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Abstra
tThe dependen
e of e�e
tive a
tions on the �nite size of the spa
e-time region M is in-vestigated in detail. It is shown expli
itly that the one-loop e�e
tive a
tions on M and�M are the same if the volume and surfa
e 
oupling 
onstants and �elds s
ale a

ordingto the renormalization 
ow. An eÆ
ient algorithm for 
al
ulating the beta-fun
tions andanomalous dimensions is derived. The general results are applied to a number of examples,in parti
ular s
alar �eld theories in two, four and six dimensions, O(N)-sigma models intwo dimensions and gauge �eld theories with fermions in two and four dimensions.

1. Introdu
tionThe behaviour of quantum systems under a 
hange of the length or energy s
ale plays animportant role in high energy physi
s [1℄, statisti
al me
hani
s [2℄ and general relativity [3℄.The most simple example is the Casimir e�e
t [4℄ where the va
uum 
u
tuations 
hangewhen the walls en
losing the system are moved. This in turn leads to a 
hange of theva
uum energy and a Casimir for
e a
ting on the walls. More re
ently the study of su
h�nite size e�e
ts have played an important role in 2-dimensional models, in parti
ular inthe 
onformally invariant ones. For example, one 
an show that the universal term in thes
aling of the free energy is proportional to the 
entral 
harge [5,6℄. This means that the
entral 
harge 
hara
terizes both the ultraviolet and infrared behaviour of su
h models.1



On another front, the behaviour of renormalizable quantum �eld theories under di-latations has 
entered on the asymptoti
 s
aling of Green's fun
tions. This s
aling exhibitsdepartures from the one suggested by naive dimensional analyses and 
an be studied onthe basis of the Callan-Symanzik equation [7℄. For more than 2 dimensions the s
ale (and
onformal) invarian
e is generi
ally broken by hard anomalies. In [8℄ it has been shownthat the breaking of the Weyl-invarian
e (or lo
al s
ale invarian
e) 
an be absorbed by
hanging the (lo
al) 
ouplings and introdu
ing external �elds.It is well known that the perturbation expansion is often plagued with severe infrareddivergen
ies. For gauge theories, the 1-loop 
orre
tion to the 4-boson vertex depends onthe infrared 
uto� � as �4�d and shows a power divergen
e in less than 4 dimensions.These infrared divergen
es are then present in the high temperature regime where the4-dimensional theory be
omes e�e
tively 3-dimensional [9℄. One way to solve this problemis to assume that spa
etime has a �nite volume jMj � Ld. Then one averages onlyover degrees of freedom with momenta p> 1=L. Alternatively one 
ould use the averagea
tion approa
h as advo
ated in [10℄, whi
h has been su

essfully applied to determine therunning 
ouplings and 
riti
al exponents for s
alar and gauge theories.In this paper we investigate how the Green's fun
tions 
hange if the infrared 
uto�jMj is moved to �djMj or if one in
ludes smaller and smaller momenta in the averagingpro
edure. More pre
isely, we determine the 
hange of the e�e
tive a
tion � when the�nite spa
e-time regionM is s
aled to �M and the 
ouplings and �elds s
ale naively, thatis a

ording to their dimensions. In parti
ular, for 
lassi
ally s
ale invariant theories therenormalized dimensionless volume- and surfa
e 
oupling 
onstants are kept �xed.Sin
e for 
onstant mean �elds the e�e
tive a
tion is just the e�e
tive potential, theminimum of whi
h is the va
uum energy, this 
hange should be interpreted as generalizedCasimir e�e
t. By using heat kernel te
hniques we shall derive expli
it expressions for thes
ale-dependen
e of the 1-loop e�e
tive a
tions when the renormalized 
ouplings and �eldss
ale naively.Instead of viewing the 
hange of � as Casimir e�e
t one may ask whether it is possi-ble to keep it invariant. This 
an indeed be a
hieved if we allow the volume and surfa
e
ouplings and �elds to s
ale di�erently than suggested by dimensional analysis. We �ndthat the s
aling whi
h leaves � invariant is the naive one supplemented by the anomalousone following from the renormalization group equation. The energy s
ale in the Callan-Symanzik equation is thereby repla
ed by the typi
al inverse length-s
ale of spa
e time.Besides this Casimir type interpretation for the beta-fun
tions and anomalous dimensionswe obtain a very eÆ
ient algorithm for 
omputing the Callan-Symanzik 
oeÆ
ients in arbi-trary dimensions and for various �eld theories without 
al
ulating any Feynman diagrams.Related results have been obtained in [11℄, where intera
ting s
alar �eld theories2



in 
urved spa
es without boundaries have been investigated. These works did mainly
on
entrate on the geometry dependen
e of the e�e
tive potentials and a
tions and relatedquestions su
h as symmetry restoration for large 
urvatures. In [12℄ a variant of themultiple s
attering expansion for the Green's fun
tions has been developed and appliedto derive the perturbative expansion for quantum �elds in spa
es with boundaries. Inparti
ular, the additional divergen
ies present in the loop expansion as a 
onsequen
e ofthe presen
e of boundaries and the 2-loop beta-fun
tions have been 
al
ulated. Re
entlyL�us
her et.al [13℄ have applied �nite size te
hniques to latti
e 
al
ulations. The s
aledependen
e of the latti
e 
ouplings in asymptoti
ally free theories and in parti
ular theinterpolation between their perturbative small volume and non-perturbative big volumevalues has been investigated.The paper is organized as follows: in the se
ond se
tion we analyse the s
aling be-haviour of the generating fun
tionals on spa
etimes with boundaries up to 1 loop withthe help of heat kernel te
hniques. In se
tion three we derive expli
it expressions for theanomalous s
aling of the �elds and 
oupling 
onstants for s
alar �eld theories. They followfrom the requirement that the e�e
tive a
tions are s
ale invariant. The results are appliedto s
alar �elds in 2, 4 and 6 dimensions. In parti
ular, we obtain the 1-loop renormaliza-tion group 
oeÆ
ients for the sine-Gordon and O(N)-sigma models in 2 dimensions, the�4 theory in 4 dimensions and the �3 theory in 6 dimensions. We also derive the generalformula for the tra
e of the energy-momentum tensor in spa
e-times with boundaries. Itis shown that the anomalous tra
e is proportional to the anomalous dimension and thevarious volume- and surfa
e beta-fun
tions. In the following se
tion, the program is 
arriedthrough for gauge theories with fermions. For te
hni
al reasons we assume that M pos-sesses no boundaries. Sin
e all spa
es (besides the torus) with �nite volume and withoutboundaries are 
urved we are lead to 
onsider gauge theories on 
urved spa
e times. Wederive the anomalous s
aling of the generating fun
tional for �xed renormalized 
ouplingsand �elds in the di�erent instanton se
tors. It is shown that the renormalization group
oeÆ
ients are the same in all instanton se
tors. In se
tion 5 we apply the general resultsto realisti
 4-dimensional gauge theories in the 
hiral limit of vanishing quark masses andobtain the beta-fun
tions and anomalous dimensions from demanding that the e�e
tivea
tion is s
ale invariant. In the appendi
es we 
olle
t the relevant heat kernel 
oeÆ
ientsand set up the ne
essary formulae for the semi
lassi
al quantization of sigma models.
2. S
ale transformation for s
alar-�elds in leading logarithm approximationThe a
tion of a (possibly multi-
omponent) s
alar �eld � in d-dimensional Eu
lidean spa
e-3



time M is given by S[�; g℄ = ZM ddx�12(���)2 + V (�)� ; (2:1)where g = fgag denotes the set of 
oupling 
onstants (in
luding masses) appearing in the
lassi
al potential V . A s
alar �eld has length-dimension d�= 12(2�d) and from that oneinfers the dimensions of the various 
oupling 
onstants.We assume that the volume jMj of spa
etime is �nite and that the s
alar �eld obeys
ertain boundary 
onditions on the boundary �M. For example, if �0 minimizes the(e�e
tive) potential we may impose the 
ondition �j�M = �0. If there are several mini-mizing �0, as it typi
ally happens when a 
ontinuous symmetry is spontaneously broken,the boundary values must further be spe
i�ed. If no external sour
e is applied then theseboundary 
onditions may sele
t the va
uum state whi
h is 
hosen by the quantum system.Alternatively we 
ould assume that M possesses no boundary, e.g. that it is a d-dimensional sphere. For gauge theories (
onsidered in se
tions 4 and 5) we shall makethis assumption, mostly for te
hni
al reasons. For s
alar theories it is more 
onvenient toassume that spa
e time possesses a boundary, e.g. is a d-dimensional ball. This way we
an avoid the problems asso
iated with the zero-modes of the derivative term in (2.1) [14℄.The partition fun
tion whi
h is the generating fun
tional for the Green's fun
tions isformally given by the Eu
lidean fun
tional integralZ[M; j; g℄ = 1N Z D� exp �� 1�hS[�; g℄ + 1�h ZM ddx j � �� ; (2:2)where we have made the dependen
e on the spa
etime region expli
it. Due to the infrared
uto� we average only over �elds with momenta larger than the inverse size of the system.Often it is more 
onvenient to 
onsider the S
hwinger fun
tional whi
h generates the
onne
ted Green's fun
tions W[M; j; g℄ = �h logZ[M; j; g℄ (2:3)or its Legendre transform, the e�e
tive a
tion�[M; '; g℄ = ZM j � ' � W[M; j; g℄; (2:4)where the sour
e solves '=ÆW=Æj, i.e. is 
onjugate to the mean �eld 1 '. The S
hwingerfun
tional 
an be re
onstru
ted from the e�e
tive a
tion by the inverse Legendre transfor-mation W[M; j; g℄ = ZM j � ' � �[M; '; g℄; (2:5)1 we use the symbols ' for the mean �eld, i.e. the argument of the e�e
tive a
tion, and� for the mi
ros
opi
 �eld appearing in fun
tional integrals like (2.2).4



where the mean �eld solves j = Æ�=Æ'. In 
ases where the derivative of W(j) is not
ontinuous the 
ommonly used transformation (2.4) fails to be appli
able. This happenstypi
ally when the 
lassi
al potential is not 
onvex. To handle the general 
ase one usesthe transformations �[M; '; g℄ = supj �ZM j � '�W[M; j; g℄	W[M; j; g℄ = sup' �ZM j � '� �[M; '; g℄	; (2:6)whi
h 
oin
ide with (2.4,5) for di�erentiable W [15℄.First we evaluate these fun
tionals semi
lassi
ally, i.e. in
lude the one-loop 
orre
tionsby means of the steepest des
ent approximation. Then we determine how they 
hange ifM is s
aled to �M.To derive the semi
lassi
al expansion on spa
etimes with boundaries we set � =�
l+p�h Æ�, where �
l extremizes the exponent in (2.2) and Æ� denotes the 
u
tuation�eld. To �nd the equation for the extremizing �eld �
l we expand the exponent in (2.2)in the 
u
tuation �eld:�S[�℄ + ZM j � � = �S[�
l℄ + ZM j � �
l�p�h I�M �n�
l Æ�+p�h ZM ��2�
l � V 0(�
l) + j	Æ�� �h2 I�M �nÆ� Æ�� �h2 ZM Æ��� �2 + V 00(�
l)	Æ�+O(Æ�3): (2:7)
Here we en
ounter surfa
e terms sin
e M possesses a boundary. However, if we imposethe same boundary 
onditions on �
l as on the �elds in the fun
tional integral, that isset �= �
l = �0 on �M, then the 
u
tuations vanish there and both surfa
e integrals in(2.7) vanish. Instead of pres
ribing the values of � on the boundary we 
ould assume thatits normal derivative vanishes. In the semi
lassi
al approximation we would then imposethe same 
ondition on �
l. Then the normal derivative of the 
u
tuations vanishes andagain both surfa
e integrals in (2.7) are zero. Thus with both boundary 
onditions theextremum �
l(j) of the exponent in (2.2) is determined by the �eld equationÆSÆ� [�
l℄ = ��2�
l + V 0(�
l) = j (2:8)and the imposed boundary 
onditions. We prefer to pres
ribe the �eld on the boundaryso that the derivative term in the 
lassi
al a
tion possesses no zero-mode(s).5



Inserting the expansion (2.7) into the fun
tional integral and retaining the termsquadrati
 in the 
u
tuations, the resulting Gaussian integral yieldsW(1)[M; j; g℄ =W
l[M; j; g℄��h2 log detM(j; g); whereW
l[M; j; g℄ = sup' � ZM j � '�S['; g℄	 = ZM j � �
l � S[�
l; g℄ (2:9)is the 
lassi
al S
hwinger fun
tional and M(j; g)=��2+V 00(�
l) the 
u
tuation operator.�
l depends on the external sour
e and the 
oupling 
onstants through (2.8) so that W
land the determinant are indeed fun
tions of the sour
e. If � has several 
omponentsthen V 00 denotes the se
ond derivative matrix at �
l. Both the 
lassi
al pie
e and the1-loop determinant in (2.9) depend on the spa
etime M. The spa
etime dependen
eof the determinant enters through the boundary 
onditions for the 
u
tuations. Thegenerating fun
tionals depend also on the pres
ribed boundary �eld �0. A
tually Z[j=0℄in (2.2) is just the wave fun
tional 	[�0℄ obeying the fun
tional S
hr�odinger equation withHamiltonian 
orresponding to the a
tion in (2.2) [12,16℄. But sin
e this aspe
t is not ofimportant here we shall not make the �0 dependen
e expli
it.We pro
eed to 
ompute the e�e
tive a
tion. From '=ÆW=Æj and W=W
l+O(�h) itfollows at on
e that the mean �eld is given by the 
lassi
al one, up to 
orre
tions of order�h. Furthermore, sin
e R j��S[�℄ is stationary at �
l we see that the e�e
tive a
tion isgiven by �(1)[M; '; g℄ = S['; g℄ + �h2 log detM('; g) (2:10)up to terms O(�h2). Note that the 
u
tuation operator M('; g) = ��2+V 00(') is nowevaluated at '.The determinants are to be 
omputed subje
t to Diri
hlet boundary 
onditions. ThenM is selfadjoint and possesses a dis
rete spe
trum. Of 
ourse, the 
u
tuation determinantsare ill-de�ned due to ultraviolet divergen
es and must be regularized. We shall employ the�-fun
tion regularization for 
omputing them [17℄log detM = � dds js=0�M (s); �M (s) = trM�s =Xn ��sn : (2:11)This is indeed a regularization of the determinant sin
e �(s) is analyti
 at s=0. It in
ludes,up to possible 
ounterterms, the 1-loop normalization N of the fun
tional integral. Thisregularization has the ni
e property that it does not 
hange the 
oupling 
onstants in the
lassi
al potential and hen
e they may be regarded as renormalized ones. This property isnot ment to be obvious but follows from the heat kernel representation for the �-fun
tiondis
ussed below. 6



The above de�nition of the �-fun
tion does not allow us to take the s-derivative ats=0 sin
e the tra
e in (2.11) is de�ned only for Re(s)>d=2. The analyti
 
ontinuation
an be a
hieved by taking the Mellin transform of the heat kernel�M (s) = 1�(s) 1Z0 dt ts�1 tr e�tM (2:12)and this fa
t will be exploited 
onsiderably later on.Next we 
onsider the res
aled theory on the spa
e-time region �M and the 
orre-sponding generating fun
tionals. Under a s
ale transformation~x = �x (2:13)the 
lassi
al �eld and sour
e transform as~�(~x) = � 12 (2�d)�(x) � �d� �(x); ~j(~x) = �� 12 (2+d) j(x); (2:14a)su
h that the derivative term in (2.1) and the sour
e term in (2.2) are invariant. Let ga bea 
oupling 
onstant whi
h appears in the 
ombination ga�a in V . Classi
ally it s
ales as~ga = �daga; where da = 12d(a�2)� a (2:14b)is its length dimension. In parti
ular a mass s
ales in all dimensions as � ~m = m. Also, forthe 
riti
al exponent a
=2d=(d�2) the 
oupling 
onstant does not s
ale. S
alar theorieswith potentials V = ga
�a
 are 
alled 
lassi
ally s
ale invariant. The point is that we neednot assume su
h a parti
ular form for the potential. By allowing for the (naive) s
alings(2.14) of the �eld, sour
e and 
oupling 
onstants when we s
ale M to �M, the 
lassi
ala
tion and the sour
e term are both s
ale invariant for arbitrary s
alar �eld theoriesZ�M dd~x ~j � ~�� S[�M; ~�; ~g℄ = ZM ddx j � �� S[M; �; g℄: (2:15)Taking the suprema of this equality over all �elds proves then the s
ale invarian
e of the
lassi
al S
hwinger fun
tionalW
l[�M;~j; ~g℄ =W
l[M; j; g℄: (2:16)More expli
itly, it follows that if �
l solves (2.8) with given sour
e and 
oupling 
onstants,then ~�
l solves (2.8) with s
aled sour
e and s
aled 
onstants. Of 
ourse for (2.16) tohold one should also 
he
k that ~�
l obeys the 
orre
t boundary 
onditions if �
l does.7



This means that on the boundary it should mimimize the s
aled potential. But sin
e theminimas of V (~g) s
ale the same way as the �elds this follows at on
e.As is well known the s
ale transformations (2.13,14) 
ease to be a symmetry of thequantized theory due to the s
ale anomaly. To see that expli
itly on the fun
tional levelwe relate the generating fun
tionals on �M and M.From the s
ale invarian
e of W
l it follows from (2.9) and (2.10) thatW(1)[�M;~j; ~g℄ =W
l[M; j; g℄ � �h2 log detM(~j; ~g)�(1)[�M; ~'; ~g℄ = S[M; '; g℄ + �h2 log detM( ~'; ~g): (2:17)We fo
use on the regulated determinant on the s
aled spa
etime �M:log detM( ~'; ~g) = � dds js=0�M( ~';~g):Note that the 
u
tuation operators s
ale homogeneously under the s
ale transformations(2.13,14) ~M � �~�2 + V 00( ~'; ~g) = ��2�� �2 + V 00('; g)� � ��2M: (2:18)It follows from (2.11) that � ~M (s) = �2s �M (s). Hen
e the ratio of the s
aled to the uns
aleddeterminant be
omes log det ~MdetM = �2 log� � �M (0) (2:19)and we �nd the following s
aling lawsW(1)[�M;~j; ~g℄ =W(1)[M; j; g℄ + �h log� � �M(j;g)(0)�(1)[�M; ~'; ~g℄ = �(1)[M; '; g℄� �h log � � �M(';g)(0); (2:20)and this is the main result of this se
tion. Whereas W
l and S are both s
ale invariant,W(1) and �(1) are not. The s
ale anomaly, that is the logarithmi
 
orre
tions to thes
ale invarian
e, has been made expli
it in the last terms in (2.20). We emphasize thatthese s
aling laws are 
orre
t for arbitrary s
alar theories. If all 
oupling 
onstants aredimensionless then ~g= g in (2.20). Later we shall see that the formulae (2.20) also holdfor gauge theories, up to slight modi�
ations due to zero-modes and gauge �xing.To determine �(s) for vanishing s we use the representation (2.12). In the limit s! 0the singular part of the t-integration 
omes only from the small t region. Using the heatkernel expansion for small t [18℄tr e�tM f = 1(4�t) d2 1Xn=0;1;::: h ZM an2 (f ; g) + I�M bn2 (f ; g)i tn2 ; (2:21)8



where f(x) is an arbitrary test-fun
tion, one �nds [19℄�M (0) = 1(4�) d2 h Z a d2 (1; g) + I b d2 (1; g)i: (2:22)
Here the integral symbol denotes both the integration over spa
etime or its boundary andthe tra
e over internal indi
es if � has several 
omponents and thus M is matrix valued.(2.21) 
ontains half-integer powers of t sin
e the tra
e must be 
omputed with respe
t toDiri
hlet boundary 
onditions. This leads to boundary 
ontributions to the heat kerneland half-integer powers of t in the small-t expansion.The volume 
oeÆ
ients an vanish for odd n and have length dimension �2n. Thesurfa
e 
oeÆ
ients bn have length dimension 1�2n. For general se
ond order 
u
tuationoperators the an have been 
al
ulated for n � 5, relevant for 10 and less dimensions [18,20℄and the bn for n � 2, relevant for 4 and less dimensions [6,21℄. In appendix A we have
olle
ted the 
oeÆ
ient fun
tions for Diri
hlet boundary 
onditions relevant for theoriesin 6 or less dimensions.The physi
al role of these 
oeÆ
ient fun
tions for n � d 
an be seen more 
learlyin the proper time or dimensional regularizations whi
h are intimately related to the �-fun
tion s
heme [19,22℄. In perturbative 
al
ulations of the e�e
tive a
tion they are just thedivergent terms whi
h must be absorbed by 
ounterterms. For example, a d2 is multipliedby a logarithmi
ally divergent fa
tor, e.g. log � in the proper time regularization, and a0is multiplied by a fa
tor �� d2 . Thus the most divergent term is � R a0 = jMj and su
ha term 
an be absorbed by renormalizing the 
osmologi
al 
onstant. In the �-fun
tionregularization these in�nite terms are suppressed and thus we may regard the 
oupling
onstants in the 
lassi
al a
tion as renormalized ones. The role of the parti
ular 
oeÆ
ientfun
tion a d2 is twofold. It appears as logarithmi
ally divergent 
ontribution in perturbationtheory and at the same time determines the universal anomalous s
aling of the renormalizedgenerating fun
tionals.For s
alar �eld theories A� = 0 and C = V 00 2 in (A1). Thus the an and bn arelo
al polynomials in V 00, the extrinsi
 
urvature �ab of the boundary and their spatialderivatives. Inserting the 
orresponding 
oeÆ
ients (A2) and (A3) into (2.22) we obtain2 For several s
alar �elds V 00 is the se
ond derivative matrix, V 00 = ( �2V�'i�'j )9



in 2, 4 and 6 dimensions:�d=2(0) = � 14� Z trV 00 + N6 �E�d=4(0) = 12! 1(4�)2 h Z tr (V 00)2 � I ��n trV 00 + 23 trV 00�aa	i+ N180�E + N280�2 I f(�)�d=6(0) = � 13! 1(4�)3 Z h tr (V 00)3 + 12 trV 00�V 00i+ I P (V 00; �(k)V 00; �ab):
(2:23)

Here N is the number of s
alar �elds, �n the outward oriented normal derivative and R(H ) and tr denote integration over M (�M) and tra
e over internal indi
es, respe
tively.�E is the Euler number. With our sign 
onvention it is 1 if the boundary is a sphere. Itis the winding number of the normal ve
tor �eld n(x) on �M and thus is a topologi
alinvariant. In general it gets a 
ontribution form the metri
 and extrensi
 
urvature. Thefun
tion f is the 
onformally invariant third order polynomial in the extrinsi
 
urvature(see appendix A), f(�) = tr �3 � tr � tr �2 + 29( tr�)3; (2:24)and it vanishes if �M is a sphere. The polynomial appearing in the surfa
e integral in6-dimensions has not yet been 
al
ulated.For 
onstant �elds '='0 we have in d=2n dimensions�d(0) = KdjMj tr �V 00(g; '0)�n + I P (V 00; �ab); Kd = (�1)n(4�)nn! (2:25)In odd dimensions the an vanish and �M (0) 
ontains no volume terms. From (2.20) itfollows then that the generating fun
tionals on �M and M are the same, up to surfa
eterms. Thus the s
ale invarian
e of the 
lassi
al theories survives when one in
ludes 1-loop 
orre
tions, up to surfa
e terms. For that reason we shall 
onsider theories in evendimensions only in what follows.2.1 The role of the surfa
e termsFor free massless s
alars V =0 and the only 
ontribution to the anomalous s
aling 
omesfrom the purely geometri
 surfa
e terms in (2.23). This property holds if M is 
at. In
urved spa
etimes geometri
 volume terms are present even for free massless parti
les[6,11℄. However, in this se
tion we shall assume spa
etime to be 
at.10



The kown surfa
e 
oeÆ
ients are listed in appendix A. They are relevant when onedis
usses Casimir type e�e
ts for free �elds [6℄. Inserting b1 into (2.20,22) immediatelyleads to the following formula in 2 dimensions�geom � ���M; ~'℄� ��M; '℄ = ��hN6 �E log�; (2:26)where N is the number of free massless s
alars and �E the Euler number of M. Theanomalous s
aling depends only on the topology of spa
etime. A
tually one 
an show that(2.26) holds for any 2-dimensional 
onformal �eld theory provided N is repla
ed by the
entral 
harge 
 [5,6℄. This is an exa
t result and holds beyond perturbation theory.Similarly, for free massless s
alars in 4 dimensions only the 
oeÆ
ient b2 
ontributesto �(0) in (2.20) and leads to the following s
aling formula [6℄�geom = ��hN log�180 �E � �hN log�280�2 I f(�): (2:27)Contrary to the situation in 2 dimensions the s
aling behaviour depends here on thegeometry en
oded in f and not only on the topology.The s
aling laws (2.26-27) for free s
alars are purely geometri
 and therefore presentirrespe
tive of the form of the 
lassi
al potential. Thus, for an intera
ting theory thereare two sour
es for the anomalous s
aling, namely the presen
e of the boundary whi
hintrodu
es a geometri
al length s
ale and the intera
tion between the parti
les whi
h in-trodu
es a dynami
al mass s
ale. We shall not always make the purely geometri
 
ontri-butions (2.26-27) to the anomalous s
aling expli
it. But they must always be added to thedynami
al terms 
ontaining powers of the potential and its derivatives.The geometri
 surfa
e terms do not 
hange the 
ouplings in V , sin
e those are relatedto volume integrals. However, their appearan
e in � signals that we should in
lude sur-fa
e terms in the 
lassi
al a
tion as possible 
ounterterms [12℄. Thus in the presen
e ofboundaries S in (2.1) should be modi�ed toS[�; g; h℄ = ZM ddx�12(���)2 + V (�)�+ I�M Q(�ab; �; �n�); (2:28)where h = fhag are the 
oupling 
onstants appearing in Q. Similarly to the volume
ouplings they will run due do quantum 
orre
tions. We require them to have lengthdimensions � 0 for the theory to be renormalizable. Sin
e the surfa
e potential Q haslength dimension 1�d it follows that the surfa
e potential is at most linear in �n�.For example, the most general form of Q in 4 dimensions whi
h is invariant underre
e
tion of � reads I Q =h1j�Mj+ h2 I tr�+ h3�E + h4 I f(�)+ h52 I �2 + h62 I �2 tr�+ h72 I �n�2; : (2:29)11



The h1; : : : ; h4-terms are purely geometri
al. Due to the imposed boundary 
onditions thesurfa
e potential Q fa
torizes in the fun
tional integral (2.2). In the expansion of (2.28)about �
l (similarly to (2.7)) the terms quadrati
 in the 
u
tuations �nÆ� are alwaysmultiplied by Æ�. Due to the imposed boundary 
onditions su
h terms vanish. Thus the1-loop formulae (2.9,10) still hold with exa
tly the same determinant but with 
lassi
ala
tion (2.28). For example, for a free massless �eld in 4 dimensions with surfa
e potentialQ 
ontaining only the geometri
 h1; : : : ; h4-terms, (2.27) yields�(1)[�M; ~'; ~h℄ = �(1)[M; '; h(�)℄; whereh3(�) = h3 � �hN log�180 h4(�) = h4 � �hN log�280�2 ; (2:30)and the remaining two 
oupling 
onstants s
ale naively. However, in higher orders in aloop expansion these 
ouplings may run as well. We see that if we allow for an anomalouss
aling of some 
onstants then the e�e
tive a
tion is invariant under s
ale transformations.The point is that this remains true for intera
ting theories.2.2 The 1-loop e�e
tive potential from s
aling behaviourLet us see how the general 1-loop s
aling behaviour (2.20) relates to more familiar results.We shall derive the 1-loop e�e
tive potential in even dimensions, that is the e�e
tive a
tiondensity for 
onstant mean �eld ' = '0,U (1)(M; '0; g) = 1jMj �(1)[M; '0; g℄; (2:31)from s
aling arguments. Sin
e the surfa
e terms are not known in d > 4 dimensions, weshall negle
t them for the moment so that our results are 
orre
t up to surfa
e terms.From the s
aling law (2.20) we obtain�d U (1)(�M; ~'0; ~g) = U (1)(M; '0; g)� �h log�jMj � �M('0;g)(0); (2:32)where a

ording to (2.17)U (1)(M; '0; g) = V ('0; g) + �h�U�V 00('0; g)��U(x) = 12jMj log det(��2 + x): (2:33)Here we have used that for 
onstant �elds the determinant 
an only depend on x =V 00(�0; g). The 
lassi
al potential 
an
els in (2.32). Finally, sin
e~x = V 00( ~'0; ~g) = ��2V 00('0; g) = ��2x12



we obtain the following equation for the 1-loop 
ontribution to U�d�U(��2x)��U(x) = � log� � �(0) = � log � �Kd x d2 ;where we made use of (2.25). The nontrivial solution is just�U(x) = Kd2 x d2 log x
onst ;where one takes a 
onvenient normalization in the logarithm. Adding this 1-loop result tothe 
lassi
al term we end up withU (1)('0) = V ('0) + �hKd2 �V 00('0)�d2 log V 00('0)
onst : (2:34)In 4 dimensions the surfa
e 
ontributions to the anomalous s
aling are known and we
an go further (2 dimensions are too trivial, sin
e the surfa
e s
ale-anomalies are purelygeometri
al). Using the result (2.23) in 4 dimensions yields the e�e
tive potentialU (1)('0) =V ('0) + �h32�2 �V 00('0)�2 log V 00('0)
onst� �h48�2jMj V 00 log V 00
onst � I tr�; (2:35)up to purely geometri
 and thus '0-independent terms. Note that for 'reasonable' bound-aries the �nite volume e�e
tive potentials (2.35) tend to the in�nite volume result (2.34)for d=4 as required.
3. The running 
oupling in s
alar theoriesIn this se
tion we apply the general results (2.20) to a 
lass of intera
ting renormalizables
alar �eld theories in various dimensions. We re
over the s
aling behaviour of the di�erentvolume and surfa
e 
ouplings together with the 1-loop ��fun
tions, anomalous dimensions
 and �nally the tra
e anomaly of the energy-momentum tensor. Re
all that in odddimensions �(0) has no volume terms. Hen
e the wave fun
tions and the volume 
ouplingsare not renormalized in the 1-loop approximation. In the 
hosen regularization s
heme we
annot see any running of the volume 
oupling 
onstants in odd dimensions. However, thesurfa
e 
ouplings do run sin
e b d2 does not ne
essarily vanish in odd dimensions (see A3).Although this is interesting in its own right, we shall 
on
entrate here on the 
ommonly
onsidered volume terms and therefore 
onsider even dimensions only.2 dimensions. 13



We start with the general a
tion for a one-
omponent s
alar �eldS[�; g; h℄ = Z n12(���)2 + 1Xa=0 gaa! �ao+ h�E ; (3:1)where we added a topologi
al surfa
e term proportional to the Euler number. In 2 di-mensions we 
ould add in�nitely many relevant and marginal surfa
e terms sin
e � isdimensionless. But besides the non-universal j�Mj and the universal �E none of them isneeded as 
ounterterm. Hen
e everything what we say holds also if we add other surfa
eterms.From (2.20) and (2.23) we derive the following s
aling behaviour for the e�e
tivea
tion �(1)[�M; '; ~g; h℄ = S['; g; h℄ + �h2 log detM('; g)+ �h log�4� 1Xa=2 ga(a� 2)! Z 'a�2 � �h log�6 �E ;where we have used that h and ' are both dimensionless so that ~h=h and ~'=' and thatthe determinant does not depend on the surfa
e 
oupling 
onstant h. We rearrange thedi�erent terms with the result�(1)[�M; '; ~g; h℄ = S[M; '; g(�); h(�)℄ + �h2 log detM('; g); (3:2)where we introdu
ed the running 
oupling 
onstantsga(�) = ga + �hga+24� log� and h(�) = h� �h6 log�: (3:3a)Sin
e the repla
ement g ! g(�)=g+O(�h) in log detM 
hanges the right hand side of eq.(3.2) only in O(�h2), whi
h does not a�e
t the 1-loop equation, we 
an relate the s
aledand uns
aled fun
tionals as�(1)[�M; '; ~g; h℄ = �(1)[M; '; g(�); h(�)℄: (3:4)In other words, we 
an restore the invarian
e of the e�e
ive a
tion if we allow for ananomalous s
aling of the 
oupling 
onstants. Thus, if the naive dimensional s
aling (2.14)is supplemented by the anomalous one (3.3a), then the 1-loop generating fun
tional is s
aleinvariant.To 
ompare our results with the more 
onventional renormalization group results inmomentum spa
e we note that (2.13) implies~p = ��1p � �p: (3:5)14



So we �nd the following leading logarithm expression for the running 
ouplings in 2 di-mensions: ga(�) = ga � �hga+24� log� and h(�) = h+ �h6 log�: (3:3b)From that we immediately re
over the ��fun
tions to leading order�(ga) = � ���ga(�) =) �(1)(ga) = ��hga+24��(h) = � ���h(�) =) �(1)(h) = �h6 : (3:6)As expe
ted in these models there is no wave fun
tion renormalization.As an appli
ation we 
al
ulate the anomalous s
aling behaviour of the perturbativemass in the sine-Gordon model. We parametrize the 
lassi
al potential as [23℄V (�) = 
 � m2�2 
os(��); (3:7)where � is dimensionless and m the perturbative mass. It is now easy to 
al
ulate theres
aled e�e
tive a
tion from (3.4,6) (or dire
tly from (2.20,23)) and one �nds that it iss
ale invariant, �(1)[�M; �; ~
; �; ~m2℄ = �(1)[M; �; 
(�); �;m2(�)℄; (3:8)provided the mass runs as m2(�) = m2�1� �h4��2 log��: (3:9a)and the 
osmologi
al 
onstant 
 as
(�) = 
 � �h6jMj�E log�: (3:9b)The equation (3.8) is an exa
t 1-loop relation in
luding surfa
e terms.For models with polynomial intera
tions the 
oupling of the highest power is not renor-malized. This is of 
ourse related to the fa
t that these models are superrenormalizable.Note that the anomalous s
ale dependen
e of the surfa
e 
oupling 
onstant h is in-sensitive to the details of the model. Sin
e it s
ales the same way for all 2-dimensionalmodels we shall ignore it in the following sigma-model 
al
ulations.We 
on
lude this se
tion with a dis
ussion of the s
aling behaviour of the O(N)�sigmamodels. In terms of the 
onstrained �eld na; a = 1; ::; N the a
tion readsS[na; g℄ = 12g2 Z ��na � ��na; n2 = 1: (3:10)15



First we shall evaluate the partition fun
tion, where attention must be paid to the 
on-straint on the �eld. In (2.2) we integrate over �elds with �xed length n2=1.The 
lassi
al �eld Na, whi
h extremizes the exponent in (2.2) and ful�ls the 
onstraintis determined by �2Na � (N b � �2Nb)Na = g2f(N b � jb)Na � jag: (3:11)Note that the solution Na for a given sour
e ja is also a solution for the lo
ally transformedsour
e ja(x)+f(x)Na(x). Su
h an ambiguity is to be expe
ted from 
ounting degrees offreedom. Hen
e there is no one-to-one 
orresponden
e between �elds and sour
es. Thismeans that the e�e
tive a
tion or Legendre transform of W 
annot be de�ned in the n-variables. If we would introdu
e un
onstrained variables, for example by a stereographi
proje
tion, this problem 
ould be over
ome. But it is more 
onvenient to use the n-�eldfor whi
h we must deal with W rather than �.In Appendix B we review the 
al
ulation of W(1). One �ndsW(1)[M; j; g℄ = W
l[M; j; g℄ � �h2 log detD;where the 
u
tuation operator D is given in appendix B. Now we apply the general s
alingformula (2.20). Inserting �D(0) from (B6) we obtainW(1)[�M;~j; ~g℄ = W
l[M; j; g℄ � �h2 log detD+�h(N�2)4� log � Z ��Na � ��Na � �hg2(N�1)4� log� Z ja �Na; (3:12)where we omitted the trivial boundary terms. We restore s
ale invarian
e by supplementingthe naive s
aling (2.13,14) with the anomalous one for g and the sour
e ja. We �ndW(1)[�M;~j; ~g℄ =W(1)[M; j(�); g(�)℄;where g2(�) = g2 log�1� �h2�g2(N�2) ; ja(�) = �1� �hg2(N�1)4� log��ja: (3:13)Note that in 
ontrast to the other models 
onsidered it is now the anomalous s
alingof the sour
e ja whi
h yields the anomalous dimension. Translating the above result tomomentum spa
e we obtain the �-fun
tion�(1)(g2) = � ���g2 = ��h(N � 2)2� g4 (3:14a)16



in agreement with the literature [24℄. Sin
e � is negative the 
oupling be
omes weaker ifM shrinks, as expe
ted for an asymptoti
ally free theory. The anomalous dimension isrelated to the transformation behaviour of the sour
e. We �nd it to be
(g2) = �h(N � 1)2� g2: (3:14b)4 dimensions.Here we 
onsider the perturbatively renormalizable Higgs model with quarti
 self-intera
tionV (�) = g0 + g22! �2 + g44! �4 (3:15)and the general surfa
e-intera
tion (2.29). For g0=0 and g2=m2 this 
orresponds to theunbroken theory with perturbative mass m, and for g0=gv4=4, g2=�gv2=6 and g4=g weobtain the Higgs model with perturbative Higgs mass mH = gv2=3. Applying (2.20) oneobtains the following expli
it form for the s
aled e�e
tive a
tion�(1)[�M; ~'; ~g; ~h℄ = �(1)[M; '; g; h℄� �h log�32�2 Z �g22 + g2g4'2 + g244 '4	+ �h log�4�2 h I �g48 �n'2 + (g26 + g412'2) tr�	� �2�E45 � f(�)70 i: (3:16)As in 2 dimensions the 1-loop 
ontributions 
an be absorbed in the 
lassi
al a
tion (2.28)if the 
onstants in the potentials (2.29) and (3.10) are res
aled. Hen
e the e�e
tive a
tionis s
ale invariant, �(1)[�M; ~'; ~g; ~h℄ = �(1)[M; '; g(�); h(�)℄; (3:17)provided the volume 
ouplings run asg0(�) = g0 � �2 g22; g2(�) = g2�1� �g4�; g4(�) = g4�1� 3�g4� (3:18)and the surfa
e 
onstants ash2(�) = h2 + �3 g2; h6(�) = h6 + �3 g4; h7(�) = h7 + �2 g4; (3:19)where we have introdu
ed � = �h log�=16�2. The 
onstant h5 does not s
ale and theremaining geometri
al 
onstants h3; h4 s
ale as in (2.30). To derive (3.17) we repla
ed the
ouplings g in the 1-loop 
ontribution to the e�e
tive a
tion by the s
aled ones g(�) =g+O(�h). Sin
e this 
hanges � only in order O(�h2) this does not a�e
t the one loop result.To 
ompare our result with the momentum spa
e renormalization [25℄ we identify theinverse length s
ale 1=� of spa
e time with the energy s
ale � as in (3.5). This immediately17



yields the running 
oupling 
onstants in momentum spa
e and the 
orresponding 1-loop�-fun
tions for the volume 
oeÆ
ients�(1)(g0) = �h32�2 g22; �(1)(g2) = �h16�2 g2g4; �(1)(g4) = 3�h16�2 g24; (3:20)and for the surfa
e 
oeÆ
ients�(1)(h2) = � �h48�2 g2; �(1)(h6) = � �h48�2 g4; �(1)(h7) = � �h32�2 g24: (3:21)The �-fun
tions for the mass and quarti
 
oupling 
oin
ide with the ones 
al
ulated withthe more 
ommonly used Green's fun
tion method in momentum spa
e [25℄. The running ofthe 
osmologi
al 
onstant g0 is usually not 
onsidered in the literature, sin
e one requiresthe normalization 
ondition W(j = 0) = 0 for the S
hwinger fun
tional. This 
onditionremoves a 
osmologi
al 
onstant and terms 
ontaining the Casimir e�e
t. Also, surfa
eterms are not present on the whole Minkowski (Eu
lidean) spa
etime so that their s
aledependen
e 
annot be studied in the 
onventional perturbation expansion.Note that the 1-loop 
orre
tions do not lead to a wave fun
tion renormalization in4-dimensional one-
omponent �4 theories. Again this agrees with the more widely useddimensional regularization.6 dimensions.We 
onsider the renormalizable �3-theory with general potentialV (�) = g0 + g1�+ g22! �2 + g33! �3: (3:22)The surfa
e 
ontributions to the 
oeÆ
ient a3, whi
h enters the s
aling law in 6 dimensions,has not been 
al
ulated yet. For that reason we fo
use on the s
aling of the volume
ouplings. For the 
ubi
 potential the general formula (2.20) with �(0) from (2.23) yieldsthe following s
aling law for the e�e
tive a
tion:�(1)[�M; ~'; ~g℄ = S[M; '; g℄ + �h2 log detM('; g)+ �h log �3!(4�)3 Z n12g23'�'+ g32 + 3g22g3'+ 3g2g23'2 + g33'3o: (3:23)Now the 1-loop 
orre
tions 
ontain a derivative term of the same form as in the 
lassi
ala
tion. When we try to absorb it in the 
lassi
al a
tion we 
hange the 
oeÆ
ient 12 of(���)2. To restore it we must renormalize the �eld. This multipli
ative renormalizationof ' further res
ales the 
oupling 
onstants. The point is that nevertheless we 
an restorethe invarian
e of the e�e
ive a
tion�(1)[�M; ~'; ~g℄ = �(1)[M;pZ3'; g(�)℄; (3:24)18



where the expli
it wave fun
tion renormalizationZ3 = 1� �3! g23; where � = �h log �(4�)3 (3:25)and the running of the 
oupling 
onstantsg0(�) = g0 + �3!g32 ; g1(�) = g1�1 + �2 g3(g33! + g22g1 )�g2(�) = g2�1 + 7�6 g23℄ ; g3(�) = g3�1 + 5�4 g23� (3:26)
an be read o� from (3.23). The 
orresponding �-fun
tions read�(g0) = � �h3!(4�)3 g22 ; �(g1) = � �h2(4�)3 �g22 + g1g33! ��(g2) = �76 �h(4�)3 g2g23 ; �(g3) = �54 �h(4�)3 g33: (3:27)Contrary to the �4-
oupling in 4 dimensions the �3 
oupling in 6 dimensions gets strongerwhen M expands. Thus the theory is asymptoti
ally free. The main di�eren
e to 2 and 4dimensions is that here the wave fun
tion is a�e
ted by an anomalous s
aling already inthe 1-loop approximation. The anomalous dimension of the �eld is
(g) = � ��� logZ3 = �h3!(4�)3g23: (3:28)The anomalous tra
e of T .To relate the s
ale anomaly to the tra
e of the energy momentum tensor it is 
onvenient to
ouple the dynami
al �elds 
ovariantly to an external gravitational �eld. Then both the
lassi
al and quantum me
hani
al energy momentum tensor 
an be derived by variationwith respe
t to the metri
 asT 
l�� = 2pg ÆSÆg�� and hT��i = 2pg Æ�Æg�� : (3:29)The so de�ned T 
l needs no further improvement [26℄. For a theory 
ontaining only di-mensionless 
oupling 
onstants its tra
e vanishes automati
ally if the �elds are 
onformally
oupled to gravity.If we s
ale the metri
 as g�� ! �2g�� the formula (3.29) redu
es tod�d� j�=1 = �2 Z Æ�Æg�� g�� = � Z pghT��i g�� : (3:30)19



Instead of s
aling the metri
 with �xed 
oordinates we 
an s
ale the 
oordinates and leavethe metri
 invariant. For di�eomorphism invariant �'s both transformations must have thesame e�e
t. In other words, if we s
ale the 
oordinates a

ording to (2.13), keep g��=Æ��and do not s
ale the �elds and 
oupling 
onstants, then this variation is related to thetra
e of the energy momentum. This may now be exploited by di�erentiating the s
alingformula �[�M; �d''; �daga; � ~daha℄ = �[M; Z 123 '; ga(�); ha(�)℄ (3:31)with respe
t to the s
ale parameter. Here we have inserted the naive s
alings of the�elds and volume 
ouplings from (2.14). Similarly the ~da are the length-dimensions of therunning surfa
e 
ouplings ha whi
h one must introdu
e to guarantee (3.31).The variation of the e�e
tive a
tion due to the 
hangeM! �M yields the integratedtra
e of hT��i, so that we �ndZ hT��i = �d'� dZ 123d� � Z ' Æ�Æ' +Xa n�daga� dgad� � Æ�Æga + � ~daha� dhad� � Æ�Æhao; (3:32)where the derivatives are evaluated at �=1. Now we repla
e � by the momentum s
ale� and the derivatives of the wave fun
tion renormalization and 
oupling 
onstants by theanomalous dimensions and beta-fun
tions. We obtainZ hT��i = �d'+12
� Z ' � j +Xa n�daga + �(ga)� Æ�Æga + � ~daha + �(ha)� Æ�Æhao; (3:33)where we have inserted Æ�=Æ'=j.Note that we only used the general relation (3.31) in deriving (3.33), whi
h is adeep 
onsequen
e of renormalizability and valid order by order in perturbation theory.Therefore (3.33) is also valid order by order in perturbation theory and represents thegeneral stru
ture of the tra
e anomaly of the energy-momentum tensor.In two dimensions the �rst term vanishes if 
=0 and only the two sums 
ontribute inthe 1-loop approximation. However the da 
annot vanish so that only free theories possessa tra
eless energy momentum tensor 3, up to surfa
e terms. For free theories only thesurfa
e beta-fun
tion term 
onstributes in (3.33). In the 1-loop approximation we mayrepla
e � on the right in (3.33) by S. Varying now the a
tion (3.1) with all ga =0 withrespe
t to h and inserting the beta-fun
tion �(h) from (3.6) we �ndZ hT��i = N �h6�E (3:34)3 Besides the free theories only models 
ontaining a Liouville mode possess an improvedtra
eless tensor. But these models would need a separate dis
ussion.20



for N free �elds in 2 dimensions. The �nite volume regulates the theory in the infraredbut at the same time introdu
es a length s
ale into the theory. This is the reason whyquantum 
u
tuations lead to a non-zero tra
e and this tra
e is very mu
h related to theCasimir e�e
t.In higher dimensions d' 6=0 and the sour
e must vanish for the tra
e to be zero. Thisis to be expe
ted sin
e already the 
lassi
al improved tensor has tra
e zero only on shelland the 
lassi
al on shell 
ondition is exa
tly the 
ondition j = 0. On shell the tra
e isgiven by the two sums in (3.33) whi
h 
ontain 
lassi
al and anomalous 
ontributions. Forthe 
lassi
ally s
ale invariant theoriesS[�; g; h℄ = Z n12(���)2 + ga!�ao+ I Q(�ab; �); a = 2dd� 2 (3:35)with a surfa
e potential 
ontaining only dimensionless 
ouplings, the O(1) terms in (3.33)vanish and on shell only the anomalous part remains in the tra
e. To O(�h) we 
an repla
e� by the 
lassi
al a
tion to 
ompute this tra
e. For the theories (3.35) the volume potentialand a
tion are related on shell asS = b Z V + 12 I ��n�+ I Q; b = 22� d ; (3:36)so that (3.33) 
an be written asZ hT��i = �(g)bg S + �X �(hi) ��hi � �(g)bg � I Q� �(g)2bg I '�n': (3:35)We see that the 1-loop anomalous tra
e is 
ompletely determined by the volume and surfa
ebeta fun
tions and the s
ale invariant 
lassi
al a
tion. This formula holds for arbitrarys
ale invariant s
alar theories in d dimensions. Let us now 
onsider the 4 and 6-dimensional
ases in turn.In 4 dimensions b=�1 in (3.35) and s
ale invarian
e requires that h1=h2=h5=0 inthe surfa
e potential (2.29). Thus we �ndZ hT��i = ��(g)g S + �(g)g I Q+ �(h3)�E + �(h4) I f(�)+ �(h6)12 I '2 tr�+ ��(g)2g + �(h7)�12 I �n'2; (3:38)with beta fun
tions from (3.18,3.19) and the ones following from (2.30). When the volumejMj tends to in�nity we may negle
t the surfa
e terms and we 
on
lude thatZ hT��i = � 3�h16�2 g S('): (3:39)21



In 6 dimensions b=� 12 and the analogous result readsZ hT��i = �2�(g)g S(') = 52 �h(4�)3 g23 S('); (3:40)where we inserted the beta-fun
tion from (3.27).
4. The s
aling behaviour of gauge theories in the 1-loop approximationIn this se
tion we 
onsider the s
aling behaviour of abelian and non-abelian gauge theo-ries 
oupled to one fermion 
avour en
losed in �nite spa
etimes M of dimension d. Forfermions there are only two types of 
onsistent boundary 
onditions, namely the non-lo
alones introdu
ed by Atiyah, Patodi and Singer (APS) [27℄ and the lo
al bag boundary 
on-ditions [28℄. For both the surfa
e Seeley-deWitt 
oeÆ
ients are not known in more than2 dimensions. One 
an nevertheless �nd the s
aling law for the fermioni
 determinantwith respe
t to bag boundary 
onditions by indire
t means, up to purely geometri
 terms.However, here we prefer to assume that M possesses no boundary, that is it may be ad-dimensional sphere, torus or some other 
ompa
t spa
etime without boundaries. Weassume that M is imbedded in a 
at spa
e su
h that the s
aling M! �M makes sense.The pri
e we pay for getting rid of the surfa
e terms is that now M (if it is not a torus)is 
urved. Furthermore, the 
on�guration spa
e of �elds be
omes topologi
ally non-trivialand the di�erent topologi
al se
tors are 
hara
terized by the instanton numbers. Be
auseof the index theorem there are fermioni
 zero modes and this leads to some te
hni
alsubtleties.We start with the 
lassi
al a
tion for the gauge �elds and massless fermions 4 in ad-dimensional Eu
lidean manifoldS = S[A; g℄ + S[ ; g℄;where S[A; g℄ = 14 Z pg G�� aGa�� ; S[ ; g℄ = � Z pg  yi
�D� ; (4:1)and D� = ��+!�+A� is the 
ovariant derivative. Here !� = i2!AB� �AB denotes the
onne
tion, 
�=e�A
A the Dira
 matri
es in 
urved spa
etime, e�A the vierbein related tothe metri
 through g�� = e�Ae�BÆAB and �AB the generators of the quantum me
hani
alSO(4)�rotation. The gauge potential may be expanded as A� = �igAa�T a, where the4 Only for simpli
ity we assume the fermions to be massless. There is no major obsta
leassuming the fermions to be massive. 22



SU(N)� generators T a obey the algebra [T a; T b℄= i fab
 T 
 together with the normalization
ondition trTaTb= 12Æab. The Yang-Mills �eld strength and the 
urvature are de�ned by[D�; D� ℄ =� ig���Aa� � ��Aa� + gfab
Ab�A
��+ ���!� � ��!� + [!�; !� ℄�� �igGa��Ta + i2R AB�� �AB :Although we use the same symbol g for the gauge 
oupling 
onstant and the determinantof the metri
 its a
tual meaning should be 
lear from the 
ontext.As for the s
alar theories we extra
t the running 
oupling 
onstants from the 
hangeof the generating fun
tionalZ[M; j; �; g℄ = 1Xq=�1 eiq�Zq[M; j; �; g℄; (4:2)whenM s
ales into �M. Here j is an external bosoni
 
urrent whi
h 
ouples to the gauge�eld and � a Grassmann-valued sour
e 
oupled to the Dira
 fermions. Z is a sum overdi�erent topologi
al se
tors labelled by an integer q, the instanton number. For Zq wehave the formal path integral representationZq[M; j;�; g℄ = 1N Z DA(q)� D yD � expn� 1�hS + 1�h Z pg �j �A+  y�+�y �o; (4:3)where the integration in Zq is restri
ted to gauge �elds with �xed instanton numberq = 1n! in(4�)n Z ddxpg ��1�2����2n tr �G�1�2G�3�4 � : : : �G�2n�1�2n� (4:4)in d=2n dimensions. Note that perturbation theory for Zq is not yet appli
able and weare for
ed to re
ast it in a gauge �xed form.As in the previous 
ase of s
alar theories we evaluate Zq semi
lassi
ally, i.e. up toone-loop-
orre
tions by means of a steepest des
ent approximation. The extremum of theexponent is �xed by the 
lassi
al equations of motion� (D�[A
l℄G�� [A
l℄)a = j�a (4:5)and the 
ondition that A
l ! A0
l for vanishing external 
urrent j ! 0: Here A0
l is aninstanton solution with topologi
al 
harge q. The fermioni
 �elds remain in�nitesimal
u
tuations in our approximation. 23



We now expand the exponent about A
l and retain only the terms quadrati
 in the
u
tuations. Writing A�a=A�a
l +p�hB�a we �nd for the exponent in (4.3)S(1)eff =W
l(j; g) + Z pg  yiD=  + Z pg � y�+�y �+�h2 Z pg Ba��(D2)�� ab�(D�D�)ab+2gfa
bG��

l �ÆabR���Bb� (4:6)where W
l(j; g) = �14 Z pg G�� a
l Ga��
l + Z pg j �A
l (4:7)is the 
lassi
al S
hwinger fun
tional. It is understood that A
l = A
l(j) depends on theexternal 
urrent via the 
lassi
al �eld equation (4.5). In these expressions D� 
ontains theba
kground �eld A�
l and the 
onne
tion !�.Now we are ready to evaluate the semi
lassi
al fun
tional Z(1)q . We have in mind the
omputation of gauge invariant 
orrelators in instanton ba
kgrounds. The perturbativeexpansion about instantons is subtle due to the o

uren
e of various zero-modes [29,30℄.Therefore we shall dis
uss the problems due to zero-modes rather 
arefully.For �xing the gauge we apply the wellknown Faddeev-Popov pro
edure [31℄. In topo-logi
ally non-trivial ba
kgrounds the Faddeev-Popov operator possesses zero-modes. Theyare due to 
onstant in�nitesimal ba
kground gauge transformationsB� ! B��[A
l�;�℄whi
h leave B invariant. If h denotes the little (or stable) algebra of the instanton, thatis the subalgebra 
ommuting with A
l, then these are just the gauge transformations with�=�i�aT a, where the T a lie in h. More expli
itly, h is the maximal subalgebra whi
h
ommutes with the su(2)-subalgebra de�ned by the instanton [30℄. To eliminate these
onstant gauge transformations one inserts1=�[A�℄ Z Dg Z Dh Æ�F [A�℄� (4:8)into the fun
tional integral. Here R Dg denotes the measure on SU(N)=H and R Dh themeasure on the stability group H. Now one pro
eeds in the usual way and 
al
ulates�[A�℄ = det0 ÆFÆg = det0Mgh ; (4:9)where the prime indi
ates that the zero modes of Mgh must be omitted. After absorbingall the volume-independent terms in the normalization of the Gaussian integral we �ndZ(1)q [M; j; �; g℄ = 1N (1) Z Dh Z DB(q)� D yD det0Mgh Æ�F [A�℄� e� 1�hS(1)eff : (4:10)24



We 
annot absorb R Dh in the normalization be
ause it exhibits an expli
it dependen
eon the volume of M as dis
ussed below.At this point we 
hoose the ba
kground gauge F a(A
l; B)=(D�B�)a su
h that thatthe middle term in the se
ond line in (4.6) vanishes. The 
orresponding Faddeev-Popovoperator is Mgh(A
l; g)ab = ��D2�ab ; (4:11a)where D2 is a matrix in the adjoint representation. The remaining quadrati
 operatorsa
ting on the bosoni
 and fermioni
 
u
tuations areMB(A
l; g)ab�� = ��D2�ab�� � 2gfa
bG
��
l + ÆabR�� (4:11b)and M (A
l; g)abkl = ��D2�abkl + ig2 G��
lmT abm (
�
�)kl + 12(R�����)kl; (4:11
)where R�� = R AB�� �AB. For later purposes we displayed all the relevant indi
es: a; b; 
belong to the gauge algebra; i; k are Dira
 and �; � Lorentz indi
es. For notational sim-pli
ity we shall skip the indi
es in what follows. Note that A
l plays the same role as �
lin the s
alar theories.From the dis
ussion of the gauge �xing we 
on
lude that the 
u
tuation operators maypossess zero modes. As far as the pure gauge se
tor is 
on
erned, that is the 
u
tuationoperators MB and Mgh, this problem has been lu
idly dis
ussed in [30℄. Here we give onlythe results. One obtains for R DhZ Dh = �p2�gjMj 12 �dH 1VH ; (4:12)where dH and VH are the dimension and volume of the stability group H, respe
tively. The
u
tuation operatorMB may possess additional p zero modes arising from the variation ofthe 
olle
tive parameters f
rg. Expanding the 
u
tuations B� in terms of eigenfun
tionsof MB one may 
onvert the integration over the expansion parameters f�rg; r = 1; ::; pbelonging to the zero modes to an integration over f
rgpY1 d�r = pY1 d
r (det J) 12 ; (4:13)where J denotes the 
orresponding Ja
obian.Finally sin
e in the se
tor with instanton 
harge q the Dira
 operator iD= and hen
eM has jqj zero modes of de�nite 
hirality, one must be 
autious in evaluating the fermioni
path integral [32℄. Let  n(x) denote the orthonormal zero modes of iD= , G0(x; y) the'ex
ited' Green's fun
tion belonging to iD= and det0 12M the fermioni
 determinant withzero eigenvalues ex
luded. 25



With all the notations �xed we �nally obtain for the one-loop fun
tionalZ(1)q [M; j; �; g℄ = e 1�hW
l(M;j;g) �p2�gjMj 12 �dH 1VH Z pY1 d
r (det J) 12�det0� 12MB(A
l; g) det0Mgh(A
l; g) det0 12M (A
l; g)�Yn (�y;  n)( yn; �) e�R pg �yG0�: (4:14)
The produ
t of divergent determinants will be gauge invariantly regularized by the ��fun
tionmethod. This regularization seems to be the most 
onvenient one when dealing with dif-ferent topologi
al se
tors [32℄.Let us now 
onsider the res
aled theory and 
onstru
t its generating fun
tional Z[�M; ~j; ~�; ~g℄:Under a s
ale transformation (2.13) the �elds transform as~A
l(~x) = � 12 (2�d)A
l(x) ~ (~x) = � 12 (1�d) (x)~j(~x) = �� 12 (2+d)j(x) ~�(~x) = �� 12 (1+d)�(x); (4:15a)and the gauge 
oupling 
onstant as ~g = � 12 (d�4) g: (4:15b)Note that the metri
 g�� is not s
aled so that the 
onne
tion !� transforms like a derivative��. The 
lassi
al a
tion and hen
e W
l are both invariant under the s
ale transformations(2.13), (4.15). However, only in 4 dimensions is the gauge 
oupling dimensionsless andthus the energy-momentum tensor tra
eless (see 3.33). The topologi
al 
harge (4.4) iss
ale invariant. Note that if A
l solves (4.5) with 
oupling g and 
urrent j then ~A
l is asolution with res
aled 
urrent and 
oupling 
onstant.As in the s
alar 
ase the 
lassi
al s
ale invarian
e is broken by quantum 
orre
tions .To see that more expli
itly we establish the 
onne
tion between the generating fun
tionalon �M Z(1)q [�M;~j; ~�; ~g℄ = e 1�hW
l(�M;~j;~g) �2�~g2j ~Mj �dH=2 1VH Z pY1 d~
r (det J) 12�det0� 12MB( ~A
l; ~g) det0Mgh( ~A
l; ~g) det0 12M ( ~A
l; ~g)�Yn (~�y; ~ n)( ~ yn; ~�) e�R pg ~�y ~G0 ~� (4:16)
and the one on M (4.14). As for s
alars (see above (2.19)) we have � ~M (s) = �2s�M (s) forall 
u
tuation operators. Hen
e the produ
t of the res
aled primed determinants 
an berelated to the uns
aled ones as in (2.19) and one �ndslog det0� 12 ~MB det0 ~Mgh det0 12 ~M det0� 12MB det0Mgh det0 12M = � log � � �2�Mgh + �M � �MB	s=0: (4:17)26



Here we used the abbreviation ~M = M( ~A
l; ~g) for the 
u
tuation operators on �M.Note that the �-fun
tions belonging to the bosoni
 and fermioni
 
u
tuation operators
ontribute with di�erent signs in the last bra
ket.Before 
al
ulating the �-fun
tions in (4.17) we dis
uss the s
aling behaviour of theother terms in Z(1)q . All the normalized zero-modes of the operators MB;Mgh and M s
ale as ~'(~x) = �� 12d'(x);that is transform di�erently as the 
u
tuation �elds in the fun
tional integral. Hen
e~gdHj ~MjdH=2 = ��2dHgdHjMjdH=2 ; pY1 d~
r = �p pY1 d
r; (~�y; ~ n)=�� 12 (�y;  n):Altogether the di�erent zero-modes 
ontribute a fa
tor �p�2dH�jqj in the s
aling of Z(1)q .The fermioni
 Green's fun
tion s
ales as~G0(~x; ~y) = �1�dG0(x; y)so that R �yG0� is s
ale invariant. Thus we �nd the following s
aling lawZ(1)q [�M;~j; ~�; ~g℄ = �p�2dH�jqjZ(1)q [M; j; �; g℄ � e� log���2�Mgh+�M ��MB	js=0 : (4:18)In deriving (4.18) we have used the s
ale invarian
e of the 
lassi
al S
hwinger fun
tional.Let us now expli
itly evaluate the �-fun
tions at s = 0 for the various 
u
tuationoperators. Thereby we must be 
areful to proje
t out the zero modes of the operators Min the various ��fun
tions in order to �nally get the desired primed determinants [19,32℄.We get �M (0) = lims!0 1�(s) Z 10 dt ts�1Tr e�tM (1� P ); (4:19)where P (x; y) =Pn 'n(x)'yn(y) is the proje
tor onto the zero modes 'n of M . One seesat on
e that �MB(g)(0) = 1(4�) d2 Z ddxpg tr aBd2 (x; g) � p ; (4:20a)�Mgh(g)(0) = 1(4�) d2 Z ddxpg tr aghd2 (x; g) � dH (4:20b)and �M (g)(0) = 1(4�) d2 Z ddxpg tr a d2 (x; g) � jqj (4:20
)instead of (2.22). Here tr denotes the tra
e over gauge, Dira
 and Lorentz indi
es. The
onstants p; dH and jqj lead to a fa
tor ��p+2dH+jqj in (4.18), whi
h exa
tly 
han
els the27



fa
tor �p�2dH�jqj 
oming from the zero-modes. Thus we obtain the following s
aling lawfor the S
hwinger fun
tionalW(1)q [�M;~j; ~�; ~g℄ =W(1)q [M; j; �; g℄+ �h log�(4�) d2 Z pg tr�aBd2 (x; g)� 2aghd2 (x; g)� a d2 (x; g)	: (4:21)This s
aling law should be 
ompared with the 
orresponding one for s
alar �elds (2.20,2.22).There the surfa
e of M a�e
ts the s
aling of the S
hwinger fun
tional whereas here thetopology of the 
lassi
al gauge �eld 
on�gurations and fermioni
 zero modes do not.Thes
aling is the same in all instanton se
tors.The Seeley-de-Witt 
oeÆ
ient an(x; g) for gauge 
ovariant operators of the formM = �D2 + C(x); where D� = �� + A
l � + !�; (4:22)where C(x) denotes a general �eld of hermitean matri
es, have been 
al
ulated for n � 5and those for n � 3 are given in the appendix. We evaluate now the gauge �eld, fermioni
and ghost 
ontributions in 2 and 4 dimensions in turn.
5. The running 
oupling 
onstant in four dimensions in leading log approximationBefore dealing with the realisti
 4-dimensional 
ase we 
omment on the quite trivial sit-uation in two dimensions, that is on the s
aling behaviour of the S
hwinger model. In 2dimensions the (would be) anomalous 
ontributions to the e�e
tive a
tion are given by the
oeÆ
ients a1 of the various 
u
tuation operators, and hen
e by the tra
e of C. For theghosts C=0, for the gauge �elds the Lorentz-tra
e of C vanishes and for the fermions itsDira
 tra
e is zero. Thus we haveZ(1)q [�M;~j; ~�; ~g℄ = Z(1)q [M; j; �; g℄ (5:1)in 2 spa
etime dimensions. We see that the 1-loop generating fun
tional is invariant withrespe
t to the naive s
alings of the 
oupling 
onstants and �elds. A detailed 
omputationshows that even the full generating fun
tional of the S
hwinger model is in the naive senses
ale invariant. Of 
ourse this follows from the fa
t that in QED2 the gauge 
oupling and�elds are not renormalized.Now we apply the results of the previous se
tion to QCD, or more generally to fourdimensional nonabelian gauge theories with gauge group SU(N). In four dimensions thegauge 
oupling is dimensionless and its s
ale-dependen
e is a quantum e�e
t. Let us
olle
t the di�erent 
ontributions to the anomalous s
aling (see Appendix A). We thereby28



omit all the purely geometri
 terms noting already here that there is no mixing betweenthem and the gauge 
ontributions. These geometri
 terms lead to running 
osmologi
al andgravitational 
onstants. In addition, the dimensionless 
onstants asso
iated with dimensionfour operators in the gravitation �eld, e.g R2; D2R, be
ome s
ale dependent [11℄. In thefollowing the integrations are performed with respe
t to the invariant measure.Gauge �elds.For the gauge �eld 
u
tuations the C-�eld in (4.16) is CB = �2G+R and 
al
ulating theLorentz tra
e in (A2) yieldstr La2(x; g) = 4 112G��G�� � 412G��G�� + : : : = �53G��G�� + : : : ;where we have used that trLCB = 0. Thus we getZ pg tr a2(x; g) = �53 Z pg trAG��G�� + : : : ; (5:2a)where the tra
e has to be taken in the adjoint representation, denoted by A.Ghosts.For the ghosts Cgh = 0 andZ pg tr a2(x; g) = 112 Z pg trAG��G�� + : : : (5:2b)Fermions.For Dira
 fermions C = � 12G��
�
� � 12R��
�
� and the Dira
 tra
e yieldstrDa2(x; g) = 4 112G��G�� � 212G��G�� + : : : = �23G��G�� + : : : ;where have we used that trDC = 0. Thus we remain withZ pg tr a2(x; g) = �23 Z pg tr FG��G�� + : : : ; (5:2
)where the fermions transform a

ording to some representation denoted by F . Let usde�ne the se
ond order Casimir TR of a representation R as trT aT b = ÆabTR. Above, : : :stand for all the purely geometri
al 
ontributions whi
h we omited. Colle
ting the resultswe �nd the anomalous term in (4.15) to beg216�2 X log� Z pg G�� aGa�� ; where X = 116 TA � 23TF : (5:3)29



At this stage of the 
al
ulation it is again 
onvenient to introdu
e the e�e
tive a
tion, thatis the (partial) Legendre transform of the S
hwinger fun
tion,�(1)q [M; a; �; g℄ = Z pg j � a�W(1)q [M; j; �; g℄; (5:4)where the mean �eld a and the 
urrent are related by a = ÆW=Æj. By using the samearguments as for s
alar �elds one �nds from (4.15) the following s
aling law for the e�e
tivea
tion �(1)q [�M; ~a; ~�; g℄ = 14(1� �h log�4�2 Xg2) Z d4xpgG�� a(a)Ga�� (a) + : : : ; (5:5)where we inserted (5.2) for the anomalous term in (4.15) and the 
lassi
al �eld has beenrepla
ed by the mean �eld a. Here : : : stand for those 
u
tuation terms, whi
h we do notneed at this stage. In order to read o� the s
aling of the �eld and 
oupling 
onstant from(5.5) we write the integral in (5.5) in terms of the mean �eld14(1� log �4�2 X g2) Z pg G�� aGa�� = 14(1� log�4�2 X g2) Z pgnaa�(��2Æ�� + ����)aa� � 4gfab
��a�a � ab�a
� + g2fab
fadeab�a�da
�a�eo:Now it is 
lear that the wave fun
tion has to be s
aled, and the s
ale fa
tor Z3 is given bythe 
oeÆ
ient multiplying the se
ond derivative term above. To restore the invarian
e ofthe e�e
tive a
tion we need to res
ale the �eld asa� �!pZ3a�; where Z3 = 1� �h log�4�2 X g2: (5:7)We reexpress � in terms of the s
aled �eld and the running 
oupling 
onstantg2(�) = g2Z3 = g2 11 � log�4�2 X g2 (5:8)and obtain this way the invarian
e of the e�e
tive a
tion�(1)q [�M; ~a; ~�; g℄ = �(1)q [M;pZ3a; �; g(�)℄: (5:9)Again we have used the fa
t that in all 1-loop 
ontributions to the e�e
tive a
tion (thedots in (5.5)) g and a 
an be repla
ed by the s
aled 
oupling 
onstant and �eld withouta�e
ting the 1-loop s
aling result.Note that 1=g and a s
ale the same way as required in a theory having one 
oupling
onstant in di�erent intera
tion terms. The result (5.9) shows that we 
an restore s
aleinvarian
e if we supplement the naive 
lassi
al s
ale transformations with the above anoma-lous ones. Also note that the 
oupling g runs the same way in all the topologi
al se
tors.30



This result is usually obtained using the ba
kground�eld method [33,34 and referen
estherein℄. In the 1-loop approximation 
onsidered here there is a simple relation between�(1)q [a℄ and the e�e
tive a
tion �(1)q;bg[abg; B℄ in the presen
e of the ba
kground �eld B eval-uated with the usual Feynman graph te
hnique. One �nds �(1)q [a℄ = �(1)q;bg[abg =0; B= a℄so that in our 
al
ulation the mean �eld a simply repla
es the �eld B introdu
ed in theba
kground�eld method to restore manifest gauge invarian
e.To 
ompare with the momentum spa
e renormalization one expresses (5.7,8) in termsof � to �nd the leading log expression for the �-fun
tion [25℄�(1)(g) = � ���g(�) = � �hX8�2 g3(�) (5:10)and the anomalous dimension of the gauge �elds
(1)A (g) = � ��� logZ3 = �hX4�2 g2(�): (5:11)Con
ering the tra
e of the symmetri
 energy-momentum tensor T�� for gauge theoriesthe same arguments as those leading to (3.18) lead now to the anomlous divergen
e of theenergy momentum tensor Z hT��i = 2�(1)(g)g(�) S; (5:14)a result originally due to Collins, Dun
an and Jogle
ar [35℄.
6. Con
lusionsIn this paper we have studied the 1-loop anomalous s
aling laws for the e�e
tive a
tions ofs
alar and gauge theories on �nite spa
etimes in various dimensions. We showed expli
itlythat if we allow the 
oupling 
onstants and �elds to s
ale di�erently as suggested bydimensional analysis we 
an get rid of the s
ale dependen
e of the e�e
tive a
tion �. Theanomalous s
aling of the 
ouplings and �elds is just the one belonging to the 1-loop betafun
tions and anomalous dimensions if the relative size � of spa
etime is related to theenergy s
ale as �=1=�. However, if spa
etime possesses a boundary we need to add surfa
eterms to the 
lassi
al a
tion and the surfa
e 
oupling 
onstants must s
ale as well for � tostay invariant. From the invarian
e of � we derived a general formula for the (integrated)tra
e of the energy momentum tensor for spa
e-times with boundaries.In our expli
it 
al
ulations we have in
luded the 1-loop 
orre
tions to the 
lassi
alresults. It would be interesting to see how e�e
tively one 
an derive the �-fun
tions andanomalous dimensions from �nite size e�e
ts in higher orders. Finite size 
al
ulations are31



infrared �nite and already that 
ould be a good reason for extending our methods beyond1-loop. Sin
e the �-fun
tion method naturally extends to the operator regularization whi
his appli
able to higher order 
al
ulations [36℄ this should indeed be possible.As already pointed out in the introdu
tion, our investigation of �eld theories on spa
e-times with boundaries have impli
ation for the Casimir e�e
t. To see that more 
learlyassume that spa
e-time is a 
ylinder, M = [0; �℄ � S. Then ��W[�;S; 0; g℄ is the freeenergy at temperature T =1=� andE0(S; g) = lim�!1 1� inf' �[�;S; '; g℄the ground state energy of the system with renormalized 
ouplings g and 
on�ned in thespa
e region S. From the s
ale invarian
e of � one derives then the following s
aling lawfor the ground state energy E0[�S; ~g℄ = 1�E0[S; g(�)℄: (6:1)In parti
ular, if the system is 
on�ned between two in�nite and parallel plates, then theenergy per surfa
e element s
ales as1AE0[�S; ~g℄ = 1�3 1AE0[S; g(�)℄: (6:2)For a 
lassi
ally s
ale invariant theory this implies that the Casimir energyECas � E0[�S; g℄� E0[S; g℄ (6:4)
an be re
ast into ECas = 1�E0[S; g(�)℄� E0[S; g℄: (6:5)This identity has the following interpretation: when we en
lose a quantum system intoa spa
e S and (in a Gedanken experiment) 
hange the renormalized 
oupling 
onstantsa

ording to the renormalization 
ow, g ! g(�), then E0 
hanges by the same amount aswhen we leave g �xed and move the walls so that S ! �S. This statement holds up tothe trivial 1=� fa
tor in (6.5).Let us �nally 
omment on a apparently di�erent problem whi
h has been our moti-vation for studying the �nite size s
aling of the generating fun
tionals, namely the 
hiralsymmetry breaking in QCD. When one imposes the one-parameter 
hirality breaking bagboundary 
onditions on the fermions as in [28℄ then the parameter � appearing in theboundary 
onditions 
an be interpreted as �-parameter in QCD [37℄. Furthermore, it 
anbe argued that the 
hiral 
ondensate does not vanish for small volumes. This may not
ome as a surprise sin
e the boundary 
onditions expli
itly break the axial SU(N). Wehave seen that even in the presen
e of boundaries the s
aling of 
orrelators is governed by32



the renormalization group 
oeÆ
ients. Now the task would be to derive bounds on theQCD-beta-fun
tion and anomalous dimensions su
h that the 
ondensate survives whenthe volume in
reases and one leaves the perturbative, small volume regime and enters thenon-perturbative large volume se
tor.A
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Appendix AIn this appendix we list the Seeley-deWitt 
oeÆ
ients an and bn for operators of the form

M = �D2 + C(x); where D� = �� +A� + !�: (A1)
The relevant volume 
oeÆ
ients an are [11,18,19,32℄Z pg a0(x) = Tr jMjZ pg a1(x) = Z pg tr �16R� C�Z pg a2(x) = 12! Z pg tr � 115D2R+ 136R2 � 190R��R�� + 190R����R����+ 16G��G�� � 13D2C � 13RC + C2�Z pg a3(x) = 13! Z pg tr �� C3 � 12CD2C � 12CG��G��+ 110(D�G��)(D�G��)� 115G��G��G���+ geom.terms :

(A2)
For Diri
hlet boundary 
onditions and g�� = Æ�� the surfa
e 
oeÆ
ients bn are given by33



[6,21℄ Z b 12 (x) = �p�2 Tr j�MjZ b1(x) = 13 I Tr tr� = 2�3 �EZ b 32 (x) = �p�192 I Tr �� 96C + 7( tr�)2 � 10 tr�2�Z b2(x) = 1945 I Tr �+ 40 tr�3 � 33 tr� tr (�)2 + 5( tr�)3�� 13 I Tr �C tr�� �nC�= (4�)2� 1180�E + 1280�2 I f(�)�� 13 I Tr �C tr�� �nC�;
(A3)

where we have introdu
ed the topologi
al Euler number for 3-surfa
es imbedded in 
atspa
es, �E = � 112�2 I �2Tr�3 � 3Tr�Tr�2 + (Tr�)3� (A4a)and the 
onformally invariant third-order-polynomial [21℄f(�) = Tr�3 � Tr�Tr�2 + 29(Tr�)3: (A4b)The surfa
e integrals are performed with respe
t to the indu
ed metri
, i.e. H � � � �H p~gdd�1du � � � ; where the boundary is (lo
ally) parametrized through fun
tions xa =xa(ui), and ~gij � gab �xa�ui �xb�uj (A5)is the indu
ed metri
 on �M. The se
ond fundamental formKij � ��xa�ui �xb�uj na;b (A6)or more pre
isely its extrinsi
 form �ab = �xa�ui �xb�ujKij (A7)enter the above expression for the Seeley-deWitt 
oeÆ
ients. In the body of the paper weassume thatM is 
at in whi
h 
ase gab=Æab and the 
ovariant derivative in (A6) be
omesan ordinary one.
Appendix B34



We set up the 1-loop approximation to the partition fun
tion for the O(N)�sigma models[38℄. The main point is to use an expansion of the na��elds about the 
lassi
al ba
kgroundwhi
h respe
ts the 
onstraint n2 = 1, up to 
ubi
 and higher order terms in the 
u
tuation�elds ��. We set na = Na + ����a � 12����Na; (B1)where the ��a; � = 2; ::; N together with Na form a orthonormal system in the spa
e of�elds �a�Na = 0�a���a = Æ�� (B2)NaNb + ��a��b = Æab:It is 
lear that n2 = 1+ O (�3). Expanding S to se
ond order yieldsS[n; g℄ = S[N; g℄ + 12g2 Z ��D����;where D�� = �D2�� + ���;D��� = ��Æ�� + ��a(����a) (B3)��� = (��a��Na) (��b��Nb) � Æ��(��Na � ��Na � g2ja �Na):For the fun
tional measure we �ndYx dNn(x) Æ(n2 � 1) = Yx dN�1�(x) (1 +O(�2));where we used that the Ja
obian from the 
oordinate 
hange exa
tly 
an
els the 
ontribu-tion from integrating out the Æ-distribution. Shifting � ! p�h� we �nd the 1-loop partitionfun
tion Z(1)[M; j; g℄ = e 1�hW
l[M;j;g℄ det� 12 D (B4)and W(1)[M; j; g℄ =W
l[M; j; g℄ � �h2 log det D: (B5)For the �-fun
tion we �nd with the help of Appendix A�D(0) = � 14� Z tr�= N�24� Z ��Na � ��Na � g2(N�1)4� Z jaNa: (B6)35
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