12)2 +O(x� y):Sin
e exp��ie Z yx A� i ��xÆ(x � y) = iÆ0(x� y) + eA(x)Æ(x � y);we haveh	jHy (x; y)j	i = i2Æ0(x�y)+ 12�(x� y)2 � �12L2 + �L2 (�� [�℄� 12)2+O(x�y): (3.34)From this expression one has to subtra
t the expe
tation value for vanishing external�eld. To retain �nite-size e�e
ts we subtra
t the "free" value for L!1. This removesthe divergent terms in (3.34). Setting x = y and integrating over x, one �nds the resulthHy i = �L ��� [�℄� 12�2 � �12L: (3.35)This vanishes in the limit L ! 1. The expression for �nite L is nothing but theCasimir energy whi
h is also present for vanishing external �eld:hHy i = �L ��0 � [�0℄� 12�2 � �12L:Note that the resulting for
e between the boundaries at x = 0 and x = L 
an be at-tra
tive or repulsive, depending on the 
hosen boundary 
onditions. For the 
onditions
hosen in [14℄ the expe
tation value is given by ��=12L and thus leads to an attra
tivefor
e.The expe
tation value of the Hamiltonian in the left handed se
tor is 
al
ulated inthe same way by making use of (3.13) and using �hx = �i�=�x + eA(x). Instead of(3.35) one �nds hH� i = �L �~�� [ ~�℄� 12�2 � �12L: (3.36)The total Casimir energy is the sum of the expressions (3.35) and (3.36).3.2 The massive 
ase3.2.1 Cal
ulation of the 
ovarian
eIn the massive 
ase we use the Dira
 representation for the Gamma matri
es, i. e.,
0 =  1 00 �1 ! ; 
1 =  0 �11 0 ! ; 
0
1 =  0 �1�1 0 ! : (3.37)18



The �rst-quantized Hamiltonian is then given by the expressionh(x; y) =  m i ��x � eA(x)i ��x � eA(x) �m ! Æ(x � y): (3.38)We are again looking for the eigenfun
tions of h,h n = En n: (3.39)If we make the ansatz  n = 1pL exp��ie Z x0 A� i�nx� 
n; (3.40)Eq. (3.39) yields an algebrai
 equation for 
n, m�En �n�n �m�En ! 
n;1
n;2 ! = 0: (3.41)The boundary 
ondition  n(x+ L) = e2�i� n(x) (3.42)yields a quantization 
ondition for the �n,�n = 2�L  n� �� e2� Z L0 A! � 2�L (n� �); (3.43)where n 2 Z. From (3.41) one then �nds the values for the energy,En = �qm2 + �2n = �sm2 + 4�2L2 (n� �)2 � �!n: (3.44)We already note at this point that the massless limit of (3.44) yields En = �2�L jn� �jinstead of En = �2�L (n � �) whi
h was found by starting from m = 0 ab initio. Thiswill be relevant for the dis
ussion of anomalies in 
hapter 5.The normalized eigenfun
tions  n read n;+ = 1p2!n(!n +m)L  !n +m�n ! exp��i�nx� ie Z x0 A� (3.45)for En = !n, and n;� = 1p2!n(!n +m)L  ��n!n +m ! exp��i�nx� ie Z x0 A� (3.46)for En = �!n.We now use again (2.32) and the �lling pres
ription (2.31) to 
al
ulate the 
ovari-an
e, 
(x; y) = Xn  n;�(x) yn;�(y)�Xn  n;+(x) yn;+(y)� P� � P+: (3.47)19



Noting that �n = (!n +m)(!n �m), we �ndP+(x; y) = 12L exp��ie Z xy A�Xn e�i�n(x�y)!n  !n +m �n�n !n �m ! (3.48)and P�(x; y) = 12L exp��ie Z xy A�Xn e�i�n(x�y)!n  !n �m ��n��n !n +m ! : (3.49)To evaluate the various sums in these expressions we make use of Poisson's summationformula: 2� 1Xn=�1 f(2�n) = 1Xn=�1F (n); (3.50)where F (u) = Z 1�1 dzf(z)eizu: (3.51)We then have Xn �n!n e�2�in(x�y)=L �Xn f(2�n) (3.52)and Xn 1!n e�2�in(x�y)=L �Xn ~f(2�n); (3.53)where f(z) = z � 2��p(z � 2��)2 +m2L2 e�i(x�y)z=L (3.54)and ~f(z) = Lp(z � 2��)2 +m2L2 e�i(x�y)z=L: (3.55)From (3.51) we then �ndF (u) = e2�i�(u�(x�y)=L) Z 1�1 dppeip(u�(x�y)=L)pp2 +m2L2= 2ie2�i�(u�(x�y)=LmLK1(mLu�m(x� y)) (3.56)and ~F (u) = Le2�i�(u�(x�y)=L) Z 1�1 dpeip(u�(x�y)=L)pp2 +m2L2= 2Le2�i�(u�(x�y)=LK0(mLu�m(x� y)): (3.57)Here K0 and K1 denote Bessel fun
tions and use has been made of [15℄ to evaluate theintegrals. From (3.50) we then �nd for the sumsXn �n!n e�2�in(x�y)=L = � imL� e�2�i�(x�y)=LXn e�2�in�K1(mLn+m(x� y)) (3.58)20



and Xn 1!n e�2�in(x�y)=L = L� e�2�i�(x�y)=LXn e�2�in�K0(mLn+m(x� y)): (3.59)In the expressions below we will for simpli
ity not expli
itly write out the argumentmLn+m(x� y) of the Bessel fun
tions K0 and K1. For the remaining sum we haveXn e� 2�inL (x�y) = LXn Æ(x� y � nL) = LÆ(x� y) (3.60)sin
e jx � yj < L. Inserting all these results into the expressions (3.48) and (3.49) we�nd P+ = 12Æ(x � y)I+ m2� exp��ie Z xy A��Xn  K0 �iK1�iK1 �K0 ! e�2�in� (3.61)and P� = 12Æ(x � y)I� m2� exp��ie Z xy A��Xn  K0 �iK1�iK1 �K0 ! e�2�in�: (3.62)We verify that P+ +P� = I. Our �nal result for the 
ovarian
e (2.33) is then given bythe expression 
(x; y) = P� � P+ = m� exp��ie Z xy A��Xn  �K0 iK1iK1 K0 ! e�2�in�: (3.63)In the limit L!1 we �nd
(x; y) = m� exp��ie Z xy A� �K0(m(x� y)) iK1(m(x� y))iK1(m(x� y)) K0(m(x� y)) ! : (3.64)Using the asymptoti
 expressions for the Bessel fun
tions one veri�es that 
 approa
hesthe result (3.14) in the limit of vanishing mass. Furthermore, in the opposite limit oflarge mass (or large jx� yj) the 
ovarian
e reads
(x; y) = s m2�jx� yj exp��ie Z xy A� exp (�mjx� yj) �1 ii 1 ! : (3.65)In summary, we have found in this se
tion the exa
t ground state for arbitrary external�elds in the massive S
hwinger model. The ex
ited states, 	n, 
an then be 
onstru
tedin the usual way through the appli
ation of the 
reation operator. A general state,	, of the fully quantized theory 
an then be expanded into these energy eigenstatesa

ording to 	[A; u; uy℄ =Xn 'n[A℄	n[A; u; uy℄;where the fun
tionals 'n[A℄ 
an be determined from the full fun
tional S
hr�odingerequation whi
h 
ontains the kineti
 term �Æ2=2ÆA2 in the Hamiltonian.21



3.2.2 Charges and energyWe de�ne again a "point splitted" 
harge operator�(x; y) =  y(x) exp�ie Z yx A� (y) (3.66)and �nd for its a
tion on the va
uum state an expression analogous to (3.21) (there isnow no distin
tion between a left and a right handed se
tor):�(x; y)	 = 12 exp�ie Z yx A� (2Æ(x � y) + 2X�=1
��(y; x))	+12 exp�ie Z yx A� (uy�(x)� 
��(z; x)uy�(z))�(u�(y) + 
�
(y; z)u
(z))	; (3.67)where a summation (integration) over repeated indi
es (variables) is understood. Likein the massless 
ase, the se
ond term on the right-hand side of (3.67) vanishes aftersetting x = y and integrating over x. The �rst term is again regularized by subtra
tingits value for vanishing external �eld. This yields for the va
uum expe
tation value ofthe total 
harge hQi = 12 2X�=1 Z L0 dx limx!y �
��(y; x)� 
(0)��(y; x)� = 0; (3.68)sin
e the 
ovarian
e (3.63) is tra
eless with respe
t to the spinor indi
es. The result(3.68) has of 
ourse been expe
ted sin
e the total 
harge should annihilate the va
uumstate (see also the dis
ussion in se
tion 6). This is true in any number of dimensions.For the 
hiral 
harge we give �rst a general expression whi
h is valid in any evendimension. We de�ne the \point splitted" 
hiral 
harge�5(x; y) = � (x)
5
0 exp�ie Z yx A� (y)= � y(x)
5 exp�ie Z yx A� (y): (3.69)Operating with this on the va
uum state yields (
ompare (3.21))�5(x; y)	 = �12 exp�ie Z yx A�Tr
5(Æ(x � y) + 
(y; x))	�12 exp�ie Z yx A�Z dvdwuy(v) (Æ(v � x)� 
(v; x)) 
5 �(Æ(y � w) + 
(y;w)) u(z)	: (3.70)The se
ond term 
an be written, after setting x = y, integrating over x, and performingthe expe
tation value, as �2TrP+
5P� = 022



sin
e P+P� = 0 (
ompare (3.35)), and use has been made of (2.45). We are thus leftwith h	jQ5j	i = �12Tr Z L0 dx limx!y 
5
(y; x) exp�ie Z yx A� ; (3.71)from where the result for A = 0 has to be subtra
ted. Using the expli
it results in twodimensions we �nd �12 Tr 
5
(y; x) exp�ie Z yx A�= im� Xn K1(mLn+m(y � x))e�2�in�:Subtra
ting from this the expression with A = 0 we getim� Xn �K1(m(y � x) + nmL)e�2�in� �K1(m(y � x) + nmL)e�2�in��so that we have hQ5i = im� Z L0 dxXn 6=0K1(nmL)�e�2�in� � e�2�in��= 2mL� Xn>0K1(nmL)(sin(2�n�)� sin(2�n�)): (3.72)In the limit m! 0 we obtainlimm!0hQ5i = 2� Xn>0 1n(sin(2�n�)� sin(2�n�))= 2([�℄ � �+ 12)� 2([�℄ � �+ 12)= 2([� + '℄ + [�℄� '): (3.73)This is equal to our earlier result (3.30) when evaluated for � = 0 (' was de�ned in(3.28)). Re
alling the asymptoti
 formula for K1 in the limit of large arguments one�nds that hQ5i L!1� s2mL� (sin(2�n�)� sin(2�n�))e�mL L!1! 0: (3.74)We �nally 
al
ulate the va
uum expe
tation value of the Hamiltonian H (2.24) inthe massive 
ase. We start from the expe
tation value (3.33) for the point splittedHamiltonian but insert in that expressionhx = �i
0
1(�x � iA) +m
0 (3.75)as well as the full 
ovarian
e 
 instead of 
+. With our result (3.63) for the 
ovarian
ewe then �ndexp�ie Z xy A� hx
(x; y) = � im2� 
0
1Xn  �K 00 iK 01iK 01 K 00 ! e�2�in�+m2� 
0 exp��ie Z xy A�Xn  �K0 iK1iK1 K0 ! e�2�in�:23



Thus, h	jH (x; y)j	i = 12Tr exp��ie Z xy A� (hx
(x; y) + hxÆ(x � y))= Tr(m22� Xn  �K0 �K 01 iK1 + iK 00�iK1 � iK 00 �K 01 �K0 ! e�2�in�+12  0 11 0 ! iÆ0(x� y) + m2  1 00 �1 ! Æ(x� y)) : (3.76)From this we subtra
t the expe
tation value for L ! 1 and vanishing A. Using therelations K 01(�) +K0(�) = �K1(�)� ; K1 = �K 00;this yields hH i = Z L0 dx limx!y (h	jH (x; y)j	i � h	0jH (x; y)j	0i)= m2� Z L0 dx limx!y Xn e�2�in�m(x� y)K1(m(x� y))� 1m(x� y) + nmLK1(m(x� y) + nmL)�= m� Xn 6=0 1nK1(nmL)e�2�in�= 2m� Xn>0 1nK1(nmL) 
os(2�n�): (3.77)This vanishes in the limit L ! 1 but remains �nite for �nite L even for vanishingele
tromagneti
 �eld where we havehH iA=0 = 2m� Xn>0 1nK1(nmL) 
os(2�n�): (3.78)In the limit of vanishing mass we obtain from (3.77) the result of se
tion 3.1.2. Theexpe
tation value of the Hamiltonian vanishes for L ! 1 as 
an be easily seen from(3.77).
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Chapter 4Non-abelian gauge �elds4.1 Cal
ulation of the 
ovarian
eWe 
onsider the LagarangianL = �14F��F �� + � (iD�
� �m) ; (4.1)where F�� = ��A� � ��A� + i[A�; A� ℄ (4.2)D� = �� + iA�: (4.3)We have introdu
ed here the matrix-valued ve
tor �eld, A�(x), whi
h is de�ned byA� = Ai�Ti; (4.4)where Ti are the (hermitean) generators of a Lie group, whi
h are normalized a

ordingto (Ti; Tj) = Æij : (4.5)The gauge 
oupling 
onstant has been set equal to one. In two dimensions the dis
ussionis greatly simpli�ed sin
e the gauge A0 = 0 removes the 
ommutator in (4.2). Thisenables us to pro
eed analogously to the abelian 
ase. Denoting A1 � A, the totalHamiltonian density reads expli
itlyH = 12�2A � i y
0
1(�x + iA) +m y
0 � 12�2A +  yh : (4.6)The �rst-quantized Hamiltonian readsh = gh(0)g�1; (4.7)where h(0) = �i
0
1�x +m
0 (4.8)25



and g(x) = P exp��i Z x0 A� ; (4.9)where P denotes path-ordering (we will suppress this letter in the following). It followsimmediately that if  (0) is an eigenfun
tion of h(0) with eigenvalue E then  = g (0) isan eigenfun
tion of h with the same eigenvalue E. From (3.45) and (3.46) we see thatthe free eigenfun
tions are given by (0)n;+ = 
fn;  (0)n;� = 
gn; (4.10)where 
 is a 
onstant ve
tor in the representation spa
e of the above generators, andfn(x) = 1p2!n(!n +m)L  !n +m�n ! exp (�i�nx) (4.11)and gn(x) = 1p2!n(!n +m)L  ��n!n +m ! exp (�i�nx) : (4.12)We also have to implement the boundary 
onditions (L) = e2�i� (0) = g(L) (0)(L) = g(0)e2�i� (0)(0): (4.13)We note that g�1(L)g(0) = exp i Z L0 A! � exp (iB) : (4.14)Sin
e B is a hermitean matrix it 
an be diagonalized:Bea = �aea; (4.15)(ea; eb) = Æab; (4.16)where a and b run form 1 to the dimension of the representation. We thus haveg�1(L)g(0)ea = exp (i�a) ea: (4.17)Choosing 
 = ea we �nd from (4.13) the quantization 
ondition�n;a = 2�L (n� �)� �aL ; (4.18)and the energies are given byEn;a = �qm2 + �2n;a � �!n;a (4.19)in analogy to the abelian result (3.44). From (4.10) and  = g (0) the positive energysolutions are given by  an;+ = g(x)ea 
 fan ; (4.20)and the negative energy solutions by an;� = g(x)ea 
 gan; (4.21)26



(no summation over a). These solutions are orthonormal sin
e( an;+;  bm;+) = (g(x)ea 
 fan ; g(x)eb 
 f bm) = ÆabÆnm; et
. (4.22)Under a gauge transformation mediated by U(x) the following transformation lawshold:  ! ~ = U(x) ; (4.23)A ! ~A = UAU�1 + i(�xU)U�1; (4.24)g ! ~g = U(x)g(x)U�1(0); (4.25) (0) ! ~ (0) = U(0) (0): (4.26)Sin
e gauge transformations should respe
t the boundary 
onditions, we must haveU(0) = U(L). Sin
e the "boundary operator" g�1(L)g(0) transforms asg�1(L)g(0) ! U(0)g�1(L)g(0)U�1(0)the quantities �a appearing in (4.17) are gauge invariant.We now pro
eed to 
al
ulate the 
ovarian
e of the ground state. For the proje
toron positive energies one �nds, making use of the result (3.48) for the abelian 
ase,P+(x; y) = Xa;n  an;+(x) a+n;+(y)= 12Lg(x) "Xa eaeya exp� iL(2�� + �a)(x� y)��Xn e�2�in(x�y)=L!n  !n +m �n�n !n �m !# gy(y): (4.27)Applying Poisson's summation formula (3.50) one �nds, in analogy to (3.61),P+(x; y) = 12Æ(x� y)I� m2�g(x) "Xa;n ea exp �in Z L0 �a! eya� �K0 iK1iK1 K0 ! e�2�in�# gy(y): (4.28)and P�(x; y) = Æ(x� y)I� P+(x; y): (4.29)It is 
onvenient to de�ne the "diagonal matrix"D =Xa exp (i�a) eaeya (4.30)whi
h obeys Dn =Xa exp (in�a) eaeya: (4.31)The 
ovarian
e 
an thus be written as
(x; y) = P� � P+ = m� g(x) "Xn D�ne�2�in�  �K0 iK1iK1 K0 !# gy(y): (4.32)27



In the abelian 
ase we have � = Z L0 A (4.33)so that the result (4.32) equals our earlier result (3.63).4.2 Charges and energyThe point splitted version of the non-abelian 
urrent operator reads, in any number ofdimensions, j�i (x; y) =  y(x) exp�i Z yx A�Ti
0
� (y): (4.34)Its a
tion on the va
uum state 	 
an be found in the same way as for the abelian 
ase(3.67). The result isj�i (x; y)	 = 12Tr exp�i Z yx A�Ti
0
�(Æ(x � y) + 
(y; x))	+12 Z dvdwuy(v)(Æ(v � x)� 
(v; x)) exp�i Z yx A��Ti
0
�(Æ(y � w) + 
(y;w))u(w)	: (4.35)Taking the expe
tation value of the se
ond term in (4.35) with respe
t to 	, one gets,making use of (2.45) and (2.35)14Tr Z dvdw (Æ(v � x)� 
(v; x)) exp�i Z yx A��Ti
0
�(Æ(y � w) + 
(y;w))
(w; v)= 14Tr Z dv(Æ(y � v) + 
(y; v))(Æ(v � x)� 
(v; x)) �exp�i Z yx A�Ti
0
� = 0: (4.36)The expe
tation value of the point splitted 
urrent with respe
t to 	 is thus given byh	jj�i (x; y)j	i = 12Tr exp�i Z yx A�Ti
0
�(Æ(x � y) + 
(y; x)): (4.37)For the axial 
urrentj�5i(x; y) =  y(x) exp�i Z yx A� Ti
0
5
� (y) (4.38)the analogous result is (
ompare also (3.70))h	jj�5i(x; y)j	i = �12Tr exp�i Z yx A� Ti
5
0
�(Æ(x� y) + 
(y; x)): (4.39)Like in the abelian 
ase (see (3.68)) one �nds from (4.37) that < Q >= 0, where Qis the total 
harge (the �rst term in (4.37) vanishes after the subtra
tion of the "free"28



expe
tation value, the se
ond term vanishes sin
e 
 is tra
eless in spinor spa
e - see(4.32)).In the following we expli
itly evaluate the va
uum expe
tation value of the 
hiral
harge in two spa
etime dimensions. From (4.39) we haveh�5i (x; y)i = �12Tr exp�i Z yx A�Ti
0
1(
(y; x)� 
(0)(y; x)): (4.40)The tra
e in (4.40) 
onsists a
tually of two tra
es: a tra
e TrS in spinor spa
e and atra
e TrC in the representation spa
e of the Lie group. We evaluate the spinor tra
eby making use of (3.37) and (4.32):�12TrS
0
1
(y; x) = im� g(y)Xn e�2�i�nD�nK1(m(x� y) +mnL)gy(x):Eq. (4.40) then be
omesh�5i (x; y)i = im� Xn e�2�i�n �TrC exp�i Z yx A� Tig(y)D�ngy(x)�TrCTi)K1(m(x� y) +mnL): (4.41)The singular terms whi
h arise for n = 0 
an
el. The remaining terms are non singularin the 
oin
iden
e limit x ! y, and one �nds for the expe
tation value of the total
hiral 
harge hQ5i i = im� Z L0 Xn 6=0 e�2�i�n �TrCgy(x)Tig(x)D�n�TrCTi)K1(mnL): (4.42)This is the non-abelian version of our earlier result (3.72). In the limit of vanishingmass one �nds, using (4.31) and K1(x) � 1=x,hQ5i i � 2mL Z L0 dxTrCgy(x)Tig(x)Xa eaeya([�a℄ + 12 � �a)�TrCTi([�℄ + 12 � �): (4.43)Note that for semisimple groups the tra
e of the Ti vanishes. We emphasize thatthe 
urrents in the nonabelian theory are not gauge invariant quantities but insteadtransform under the adjoint representation of the gauge group.We �nally 
ome to the 
al
ulation of the va
uum expe
tation value for the energy.This 
losely parallels the dis
ussion of the abelian 
ase whi
h was dis
ussed in se
tion 3so that we 
an be brief in the present 
ase. The point splitted version of the expe
tationvalue now reads, in analogy to (3.33),h	jH (x; y)j	i = 12Tr Z dx exp��i Z yx A� hx(Æ(x � y) + 
(x; y): (4.44)We re
all that the exponential stands for a path ordered produ
t. Inspe
tion of theexpli
it form of the 
ovarian
e, Eq. (4.32), exhibits that, as in the abelian 
ase, the29



fa
tors g(x) and gy(y) are exa
tly 
an
elled by the exponential in (4.44). In analogy to(3.77) we then �nd, after the subtra
tion of the expe
tation value for vanishing external�eld, hH i = 2m� Xa Xn>0 1nK1(nmL) 
os(2�n�+ n�a): (4.45)In the limit of vanishing mass this be
omeshH im=0 = 2�L Xa ��+ �a2� � [�+ �a2� ℄� 12�2 � �6LN; (4.46)where N is the number of 
avors.
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Chapter 5Parti
le Creation5.1 Constant ele
tri
 �eld in four dimensionsIn this se
tion we demonstrate how the well known expression for the 
reation offermions in a 
onstant external ele
tri
 �eld [16℄ 
an be re
overed in the fun
tionalS
hr�odinger pi
ture. The physi
al pi
ture is the following: We start with a fermioni
va
uum state in the far past (\in - region") and let it evolve under the in
uen
e ofthe external �eld, using the S
hr�odinger equation, into the far future (\out - region").There we 
al
ulate the overlap with the va
uum in the out - region and interpret thedeviation from one as the probability for parti
le 
reation. The state remains, of 
ourse,Gaussian but its exa
t form (and thus the notion of the va

um) 
hanges under theevolution of the external �eld. It would be physi
ally reasonable to swit
h on the �eldsomewhere in the past and swit
h it o� again in the future sin
e no �elds last in�nitelylong. In the present 
ase of a 
onstant ele
tri
 �eld it will prove advantageous to treatan idealized situation by making use of the notion of an adiabati
 va
uum state whi
his approa
hed in the asymptoti
 regions. This is possible sin
e _h=h, where _h is thetime-derivative of the �rst-quantized Hamiltonian h (2.5), approa
hes zero in both theasymptoti
 past and future. The 
on
ept of adiabati
 states is also su

essfully ap-plied in traditional dis
ussions of parti
le 
reation [17℄ and �nds in parti
ular a fruitfulappli
ation in quantum theory on 
urved spa
etimes [18℄.We thus have for the in - va

um state	in = N exp �uy
in(ad)u� ; (5.1)and for the out - va
uum state	out = N exp�uy
out(ad)u� : (5.2)The \adiabati
" 
ovarian
e 
(ad) 
an be obtained from the \free" 
ovarian
e 
(0) (see(2.42)) by repla
ing the momentum p with p+eA. It turns out to be 
onvenient, in spiteof the nonvanishing mass, to use the 
hiral representation for the Dira
 matri
es. Thereason is that the mass terms in the expressions for the 
ovarian
e be
ome unimportantin the asymptoti
 regions. We thus have, instead of (2.42),
(ad) = 1p~p2 +m2  �� � ~p mm � � ~p ! ; (5.3)31



where ~p � (px; py; pz + eAz); (5.4)and the ele
tri
 �eld points in z - dire
tion, E = Eez, so that Az = Et. For simpli
itywe denote the transversal momentum by p? so that p2? = p2x + p2y. It will also be
onvenient to introdu
e the dimensionless quantity� � peE �t+ pzeE� : (5.5)We now give the expli
it expression for 
(ad) in both the asymptoti
 past and future.In the limit � ! �1, (5.3) reads (�i are the Pauli matri
es)
(ad) = 1qp2? + eE�2 +m2  ��? � p? � �z � peE� mm �? � p? + �z � peE� !�!�1�!  �z 00 ��z ! � 
in(ad): (5.6)Analogously, 
out(ad) =  ��z 00 �z ! = �
in(ad): (5.7)Before we pro
eed to 
al
ulate the pair 
reation rate a

ording to the general formula(2.72), we have to dis
uss one subtlety whi
h arises through the use of asymptoti
va
uum states. As 
an be immediately seen by 
omparing (5.6) and (5.7), the adia-bati
 
ovarian
es 
out(ad) and 
in(ad) di�er in their sign. Consequently, from the generalexpression (2.32), the positive (negative) frequen
y eigenfun
tions in the far future arethe negative (positive) frequen
y eigenfun
tions of the far past. An observer in the farfuture would repla
e the expansion (2.62) by�n(t) = �fnm�fm + �fnm fm = �fnm m + �fnm�m; (5.8)where the supers
ript f refers to \far future." Comparing (5.8) with (2.62) we see that�fnm = �nm and �fnm = �nm. Nevertheless, one 
an still use the expression (2.72) to
al
ulate the transition element. The reason is that one now has to use 
out(ad) = �
in(ad)instead of 
0 = 
in(ad) in (2.59). This would amount to repla
e �nm in (2.72) by�nm = �fnm. Thus, the parti
le 
reation rate is still given by (2.72) with �nm repla
edby �fnm as it was introdu
ed in (5.8) (in the following we will for simpli
ity omit thesupers
ript f).The general expression (2.60) for the 
ovarian
e 
(t) 
ontains, via (2.61), the fun
-tions �n(t) whi
h obey i _�n(t) = h�n(t); (5.9)where the �rst-quantized Hamiltonian h is given expli
itly byh =  � � ~p �m�m �� � ~p ! : (5.10)32



Note that h2 = (p2?+m2+E�2)I, and n has to be repla
ed by p. Di�erentiating (5.9)by t and using (5.9) again, one arrives at a se
ond order equation for the �n. The �rstand fourth 
omponent of the �p obeys (we omit the index p in the following) d2d�2 + �2 +�+ i!�1;4 = 0; (5.11)while the se
ond and third 
omponent obeys d2d�2 + �2 +�� i!�2;3 = 0: (5.12)We have introdu
ed in these expressions the quantity� = p2? +m2jeEj : (5.13)The dis
ussion is greatly simpli�ed if we treat the 
ase of two spa
etime dimensions�rst and re
over the four-dimensional 
ase by some simple manipulations from the �nalresult. Instead of (5.11) and (5.12) we have then to deal with the equations d2d�2 + �2 + � + i!�1 = 0; (5.14) d2d�2 + �2 + � � i!�2 = 0; (5.15)where, obviously, � = m2jeEj : (5.16)Sin
e � obeys the �rst-order equation (5.9), the equations (5.14) and (5.15) 
annot besolved independently. If we 
hoose, say, for �1 the general solution of (5.14), we �ndfrom (5.9) that �2 = 1p� �id�1d� � ��1� : (5.17)The general solution of (5.14) is then given by a sum of paraboli
 
ylinder fun
tions[19℄ �1 = A1D�i�=2[(1 + i)� ℄ +B1D�i�=2[�(1 + i)� ℄: (5.18)We now have to impose the boundary 
ondition that � approa
hes a negative frequen
yeigenfun
tion for � ! �1. For this we need the asymptoti
 expansion of (5.18) whi
hreads [19℄ �1 �!�1� A1 �e� i�22 [(1 + i)� ℄� i�2� p2��( i�2 )e���2 + i�22 [(1 + i)� ℄ i�2 �1!+B1e� i�22 [�(1 + i)� ℄� i�2 : (5.19)33



The usual de�nition of positive and negative frequen
ies involves the phase of the�rst-quantized eigenfun
tions: For a positive frequen
y fun
tion the phase de
reaseswith in
reasing time, while for a positive frequen
y fun
tion it in
reases [17℄. Theexpression (5.19) thus should only 
ontain terms proportional to exp(�i�2=2). Wethus have A1 = 0 and one is left with�1 = B1D�i�=2 [�(1 + i)℄ : (5.20)From (5.17) one then gets�2 = �B1p�2 (1 + i)D�i�=2�1 [�(1 + i)℄ : (5.21)We want to normalize the solution � = (�1; �2)T . Sin
e the norm is 
onserved (h in(5.9) is hermitean), it is suÆ
ient to perform the normalization in the asymptoti
 pastwhere �1 �!�1�! B1e� i�22 j� j� i�2 2� i�4 e��8 ; (5.22)�2 �!�1�! 0: (5.23)Thus, the 
hoi
e B1 = e���8 (5.24)yields �y� � j�1j2 + j�2j2 = 1.To make use of (5.8) we have to �nd the positive and negative frequen
y fun
tionsin the asymptoti
 future, i.e. for � !1. The 
orre
tly normalized negative frequen
ysolution �f to (5.14) and (5.17) reads�f1 = s�2e���8 Di�=2�1 [(1� i)� ℄ ; (5.25)�f2 = � i+ 1p2 e���8 Di�=2 [(1� i)℄ : (5.26)This is easily seen from the asymptoti
 expansion of the paraboli
 
ylinder fun
tions[19℄. Similarly, the positive frequen
y fun
tions are found to read f1 = e���8 D�i�=2 [(1 + i)� ℄ ; (5.27) f2 = p�2 (i+ 1)e���8 D�i�=2�1 [(1 + i)� ℄ : (5.28)Making now use of the identity [19℄D�(z) = e��iD�(�z) + p2��(��)e�(�+1)i=2D���1(�iz); (5.29)we 
an expand the solution (5.20), (5.21), (5.24) a

ording to (5.8) into the asymptoti
positive and negative frequen
y solutions, respe
tively:�(�) = p���( i�2 + 1)e���4 �f + e���2  f : (5.30)34



The Bogolubov 
oeÆ
ients 
an be easily read o� from this equation,� = p���( i�2 + 1)e���4 ; � = e���2 ; (5.31)and it is easily 
he
ked that j�j2 + j�j2 = 1. Finally, one then �nds for the matrixelement (2.72) jh	1j	2ij2 = det(1� j�j2)= expTr ln(1� e���)= exp �TrXn 1ne��n�! : (5.32)In two dimensions the tra
e readsTr �! L2� Z eEtouteEtin dp = eELT2� ;where T � tout � tin is the time di�eren
e between two asymptoti
 times tout and tin.This, as well as the length L, has been introdu
ed as an infrared regulator [17℄, [7℄.Thus, jh	1j	2ij2 = exp �eELT2� 1Xn=1 1ne�n�m2eE ! : (5.33)(If eE is negative, one has to take its absolute value.) To �nd the 
orrespondingexpression in four spa
etime dimensions, we have to repla
e � by �, see (5.13). Onethus has j�j2 = e��� = e��(m2+p2?)eE (5.34)and Tr �! V(2�)3 Z eEtouteEtin dpz Z 2�p?dp?:Moreover, one gets an additional fa
tor of 2 from the dis
rete part of the determinantin (5.32) over the spinor indi
es sin
e one now deals with four spinors instead of twospinors. Thus, jh	1j	2ij2 = exp �2Tr 1Xn=1 1ne��n�!= exp �2(eE)2V T(2�)3 1Xn=1 1n2 e�n�m2eE ! : (5.35)This is in agreement with the 
lassi
al result of S
hwinger [16℄.5.2 Arbitrary external �elds for massless QED in two di-mensionsWe now pro
eed to 
al
ulate the va
uum - to - va
uum transition rate (2.58) in the
ase of massless fermions for arbitrary external ele
tromagneti
 �elds in two spa
etime35



dimensions. In 
ontrast to the previous se
tion we shall assume that the ele
tri
 �eldis swit
hed o� for some time t < t1 in the past and t > t2 in the future. While one 
an
onsistently assume that the ve
tor potential vanishes for t < t1, this is not possiblefor t > t2 sin
e the 
uxZ L0 dx Z t2t1 dtE = Z dxdt _A = Z dx (A(x; t2)�A(x; t1)) = 2�'(t2) (5.36)need not vanish. In fa
t, this will give rise to the nontrivial features whi
h will bedis
ussed in this se
tion. We 
an, however, assume that A does not depend on x fort > t2.To determine the 
ovarian
es 
1 and 
2 in (2.58) we need to solve the time-dependent Dira
 equation, i _ = h = �i
5(�x + iA) : (5.37)We make the ansatz  (x; t) = exp(i�(x; t) + iÆ(x; t)
5) 0(x; t) (5.38)and 
hoose � and Æ su
h that  0 obeys the free Dira
 equation (without A- �eld).Inserting (5.38) into (5.37) one re
ognizes that this 
an be a
hieved if_�+ Æ0 = 0;�0 + _Æ = �A: (5.39)The formal solution reads � = 12A0;Æ = � 12E: (5.40)The solution of the free equation for  0,i _ 0 = �i
5�x 0; (5.41)
an of 
ourse be immediately written down by making use of (3.4) - (3.7) (we 
hoose� = 0 for simpli
ity):  0;n =  '0;n�0;n ! (5.42)with '0;n = 1pL exp (�ikn(x+ t)) (5.43)�0;n = 1pL exp (�ikn(x� t)) ; (5.44)where kn � 2�L (n� �): (5.45)36



The positive energy (negative energy) solutions are obtained for kn > 0 (kn < 0) in(5.43) and for kn < 0 (kn > 0) in (5.44) (re
all (3.6) and (3.7)). The solutions of (5.37)thus read  n(x; t) = exp(i�+ iÆ
5) 0;n: (5.46)The 
omponents of the 
ovarian
e are 
al
ulated in full analogy to Eq. (3.11). One�nds 
+(x; y; t) = exp(i�(x; t) � iÆ(x; t))
(0)+ (x; y) exp(�i�(y; t) + iÆ(y; t)) (5.47)and 
�(x; y; t) = exp(i�(x; t) + iÆ(x; t))
(0)� (x; y) exp(�i�(y; t)� iÆ(y; t)); (5.48)where 
(0)+ and 
(0)� are obtained from (3.12) and (3.13) by setting the A- �eld equalto zero:
(0)+ (x; y) = �
(0)� (x; y) = iL exp�2�iL (�� [�℄ � 12)(x� y)� 1sin �L(x� y) : (5.49)Sin
e A = 0 for t < t1 one 
an 
hoose � = Æ = 0 for t < t1. This 
orresponds to the
hoi
e of the retarded Green fun
tion in (5.40). We thus have 
 = 
(0) for t < t1.We now pro
eed to 
al
ulate the overlap (2.58) between the out - va
uum and theout - state whi
h results from evolving the in - va
uum (whi
h is the free state) withthe S
hr�odinger equation. In the out - region (t!1) we 
an 
hoose A to be 
onstant.From (5.39) we 
an 
hoose � = 0 and Æ = �At. The one parti
le wave fun
tions (5.46)then read  n(x; t) = exp(�iAt
5) 0;n(x; t): (5.50)The out - va
uum is 
al
ulated from the wave fun
tions (3.6) and (3.7) forA = 
onstant.As 
an be re
ognized from these expressions, A drops out and one is left with the freewave fun
tions  0;n. Does this also mean that the out - va
uum state is identi
al withthe free va

um state? This is not the 
ase sin
e in the general expression for the
ovarian
e, Eq. (2.32), one has to distinguish between positive and negative energysolutions. For nonvanishing (even 
onstant) A- �eld this distin
tion is �eld-dependentsin
e the energy values are given byEn = �2�L (n� �); (5.51)where the upper sign is for the right- handed part and the lower sign for the left- handedpart (
ompare (3.6) and (3.7)). Let us fo
us in the following on the right-hand part. Inthe expression (2.58) for the overlap we 
hoose for 
1 the 
ovarian
e whi
h 
orrespondsto the out - va
uum, i. e.,
1(x; y) = Xn�� 0;n(x) y0;n(y)�Xn>� 0;n(x) y0;n(y); (5.52)where we have in
luded the zero energy eigenfun
tion in the �rst sum. Sin
e t hasdropped out in this expression, we have skipped it in the aruments for the wave fun
-tions. Sin
e the phase fa
tor in (5.50) is spa
e-independent, the time-evolved in -37




ovarian
e (whi
h plays the role of 
2) is just given by
2(x; y) = Xn�� 0;n(x) y0;n(y)�Xn>� 0;n(x) y0;n(y): (5.53)It is 
lear that this satis�es the time-dependent S
hr�odinger equation (2.51) triviallywith the 
orre
t boundary 
ondition at t < t1. We then �nd for the operator produ
t
1
2 in (2.58)
1
2 = Z dz0�Xn�� 0;n(x) y0;n(z)Xl�� 0;l(z) y0;l(y)+Xn>� 0;n(x) y0;n(z)Xl>� 0;l(z) y0;l(y)�Xn>� 0;n(x) y0;n(z)Xl�� 0;l(z) y0;l(y)�Xn�� 0;n(x) y0;n(z)Xl>� 0;l(z) y0;l(y)1A : (5.54)We may assume without loss of generality that � > �. The �rst and se
ond term in(5.54) give together0�Xn��+Xn>�1A 0;n(x) y0;n(y) = Æ(x� y)� X�<n�� 0;n(x) y0;n(y):The third term vanishes for � > �, and the last term gives� X�<n�� 0;n(x) y0;n(y):We thus have 
1
2 = Æ(x� y)� 2 X�<n�� 0;n(x) y0;n(y):The determinant in the overlap (2.58) thus 
ontains the operatorA � 12(1 + 
1
2) = Æ(x� y)� X�<n�� 0;n(x) y0;n(y):By a
ting with A on  0;k one re
ognizes that A has a zero eigenvalue if � < n � �.In this 
ase, therefore, the overlap in (2.58) vanishes! This means that the probabilityfor the va
uum to remain a va
uum is zero { parti
les are always 
reated. Sin
eboth states 	1 and 	2 are, however, Gaussians it follows that these states belong todi�erent Hilbert spa
es { in the 
ase of in�nitely many degrees of freedom the overlapbetween Gaussians 
an vanish [1℄. How 
an one 
ope with this situation? The key to aproper treatment is provided by the observation that the energy eigenvalues En of the�rst-quantized eigenfun
tions exhibit a spe
tral 
ow { some of them pass through zerobetween the in- and out - region. This is pe
uliar to the massless 
ase sin
e the energyvalues En do not 
hange sign for m 6= 0, see (3.44). As a 
onsequen
e of the spe
tral
ow the time - evolved in - state 
ontains, in the out - region, either o

upied positive38



energy states or empty negative energy states (for de�niteness we assume that thereexist o

upied positive energy states). Our original �lling pres
ription says, however,that for the va
uum state all positive energy states are empty. To have all states inthe same Hilbert spa
e (Fo
k spa
e), one has thus to de�ne the out - va
uum state byapplying as many annihilation operators on the out - Gaussian as there are o

upiedenergy states, i.e., j0; outi � N ['℄Yk=1 ak exp(uy
1u): (5.55)Again, ' = (R L0 A)=(2�) is the 
ux. The time - evolved in - state 
an thus be writtenas 	in t!1�! N exp(uy
1u) = ['℄Yk=1 aykj0; outi: (5.56)This state thus 
ontains ['℄ parti
les with respe
t to the out - va
uum, a result whi
h isof 
ourse well known (see, e. g., [20℄). The parti
le 
reation rate expressed by (5.56) isdire
tly related to the anomaly in the axial 
urrent, and there is a general relationshipbetween the spe
tral 
ow of the �rst - quantized Dira
 hamiltonian, the topologi
al
harge, and the anomalous parti
le produ
tion. This is very 
learly dis
ussed, forexample, in [21℄. The important di�eren
e to the previous subse
tion is the fa
t that inthe present 
ase a de�nite number of parti
les has been produ
ed (as given by the 
uxof the external �eld), whereas in the previous 
ase there is a nonvanishing probabilityfor the produ
tion of any number of parti
les. The S
hr�odinger pi
ture thus provides uswith an intuitive explanation for the anomaly: The �lling pres
ription, whi
h is 
ru
ialfor the spe
i�
ation of the ground state, 
hanges in dependen
e on the external �eld.Consequently, the notions of va
uum and ex
ited states 
hange under the in
uen
e ofthe external �eld.
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Chapter 6Dis
ussion and OutlookThe use of di�erent formal approa
hes to the same theory may not only be importantfor making di�erent appli
ations but may also 
ontain the potentiality to extend thetheory into di�erent new dire
tions. In the present paper we have dis
ussed the fun
-tional S
hr�odinger pi
ture for fermioni
 �elds and some of its appli
ations. Broadlyspeaking, there are two main advantages of this. First, the use of wave fun
tionalsgives an intuitive pi
ture of the physi
s involved, in parti
ular with regard to 
on
ep-tual questions. This be
ame espe
ially 
lear in our dis
ussion of parti
le 
reation andanomalies. Se
ond, this pi
ture may possess te
hni
al advantages in some appli
ations,su
h as the 
al
ulation of expe
tation values or anomalous parti
le produ
tion rates.One might therefore expe
t this pi
ture to be of some use in other bran
hes of quan-tum �eld theory where less results are known than in QED. In fa
t, among the nextappli
ations we have in mind are fermions in a gravitational ba
kground as well as 
ou-pled to a quantized gravitational �eld, espe
ially in the framework of the new variablesin 
anoni
al general relativity [5℄. This 
ould shed some light on the �nal stages ofbla
k hole evaporation. Further possible appli
ations in
lude non-abelian �elds in fourdimensions [22℄, de
oheren
e [23℄, the semi
lassi
al approximation [7℄, bosonization, aswell as the extension to problems where non-Gaussian states play a role.In the bulk of this paper we have restri
ted ourselves to the 
ase where the exter-nal ele
tromagneti
 �eld 
an be treated semi
lassi
ally. This is formally expressed bynegle
ting terms 
ontaining Æ=ÆA(x) in the full Hamiltonian (2.4). We want to relaxthis restri
tion now and 
on
lude our paper with a brief dis
ussion of some subtletieswhi
h arise when the Gauss 
onstraint (2.6) is realized on wave fun
tionals 	[A; u; uy℄in the full theory. Applying the Gauss operatorG(x) = rE� e y (6.1)on states 	 we �nd, using the realization (2.9) - (2.11) for the �eld operators,G(x)	 =  1ir ÆÆA � e2 [uyu+ Æ2ÆuÆuy+uy ÆÆuy � u ÆÆu ℄�	[A; u; uy℄ = 0: (6.2)Classi
ally, the Gauss operator generates lo
al gauge transformations. This also holds40



in the quantum theory, in the sense that�Z dx�(x)G(x);  (y)� = e�(y) (y); et
: (6.3)with an appropriate test 
lass fun
tion �(x). The surprise 
omes if one evaluates theexpression (6.2) for the Gaussian state (2.14). This yieldsG(x)	 = �12 Z dydzuy�(y)[Æ(y � x)Æ�� +
��(y; x)℄ �[Æ(x� z)Æ�
 � 
�
(x; z)℄u
(z)	 6= 0: (6.4)Thus, although 	 is expli
itly gauge - invariant, it is not annihilated by the Gauss op-erator. This 
an also be re
ognized from a di�erent perspe
tive. Under an in�nitesimalgauge transformation a state 	 
hanges as follows:	[A; u; uy℄ ! 	[A; u; uy℄� Z dx�(x)�r ÆÆA + ieu ÆÆu�ieuy ÆÆuy�	: (6.5)The state therefore remains invariant if�1ir ÆÆA + eu ÆÆu � euy ÆÆuy�	 � ~G(x)	 = 0: (6.6)Obviously, ~G di�ers from G. The formal reason is the fermioni
 
hara
ter of the matter�elds whi
h allows the realization of the �eld operators as in (2.10) and (2.11). Infa
t, in the bosoni
 
ase one has ~G � G [7℄. Note that the integrated Gauss operatorannihilates 	, i. e., Z dxG(x)	 = Z dx ~G(x)	 = 0: (6.7)The interpretation of (6.4) was given by Floreanini and Ja
kiw [8℄. The Gauss operatorG may produ
e states whi
h lie outside the original Fo
k spa
e from whi
h one started,sin
e the spa
e spanned by u and uy is mu
h bigger than the spa
e obtained fromthe ground state through appli
ation of the �eld operators  and  y. They 
an onlyprodu
e polynoms in (1 + 
)u � u+; uy(1� 
) � uy�; (6.8)whereas in (6.4) one re
ognizes their adjoints u� and uy+:G(x)	 = �12uy+(x)u�(x)	: (6.9)The pres
ription we impose here is to proje
t the a
tion of the Gauss operator ba
konto the original Fo
k spa
e, G ! PFG � 14u+uy�G:Sin
e the state (6.9) is orthogonal to ea
h state in this spa
e, one has of 
oursePFG(x)	 = 0: (6.10)41



In parti
ular, one �nds that the expe
tation value of the Gauss operator vanishes,h	jG(x)	i = 0.There is only one possible obstru
tion to this pres
ription: it may happen that thepresen
e of an anomaly spoils the 
ommutativity of two Gauss operator (this anomalyshould not be 
onfused with the anomaly of the axial 
urrent dis
ussed in the lastse
tion). In this 
ase our pres
ription would lead to a 
ontradi
tion sin
e the proje
tedGauss operators always 
ommute with ea
h other. An example where su
h anomalieso

ur are 
hiral fermions in an external ele
tromagneti
 �eld [8℄. In su
h a 
ase one
annot identify a state 	 with its proje
ted state, u+uy�	=4. Here, however, we dealwith Dira
 fermions where the anomaly 
onne
ted with the left - handed part 
an
elsthe 
orresponding anomaly of the right - handed part. It is thus perfe
tly 
onsistent toidentify states with their proje
ted version.In this respe
t the situation is analogous to the Gupta - Bleuler quantization ofele
trodynami
s where one 
an get rid of negative norm states by identifying stateswith zero norm.We have thus shown that the Gauss operator for fermions 
an be 
onsistently inter-preted in the fun
tional S
hr�odinger pi
ture if no gauge violating anomalies are present.A
knowledgementWe thank the referee for pointing out an error in a preliminary version of this paper.This arti
le was supported by the Swiss National S
ien
e Foundation.
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