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tWe dis
uss the renormalization group improved e�e
tive a
tion and run-ning surfa
e 
ouplings in 
urved spa
etime with boundary. Using s
alar self-intera
ting theory as an example, we study the in
uen
e of boundary e�e
tsto e�e
tive equations of motion in spheri
al 
ap and the relevan
e of surfa
erunning 
ouplings to quantum 
osmology and symmetry breaking phenomenon.Running surfa
e 
ouplings in the asymptoti
ally free SU(2) gauge theory arefound.
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1 Introdu
tionBoundary terms may play an important role in quantum 
osmology and in par-ti
ular in 
onne
tion with the quantum state of the universe [1℄. That is why,starting from the 80'ties [7℄, there has been a 
ontinued interest to study bound-ary divergen
es (see, for example, [2-6,8℄ and referen
es therein). In [5, 6℄ somemisprints of previous 
al
ulations have been 
orre
ted and the surfa
e diver-gen
es have been found in a form of 
onformal anomalies for various boundary
onditions.In [9℄ the running surfa
e 
ouplings have been introdu
ed. The motivationto do it was the fa
t that in order to make a theory multipli
atively renor-malizable in 
urved spa
etime with boundary one has to in
lude the surfa
eLagrangian with arbitrary 
oupling 
onstants in the total Lagrangian. Whenthe renormalization group is 
onstru
ted, ea
h 
oupling be
omes a running ef-fe
tive 
oupling. A similiar idea has been persued in [10℄, where running surfa
e
ouplings have been dis
ussed in spa
etime with boundaries and have been re-lated to the �nite size e�e
ts. It is quite well-known that running 
ouplings havedi�erent physi
al appli
ations. It is the purpose of this work to dis
uss the run-ning surfa
e 
ouplings for di�erent theories and to look for the 
onsequen
es towhi
h they may lead.In the next se
tion we dis
uss the self-intera
ting s
alar theory on 
urvedspa
etime with boundary using Diri
hlet boundary 
onditions. The expli
itexpressions for the volume and running surfa
e 
ouplings are given. The pro-
edure to 
onstru
t the RG improved e�e
tive a
tion in su
h a spa
etime isdis
ussed. In the se
tion 3 we �nd the RG improved e�e
tive a
tion in a spher-i
al 
ap and show how boundary terms be
ome relevant in the e�e
tive �eldequations. For the example of a dis
 we show the possible in
uen
e of bound-ary terms to symmetry breaking phenomena. In se
tion 4, we show how theabove dis
ussion 
an be generalized to arbitrary GUTs, and in parti
ular tothe asymptoti
ally free SU(2) gauge theory with s
alars and spinors, in 
urvedspa
etime with boundary. Some dis
ussions are presented in the last se
tion.2 Self-intera
ting s
alar theory in 
urved spa
ewith boundary.Consider the self-intera
ting s
alar theory in 
urved spa
etime M with bound-ary �M. The renormalization of the theory maybe done in 
lose analogy withthe renormalization in 
urved spa
etime without boundary (for a general intro-du
tion see [11℄). The boundary 
onditions for s
alar �elds maybe 
hosen to beof Diri
hlet type 2



�(x) = 0 , x 2 �M (1)or Robin type ( + n�r�)�(x) = 0 , x 2 �M: (2)Here n� is the outward normal on �M and  is an arbitrary s
alar fun
tion.The eu
lidean a
tion 
orresponding to a massless multipli
atively renormal-izable theory maybe written as the following:S = SM + SV + SS ; (3)where SM = Z d4xpgn12g����'��'+ 12�R'2 + �'44! o ;SV = Z d4xpgna1R2 + a2C2���� + a3G+ a42Ro; (4)and C���� is the Weyl tensor, G the Gauss-Bonnet invariant and a1; a2; a3; a4are 
oupling 
onstants in the external �elds se
tor.In the dis
ussion of the surfa
e a
tion we will limit ourselves to Diri
hletboundary 
onditions. We use two invariants of dimension L�3 expressed interms of R���� and the extrinsi
 
urvature of the boundary K�� [3, 6℄q = 83K3 + 163 K �� K �� K �� � 8KK��K�� + 4KR� 8R��(Kn�n� +K��) + 8R����K��n�n� ;g = K �� K �� K �� �KK��K�� + 29K3: (5)Then, the surfa
e a
tion maybe rewritten asSS = Z�M d3xp
 LSwith LS = �Dq + �Dg + 
DRK + ÆDn�r�R+ �DC����K��n�n� ; (6)where 
�� is the indu
ed metri
 of the boundary and �D; : : : ; �D are surfa
e
oupling 
onstants. In the same way one 
an write SS for other boundary
onditions.Now, from the point of view of the renormalization group, ea
h 
oupling
onstant has the 
orrespondent e�e
tive 
oupling 
onstant. Using the well-3



known results for the one-loop divergen
es of the volume terms one easily �ndsthe running volume 
ouplings:�(t) = ��(t) ; �(t) = 16 + ��� 16��(t)� 13a1(t) = a1 � 12���� 16�2��(t) 13 � 1� ; a2(t) = a2 + t120(4�)2a3(t) = a3 � t360(4�)2 ; a4(t) = a4 � t180(4�)2 � �� 1612� ��(t) 23 � 1�; (7)where t is renormalization group parameter and�(t) = 1� 3�t(4�)2 :Using the expli
it results for the boundary 
onterterms [3, 6℄ we 
an write downthe expli
it expressions for the running surfa
e 
ouplings in theory (3) [9, 10℄:�D(t) = �D � t360(4�)2 ; �D(t) = �D + 2t35(4�)2
D(t) = 
D + D(t)3 ; ÆD(t) = ÆD + D(t)2 ; �D = �D + t15(4�)2 (8)where D(t) = �� 162� ��(t)2=3 � 1�:As usually the t ! 1 limit de�nes the theory at very high energies (stronggravitational �eld). As we see from Eqs. (8) there is already some mixture ofthe volume with the surfa
e 
ouplings when they are running.Now, after this overview of the situation with running surfa
e 
ouplings in
urved spa
etime, the interesting question is { what new phenomena may been
ountered using the renormalization group. In parti
ular, as it was alreadymentioned, the boundary e�e
ts are expe
ted to be important in quantum 
os-mology. Hen
e it is interesting to understand the relevan
e of renormalizationgroup in this respe
t.Let us 
onsider the situation where the volume Lagrangian (as well as LS)is independent of one of the 
oordinates. Then, in the volume a
tion we mayintegrate expli
itly over this 
oordinate and as a result we 
an write the a
tion(assuming that there is only a gravitational ba
kground �eld) asSgrav: = Z d3pg nl1LV + l2LSo; (9)where l1; l2 are some dimensionful 
onstants, for example, l1 = R dx (where x is4



the variable on whi
h the Lagrangean does not depend). Due to the fa
t thatthe theory is multipli
atively renormalizable, we may now write expli
itly theRG equation for e�e
tive Lagrangian:(� ��� + �i ���i � 
i�i ÆÆ�i ) Le� (�; �i ; �i) = 0; (10)where � is a mass parameter, �i are volume and surfa
e 
oupling 
onstants with
orresponding beta-fun
tions �i and �i are the �elds. For an alternative deriva-tion of (10), where � is repla
ed by the inverse diameter of the spa
etime Msee [10℄.Solving Eq.(10) by the method of 
hara
teristi
s, with Lagrangean (9) asinitial 
ondition at t = 0 and assuming a gravitational ba
kground �eld only(the other ba
kground �elds are set to zero) we �nd the following 
ontributionto Leff Leff (�; �i; �i) = Leff (�et; �i(t); �i(t))= l1na1(t)R2 + a2(t)C2���� + a3(t)G + a4(t)2Ro+l2n�D(t)q + �D(t)g + 
D(t)RK + ÆD(t)n�r�R+�D(t)C����K��n�n�o; (11)where the running volume and surfa
e 
ouplings are given by eqs.(7,8). Theabove dis
ussion whi
h yielded the RG improved Lagrangian in 
urved spa
eis very similar to standard RG improvement of the e�e
tive potential in 
at[12, 13℄ or in 
urved spa
e [14, 15℄. The problem now is the 
hoi
e of RGparameter t. Motivated by the one-loop 
onsiderations of the theory underdis
ussion, the natural 
hoi
e is (let R be positive)t = 12 log R�2 : (12)With this 
hoi
e, we get the improved e�e
tive Lagrangian (the summation overall leading logarithms of perturbation theory). In that sense the result is be-yond one-loop order. The important impli
ation of (11,12) is that due to theRG, the surfa
e terms 
ease to be surfa
e terms. They give 
ontributions tothe equations of motion, and hen
e, they in
uen
e quantum 
osmology dynam-i
ally. Classi
ally the surfa
e terms maybe dropped. On the quantum level,however, these terms are important, as after RG improvement they 
ontributeto the equations of motion. We give an expli
it example in the next se
tion.
5



3 RG improved Lagrangian in s
alar theory onfour-sphere with boundaryIn what follows we will limit ourselves to the spa
es of the type R�� = �g��whi
h are of interest for quantum 
osmology as they des
ribe the in
ation-ary Universes. In this 
ase the stru
ture of the initial Lagrangian signi�
allysimpli�es.Consider as an example a spheri
al 
ap C, i.e. region of the four-sphere withmaximum 
olatitude �. Then, the RG improved a
tion isSeff = ZM d4xpg SV;eff + Z�M d3xp
 SS;eff= 24�2(h16a1(t) + 83a3(t)i � h12 � 34 
os � + 14 
os3 �i+ 
os3 �h2�D(t)i+ 92 
os � sin2 ��
D(t)	); (13)
where t = 12 log 4��2 . We supposed Diri
hlet boundary 
onditions for the s
alar�eld. One may 
onsider other 
onditions as well. The 
al
ulation of 
onformalanomaly in above-des
ribed situationes has been given in [6℄. For 
omparisonwe may give the RG improved a
tion in 
ase of the 4-sphere(for the dis
ussionof the e�e
tive a
tion in De Sitter spa
e see, also [16℄ and [18℄)Seff = 24�2�16a1(t) + 83a3(t)�: (14)The e�e
tive equations of motion are given by�Seff�� = 0: (15)Classi
ally a1 and a3 are 
onstant and the 
osmologi
al 
onstant is not deter-mined. On quantum level we get from from (14,15)8��� 16�2�(t)�2=3 � 1135 = 0;where �(t) has been introdu
ed below (7), the self
onsistent quantum solution12 log 4��2 = (4�)23� (1� h8 � 135(�� 16)2i3=2):Hen
e, the e�e
tive 
osmologi
al 
onstant is de�ned from the ba
k-rea
tion ofthe quantum matter on the geometry. The 
orresponding non-singular universeis a De-Sitter spa
etime (for free theory see also[21℄).6



Let us now 
onsider a universe whi
h is a spheri
al 
ap C. Its RG improvedgravitational a
tion is given by (13). The e�e
tive equation is found to beh8(�� 16)2�(t)�2=3 � 1135ih12 � 34 
os � + 14 
os3 �i�2 
os3 �360 � 32 
os � sin2 �(�� 16)�(t)�1=3 = 0: (16)This e�e
tive equation of motion in whi
h the boundary e�e
ts have been takeninto a

ount, 
annot be solved expli
itly. Assuming �t (on whi
h � depends)to be small and keeping only terms whi
h are linear in this parameter we getthe quantum solution�12 log 4��2 = (h8(�� 16)2 � 1135ih12 � 3 
os �4 + 
os3 �4 i�
os3 �180 � 32 
os � sin2 �(�� 16))�(16(�� 16 )2�(4�)2 h12 � 3 
os �4 + 
os3 �4 i� 32 
os � sin2 �(�� 16) �(4�)2)�1: (17)As one sees the boundary terms play an important role. They 
hange the stru
-ture of the self-
onsistent e�e
tive equation qualitatively. Our 
onsiderationsprovides an example how through the RG the boundary terms may be
omerelevant in quantum 
osmology.Moreover, this feature is quite general and maybe extended to any renor-malizable theory - this only 
hanges the 
oeÆ
ients in (13) and possibly 
(t).One may further admit a s
alar ba
kground �eld in whi
h 
ase Leff be
omesquite 
ompli
ated and leads to two sets of e�e
tive equations of motion.As another appli
ation one 
an 
onsider the wave fun
tion of the Universe[1℄ whi
h is de�ned (in our example) as path integral with a spheri
al 
ap asboundary surfa
e  (�) = e�Seff : (18)The solution of the �eld equations is given by (17) and yields the 
urvatureR = 4� of su
h a spa
etime or equivalently its radius R = 1a2 . The e�e
tivea
tion is the obtained by substituting (17) into (13) and with (18) yields to thewave fun
tion of the system and to the probability distribution on the set ofboundary 
onditions.As an another interesting example let us 
onsider a ball D, i.e. the regionin 
at spa
etime bounded by a three-sphere. We suppose that the s
alar ba
k-ground is non-zero and 
onstant. Then we may 
al
ulate Seff in (11) as the7



follows: Seff = V4 � n�(t)'44! � 2
1�D(t)o (19)where V4 is 'volume' of the ball and 
1 is a dimensionless 
onstant. It isevident that in this 
ase t = 12 log'2=�2, as in Coleman-Weinberg approa
h[12℄. Now one may dis
uss the symmetry breaking indu
ed by boundary e�e
ts(for the �rst study of symmetry breaking under external 
urvature ,see [22℄).Solving the equation of motion ÆSÆ' = 0 to �rst order in � we get'4 = 
1120�(4�)2 : (20)Classi
ally ' = 0, and no symmetry breaking o

urs. This simple exampleshows how boundary e�e
ts may trigger the spontaneous symmetry breaking.Now we turn to the dis
ussion of more 
ompli
ated theories.4 Running surfa
e 
onstants in GUTs.Let us show now that one 
an easily generalize the above pi
ture to the (forsimpli
ity) massless GUT's in 
urved spa
etime. We will 
onsider an arbitraryasymptoti
ally free GUT (for a list of su
h GUTs, see for example [19℄). In this
ase, we have for running gauge, Yukawa and s
alar 
ouplingsg2(t) = g21 + a2g2t ; h2(t) = k2g2(t) and f(t) = k1g2(t); (21)where for Yukawa and s
alar 
ouplings k1 and k2 are 
onstant matri
es. Thes
alar-gravitational running 
oupling is generally of the form [11℄�(t) = 16 + (�� 16)(1 + a2g2t)B ; (22)where B maybe positive or negative, depending on the detailed �eld-
ontent ofthe theory. The running volume 
ouplings have the stru
ture similar as thosein se
tion 1 (powers of terms 
onne
ted with � are 
hanging a

ording to (22)),so we will not present them here (for details, see [11℄). As regards to the run-ning surfa
e 
ouplings they maybe easily found using the general results of refs.[3, 6℄. To be more spe
i�
 let us 
onsider the asymptoti
ally free SU(2) gaugetheory with one s
alar and two spinor triplets [19℄. Imposing the boundary 
on-ditions of refs. [17, 10℄ for the fermions and absolute boundary 
onditions forthe s
alars and gauge �elds and assuming Rab = �gab we �nd now the boundarya
tion 8



SS = Z�M d3xp
 LSLS = �1�K + �2K3 + �3KK��K��+�4K �� K �� K �� + �5C����K��n�n� ; (23)where the 
orresponding running 
ouplings are�1(t) = �1 � t(4�)2 (62nA135 � 11nF135 )� 4(�� 16 )3(4�)2(B + 1)a2 [(1 + a2t)B+1 � 1℄�2(t) = �2 + t(4�)2 (ns27 + 17nF945 � 338nA945 )�3(t) = �3 + t(4�)2 (ns45 + 13nF315 + 58nA63 )�4(t) = �4 + t(4�)2 (4ns135 � 116nF945 � 436nA945 )�5(t) = �5 + t(4�)2 (2ns45 � 7nF45 � 26nA45 ); (24)
where for the SU(2) model nA = 3; ns = 3; nF = 3 or nF = 6 and [20℄�(t) = 16 + ��� 16)(1 + a2g2t��� 12� 53 k1�8k2b2 �:Here b2 is 
onstant and k1; k2 
an be found in [19℄. For nF = 3 we have�12� 53k1 � 8k2b2 � < 0and for nF = 6 we have B > 0. The running surfa
e 
ouplings in other GUTs
an be found similarly as for the s
alar theory 
onsidered in the previous se
tion.They lead to 
orre
tions of the quantum states in quantum 
osmology.5 Con
lusion.We have dis
ussed RG improved e�e
tive a
tion in 
urved spa
etime withboundaries. The running surfa
e 
ouplings are getting important in this ap-proa
h as they maybe relevant in di�erent physi
al appli
ations. Among ex-amples given in this work we have studied the in
uen
e of the boundary termsto the e�e
tive �eld equations, possible appli
ation to quantum 
osmology andsymmetry breaking. Note that we have studied all these questions using thee�e
tive a
tion on 
onstant 
urvature spa
es. Nevertheless, one may apply sim-ilar te
hnique to the non-lo
al e�e
tive a
tion and bla
k hole physi
s where9



boundary e�e
ts may also play an important role. We hope to return to someof these questions in near future.
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