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Abstract

The dependence of effective actions on the finite size of the space-time region M is in-
vestigated in detail. It is shown explicitly that the one-loop effective actions on M and
AM are the same if the volume and surface coupling constants and fields scale according
to the renormalization flow. An efficient algorithm for calculating the beta-functions and
anomalous dimensions is derived. The general results are applied to a number of examples,
in particular scalar field theories in two, four and six dimensions, O(N)-sigma models in

two dimensions and gauge field theories with fermions in two and four dimensions.

1. Introduction

The behaviour of quantum systems under a change of the length or energy scale plays an
important role in high energy physics [1], statistical mechanics [2] and general relativity [3].
The most simple example is the Casimir effect [4] where the vacuum fluctuations change
when the walls enclosing the system are moved. This in turn leads to a change of the
vacuum energy and a Casimir force acting on the walls. More recently the study of such
finite size effects have played an important role in 2-dimensional models, in particular in
the conformally invariant ones. For example, one can show that the universal term in the
scaling of the free energy is proportional to the central charge [5,6]. This means that the

central charge characterizes both the ultraviolet and infrared behaviour of such models.
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On another front, the behaviour of renormalizable quantum field theories under di-
latations has centered on the asymptotic scaling of Green’s functions. This scaling exhibits
departures from the one suggested by naive dimensional analyses and can be studied on
the basis of the Callan-Symanzik equation [7]. For more than 2 dimensions the scale (and
conformal) invariance is generically broken by hard anomalies. In [8] it has been shown
that the breaking of the Weyl-invariance (or local scale invariance) can be absorbed by

changing the (local) couplings and introducing external fields.

It is well known that the perturbation expansion is often plagued with severe infrared
divergencies. For gauge theories, the 1-loop correction to the 4-boson vertex depends on
the infrared cutoff A as A*~% and shows a power divergence in less than 4 dimensions.
These infrared divergences are then present in the high temperature regime where the
4-dimensional theory becomes effectively 3-dimensional [9]. One way to solve this problem
is to assume that spacetime has a finite volume |M| ~ LY. Then one averages only
over degrees of freedom with momenta p > 1/L. Alternatively one could use the average
action approach as advocated in [10], which has been successfully applied to determine the

running couplings and critical exponents for scalar and gauge theories.

In this paper we investigate how the Green’s functions change if the infrared cutoff
M| is moved to A4 M| or if one includes smaller and smaller momenta in the averaging
procedure. More precisely, we determine the change of the effective action I' when the
finite space-time region M is scaled to AM and the couplings and fields scale naively, that
is according to their dimensions. In particular, for classically scale invariant theories the

renormalized dimensionless volume- and surface coupling constants are kept fixed.

Since for constant mean fields the effective action is just the effective potential, the
minimum of which is the vacuum energy, this change should be interpreted as generalized
Casimar effect. By using heat kernel techniques we shall derive explicit expressions for the
scale-dependence of the 1-loop effective actions when the renormalized couplings and fields

scale naively.

Instead of viewing the change of I' as Casimir effect one may ask whether it is possi-
ble to keep it invariant. This can indeed be achieved if we allow the volume and surface
couplings and fields to scale differently than suggested by dimensional analysis. We find
that the scaling which leaves I' invariant is the naive one supplemented by the anomalous
one following from the renormalization group equation. The energy scale in the Callan-
Symanzik equation is thereby replaced by the typical inverse length-scale of space time.
Besides this Casimir type interpretation for the beta-functions and anomalous dimensions
we obtain a very efficient algorithm for computing the Callan-Symanzik coefficients in arbi-

trary dimensions and for various field theories without calculating any Feynman diagrams.

Related results have been obtained in [11], where interacting scalar field theories
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in curved spaces without boundaries have been investigated. These works did mainly
concentrate on the geometry dependence of the effective potentials and actions and related
questions such as symmetry restoration for large curvatures. In [12] a variant of the
multiple scattering expansion for the Green’s functions has been developed and applied
to derive the perturbative expansion for quantum fields in spaces with boundaries. In
particular, the additional divergencies present in the loop expansion as a consequence of
the presence of boundaries and the 2-loop beta-functions have been calculated. Recently
Liischer et.al [13] have applied finite size techniques to lattice calculations. The scale
dependence of the lattice couplings in asymptotically free theories and in particular the
interpolation between their perturbative small volume and non-perturbative big volume

values has been investigated.

The paper is organized as follows: in the second section we analyse the scaling be-
haviour of the generating functionals on spacetimes with boundaries up to 1 loop with
the help of heat kernel techniques. In section three we derive explicit expressions for the
anomalous scaling of the fields and coupling constants for scalar field theories. They follow
from the requirement that the effective actions are scale invariant. The results are applied
to scalar fields in 2, 4 and 6 dimensions. In particular, we obtain the 1-loop renormaliza-
tion group coefficients for the sine-Gordon and O(NV)-sigma models in 2 dimensions, the
¢* theory in 4 dimensions and the ¢ theory in 6 dimensions. We also derive the general
formula for the trace of the energy-momentum tensor in space-times with boundaries. It
is shown that the anomalous trace is proportional to the anomalous dimension and the
various volume- and surface beta-functions. In the following section, the program is carried
through for gauge theories with fermions. For technical reasons we assume that M pos-
sesses no boundaries. Since all spaces (besides the torus) with finite volume and without
boundaries are curved we are lead to consider gauge theories on curved space times. We
derive the anomalous scaling of the generating functional for fixed renormalized couplings
and fields in the different instanton sectors. It is shown that the renormalization group
coefficients are the same in all instanton sectors. In section 5 we apply the general results
to realistic 4-dimensional gauge theories in the chiral limit of vanishing quark masses and
obtain the beta-functions and anomalous dimensions from demanding that the effective
action is scale invariant. In the appendices we collect the relevant heat kernel coefficients

and set up the necessary formulae for the semiclassical quantization of sigma models.

2. Scale transformation for scalar-fields in leading logarithm approximation

The action of a (possibly multi-component) scalar field ¢ in d-dimensional Euclidean space-
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time M is given by

Slé.g] = A[ t'a{ 50,07 + Vo) |, (2.1

where g = {g,} denotes the set of coupling constants (including masses) appearing in the
classical potential V. A scalar field has length-dimension dg= %(2—d) and from that one
infers the dimensions of the various coupling constants.

We assume that the volume | M| of spacetime is finite and that the scalar field obeys
certain boundary conditions on the boundary OM. For example, if ¢y minimizes the
(effective) potential we may impose the condition ¢|orr = ¢o. If there are several mini-
mizing ¢g, as it typically happens when a continuous symmetry is spontaneously broken,
the boundary values must further be specified. If no external source is applied then these
boundary conditions may select the vacuum state which is chosen by the quantum system.

Alternatively we could assume that M possesses no boundary, e.g. that it is a d-
dimensional sphere. For gauge theories (considered in sections 4 and 5) we shall make
this assumption, mostly for technical reasons. For scalar theories it is more convenient to
assume that space time possesses a boundary, e.g. is a d-dimensional ball. This way we
can avoid the problems associated with the zero-modes of the derivative term in (2.1) [14].

The partition function which is the generating functional for the Green’s functions is

formally given by the Euclidean functional integral

. 1 1 1 ,
2Mogg)= 5 [ Do exp [ 5Slo.gl + 1 [ dei-o]., (22)
N h h
M
where we have made the dependence on the spacetime region explicit. Due to the infrared
cutoff we average only over fields with momenta larger than the inverse size of the system.
Often it is more convenient to consider the Schwinger functional which generates the

connected Green’s functions

WM, j, g] = h log Z[M, j, g] (2.3)
or its Legendre transform, the effective action
LM, ¢, 9] = /J"SO — WM, j, 4], (2.4)
M

where the source solves ¢ =06W/d7, i.e. is conjugate to the mean field * . The Schwinger
functional can be reconstructed from the effective action by the inverse Legendre transfor-
mation
WiM.jigl = [§+6 = TM.p.g] (25)
M

1 we use the symbols ¢ for the mean field, i.e. the argument of the effective action, and

¢ for the microscopic field appearing in functional integrals like (2.2).
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where the mean field solves j = 0I'/dp. In cases where the derivative of W(j) is not
continuous the commonly used transformation (2.4) fails to be applicable. This happens
typically when the classical potential is not convex. To handle the general case one uses

the transformations

['[M, ¢, 9] ZSup{/j-w—W[M,j,g]}
M

(2.6)
WIM, j,g] = sup { /j - —T[M, ¢, 9]},
M

which coincide with (2.4,5) for differentiable W [15].

First we evaluate these functionals semiclassically, i.e. include the one-loop corrections
by means of the steepest descent approximation. Then we determine how they change if
M is scaled to AM.

To derive the semiclassical expansion on spacetimes with boundaries we set ¢ =
¢t +Vh g, where ¢ extremizes the exponent in (2.2) and d¢ denotes the fluctuation
field. To find the equation for the extremizing field ¢, we expand the exponent in (2.2)
in the fluctuation field:

~Sgl+ [ 30 ==Sloal+ [ - bu

M M

~Vh f O e 5¢+\/ﬁ/{82¢d — V() +}0¢ (2.7)
oM M

B h
-5 7{ D0 0¢p 6p — 5 /5¢{— >+ V" (pa) }o¢p + O(68%).

oM M

Here we encounter surface terms since M possesses a boundary. However, if we impose
the same boundary conditions on ¢, as on the fields in the functional integral, that is
set ¢ = = o on OM, then the fluctuations vanish there and both surface integrals in
(2.7) vanish. Instead of prescribing the values of ¢ on the boundary we could assume that
its normal derivative vanishes. In the semiclassical approximation we would then impose
the same condition on ¢.. Then the normal derivative of the fluctuations vanishes and
again both surface integrals in (2.7) are zero. Thus with both boundary conditions the

extremum ¢ (j) of the exponent in (2.2) is determined by the field equation

oS
%[(ﬁcl] = _82¢cl + V/(¢cl) :.7 (28)

and the imposed boundary conditions. We prefer to prescribe the field on the boundary

so that the derivative term in the classical action possesses no zero-mode(s).

5



Inserting the expansion (2.7) into the functional integral and retaining the terms

quadratic in the fluctuations, the resulting Gaussian integral yields

h
WM, j, g = WM, j,g] - log det M(j,g),  where

WM, 4, g) ngp{/j-w—s[%g]} :/j'¢cl — S, 9] 29
M M

is the classical Schwinger functional and M(j,g) =—0%+V"(¢) the fluctuation operator.
¢ depends on the external source and the coupling constants through (2.8) so that W¢
and the determinant are indeed functions of the source. If ¢ has several components
then V" denotes the second derivative matrix at ¢.. Both the classical piece and the
1-loop determinant in (2.9) depend on the spacetime M. The spacetime dependence
of the determinant enters through the boundary conditions for the fluctuations. The
generating functionals depend also on the prescribed boundary field ¢g. Actually Z[j=0]
in (2.2) is just the wave functional ¥[¢p] obeying the functional Schrédinger equation with
Hamiltonian corresponding to the action in (2.2) [12,16]. But since this aspect is not of
important here we shall not make the ¢y dependence explicit.

We proceed to compute the effective action. From ¢=30W/§j and W=W¢L+O(h) it
follows at once that the mean field is given by the classical one, up to corrections of order
h. Furthermore, since [ jp—S[¢] is stationary at ¢ we see that the effective action is
given by

DOIM, ¢,9] = STp,g] +  log det M(p,) (2.10)

up to terms O(h?). Note that the fluctuation operator M(p,g) = —02+V"(p) is now
evaluated at ¢.

The determinants are to be computed subject to Dirichlet boundary conditions. Then
M is selfadjoint and possesses a discrete spectrum. Of course, the fluctuation determinants
are ill-defined due to ultraviolet divergences and must be regularized. We shall employ the
(-function regularization for computing them [17]

d
logdetM = _£|S:0<M(8)7 CM(S) =trM°= zn:)\;s (211)

This is indeed a regularization of the determinant since ((s) is analytic at s=0. It includes,
up to possible counterterms, the 1-loop normalization A of the functional integral. This
regularization has the nice property that it does not change the coupling constants in the
classical potential and hence they may be regarded as renormalized ones. This property is
not ment to be obvious but follows from the heat kernel representation for the (-function

discussed below.



The above definition of the (-function does not allow us to take the s-derivative at
s =0 since the trace in (2.11) is defined only for Re(s) > d/2. The analytic continuation
can be achieved by taking the Mellin transform of the heat kernel

dtt*t tr e”tM (2.12)

T~
<
o
Il
=
@ —
0\8

and this fact will be exploited considerably later on.
Next we consider the rescaled theory on the space-time region AM and the corre-

sponding generating functionals. Under a scale transformation

T=\x (2.13)
the classical field and source transform as
o) = X2 Dg(z) = Mo g(z), (@) = A72 D ji(a), (2.14a)

such that the derivative term in (2.1) and the source term in (2.2) are invariant. Let g, be

a coupling constant which appears in the combination g,¢® in V. Classically it scales as

Go = Mg, where dg = %d(a—Z) —a (2.14b)
is its length dimension. In particular a mass scales in all dimensions as Am = m. Also, for
the critical exponent a.=2d/(d—2) the coupling constant does not scale. Scalar theories
with potentials V' = g,_¢% are called classically scale invariant. The point is that we need
not assume such a particular form for the potential. By allowing for the (naive) scalings
(2.14) of the field, source and coupling constants when we scale M to AM, the classical

action and the source term are both scale invariant for arbitrary scalar field theories
/d%iﬂ—SMMﬁjka/ﬂxf¢—SMa¢m. (2.15)
AM M

Taking the suprema of this equality over all fields proves then the scale invariance of the

classical Schwinger functional
WM, 5, ) = WHM, 4, g]. (2.16)

More explicitly, it follows that if ¢.; solves (2.8) with given source and coupling constants,
then ¢ solves (2.8) with scaled source and scaled constants. Of course for (2.16) to

hold one should also check that de obeys the correct boundary conditions if ¢ does.
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This means that on the boundary it should mimimize the scaled potential. But since the
minimas of V(§) scale the same way as the fields this follows at once.

As is well known the scale transformations (2.13,14) cease to be a symmetry of the
quantized theory due to the scale anomaly. To see that explicitly on the functional level
we relate the generating functionals on AM and M.

From the scale invariance of W¢ it follows from (2.9) and (2.10) that

~ h ~
W(l)[/\Mh?ag] :WCZ[thag] - §logdetM(J7§)
" (2.17)
PORM, 6,4] = SIM, ¢, g] + 3 logdet M($,9).

We focuse on the regulated determinant on the scaled spacetime AM:

o d
logdet M (¢, 9) = s Mz

Note that the fluctuation operators scale homogeneously under the scale transformations
(2.13,14)
M=-0*+V"(3,9) = A"2[-0*+V"(p,9)] = A2 M. (2.18)

It follows from (2.11) that (7 (s) = A** (ar(s). Hence the ratio of the scaled to the unscaled

determinant becomes

det M
— —2log\- 2.1
08 ST og A+ (0) (2.19)

and we find the following scaling laws

WM, 7, 5] = WDIM, j, g] + hilog X - Car(j.g)(0)

i (2.20)
TWAM, @, 3] = TWIM, ¢, g] = hlog A - Cur(p.g)(0),

and this is the main result of this section. Whereas W¢ and S are both scale invariant,
WM and T are not. The scale anomaly, that is the logarithmic corrections to the
scale invariance, has been made explicit in the last terms in (2.20). We emphasize that
these scaling laws are correct for arbitrary scalar theories. If all coupling constants are
dimensionless then g =g in (2.20). Later we shall see that the formulae (2.20) also hold
for gauge theories, up to slight modifications due to zero-modes and gauge fixing.

To determine ((s) for vanishing s we use the representation (2.12). In the limit s — 0
the singular part of the t-integration comes only from the small ¢ region. Using the heat

kernel expansion for small ¢ [18]

i g 7 i [/ag(f;g)+ %bg(f;g)] t%, (2.21)



where f(z) is an arbitrary test-function, one finds [19]

(m(0) = (471)% [/ag(l;g) +]{bg(1;g)]- (2.22)

Here the integral symbol denotes both the integration over spacetime or its boundary and
the trace over internal indices if ¢ has several components and thus M is matrix valued.
(2.21) contains half-integer powers of ¢ since the trace must be computed with respect to
Dirichlet boundary conditions. This leads to boundary contributions to the heat kernel

and half-integer powers of ¢ in the small-¢ expansion.

The volume coefficients a,, vanish for odd n and have length dimension —2n. The
surface coefficients b,, have length dimension 1—2n. For general second order fluctuation
operators the a,, have been calculated for n < 5, relevant for 10 and less dimensions [18,20]
and the b, for n < 2, relevant for 4 and less dimensions [6,21]. In appendix A we have
collected the coefficient functions for Dirichlet boundary conditions relevant for theories

in 6 or less dimensions.

The physical role of these coefficient functions for n < d can be seen more clearly
in the proper time or dimensional regularizations which are intimately related to the (-
function scheme [19,22]. In perturbative calculations of the effective action they are just the
divergent terms which must be absorbed by counterterms. For example, a 4 is multiplied
by a logarithmically divergent factor, e.g. loge in the proper time regularization, and ag
is multiplied by a factor ¢~%. Thus the most divergent term is ~ [ao = |M] and such
a term can be absorbed by renormalizing the cosmological constant. In the (-function
regularization these infinite terms are suppressed and thus we may regard the coupling
constants in the classical action as renormalized ones. The role of the particular coefficient
function a 4 is twofold. It appears as logarithmically divergent contribution in perturbation
theory and at the same time determines the universal anomalous scaling of the renormalized

generating functionals.

For scalar field theories A, =0 and C = V” ? in (Al). Thus the a,, and b, are
local polynomials in V", the extrinsic curvature x,, of the boundary and their spatial

derivatives. Inserting the corresponding coefficients (A2) and (A3) into (2.22) we obtain

8%v )

2 For several scalar fields V"' is the second derivative matrix, V"' = ( 0 00,
i0P;



in 2, 4 and 6 dimensions:

1 N
Ca=2(0) = ——/ tr V" + —xE

47 6
1 1 " I 2 "
Cd:4(0): Ew[/tr(v )2—%{871131"/ +§trV Xa,a}:|
N N
+ 5o XE T 5503 ]{ F0 (2.23)
]' 1 " 1 I I
Cd:6(0):_§W/[tr(V )3+§trV AV ]

+ 7{ P (V" 0®V" xau).

Here N is the number of scalar fields, 0,, the outward oriented normal derivative and f
( f ) and tr denote integration over M (OM) and trace over internal indices, respectively.
X e is the Euler number. With our sign convention it is 1 if the boundary is a sphere. 1t
is the winding number of the normal vector field n(z) on 9M and thus is a topological
invariant. In general it gets a contribution form the metric and extrensic curvature. The
function f is the conformally invariant third order polynomial in the extrinsic curvature

(see appendix A),

2
Fx) = tr x* — tr xtr x*>+ §(trx)3, (2.24)

and it vanishes if OM is a sphere. The polynomial appearing in the surface integral in
6-dimensions has not yet been calculated.

For constant fields o =¢py we have in d=2n dimensions

Ca(0) = Kaq|M] tr (V" (g,%0))" + fP (V" Xab), Ka= (_1)”’- (2.25)

In odd dimensions the a,, vanish and (/(0) contains no volume terms. From (2.20) it
follows then that the generating functionals on AM and M are the same, up to surface
terms. Thus the scale invariance of the classical theories survives when one includes 1-
loop corrections, up to surface terms. For that reason we shall consider theories in even

dimensions only in what follows.

2.1 The role of the surface terms

For free massless scalars V =0 and the only contribution to the anomalous scaling comes
from the purely geometric surface terms in (2.23). This property holds if M is flat. In
curved spacetimes geometric volume terms are present even for free massless particles

[6,11]. However, in this section we shall assume spacetime to be flat.
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The kown surface coefficients are listed in appendix A. They are relevant when one
discusses Casimir type effects for free fields [6]. Inserting b; into (2.20,22) immediately

leads to the following formula in 2 dimensions

~ hN
1_‘geom = F[)‘Mv 90] - F[Ma (P] = _? XE 1Og )‘7 (226)

where NN is the number of free massless scalars and xg the Euler number of M. The
anomalous scaling depends only on the topology of spacetime. Actually one can show that
(2.26) holds for any 2-dimensional conformal field theory provided N is replaced by the

central charge ¢ [5,6]. This is an exact result and holds beyond perturbation theory.
Similarly, for free massless scalars in 4 dimensions only the coefficient by contributes

to ¢(0) in (2.20) and leads to the following scaling formula [6

r :_thog/\X _thog)\ff

geom 180 P 280x2

Contrary to the situation in 2 dimensions the scaling behaviour depends here on the

(2.27)

geometry encoded in f and not only on the topology.

The scaling laws (2.26-27) for free scalars are purely geometric and therefore present
irrespective of the form of the classical potential. Thus, for an interacting theory there
are two sources for the anomalous scaling, namely the presence of the boundary which
introduces a geometrical length scale and the interaction between the particles which in-
troduces a dynamical mass scale. We shall not always make the purely geometric contri-
butions (2.26-27) to the anomalous scaling explicit. But they must always be added to the
dynamical terms containing powers of the potential and its derivatives.

The geometric surface terms do not change the couplings in V', since those are related
to volume integrals. However, their appearance in I' signals that we should include sur-
face terms in the classical action as possible counterterms [12]. Thus in the presence of
boundaries S in (2.1) should be modified to

Sigughl = [ ao {5007 + V@) + f Quundud). (229
M oM

where h = {h,} are the coupling constants appearing in (). Similarly to the volume
couplings they will run due do quantum corrections. We require them to have length
dimensions < 0 for the theory to be renormalizable. Since the surface potential () has
length dimension 1—d it follows that the surface potential is at most linear in 0, ¢.

For example, the most general form of () in 4 dimensions which is invariant under

reflection of ¢ reads

}{Q :h1|aM|+h2]{ trX—l—h3XE—|—h4ff(X)

+2]{¢+27{¢trx+2 On@°,

(2.29)



The hq, ..., hq-terms are purely geometrical. Due to the imposed boundary conditions the
surface potential () factorizes in the functional integral (2.2). In the expansion of (2.28)
about ¢ (similarly to (2.7)) the terms quadratic in the fluctuations 0,,0¢ are always
multiplied by d¢. Due to the imposed boundary conditions such terms vanish. Thus the
1-loop formulae (2.9,10) still hold with exactly the same determinant but with classical
action (2.28). For example, for a free massless field in 4 dimensions with surface potential

() containing only the geometric hq, ..., hy-terms, (2.27) yields

PAM, @, h] = TH[M, o, h(N)],  where
AN log A AN log A (2.30)
ha(A) =hs = —g5= (V) =ha = 555,

and the remaining two coupling constants scale naively. However, in higher orders in a
loop expansion these couplings may run as well. We see that if we allow for an anomalous
scaling of some constants then the effective action is invariant under scale transformations.

The point is that this remains true for interacting theories.

2.2 The 1-loop effective potential from scaling behaviour

Let us see how the general 1-loop scaling behaviour (2.20) relates to more familiar results.
We shall derive the 1-loop effective potential in even dimensions, that is the effective action

density for constant mean field ¢ = ¢y,

1
U(l)(Ma(pOag) = W F(l)[M7<p07g]7 (231)
from scaling arguments. Since the surface terms are not known in d >4 dimensions, we
shall neglect them for the moment so that our results are correct up to surface terms.

From the scaling law (2.20) we obtain

- . hlog A
AT UM (M, o, ) = UMD (M, 0o, 9) — Wg| * (M (90,9 (0), (2.32)

where according to (2.17)

U(l)(Ma (10079) = V((p()vg) + hAU(V/,(<)007g))
AU(z) = ﬁ log det(—0% + ).

(2.33)
Here we have used that for constant fields the determinant can only depend on z =
V" (¢o, g). The classical potential cancels in (2.32). Finally, since

T = VH(@OL&) = )‘_2V,/(§007g) = )\_2$
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we obtain the following equation for the 1-loop contribution to U
MAUA2z) — AU(z) = —log A - ((0) = —log A - Ky z%,

where we made use of (2.25). The nontrivial solution is just

where one takes a convenient normalization in the logarithm. Adding this 1-loop result to

the classical term we end up with

hK g

UM (go) = V(o) + — (V" (0))

d
2

V" (0)

const

log (2.34)

In 4 dimensions the surface contributions to the anomalous scaling are known and we
can go further (2 dimensions are too trivial, since the surface scale-anomalies are purely

geometrical). Using the result (2.23) in 4 dimensions yields the effective potential

(V" (0))* log V(o)

const

) -

h 1
———— V" log —— - 7{ t
4872| M| °8 Const T

up to purely geometric and thus ¢g-independent terms. Note that for 'reasonable’ bound-

(2.35)

aries the finite volume effective potentials (2.35) tend to the infinite volume result (2.34)

for d=4 as required.

3. The running coupling in scalar theories

In this section we apply the general results (2.20) to a class of interacting renormalizable
scalar field theories in various dimensions. We recover the scaling behaviour of the different
volume and surface couplings together with the 1-loop f—functions, anomalous dimensions
~v and finally the trace anomaly of the energy-momentum tensor. Recall that in odd
dimensions (0) has no volume terms. Hence the wave functions and the volume couplings
are not renormalized in the 1-loop approximation. In the chosen regularization scheme we
cannot see any running of the volume coupling constants in odd dimensions. However, the
surface couplings do run since b 4 does not necessarily vanish in odd dimensions (see A3).
Although this is interesting in its own right, we shall concentrate here on the commonly

considered volume terms and therefore consider even dimensions only.

2 dimensions.
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We start with the general action for a one-component scalar field
1 — Ja
S(6.9.0 = [ {5007 + 3 % g} + e (3.1
a=0

where we added a topological surface term proportional to the Euler number. In 2 di-
mensions we could add infinitely many relevant and marginal surface terms since ¢ is
dimensionless. But besides the non-universal [0 M| and the universal x g none of them is
needed as counterterm. Hence everything what we say holds also if we add other surface
terms.

From (2.20) and (2.23) we derive the following scaling behaviour for the effective
action

TODM, 0,3, h] = STp,0. ] + 2 log et M(p, )
00

hlog A Ja / a2 hlog A
L Z(a—2)! ’ 6 P

a=2

where we have used that k and ¢ are both dimensionless so that h=h and $=¢ and that
the determinant does not depend on the surface coupling constant h. We rearrange the

different terms with the result
h
PODM, @,§, h) = SIM, 9, g(A), h(V)] + 5 logdet M (g, g), (3:2)

where we introduced the running coupling constants

Ga(A) = go + h!iaw logA and h(A) =h-— %log A. (3.3a)
m

Since the replacement g — g(A) =¢g+O(h) in logdet M changes the right hand side of eq.
(3.2) only in O(h?), which does not affect the 1-loop equation, we can relate the scaled

and unscaled functionals as
WM, 9,3, h] = TM[M, @, g(A), h(A)]. (3.4)

In other words, we can restore the invariance of the effecive action if we allow for an
anomalous scaling of the coupling constants. Thus, if the naive dimensional scaling (2.14)
is supplemented by the anomalous one (3.3a), then the 1-loop generating functional is scale
invariant.

To compare our results with the more conventional renormalization group results in

momentum space we note that (2.13) implies

p=A""p=pp. (3.5)
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So we find the following leading logarithm expression for the running couplings in 2 di-
mensions:

hga, h
ga(i) = ga— = “logu  and  h(p) =h+ clogp. (3.3b)

47

From that we immediately recover the f—functions to leading order

_ _Ngat2
47

As expected in these models there is no wave function renormalization.
As an application we calculate the anomalous scaling behaviour of the perturbative

mass in the sine-Gordon model. We parametrize the classical potential as [23]

mZ

Vi(g) =~ - 5 cos(B¢), (3.7)

where S is dimensionless and m the perturbative mass. It is now easy to calculate the
rescaled effective action from (3.4,6) (or directly from (2.20,23)) and one finds that it is

scale invariant,

ITOAM, ¢,7, 8,1% = TDIM, ¢, v(N), B, m*(\)], (3.8)

provided the mass runs as
2 2 I oo
m?(A) = m?(1 - 4—6 log A). (3.9a)
7

and the cosmological constant v as

9 =7 = g e o (3.90)
The equation (3.8) is an exact 1-loop relation including surface terms.

For models with polynomial interactions the coupling of the highest power is not renor-
malized. This is of course related to the fact that these models are superrenormalizable.

Note that the anomalous scale dependence of the surface coupling constant A is in-
sensitive to the details of the model. Since it scales the same way for all 2-dimensional
models we shall ignore it in the following sigma-model calculations.

We conclude this section with a discussion of the scaling behaviour of the O (V) —sigma

models. In terms of the constrained field n,;a = 1,.., N the action reads
1 w,a 2
S[ng, 9] = 37 oH*n® - Oung, n®=1. (3.10)
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First we shall evaluate the partition function, where attention must be paid to the con-
straint on the field. In (2.2) we integrate over fields with fixed length n?=1.
The classical field N, which extremizes the exponent in (2.2) and fulfils the constraint

is determined by
9’N, — (N°-9°Ny)N, = g*{(N®-j,)Ny — ja}. (3.11)

Note that the solution N, for a given source j, is also a solution for the locally transformed
source jo(x)+ f(2)Ny(x). Such an ambiguity is to be expected from counting degrees of
freedom. Hence there is no one-to-one correspondence between fields and sources. This
means that the effective action or Legendre transform of VW cannot be defined in the n-
variables. If we would introduce unconstrained variables, for example by a stereographic
projection, this problem could be overcome. But it is more convenient to use the n-field
for which we must deal with W rather than T.
In Appendix B we review the calculation of W, One finds

h
WM, jg] = WM, jg] — 5 logdet D,

where the fluctuation operator D is given in appendix B. Now we apply the general scaling
formula (2.20). Inserting (p(0) from (B6) we obtain

~ h
W(l)[)‘Majag] = WCI[M,j, g] - 5 logdetD
h(N-2) hig?(N —1)

47 ™

(3.12)

+ log)\/a“N“-auNa— log)\/ja-Na,
where we omitted the trivial boundary terms. We restore scale invariance by supplementing

the naive scaling (2.13,14) with the anomalous one for g and the source j,. We find
WM, 7,] = WM, §(A), g (M),

where
g2 log \

_ hg?(N-1)
11— fg2(N-2)

47

() g = (1= 10g A) ju- (3.13)

Note that in contrast to the other models considered it is now the anomalous scaling
of the source j, which yields the anomalous dimension. Translating the above result to

momentum space we obtain the S-function

) h(N — 2)
W(g?) = p—g? = -4 14
B (g%) o 59 (3.14a)
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in agreement with the literature [24]. Since /8 is negative the coupling becomes weaker if
M shrinks, as expected for an asymptotically free theory. The anomalous dimension is
related to the transformation behaviour of the source. We find it to be

h(N—1) ,

1(9%) = —5—9" (3.14b)

4 dimensions.

Here we consider the perturbatively renormalizable Higgs model with quartic self-interaction]j
g2 g4
V($) = g0+ 50" + 516" (3.15)

and the general surface-interaction (2.29). For go=0 and g =m? this corresponds to the
unbroken theory with perturbative mass m, and for go=gv*/4, go=—gv?/6 and g4=g we
obtain the Higgs model with perturbative Higgs mass myg = gv?/3. Applying (2.20) one

obtains the following explicit form for the scaled effective action

—_— hlog A g2
F(l)[)‘Ma ¥ 9, h] = F(l)[Ma ¥ 9, h’] - 327%2 / {g% + 9294902 + 24904}
2 (3.16)
hlog)\ ]{{948 L9 o) try) — TXE f(X)]
4m? TR T s T o |

As in 2 dimensions the 1-loop contributions can be absorbed in the classical action (2.28)
if the constants in the potentials (2.29) and (3.10) are rescaled. Hence the effective action
is scale invariant,

ITMAM, @, §,h] = TW[M, 0, g(A), h(N)], (3.17)

provided the volume couplings run as

go(A) = g0 — %937 92(N) = g2(1 — aga), ga(A) = ga(1 — 3ags) (3.18)

and the surface constants as

ha(A) = hg + %gz, he(A) = hg + %94, hr(X) = Iy + %g4, (3.19)
where we have introduced o = hlogA/16mw2. The constant hs does not scale and the
remaining geometrical constants hg, hq scale as in (2.30). To derive (3.17) we replaced the
couplings ¢ in the 1-loop contribution to the effective action by the scaled ones g(\) =
g+ O(h). Since this changes T' only in order O(h?) this does not affect the one loop result.

To compare our result with the momentum space renormalization [25] we identify the

inverse length scale 1/ of space time with the energy scale p as in (3.5). This immediately

17



yields the running coupling constants in momentum space and the corresponding 1-loop

[-functions for the volume coefficients

7 B 3
1 o 2 1 o 1 o 2
BN (go) = 55593, B (92) = 50001 BV (04) = 1o 50d (3.20)
and for the surface coefficients
BD(hy) = =gy, BD(hg) = ——'—ga. BD(hr) = ———g2. (3.21)
487277 48727% 327274

The B-functions for the mass and quartic coupling coincide with the ones calculated with
the more commonly used Green’s function method in momentum space [25]. The running of
the cosmological constant gq is usually not considered in the literature, since one requires
the normalization condition W(j = 0) = 0 for the Schwinger functional. This condition
removes a cosmological constant and terms containing the Casimir effect. Also, surface
terms are not present on the whole Minkowski (Euclidean) spacetime so that their scale
dependence cannot be studied in the conventional perturbation expansion.

Note that the 1-loop corrections do not lead to a wave function renormalization in
4-dimensional one-component ¢* theories. Again this agrees with the more widely used

dimensional regularization.

6 dimensions.

We consider the renormalizable ¢3-theory with general potential
o 92 2 | 93 ;3
V(#) =90+ 919+ §¢ + §¢ : (3.22)

The surface contributions to the coefficient ag, which enters the scaling law in 6 dimensions,
has not been calculated yet. For that reason we focuse on the scaling of the volume
couplings. For the cubic potential the general formula (2.20) with (0) from (2.23) yields

the following scaling law for the effective action:

h
I'MAM, ¢, 5] = SIM, v, g] + 5 logdet M(p,9)

hlog A 1

2 3 2 2 2 3 3
+m/{§93¢ﬂ¢7+92+39293€0+3g29390 + 93¢ }

(3.23)

Now the 1-loop corrections contain a derivative term of the same form as in the classical
action. When we try to absorb it in the classical action we change the coefficient % of
(0,4)%. To restore it we must renormalize the field. This multiplicative renormalization
of ¢ further rescales the coupling constants. The point is that nevertheless we can restore

the invariance of the effecive action
TMAM, ¢, ) = TMIM, VZsp,g(V)], (3.24)
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where the explicit wave function renormalization

B a _ hlogA
Z3=1-— 31 93 where o = TE (3.25)
and the running of the coupling constants
2
« a g3 g
G0N =go+ 505 g1(N) =g1[l+ 5g3(55 + 2]
T S
9(N) = g2[1+ =93]+ 9s(\) = gs[1 + 7 g3]
can be read off from (3.23). The corresponding [-functions read
_ h 2 _ h 2, 9193
B(gO) - 3'(47’[’)392 ) B(gl) - 2(47’!’)3 [92 + 3! ]
(3.27)
Blor) =~ sl Blos) = ol
g2) = 6 (471_)39293 ) gs) = 4 (471_)393

Contrary to the ¢*-coupling in 4 dimensions the ¢3 coupling in 6 dimensions gets stronger
when M expands. Thus the theory is asymptotically free. The main difference to 2 and 4
dimensions is that here the wave function is affected by an anomalous scaling already in

the 1-loop approximation. The anomalous dimension of the field is

h
=93 (3.28)

)
— 1L Nog Zy = —t
9) = ngloeZs = 5y

The anomalous trace of T'.

To relate the scale anomaly to the trace of the energy momentum tensor it is convenient to
couple the dynamical fields covariantly to an external gravitational field. Then both the
classical and quantum mechanical energy momentum tensor can be derived by variation

with respect to the metric as

2 2 or
o5 and (Tyw) = — 0 .
Vg o9

cl

pv T ﬁéguu

(3.29)

The so defined T needs no further improvement [26]. For a theory containing only di-
mensionless coupling constants its trace vanishes automatically if the fields are conformally
coupled to gravity.

If we scale the metric as g, — A?g,, the formula (3.29) reduces to

dr oT
- _ uv nv
a3 =1 2/ sgr Y / V(L) g™ (3.30)
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Instead of scaling the metric with fixed coordinates we can scale the coordinates and leave
the metric invariant. For diffeomorphism invariant I'’s both transformations must have the
same effect. In other words, if we scale the coordinates according to (2.13), keep g, =0,
and do not scale the fields and coupling constants, then this variation is related to the
trace of the energy momentum. This may now be exploited by differentiating the scaling
formula

5 1
F[)\M, )‘dw(Pa )‘dagaa Ade ha] = F[Mv Z32 2 ga()‘)a ha()‘)] (3'31)

with respect to the scale parameter. Here we have inserted the naive scalings of the
fields and volume couplings from (2.14). Similarly the d, are the length-dimensions of the
running surface couplings h, which one must introduce to guarantee (3.31).

The variation of the effective action due to the change M — AM yields the integrated
trace of (T},,,), so that we find

o dz Lo dgas 6 - dhg, 0T
/<TZ> - [d‘l’_ d\ ] 5 + . {[daga ﬁ](s + [d ha_ﬁ] 5ha}, (332)

where the derivatives are evaluated at A=1. Now we replace A by the momentum scale
i and the derivatives of the wave function renormalization and coupling constants by the

anomalous dimensions and beta-functions. We obtain

/(T’,‘) dy +17 /so J +Z{ o9a + B(9a)] ggr + [doha + B(Ra)] ;;;}, (3.33)

a
where we have inserted dI'/dp=3.

Note that we only used the general relation (3.31) in deriving (3.33), which is a
deep consequence of renormalizability and valid order by order in perturbation theory.
Therefore (3.33) is also valid order by order in perturbation theory and represents the
general structure of the trace anomaly of the energy-momentum tensor.

In two dimensions the first term vanishes if y=0 and only the two sums contribute in
the 1-loop approximation. However the d, cannot vanish so that only free theories possess
a traceless energy momentum tensor 3, up to surface terms. For free theories only the
surface beta-function term constributes in (3.33). In the 1-loop approximation we may
replace I" on the right in (3.33) by S. Varying now the action (3.1) with all g, =0 with
respect to h and inserting the beta-function S(h) from (3.6) we find

/(T‘,i> = N%XE (3.34)

3 Besides the free theories only models containing a Liouville mode possess an improved

traceless tensor. But these models would need a separate discussion.
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for N free fields in 2 dimensions. The finite volume regulates the theory in the infrared
but at the same time introduces a length scale into the theory. This is the reason why
quantum fluctuations lead to a non-zero trace and this trace is very much related to the
Casimir effect.

In higher dimensions d, #0 and the source must vanish for the trace to be zero. This
is to be expected since already the classical improved tensor has trace zero only on shell
and the classical on shell condition is exactly the condition j =0. On shell the trace is
given by the two sums in (3.33) which contain classical and anomalous contributions. For

the classically scale invariant theories

sihgotl = [ {5007+ Lob+ faune), a= 5 339)

with a surface potential containing only dimensionless couplings, the O(1) terms in (3.33)
vanish and on shell only the anomalous part remains in the trace. To O(h) we can replace
I’ by the classical action to compute this trace. For the theories (3.35) the volume potential

and action are related on shell as

S:b/VJr%]{qbanqb-l-]{Q, b:%d, (3.36)

so that (3.33) can be written as

/(Tﬁ> = %‘?)S + [Zﬁ(hi)aihi — %‘3)] ]{Q — %{2 7{4,08”90. (3.35)

We see that the 1-loop anomalous trace is completely determined by the volume and surface
beta functions and the scale invariant classical action. This formula holds for arbitrary
scale invariant scalar theories in d dimensions. Let us now consider the 4 and 6-dimensional
cases in turn.

In 4 dimensions b=—1 in (3.35) and scale invariance requires that hy =hy=hs;=0 in
the surface potential (2.29). Thus we find

[ =22 @ o+ ssxs +60u) § 100

9
+ B3 i+ (52 +60n)] 5 § ous?

(3.38)

with beta functions from (3.18,3.19) and the ones following from (2.30). When the volume

|M| tends to infinity we may neglect the surface terms and we conclude that

[ = -9 (339
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In 6 dimensions b:—% and the analogous result reads

[rn = 2P0 s = S sz s, (3.40)

where we inserted the beta-function from (3.27).

4. The scaling behaviour of gauge theories in the 1-loop approximation

In this section we consider the scaling behaviour of abelian and non-abelian gauge theo-
ries coupled to one fermion flavour enclosed in finite spacetimes M of dimension d. For
fermions there are only two types of consistent boundary conditions, namely the non-local
ones introduced by Atiyah, Patodi and Singer (APS) [27] and the local bag boundary con-
ditions [28]. For both the surface Seeley-deWitt coefficients are not known in more than
2 dimensions. One can nevertheless find the scaling law for the fermionic determinant
with respect to bag boundary conditions by indirect means, up to purely geometric terms.
However, here we prefer to assume that M possesses no boundary, that is it may be a
d-dimensional sphere, torus or some other compact spacetime without boundaries. We
assume that M is imbedded in a flat space such that the scaling M — AM makes sense.
The price we pay for getting rid of the surface terms is that now M (if it is not a torus)
is curved. Furthermore, the configuration space of fields becomes topologically non-trivial
and the different topological sectors are characterized by the instanton numbers. Because
of the index theorem there are fermionic zero modes and this leads to some technical
subtleties.

We start with the classical action for the gauge fields and massless fermions 4 in a

d-dimensional Euclidean manifold

S = S[A,g] + S, 9],

where

S[A, g] = i/\/gc:wagy Sl gl = _/\/gw‘rwpw, (4.1)

and D, = 0, +w,+ A, is the covariant derivative. Here w, = wlfB Y ap denotes the

i
2
connection, fy“:effl'yA the Dirac matrices in curved spacetime, e’; the vierbein related to
the metric through gt” = eie’ééAB and X 4p the generators of the quantum mechanical

SO(4)—rotation. The gauge potential may be expanded as A, = —igA}T*, where the

4 Only for simplicity we assume the fermions to be massless. There is no major obstacle

assuming the fermions to be massive.
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SU(N)— generators T obey the algebra [T, T =i f*T*° together with the normalization
condition trT,1,= %5(11). The Yang-Mills field strength and the curvature are defined by

Dy, Dy =—1ig (OHA,@ — O, A; + gfabcAZA,‘j) + (8uw,, — Opwy, + Wy, w,,])

- i, AB
= —igG,, T + QRW YAB.
Although we use the same symbol g for the gauge coupling constant and the determinant
of the metric its actual meaning should be clear from the context.
As for the scalar theories we extract the running coupling constants from the change

of the generating functional

ZIM,jingl= Y €2 M, jn, g, (4.2)

q=—00

when M scales into AM. Here j is an external bosonic current which couples to the gauge
field and n a Grassmann-valued source coupled to the Dirac fermions. Z is a sum over
different topological sectors labelled by an integer ¢, the instanton number. For Z, we

have the formal path integral representation

) 1
Zy[M. . 9] = 17 / DAY DyT Dy

(4.3)
lg 1 : fyt
-exp{ —%S+ﬁ \/E[j-A+w n+n QP]},
where the integration in Z, is restricted to gauge fields with fixed instanton number
L d H1p2 - ph2n
q= ol (4m)" d*z\/ge tr [GmuzGusm Teeet G)u/2n71u2ni| (4.4)

in d=2n dimensions. Note that perturbation theory for Z, is not yet applicable and we
are forced to recast it in a gauge fixed form.

As in the previous case of scalar theories we evaluate Z, semiclassically, i.e. up to
one-loop-corrections by means of a steepest descent approximation. The extremum of the

exponent is fixed by the classical equations of motion
— (DulAaG"[Aa])" = 5 (4.5)

and the condition that Ay — AY for vanishing external current j — 0. Here A?, is an
instanton solution with topological charge q. The fermionic fields remain infinitesimal

fluctuations in our approximation.
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We now expand the exponent about A. and retain only the terms quadratic in the
fluctuations. Writing A#*=A"*++/AB"* we find for the exponent in (4.3)

sGy =W+ [vavtipe+ [ Valtyeate]

(4.6)
h a va vya ac vc Qa v
+5/¢§Bu[<D2>“ "= (DMDY)* 429 G =0 R ] By

where )
W) = 5 [ VG "G+ [ Vi Aa (4.7

is the classical Schwinger functional. It is understood that A, = A (j) depends on the
external current via the classical field equation (4.5). In these expressions D* contains the
background field A/, and the connection w*.

Now we are ready to evaluate the semiclassical functional Zél). We have in mind the
computation of gauge invariant correlators in instanton backgrounds. The perturbative
expansion about instantons is subtle due to the occurence of various zero-modes [29,30].
Therefore we shall discuss the problems due to zero-modes rather carefully.

For fixing the gauge we apply the wellknown Faddeev-Popov procedure [31]. In topo-
logically non-trivial backgrounds the Faddeev-Popov operator possesses zero-modes. They

are due to constant infinitesimal background gauge transformations
BN — BN_[ACUH @]

which leave B invariant. If h denotes the little (or stable) algebra of the instanton, that
is the subalgebra commuting with A.;, then these are just the gauge transformations with
O = —10?T*, where the T lie in h. More explicitly, h is the maximal subalgebra which
commutes with the su(2)-subalgebra defined by the instanton [30]. To eliminate these

constant gauge transformations one inserts

1—A[4,] / Dy / Dho(FIA,]) (4.8)

into the functional integral. Here [Dg denotes the measure on SU(N)/H and [ Dh the

measure on the stability group H. Now one proceeds in the usual way and calculates

OF
AlA,] = det'g = det' My, , (4.9)

where the prime indicates that the zero modes of Mg, must be omitted. After absorbing

all the volume-independent terms in the normalization of the Gaussian integral we find
i 1 _1gM
ZMDIM, j,n, 9] = o /Dh /DB}}) DT Dy det' Myy, 6 (F[A,]) e 7%, (4.10)
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We cannot absorb [ Dh in the normalization because it exhibits an explicit dependence
on the volume of M as discussed below.

At this point we choose the background gauge F*(A., B) = (D*B,)" such that that
the middle term in the second line in (4.6) vanishes. The corresponding Faddeev-Popov
operator is

Mg (Ag, 9)™ = (-D*)®, (4.11a)

where D? is a matrix in the adjoint representation. The remaining quadratic operators

acting on the bosonic and fermionic fluctuations are

a ab ac c a
Mp(Aa,g)t, = (=D%),, — 29/ "GS e + 0Ry (4.11b)
and
M. (A ab __ 2\ ab Zg nv ab 1 ny
w(Aa, 9)il = (=D%),, + chzme (YY)t + §(R v )kl (4.11c)

where R, = R;},B Y ap. For later purposes we displayed all the relevant indices: a,b,c
belong to the gauge algebra; ¢, k are Dirac and pu,v Lorentz indices. For notational sim-
plicity we shall skip the indices in what follows. Note that A, plays the same role as ¢
in the scalar theories.

From the discussion of the gauge fixing we conclude that the fluctuation operators may
possess zero modes. As far as the pure gauge sector is concerned, that is the fluctuation
operators Mp and Mgy, this problem has been lucidly discussed in [30]. Here we give only
the results. One obtains for [ Dh

/Dh, = [mlg]d’fi, (4.12)

where di and Vg are the dimension and volume of the stability group H, respectively. The

fluctuation operator Mp may possess additional p zero modes arising from the variation of
the collective parameters {7, }. Expanding the fluctuations B, in terms of eigenfunctions
of Mp one may convert the integration over the expansion parameters {«, };r = 1,..,p

belonging to the zero modes to an integration over {~,}

p p
[T dew =] dv (det J)z, (4.13)
1 1

where J denotes the corresponding Jacobian.

Finally since in the sector with instanton charge ¢ the Dirac operator ¢J) and hence M,
has |g| zero modes of definite chirality, one must be cautious in evaluating the fermionic
path integral [32]. Let 1, (z) denote the orthonormal zero modes of i) , G'(x,y) the
‘excited’” Green’s function belonging to iJ) and det'%Md, the fermionic determinant with

zero eigenvalues excluded.
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With all the notations fixed we finally obtain for the one-loop functional

) el \/27rg d 1
Zél)[M,j,n,g]—e%W (M.5,9) [|M|2 HVH /Hd% (det J) 3

det' ™2 Mp (A, g) det’ My (Au, g) det's My (A, 9) (4.14)
Tt v @hom e vanten

n
The product of divergent determinants will be gauge invariantly regularized by the (—functionfj
method. This regularization seems to be the most convenient one when dealing with dif-
ferent topological sectors [32].

Let us now consider the rescaled theory and construct its generating functional Z[AM, IR g]l

Under a scale transformation (2.13) the fields transform as

Aa(@) = AC=D A() $(@) = A0 D(a) (4150)
- .15a
j(#) = 2720 () ii(&) = A2 0y (x),
and the gauge coupling constant as
g=Azld=9 g (4.15b)

Note that the metric g#” is not scaled so that the connection w,, transforms like a derivative
0y The classical action and hence We are both invariant under the scale transformations
(2.13), (4.15). However, only in 4 dimensions is the gauge coupling dimensionsless and
thus the energy-momentum tensor traceless (see 3.33). The topological charge (4.4) is
scale invariant. Note that if A, solves (4.5) with coupling g and current j then Ay is a
solution with rescaled current and coupling constant.

As in the scalar case the classical scale invariance is broken by quantum corrections .

To see that more explicitly we establish the connection between the generating functional

on AM
~ 1 yasc ~ o 2 1 1
Zé”[w,j,ﬁ,g]—ehW’Wﬂ’g)[J\:j' e /Hd% (det 7)*
-det'_%MB (Acl, g) det/Mgh(Acl, ) det 2 Md’ (Aclv g) (416)
~t 7 TE N — T
LG b @y e S vor e

n

and the one on M (4.14). As for scalars (see above (2.19)) we have (y;(s) = A?*Cpr(s) for
all fluctuation operators. Hence the product of the rescaled primed determinants can be

related to the unscaled ones as in (2.19) and one finds

det'_% MB det']\ngh det'% Md’ .
det'_% MB det'Mgh det'% Md’

log —log A {2Cu,, + Cary — S }s:o- (4.17)
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Here we used the abbreviation M = M (Acl,g) for the fluctuation operators on AM
Note that the (-functions belonging to the bosonic and fermionic fluctuation operators

contribute with different signs in the last bracket
Before calculating the (-functions in (4.17) we discuss the scaling behaviour of the
All the normalized zero-modes of the operators Mp, My, and My,

other terms in Z,g ),
scale as

p(T) = A~
that is transform differently as the fluctuation fields in the functional integral. Hence

(T, ).

~d

)
Az = M

)\ ZngdH
Hd% = APHdw, IR
Altogether the different zero-modes contribute a factor \?~2¢#~l4l in the scaling of zM

The fermionic Green’s function scales as
G'(z,9) = NG (@, y)

so that [nG'n is scale invariant. Thus we find the following scaling law
log A-{ 2Car,, +Cna,, _CMB}LS:O' (4.18)

ZWM, i, g = A2l Z M, G, g] - e

q
In deriving (4.18) we have used the scale invariance of the classical Schwinger functional
Let us now explicitly evaluate the (-functions at s = 0 for the various fluctuation
operators. Thereby we must be careful to project out the zero modes of the operators M

in the various (—functions in order to finally get the desired primed determinants [19,32]
(4.19)

We get
=1 1 > s—1 —tM
Cm (0) = ;1_1)% I(s) /0 dtt’="Tr e """ (1 — P),
where P(z,y) = Y., ¢n(x)¢l(y) is the projector onto the zero modes ¢, of M. One sees
at once that )
Cup(9)(0) = (4m)? /ddx\/§ tr ag(a:;g) —p (4.20a)
(M, (9)(0) = (1n)? /dd$\/§ tr ag%h(x;g) —dy (4.200)
(4.20c)

and

iy ()(0) = ——5 [ d'z /g trag(zig) — |l
(47)> :
instead of (2.22). Here tr denotes the trace over gauge, Dirac and Lorentz indices. The
constants p, dg and |q| lead to a factor A™P+2du+ldl in (4.18), which exactly chancels the
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factor AP~2¢# =4l coming from the zero-modes. Thus we obtain the following scaling law

for the Schwinger functional
1 <~~~ 1 .
WPIAM, j, i1, §] = WP M, .1, g]

hlog A cLaB e o) — 207" (. o) — a¥ (x
(471')% /\/Et { %( 79) 2 %( 79) %( 79)}-

(4.21)

This scaling law should be compared with the corresponding one for scalar fields (2.20,2.22).
There the surface of M affects the scaling of the Schwinger functional whereas here the
topology of the classical gauge field configurations and fermionic zero modes do not.The
scaling 1s the same in all instanton sectors.

The Seeley-de-Witt coefficient a,,(x; g) for gauge covariant operators of the form
M = -D?+C(x), where D, =0, + Aq, + w,, (4.22)

where C(x) denotes a general field of hermitean matrices, have been calculated for n <5
and those for n < 3 are given in the appendix. We evaluate now the gauge field, fermionic

and ghost contributions in 2 and 4 dimensions in turn.

. The running coupling constant in four dimensions in leading log approximation

Before dealing with the realistic 4-dimensional case we comment on the quite trivial sit-
uation in two dimensions, that is on the scaling behaviour of the Schwinger model. In 2
dimensions the (would be) anomalous contributions to the effective action are given by the
coefficients a; of the various fluctuation operators, and hence by the trace of C'. For the
ghosts C'=0, for the gauge fields the Lorentz-trace of C vanishes and for the fermions its

Dirac trace is zero. Thus we have
1 T 51 .
ZMM, 4, 7,8) = 2N (M, ., 9] (5.1)

in 2 spacetime dimensions. We see that the 1-loop generating functional is invariant with
respect to the naive scalings of the coupling constants and fields. A detailed computation
shows that even the full generating functional of the Schwinger model is in the naive sense
scale invariant. Of course this follows from the fact that in QED> the gauge coupling and
fields are not renormalized.

Now we apply the results of the previous section to QCD, or more generally to four
dimensional nonabelian gauge theories with gauge group SU(N). In four dimensions the
gauge coupling is dimensionless and its scale-dependence is a quantum effect. Let us

collect the different contributions to the anomalous scaling (see Appendix A). We thereby
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omit all the purely geometric terms noting already here that there is no mixing between
them and the gauge contributions. These geometric terms lead to running cosmological and
gravitational constants. In addition, the dimensionless constants associated with dimension
four operators in the gravitation field, e.g R?, D®R, become scale dependent [11]. In the

following the integrations are performed with respect to the invariant measure.

Gauge fields.
For the gauge field fluctuations the C-field in (4.16) is Cp = —2G + R and calculating the
Lorentz trace in (A2) yields

1 1 5
tr pas(z; g9) = 4EGWGW — 4§G’“’GW +...= _gGWGW 4+,

where we have used that tr ,Cp = 0. Thus we get

5
/\/§ tras(z;g) = —g/\/g tr aAG" Gy + ..., (5.2a)

where the trace has to be taken in the adjoint representation, denoted by A.

Ghosts.
For the ghosts Cy, = 0 and

1
/\/§ tras(z;g) = - / VG tr aG* Gy + . (5.2b)

Fermions.

For Dirac fermions Cy, = —%G’“’Vu’y,, — %R’“’q/m/,, and the Dirac trace yields
L 1w 2 v
trDaZ(x;g):4ﬁG G — 2§G GW"'---:_gG G+ ...,

where have we used that tr pCy = 0. Thus we remain with

2
/\/§ tras(z;g) = —3 / VI trrG* G+ (5.2¢)

where the fermions transform according to some representation denoted by F'. Let us
define the second order Casimir Tx of a representation R as tr T*T? = §*°Tx. Above, ...
stand for all the purely geometrical contributions which we omited. Collecting the results
we find the anomalous term in (4.15) to be

11 2

2
g va a —
= X log A /\/§G“ G, , where X = 5 Ty — gTF' (5.3)
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At this stage of the calculation it is again convenient to introduce the effective action, that

is the (partial) Legendre transform of the Schwinger function,

POM, a,7, 9] = /ﬁj Ca— WM, .. 4], (5.4)

where the mean field a and the current are related by a = §W/Jj. By using the same
arguments as for scalar fields one finds from (4.15) the following scaling law for the effective

action

L. 1 hlog A
1 —
F((I )[)‘Mv avnag] - Z(l - 472

Xg?) / GG (@)GE () +....  (5.5)

where we inserted (5.2) for the anomalous term in (4.15) and the classical field has been
replaced by the mean field a. Here ... stand for those fluctuation terms, which we do not
need at this stage. In order to read off the scaling of the field and coupling constant from

(5.5) we write the integral in (5.5) in terms of the mean field

1 log A 2/ 1 log A 2/
—(1-— X mraGge = —(1-— X
1= X9 [ VGG, = (- 2 X gT) [ VY

{aZ(—E)Z(S’“’ + OHO)al — 4g foeora - aZa,‘i + ngabcfadeaZa“dal‘ia”e}.

Now it is clear that the wave function has to be scaled, and the scale factor Zs is given by
the coefficient multiplying the second derivative term above. To restore the invariance of

the effective action we need to rescale the field as

hlog A

y= X g% (5.7)

a, — \/Zsa,, where Zz=1-—

We reexpress [' in terms of the scaled field and the running coupling constant

2 g’ 2 1
2\ =L = 5.8
R S T (5.8)
and obtain this way the invariance of the effective action
L{YIAM, a7, g] = DM,/ Za,n, g (M), (5.9)

Again we have used the fact that in all 1-loop contributions to the effective action (the
dots in (5.5)) ¢ and a can be replaced by the scaled coupling constant and field without
affecting the 1-loop scaling result.

Note that 1/g and a scale the same way as required in a theory having one coupling
constant in different interaction terms. The result (5.9) shows that we can restore scale
invariance if we supplement the naive classical scale transformations with the above anoma-

lous ones. Also note that the coupling g runs the same way n all the topological sectors.
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This result is usually obtained using the backgroundfield method [33,34 and references

therein]. In the 1-loop approximation considered here there is a simple relation between

F((Il) [a] and the effective action Félg 4lavg, B] in the presence of the background field B eval-
1

=T lapy =0, B=ad]

so that in our calculation the mean field a simply replaces the field B introduced in the

uated with the usual Feynman graph technique. One finds I‘(gl)[a]

backgroundfield method to restore manifest gauge invariance.
To compare with the momentum space renormalization one expresses (5.7,8) in terms

of p to find the leading log expression for the S-function [25]

0 hX

B (g) = ha () =-559"(1) (5.10)

and the anomalous dimension of the gauge fields

(1) B 0 B hX
Y4’ (9) = Han log Zs = 9 (1) (5.11)

Concering the trace of the symmetric energy-momentum tensor 7}, for gauge theories
the same arguments as those leading to (3.18) lead now to the anomlous divergence of the

energy momentum tensor

a 28W(g)
/(T;) =) S, (5.14)

a result originally due to Collins, Duncan and Joglecar [35].

6. Conclusions

In this paper we have studied the 1-loop anomalous scaling laws for the effective actions of
scalar and gauge theories on finite spacetimes in various dimensions. We showed explicitly
that if we allow the coupling constants and fields to scale differently as suggested by
dimensional analysis we can get rid of the scale dependence of the effective action I'. The
anomalous scaling of the couplings and fields is just the one belonging to the 1-loop beta
functions and anomalous dimensions if the relative size A of spacetime is related to the
energy scale as p=1/\. However, if spacetime possesses a boundary we need to add surface
terms to the classical action and the surface coupling constants must scale as well for I" to
stay invariant. From the invariance of I' we derived a general formula for the (integrated)
trace of the energy momentum tensor for space-times with boundaries.

In our explicit calculations we have included the 1-loop corrections to the classical
results. It would be interesting to see how effectively one can derive the g-functions and

anomalous dimensions from finite size effects in higher orders. Finite size calculations are
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infrared finite and already that could be a good reason for extending our methods beyond
1-loop. Since the (-function method naturally extends to the operator regularization which
is applicable to higher order calculations [36] this should indeed be possible.

As already pointed out in the introduction, our investigation of field theories on space-
times with boundaries have implication for the Casimir effect. To see that more clearly
assume that space-time is a cylinder, M = [0,5] x §. Then —pW[3, 8,0, ¢g] is the free
energy at temperature T'=1/4 and

. 1 .
Eo(S,9) Zﬁlggog lng[B,S, ©, 9]

the ground state energy of the system with renormalized couplings g and confined in the
space region S. From the scale invariance of I' one derives then the following scaling law

for the ground state energy
1

BAS, 5] = L FolS, (V] (6.1)
In particular, if the system is confined between two infinite and parallel plates, then the

energy per surface element scales as

1 11

—Ey[AS, 9] = B

A FolS, g\ (62)

For a classically scale invariant theory this implies that the Casimir energy
ECas = EO[)\S7 g] - EO[87 g] (64)

can be recast into

Fous = 3 FolS, 9] = FolS, g1 (6:5)

This identity has the following interpretation: when we enclose a quantum system into
a space S and (in a Gedanken experiment) change the renormalized coupling constants
according to the renormalization flow, g — g(\), then Ej changes by the same amount as
when we leave g fixed and move the walls so that S — AS. This statement holds up to
the trivial 1/A factor in (6.5).

Let us finally comment on a apparently different problem which has been our moti-
vation for studying the finite size scaling of the generating functionals, namely the chiral
symmetry breaking in QCD. When one imposes the one-parameter chirality breaking bag
boundary conditions on the fermions as in [28] then the parameter 6 appearing in the
boundary conditions can be interpreted as f-parameter in QCD [37]. Furthermore, it can
be argued that the chiral condensate does not vanish for small volumes. This may not
come as a surprise since the boundary conditions explicitly break the axial SU(N). We

have seen that even in the presence of boundaries the scaling of correlators is governed by
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the renormalization group coefficients. Now the task would be to derive bounds on the
QCD-beta-function and anomalous dimensions such that the condensate survives when
the volume increases and one leaves the perturbative, small volume regime and enters the

non-perturbative large volume sector.
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Appendix A

In this appendix we list the Seeley-deWitt coefficients a,, and b,, for operators of the form
M = —-D?+C(z), where D, =0,+ A, +w,. (A1)

The relevant volume coefficients a,, are [11,18,19,32]

[ Vi@ = 1eim]
/\/§a1 /\/_tr “R-C]

1
t D’R R? — R‘“’R o+ —RMYPTR, oo
/\/‘6“2 2'/\fr15 +36 T T )
1 1
rallZ __D2 = 2
+6G G 3 C 3RC’+C’]

1 1
/@ag =5 /@ [~ C®~ CD’C ~ SCG™G,,

1 1
+ 10 (D,G*")(D,GY) — 1—5GWG””GW] + geom.terms.

For Dirichlet boundary conditions and g,, = 6,, the surface coefficients b, are given by
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[6,21]

VT _ 2 _ 2
192]{Tr[ 96C + 7(trx)* — 10 tr x?|

/
/
[n0) =2
/

1
bo(z) = %7{ Tr [+ 40trx® — 33try tr (x)* + 5(trx)?] (A3)

— %7{ Tr [C’trx—(?nC’]
— (42 [155xE + 5593 $ 100)

—%7{ Tr [C’trx—anC’],

where we have introduced the topological Euler number for 3-surfaces imbedded in flat

spaces,
1

1272

and the conformally invariant third-order-polynomial [21]

XE = ]{[2Trx3—3TrxTrX2+(Trx)3] (Ada)

FO) = Trad = TexTeg? + 2 (Try)®. (A4D)

The surface integrals are performed with respect to the induced metric, i.e. ¢--- =
§ Vgd?*tdu-- -, where the boundary is (locally) parametrized through functions z% =
z%(u'), and

0x® Oxb
Jij =9 Yout dui (45)
is the induced metric on OM. The second fundamental form
ox® Oxb
K, = ————n,. A6
J ou' ou’ fasb (46)
or more precisely its extrinsic form
a b
ap 0% 01 ij (AT)

Cout Ol
enter the above expression for the Seeley-deWitt coefficients. In the body of the paper we

assume that M is flat in which case g, =041 and the covariant derivative in (A6) becomes

an ordinary one.

Appendix B
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We set up the 1-loop approximation to the partition function for the O(N)—sigma models
[38]. The main point is to use an expansion of the n,—fields about the classical background

which respects the constraint n? = 1, up to cubic and higher order terms in the fluctuation
fields &,. We set

1
Ng = Na + fﬂe,@a - égﬁgﬂNav (B]')

where the egq; 8 = 2,.., N together with N, form a orthonormal system in the space of
fields

€gNe =0
€atBa = Oap (B2)
NNy + 65651) = Ogb-

It is clear that n? = 1+ O (£3). Expanding S to second order yields

Sln.g) = SIN,g) + 55 / €9 Do,
where
Daﬁ = _Diﬁ + 0ap,
D = 9,6 + ¢ (9uel) (B3)
o = (GQGaHNa) (€ﬂb8MNb) - 5aﬂ(auNa ) 8ujva - gzja : Na)'
For the functional measure we find
[ &V n(@)s(n® —1) = J] a"~ (=) (1 + O(€?)),

where we used that the Jacobian from the coordinate change exactly cancels the contribu-
tion from integrating out the -distribution. Shifting ¢ — v/A¢ we find the 1-loop partition
function
ZWIM, j,g] = ex W M9l det ™3 D (B4)
and
WM, 4, 9] = WHM, j, g] — f logdet D. (B5)

For the (-function we find with the help of Appendix A

Cp(0) = —% tro

N-2 a g>(N—-1 a
T Tar /8“N OulNa (47r )/j Ne- (56)
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