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AbstratThe dependene of e�etive ations on the �nite size of the spae-time region M is in-vestigated in detail. It is shown expliitly that the one-loop e�etive ations on M and�M are the same if the volume and surfae oupling onstants and �elds sale aordingto the renormalization ow. An eÆient algorithm for alulating the beta-funtions andanomalous dimensions is derived. The general results are applied to a number of examples,in partiular salar �eld theories in two, four and six dimensions, O(N)-sigma models intwo dimensions and gauge �eld theories with fermions in two and four dimensions.

1. IntrodutionThe behaviour of quantum systems under a hange of the length or energy sale plays animportant role in high energy physis [1℄, statistial mehanis [2℄ and general relativity [3℄.The most simple example is the Casimir e�et [4℄ where the vauum utuations hangewhen the walls enlosing the system are moved. This in turn leads to a hange of thevauum energy and a Casimir fore ating on the walls. More reently the study of suh�nite size e�ets have played an important role in 2-dimensional models, in partiular inthe onformally invariant ones. For example, one an show that the universal term in thesaling of the free energy is proportional to the entral harge [5,6℄. This means that theentral harge haraterizes both the ultraviolet and infrared behaviour of suh models.1



On another front, the behaviour of renormalizable quantum �eld theories under di-latations has entered on the asymptoti saling of Green's funtions. This saling exhibitsdepartures from the one suggested by naive dimensional analyses and an be studied onthe basis of the Callan-Symanzik equation [7℄. For more than 2 dimensions the sale (andonformal) invariane is generially broken by hard anomalies. In [8℄ it has been shownthat the breaking of the Weyl-invariane (or loal sale invariane) an be absorbed byhanging the (loal) ouplings and introduing external �elds.It is well known that the perturbation expansion is often plagued with severe infrareddivergenies. For gauge theories, the 1-loop orretion to the 4-boson vertex depends onthe infrared uto� � as �4�d and shows a power divergene in less than 4 dimensions.These infrared divergenes are then present in the high temperature regime where the4-dimensional theory beomes e�etively 3-dimensional [9℄. One way to solve this problemis to assume that spaetime has a �nite volume jMj � Ld. Then one averages onlyover degrees of freedom with momenta p> 1=L. Alternatively one ould use the averageation approah as advoated in [10℄, whih has been suessfully applied to determine therunning ouplings and ritial exponents for salar and gauge theories.In this paper we investigate how the Green's funtions hange if the infrared uto�jMj is moved to �djMj or if one inludes smaller and smaller momenta in the averagingproedure. More preisely, we determine the hange of the e�etive ation � when the�nite spae-time regionM is saled to �M and the ouplings and �elds sale naively, thatis aording to their dimensions. In partiular, for lassially sale invariant theories therenormalized dimensionless volume- and surfae oupling onstants are kept �xed.Sine for onstant mean �elds the e�etive ation is just the e�etive potential, theminimum of whih is the vauum energy, this hange should be interpreted as generalizedCasimir e�et. By using heat kernel tehniques we shall derive expliit expressions for thesale-dependene of the 1-loop e�etive ations when the renormalized ouplings and �eldssale naively.Instead of viewing the hange of � as Casimir e�et one may ask whether it is possi-ble to keep it invariant. This an indeed be ahieved if we allow the volume and surfaeouplings and �elds to sale di�erently than suggested by dimensional analysis. We �ndthat the saling whih leaves � invariant is the naive one supplemented by the anomalousone following from the renormalization group equation. The energy sale in the Callan-Symanzik equation is thereby replaed by the typial inverse length-sale of spae time.Besides this Casimir type interpretation for the beta-funtions and anomalous dimensionswe obtain a very eÆient algorithm for omputing the Callan-Symanzik oeÆients in arbi-trary dimensions and for various �eld theories without alulating any Feynman diagrams.Related results have been obtained in [11℄, where interating salar �eld theories2



in urved spaes without boundaries have been investigated. These works did mainlyonentrate on the geometry dependene of the e�etive potentials and ations and relatedquestions suh as symmetry restoration for large urvatures. In [12℄ a variant of themultiple sattering expansion for the Green's funtions has been developed and appliedto derive the perturbative expansion for quantum �elds in spaes with boundaries. Inpartiular, the additional divergenies present in the loop expansion as a onsequene ofthe presene of boundaries and the 2-loop beta-funtions have been alulated. ReentlyL�usher et.al [13℄ have applied �nite size tehniques to lattie alulations. The saledependene of the lattie ouplings in asymptotially free theories and in partiular theinterpolation between their perturbative small volume and non-perturbative big volumevalues has been investigated.The paper is organized as follows: in the seond setion we analyse the saling be-haviour of the generating funtionals on spaetimes with boundaries up to 1 loop withthe help of heat kernel tehniques. In setion three we derive expliit expressions for theanomalous saling of the �elds and oupling onstants for salar �eld theories. They followfrom the requirement that the e�etive ations are sale invariant. The results are appliedto salar �elds in 2, 4 and 6 dimensions. In partiular, we obtain the 1-loop renormaliza-tion group oeÆients for the sine-Gordon and O(N)-sigma models in 2 dimensions, the�4 theory in 4 dimensions and the �3 theory in 6 dimensions. We also derive the generalformula for the trae of the energy-momentum tensor in spae-times with boundaries. Itis shown that the anomalous trae is proportional to the anomalous dimension and thevarious volume- and surfae beta-funtions. In the following setion, the program is arriedthrough for gauge theories with fermions. For tehnial reasons we assume that M pos-sesses no boundaries. Sine all spaes (besides the torus) with �nite volume and withoutboundaries are urved we are lead to onsider gauge theories on urved spae times. Wederive the anomalous saling of the generating funtional for �xed renormalized ouplingsand �elds in the di�erent instanton setors. It is shown that the renormalization groupoeÆients are the same in all instanton setors. In setion 5 we apply the general resultsto realisti 4-dimensional gauge theories in the hiral limit of vanishing quark masses andobtain the beta-funtions and anomalous dimensions from demanding that the e�etiveation is sale invariant. In the appendies we ollet the relevant heat kernel oeÆientsand set up the neessary formulae for the semilassial quantization of sigma models.
2. Sale transformation for salar-�elds in leading logarithm approximationThe ation of a (possibly multi-omponent) salar �eld � in d-dimensional Eulidean spae-3



time M is given by S[�; g℄ = ZM ddx�12(���)2 + V (�)� ; (2:1)where g = fgag denotes the set of oupling onstants (inluding masses) appearing in thelassial potential V . A salar �eld has length-dimension d�= 12(2�d) and from that oneinfers the dimensions of the various oupling onstants.We assume that the volume jMj of spaetime is �nite and that the salar �eld obeysertain boundary onditions on the boundary �M. For example, if �0 minimizes the(e�etive) potential we may impose the ondition �j�M = �0. If there are several mini-mizing �0, as it typially happens when a ontinuous symmetry is spontaneously broken,the boundary values must further be spei�ed. If no external soure is applied then theseboundary onditions may selet the vauum state whih is hosen by the quantum system.Alternatively we ould assume that M possesses no boundary, e.g. that it is a d-dimensional sphere. For gauge theories (onsidered in setions 4 and 5) we shall makethis assumption, mostly for tehnial reasons. For salar theories it is more onvenient toassume that spae time possesses a boundary, e.g. is a d-dimensional ball. This way wean avoid the problems assoiated with the zero-modes of the derivative term in (2.1) [14℄.The partition funtion whih is the generating funtional for the Green's funtions isformally given by the Eulidean funtional integralZ[M; j; g℄ = 1N Z D� exp �� 1�hS[�; g℄ + 1�h ZM ddx j � �� ; (2:2)where we have made the dependene on the spaetime region expliit. Due to the infrareduto� we average only over �elds with momenta larger than the inverse size of the system.Often it is more onvenient to onsider the Shwinger funtional whih generates theonneted Green's funtions W[M; j; g℄ = �h logZ[M; j; g℄ (2:3)or its Legendre transform, the e�etive ation�[M; '; g℄ = ZM j � ' � W[M; j; g℄; (2:4)where the soure solves '=ÆW=Æj, i.e. is onjugate to the mean �eld 1 '. The Shwingerfuntional an be reonstruted from the e�etive ation by the inverse Legendre transfor-mation W[M; j; g℄ = ZM j � ' � �[M; '; g℄; (2:5)1 we use the symbols ' for the mean �eld, i.e. the argument of the e�etive ation, and� for the mirosopi �eld appearing in funtional integrals like (2.2).4



where the mean �eld solves j = Æ�=Æ'. In ases where the derivative of W(j) is notontinuous the ommonly used transformation (2.4) fails to be appliable. This happenstypially when the lassial potential is not onvex. To handle the general ase one usesthe transformations �[M; '; g℄ = supj �ZM j � '�W[M; j; g℄	W[M; j; g℄ = sup' �ZM j � '� �[M; '; g℄	; (2:6)whih oinide with (2.4,5) for di�erentiable W [15℄.First we evaluate these funtionals semilassially, i.e. inlude the one-loop orretionsby means of the steepest desent approximation. Then we determine how they hange ifM is saled to �M.To derive the semilassial expansion on spaetimes with boundaries we set � =�l+p�h Æ�, where �l extremizes the exponent in (2.2) and Æ� denotes the utuation�eld. To �nd the equation for the extremizing �eld �l we expand the exponent in (2.2)in the utuation �eld:�S[�℄ + ZM j � � = �S[�l℄ + ZM j � �l�p�h I�M �n�l Æ�+p�h ZM ��2�l � V 0(�l) + j	Æ�� �h2 I�M �nÆ� Æ�� �h2 ZM Æ��� �2 + V 00(�l)	Æ�+O(Æ�3): (2:7)
Here we enounter surfae terms sine M possesses a boundary. However, if we imposethe same boundary onditions on �l as on the �elds in the funtional integral, that isset �= �l = �0 on �M, then the utuations vanish there and both surfae integrals in(2.7) vanish. Instead of presribing the values of � on the boundary we ould assume thatits normal derivative vanishes. In the semilassial approximation we would then imposethe same ondition on �l. Then the normal derivative of the utuations vanishes andagain both surfae integrals in (2.7) are zero. Thus with both boundary onditions theextremum �l(j) of the exponent in (2.2) is determined by the �eld equationÆSÆ� [�l℄ = ��2�l + V 0(�l) = j (2:8)and the imposed boundary onditions. We prefer to presribe the �eld on the boundaryso that the derivative term in the lassial ation possesses no zero-mode(s).5



Inserting the expansion (2.7) into the funtional integral and retaining the termsquadrati in the utuations, the resulting Gaussian integral yieldsW(1)[M; j; g℄ =Wl[M; j; g℄��h2 log detM(j; g); whereWl[M; j; g℄ = sup' � ZM j � '�S['; g℄	 = ZM j � �l � S[�l; g℄ (2:9)is the lassial Shwinger funtional and M(j; g)=��2+V 00(�l) the utuation operator.�l depends on the external soure and the oupling onstants through (2.8) so that Wland the determinant are indeed funtions of the soure. If � has several omponentsthen V 00 denotes the seond derivative matrix at �l. Both the lassial piee and the1-loop determinant in (2.9) depend on the spaetime M. The spaetime dependeneof the determinant enters through the boundary onditions for the utuations. Thegenerating funtionals depend also on the presribed boundary �eld �0. Atually Z[j=0℄in (2.2) is just the wave funtional 	[�0℄ obeying the funtional Shr�odinger equation withHamiltonian orresponding to the ation in (2.2) [12,16℄. But sine this aspet is not ofimportant here we shall not make the �0 dependene expliit.We proeed to ompute the e�etive ation. From '=ÆW=Æj and W=Wl+O(�h) itfollows at one that the mean �eld is given by the lassial one, up to orretions of order�h. Furthermore, sine R j��S[�℄ is stationary at �l we see that the e�etive ation isgiven by �(1)[M; '; g℄ = S['; g℄ + �h2 log detM('; g) (2:10)up to terms O(�h2). Note that the utuation operator M('; g) = ��2+V 00(') is nowevaluated at '.The determinants are to be omputed subjet to Dirihlet boundary onditions. ThenM is selfadjoint and possesses a disrete spetrum. Of ourse, the utuation determinantsare ill-de�ned due to ultraviolet divergenes and must be regularized. We shall employ the�-funtion regularization for omputing them [17℄log detM = � dds js=0�M (s); �M (s) = trM�s =Xn ��sn : (2:11)This is indeed a regularization of the determinant sine �(s) is analyti at s=0. It inludes,up to possible ounterterms, the 1-loop normalization N of the funtional integral. Thisregularization has the nie property that it does not hange the oupling onstants in thelassial potential and hene they may be regarded as renormalized ones. This property isnot ment to be obvious but follows from the heat kernel representation for the �-funtiondisussed below. 6



The above de�nition of the �-funtion does not allow us to take the s-derivative ats=0 sine the trae in (2.11) is de�ned only for Re(s)>d=2. The analyti ontinuationan be ahieved by taking the Mellin transform of the heat kernel�M (s) = 1�(s) 1Z0 dt ts�1 tr e�tM (2:12)and this fat will be exploited onsiderably later on.Next we onsider the resaled theory on the spae-time region �M and the orre-sponding generating funtionals. Under a sale transformation~x = �x (2:13)the lassial �eld and soure transform as~�(~x) = � 12 (2�d)�(x) � �d� �(x); ~j(~x) = �� 12 (2+d) j(x); (2:14a)suh that the derivative term in (2.1) and the soure term in (2.2) are invariant. Let ga bea oupling onstant whih appears in the ombination ga�a in V . Classially it sales as~ga = �daga; where da = 12d(a�2)� a (2:14b)is its length dimension. In partiular a mass sales in all dimensions as � ~m = m. Also, forthe ritial exponent a=2d=(d�2) the oupling onstant does not sale. Salar theorieswith potentials V = ga�a are alled lassially sale invariant. The point is that we neednot assume suh a partiular form for the potential. By allowing for the (naive) salings(2.14) of the �eld, soure and oupling onstants when we sale M to �M, the lassialation and the soure term are both sale invariant for arbitrary salar �eld theoriesZ�M dd~x ~j � ~�� S[�M; ~�; ~g℄ = ZM ddx j � �� S[M; �; g℄: (2:15)Taking the suprema of this equality over all �elds proves then the sale invariane of thelassial Shwinger funtionalWl[�M;~j; ~g℄ =Wl[M; j; g℄: (2:16)More expliitly, it follows that if �l solves (2.8) with given soure and oupling onstants,then ~�l solves (2.8) with saled soure and saled onstants. Of ourse for (2.16) tohold one should also hek that ~�l obeys the orret boundary onditions if �l does.7



This means that on the boundary it should mimimize the saled potential. But sine theminimas of V (~g) sale the same way as the �elds this follows at one.As is well known the sale transformations (2.13,14) ease to be a symmetry of thequantized theory due to the sale anomaly. To see that expliitly on the funtional levelwe relate the generating funtionals on �M and M.From the sale invariane of Wl it follows from (2.9) and (2.10) thatW(1)[�M;~j; ~g℄ =Wl[M; j; g℄ � �h2 log detM(~j; ~g)�(1)[�M; ~'; ~g℄ = S[M; '; g℄ + �h2 log detM( ~'; ~g): (2:17)We fouse on the regulated determinant on the saled spaetime �M:log detM( ~'; ~g) = � dds js=0�M( ~';~g):Note that the utuation operators sale homogeneously under the sale transformations(2.13,14) ~M � �~�2 + V 00( ~'; ~g) = ��2�� �2 + V 00('; g)� � ��2M: (2:18)It follows from (2.11) that � ~M (s) = �2s �M (s). Hene the ratio of the saled to the unsaleddeterminant beomes log det ~MdetM = �2 log� � �M (0) (2:19)and we �nd the following saling lawsW(1)[�M;~j; ~g℄ =W(1)[M; j; g℄ + �h log� � �M(j;g)(0)�(1)[�M; ~'; ~g℄ = �(1)[M; '; g℄� �h log � � �M(';g)(0); (2:20)and this is the main result of this setion. Whereas Wl and S are both sale invariant,W(1) and �(1) are not. The sale anomaly, that is the logarithmi orretions to thesale invariane, has been made expliit in the last terms in (2.20). We emphasize thatthese saling laws are orret for arbitrary salar theories. If all oupling onstants aredimensionless then ~g= g in (2.20). Later we shall see that the formulae (2.20) also holdfor gauge theories, up to slight modi�ations due to zero-modes and gauge �xing.To determine �(s) for vanishing s we use the representation (2.12). In the limit s! 0the singular part of the t-integration omes only from the small t region. Using the heatkernel expansion for small t [18℄tr e�tM f = 1(4�t) d2 1Xn=0;1;::: h ZM an2 (f ; g) + I�M bn2 (f ; g)i tn2 ; (2:21)8



where f(x) is an arbitrary test-funtion, one �nds [19℄�M (0) = 1(4�) d2 h Z a d2 (1; g) + I b d2 (1; g)i: (2:22)
Here the integral symbol denotes both the integration over spaetime or its boundary andthe trae over internal indies if � has several omponents and thus M is matrix valued.(2.21) ontains half-integer powers of t sine the trae must be omputed with respet toDirihlet boundary onditions. This leads to boundary ontributions to the heat kerneland half-integer powers of t in the small-t expansion.The volume oeÆients an vanish for odd n and have length dimension �2n. Thesurfae oeÆients bn have length dimension 1�2n. For general seond order utuationoperators the an have been alulated for n � 5, relevant for 10 and less dimensions [18,20℄and the bn for n � 2, relevant for 4 and less dimensions [6,21℄. In appendix A we haveolleted the oeÆient funtions for Dirihlet boundary onditions relevant for theoriesin 6 or less dimensions.The physial role of these oeÆient funtions for n � d an be seen more learlyin the proper time or dimensional regularizations whih are intimately related to the �-funtion sheme [19,22℄. In perturbative alulations of the e�etive ation they are just thedivergent terms whih must be absorbed by ounterterms. For example, a d2 is multipliedby a logarithmially divergent fator, e.g. log � in the proper time regularization, and a0is multiplied by a fator �� d2 . Thus the most divergent term is � R a0 = jMj and suha term an be absorbed by renormalizing the osmologial onstant. In the �-funtionregularization these in�nite terms are suppressed and thus we may regard the ouplingonstants in the lassial ation as renormalized ones. The role of the partiular oeÆientfuntion a d2 is twofold. It appears as logarithmially divergent ontribution in perturbationtheory and at the same time determines the universal anomalous saling of the renormalizedgenerating funtionals.For salar �eld theories A� = 0 and C = V 00 2 in (A1). Thus the an and bn areloal polynomials in V 00, the extrinsi urvature �ab of the boundary and their spatialderivatives. Inserting the orresponding oeÆients (A2) and (A3) into (2.22) we obtain2 For several salar �elds V 00 is the seond derivative matrix, V 00 = ( �2V�'i�'j )9



in 2, 4 and 6 dimensions:�d=2(0) = � 14� Z trV 00 + N6 �E�d=4(0) = 12! 1(4�)2 h Z tr (V 00)2 � I ��n trV 00 + 23 trV 00�aa	i+ N180�E + N280�2 I f(�)�d=6(0) = � 13! 1(4�)3 Z h tr (V 00)3 + 12 trV 00�V 00i+ I P (V 00; �(k)V 00; �ab):
(2:23)

Here N is the number of salar �elds, �n the outward oriented normal derivative and R(H ) and tr denote integration over M (�M) and trae over internal indies, respetively.�E is the Euler number. With our sign onvention it is 1 if the boundary is a sphere. Itis the winding number of the normal vetor �eld n(x) on �M and thus is a topologialinvariant. In general it gets a ontribution form the metri and extrensi urvature. Thefuntion f is the onformally invariant third order polynomial in the extrinsi urvature(see appendix A), f(�) = tr �3 � tr � tr �2 + 29( tr�)3; (2:24)and it vanishes if �M is a sphere. The polynomial appearing in the surfae integral in6-dimensions has not yet been alulated.For onstant �elds '='0 we have in d=2n dimensions�d(0) = KdjMj tr �V 00(g; '0)�n + I P (V 00; �ab); Kd = (�1)n(4�)nn! (2:25)In odd dimensions the an vanish and �M (0) ontains no volume terms. From (2.20) itfollows then that the generating funtionals on �M and M are the same, up to surfaeterms. Thus the sale invariane of the lassial theories survives when one inludes 1-loop orretions, up to surfae terms. For that reason we shall onsider theories in evendimensions only in what follows.2.1 The role of the surfae termsFor free massless salars V =0 and the only ontribution to the anomalous saling omesfrom the purely geometri surfae terms in (2.23). This property holds if M is at. Inurved spaetimes geometri volume terms are present even for free massless partiles[6,11℄. However, in this setion we shall assume spaetime to be at.10



The kown surfae oeÆients are listed in appendix A. They are relevant when onedisusses Casimir type e�ets for free �elds [6℄. Inserting b1 into (2.20,22) immediatelyleads to the following formula in 2 dimensions�geom � ���M; ~'℄� ��M; '℄ = ��hN6 �E log�; (2:26)where N is the number of free massless salars and �E the Euler number of M. Theanomalous saling depends only on the topology of spaetime. Atually one an show that(2.26) holds for any 2-dimensional onformal �eld theory provided N is replaed by theentral harge  [5,6℄. This is an exat result and holds beyond perturbation theory.Similarly, for free massless salars in 4 dimensions only the oeÆient b2 ontributesto �(0) in (2.20) and leads to the following saling formula [6℄�geom = ��hN log�180 �E � �hN log�280�2 I f(�): (2:27)Contrary to the situation in 2 dimensions the saling behaviour depends here on thegeometry enoded in f and not only on the topology.The saling laws (2.26-27) for free salars are purely geometri and therefore presentirrespetive of the form of the lassial potential. Thus, for an interating theory thereare two soures for the anomalous saling, namely the presene of the boundary whihintrodues a geometrial length sale and the interation between the partiles whih in-trodues a dynamial mass sale. We shall not always make the purely geometri ontri-butions (2.26-27) to the anomalous saling expliit. But they must always be added to thedynamial terms ontaining powers of the potential and its derivatives.The geometri surfae terms do not hange the ouplings in V , sine those are relatedto volume integrals. However, their appearane in � signals that we should inlude sur-fae terms in the lassial ation as possible ounterterms [12℄. Thus in the presene ofboundaries S in (2.1) should be modi�ed toS[�; g; h℄ = ZM ddx�12(���)2 + V (�)�+ I�M Q(�ab; �; �n�); (2:28)where h = fhag are the oupling onstants appearing in Q. Similarly to the volumeouplings they will run due do quantum orretions. We require them to have lengthdimensions � 0 for the theory to be renormalizable. Sine the surfae potential Q haslength dimension 1�d it follows that the surfae potential is at most linear in �n�.For example, the most general form of Q in 4 dimensions whih is invariant underreetion of � reads I Q =h1j�Mj+ h2 I tr�+ h3�E + h4 I f(�)+ h52 I �2 + h62 I �2 tr�+ h72 I �n�2; : (2:29)11



The h1; : : : ; h4-terms are purely geometrial. Due to the imposed boundary onditions thesurfae potential Q fatorizes in the funtional integral (2.2). In the expansion of (2.28)about �l (similarly to (2.7)) the terms quadrati in the utuations �nÆ� are alwaysmultiplied by Æ�. Due to the imposed boundary onditions suh terms vanish. Thus the1-loop formulae (2.9,10) still hold with exatly the same determinant but with lassialation (2.28). For example, for a free massless �eld in 4 dimensions with surfae potentialQ ontaining only the geometri h1; : : : ; h4-terms, (2.27) yields�(1)[�M; ~'; ~h℄ = �(1)[M; '; h(�)℄; whereh3(�) = h3 � �hN log�180 h4(�) = h4 � �hN log�280�2 ; (2:30)and the remaining two oupling onstants sale naively. However, in higher orders in aloop expansion these ouplings may run as well. We see that if we allow for an anomaloussaling of some onstants then the e�etive ation is invariant under sale transformations.The point is that this remains true for interating theories.2.2 The 1-loop e�etive potential from saling behaviourLet us see how the general 1-loop saling behaviour (2.20) relates to more familiar results.We shall derive the 1-loop e�etive potential in even dimensions, that is the e�etive ationdensity for onstant mean �eld ' = '0,U (1)(M; '0; g) = 1jMj �(1)[M; '0; g℄; (2:31)from saling arguments. Sine the surfae terms are not known in d > 4 dimensions, weshall neglet them for the moment so that our results are orret up to surfae terms.From the saling law (2.20) we obtain�d U (1)(�M; ~'0; ~g) = U (1)(M; '0; g)� �h log�jMj � �M('0;g)(0); (2:32)where aording to (2.17)U (1)(M; '0; g) = V ('0; g) + �h�U�V 00('0; g)��U(x) = 12jMj log det(��2 + x): (2:33)Here we have used that for onstant �elds the determinant an only depend on x =V 00(�0; g). The lassial potential anels in (2.32). Finally, sine~x = V 00( ~'0; ~g) = ��2V 00('0; g) = ��2x12



we obtain the following equation for the 1-loop ontribution to U�d�U(��2x)��U(x) = � log� � �(0) = � log � �Kd x d2 ;where we made use of (2.25). The nontrivial solution is just�U(x) = Kd2 x d2 log xonst ;where one takes a onvenient normalization in the logarithm. Adding this 1-loop result tothe lassial term we end up withU (1)('0) = V ('0) + �hKd2 �V 00('0)�d2 log V 00('0)onst : (2:34)In 4 dimensions the surfae ontributions to the anomalous saling are known and wean go further (2 dimensions are too trivial, sine the surfae sale-anomalies are purelygeometrial). Using the result (2.23) in 4 dimensions yields the e�etive potentialU (1)('0) =V ('0) + �h32�2 �V 00('0)�2 log V 00('0)onst� �h48�2jMj V 00 log V 00onst � I tr�; (2:35)up to purely geometri and thus '0-independent terms. Note that for 'reasonable' bound-aries the �nite volume e�etive potentials (2.35) tend to the in�nite volume result (2.34)for d=4 as required.
3. The running oupling in salar theoriesIn this setion we apply the general results (2.20) to a lass of interating renormalizablesalar �eld theories in various dimensions. We reover the saling behaviour of the di�erentvolume and surfae ouplings together with the 1-loop ��funtions, anomalous dimensions and �nally the trae anomaly of the energy-momentum tensor. Reall that in odddimensions �(0) has no volume terms. Hene the wave funtions and the volume ouplingsare not renormalized in the 1-loop approximation. In the hosen regularization sheme weannot see any running of the volume oupling onstants in odd dimensions. However, thesurfae ouplings do run sine b d2 does not neessarily vanish in odd dimensions (see A3).Although this is interesting in its own right, we shall onentrate here on the ommonlyonsidered volume terms and therefore onsider even dimensions only.2 dimensions. 13



We start with the general ation for a one-omponent salar �eldS[�; g; h℄ = Z n12(���)2 + 1Xa=0 gaa! �ao+ h�E ; (3:1)where we added a topologial surfae term proportional to the Euler number. In 2 di-mensions we ould add in�nitely many relevant and marginal surfae terms sine � isdimensionless. But besides the non-universal j�Mj and the universal �E none of them isneeded as ounterterm. Hene everything what we say holds also if we add other surfaeterms.From (2.20) and (2.23) we derive the following saling behaviour for the e�etiveation �(1)[�M; '; ~g; h℄ = S['; g; h℄ + �h2 log detM('; g)+ �h log�4� 1Xa=2 ga(a� 2)! Z 'a�2 � �h log�6 �E ;where we have used that h and ' are both dimensionless so that ~h=h and ~'=' and thatthe determinant does not depend on the surfae oupling onstant h. We rearrange thedi�erent terms with the result�(1)[�M; '; ~g; h℄ = S[M; '; g(�); h(�)℄ + �h2 log detM('; g); (3:2)where we introdued the running oupling onstantsga(�) = ga + �hga+24� log� and h(�) = h� �h6 log�: (3:3a)Sine the replaement g ! g(�)=g+O(�h) in log detM hanges the right hand side of eq.(3.2) only in O(�h2), whih does not a�et the 1-loop equation, we an relate the saledand unsaled funtionals as�(1)[�M; '; ~g; h℄ = �(1)[M; '; g(�); h(�)℄: (3:4)In other words, we an restore the invariane of the e�eive ation if we allow for ananomalous saling of the oupling onstants. Thus, if the naive dimensional saling (2.14)is supplemented by the anomalous one (3.3a), then the 1-loop generating funtional is saleinvariant.To ompare our results with the more onventional renormalization group results inmomentum spae we note that (2.13) implies~p = ��1p � �p: (3:5)14



So we �nd the following leading logarithm expression for the running ouplings in 2 di-mensions: ga(�) = ga � �hga+24� log� and h(�) = h+ �h6 log�: (3:3b)From that we immediately reover the ��funtions to leading order�(ga) = � ���ga(�) =) �(1)(ga) = ��hga+24��(h) = � ���h(�) =) �(1)(h) = �h6 : (3:6)As expeted in these models there is no wave funtion renormalization.As an appliation we alulate the anomalous saling behaviour of the perturbativemass in the sine-Gordon model. We parametrize the lassial potential as [23℄V (�) =  � m2�2 os(��); (3:7)where � is dimensionless and m the perturbative mass. It is now easy to alulate theresaled e�etive ation from (3.4,6) (or diretly from (2.20,23)) and one �nds that it issale invariant, �(1)[�M; �; ~; �; ~m2℄ = �(1)[M; �; (�); �;m2(�)℄; (3:8)provided the mass runs as m2(�) = m2�1� �h4��2 log��: (3:9a)and the osmologial onstant  as(�) =  � �h6jMj�E log�: (3:9b)The equation (3.8) is an exat 1-loop relation inluding surfae terms.For models with polynomial interations the oupling of the highest power is not renor-malized. This is of ourse related to the fat that these models are superrenormalizable.Note that the anomalous sale dependene of the surfae oupling onstant h is in-sensitive to the details of the model. Sine it sales the same way for all 2-dimensionalmodels we shall ignore it in the following sigma-model alulations.We onlude this setion with a disussion of the saling behaviour of the O(N)�sigmamodels. In terms of the onstrained �eld na; a = 1; ::; N the ation readsS[na; g℄ = 12g2 Z ��na � ��na; n2 = 1: (3:10)15



First we shall evaluate the partition funtion, where attention must be paid to the on-straint on the �eld. In (2.2) we integrate over �elds with �xed length n2=1.The lassial �eld Na, whih extremizes the exponent in (2.2) and ful�ls the onstraintis determined by �2Na � (N b � �2Nb)Na = g2f(N b � jb)Na � jag: (3:11)Note that the solution Na for a given soure ja is also a solution for the loally transformedsoure ja(x)+f(x)Na(x). Suh an ambiguity is to be expeted from ounting degrees offreedom. Hene there is no one-to-one orrespondene between �elds and soures. Thismeans that the e�etive ation or Legendre transform of W annot be de�ned in the n-variables. If we would introdue unonstrained variables, for example by a stereographiprojetion, this problem ould be overome. But it is more onvenient to use the n-�eldfor whih we must deal with W rather than �.In Appendix B we review the alulation of W(1). One �ndsW(1)[M; j; g℄ = Wl[M; j; g℄ � �h2 log detD;where the utuation operator D is given in appendix B. Now we apply the general salingformula (2.20). Inserting �D(0) from (B6) we obtainW(1)[�M;~j; ~g℄ = Wl[M; j; g℄ � �h2 log detD+�h(N�2)4� log � Z ��Na � ��Na � �hg2(N�1)4� log� Z ja �Na; (3:12)where we omitted the trivial boundary terms. We restore sale invariane by supplementingthe naive saling (2.13,14) with the anomalous one for g and the soure ja. We �ndW(1)[�M;~j; ~g℄ =W(1)[M; j(�); g(�)℄;where g2(�) = g2 log�1� �h2�g2(N�2) ; ja(�) = �1� �hg2(N�1)4� log��ja: (3:13)Note that in ontrast to the other models onsidered it is now the anomalous salingof the soure ja whih yields the anomalous dimension. Translating the above result tomomentum spae we obtain the �-funtion�(1)(g2) = � ���g2 = ��h(N � 2)2� g4 (3:14a)16



in agreement with the literature [24℄. Sine � is negative the oupling beomes weaker ifM shrinks, as expeted for an asymptotially free theory. The anomalous dimension isrelated to the transformation behaviour of the soure. We �nd it to be(g2) = �h(N � 1)2� g2: (3:14b)4 dimensions.Here we onsider the perturbatively renormalizable Higgs model with quarti self-interationV (�) = g0 + g22! �2 + g44! �4 (3:15)and the general surfae-interation (2.29). For g0=0 and g2=m2 this orresponds to theunbroken theory with perturbative mass m, and for g0=gv4=4, g2=�gv2=6 and g4=g weobtain the Higgs model with perturbative Higgs mass mH = gv2=3. Applying (2.20) oneobtains the following expliit form for the saled e�etive ation�(1)[�M; ~'; ~g; ~h℄ = �(1)[M; '; g; h℄� �h log�32�2 Z �g22 + g2g4'2 + g244 '4	+ �h log�4�2 h I �g48 �n'2 + (g26 + g412'2) tr�	� �2�E45 � f(�)70 i: (3:16)As in 2 dimensions the 1-loop ontributions an be absorbed in the lassial ation (2.28)if the onstants in the potentials (2.29) and (3.10) are resaled. Hene the e�etive ationis sale invariant, �(1)[�M; ~'; ~g; ~h℄ = �(1)[M; '; g(�); h(�)℄; (3:17)provided the volume ouplings run asg0(�) = g0 � �2 g22; g2(�) = g2�1� �g4�; g4(�) = g4�1� 3�g4� (3:18)and the surfae onstants ash2(�) = h2 + �3 g2; h6(�) = h6 + �3 g4; h7(�) = h7 + �2 g4; (3:19)where we have introdued � = �h log�=16�2. The onstant h5 does not sale and theremaining geometrial onstants h3; h4 sale as in (2.30). To derive (3.17) we replaed theouplings g in the 1-loop ontribution to the e�etive ation by the saled ones g(�) =g+O(�h). Sine this hanges � only in order O(�h2) this does not a�et the one loop result.To ompare our result with the momentum spae renormalization [25℄ we identify theinverse length sale 1=� of spae time with the energy sale � as in (3.5). This immediately17



yields the running oupling onstants in momentum spae and the orresponding 1-loop�-funtions for the volume oeÆients�(1)(g0) = �h32�2 g22; �(1)(g2) = �h16�2 g2g4; �(1)(g4) = 3�h16�2 g24; (3:20)and for the surfae oeÆients�(1)(h2) = � �h48�2 g2; �(1)(h6) = � �h48�2 g4; �(1)(h7) = � �h32�2 g24: (3:21)The �-funtions for the mass and quarti oupling oinide with the ones alulated withthe more ommonly used Green's funtion method in momentum spae [25℄. The running ofthe osmologial onstant g0 is usually not onsidered in the literature, sine one requiresthe normalization ondition W(j = 0) = 0 for the Shwinger funtional. This onditionremoves a osmologial onstant and terms ontaining the Casimir e�et. Also, surfaeterms are not present on the whole Minkowski (Eulidean) spaetime so that their saledependene annot be studied in the onventional perturbation expansion.Note that the 1-loop orretions do not lead to a wave funtion renormalization in4-dimensional one-omponent �4 theories. Again this agrees with the more widely useddimensional regularization.6 dimensions.We onsider the renormalizable �3-theory with general potentialV (�) = g0 + g1�+ g22! �2 + g33! �3: (3:22)The surfae ontributions to the oeÆient a3, whih enters the saling law in 6 dimensions,has not been alulated yet. For that reason we fouse on the saling of the volumeouplings. For the ubi potential the general formula (2.20) with �(0) from (2.23) yieldsthe following saling law for the e�etive ation:�(1)[�M; ~'; ~g℄ = S[M; '; g℄ + �h2 log detM('; g)+ �h log �3!(4�)3 Z n12g23'�'+ g32 + 3g22g3'+ 3g2g23'2 + g33'3o: (3:23)Now the 1-loop orretions ontain a derivative term of the same form as in the lassialation. When we try to absorb it in the lassial ation we hange the oeÆient 12 of(���)2. To restore it we must renormalize the �eld. This multipliative renormalizationof ' further resales the oupling onstants. The point is that nevertheless we an restorethe invariane of the e�eive ation�(1)[�M; ~'; ~g℄ = �(1)[M;pZ3'; g(�)℄; (3:24)18



where the expliit wave funtion renormalizationZ3 = 1� �3! g23; where � = �h log �(4�)3 (3:25)and the running of the oupling onstantsg0(�) = g0 + �3!g32 ; g1(�) = g1�1 + �2 g3(g33! + g22g1 )�g2(�) = g2�1 + 7�6 g23℄ ; g3(�) = g3�1 + 5�4 g23� (3:26)an be read o� from (3.23). The orresponding �-funtions read�(g0) = � �h3!(4�)3 g22 ; �(g1) = � �h2(4�)3 �g22 + g1g33! ��(g2) = �76 �h(4�)3 g2g23 ; �(g3) = �54 �h(4�)3 g33: (3:27)Contrary to the �4-oupling in 4 dimensions the �3 oupling in 6 dimensions gets strongerwhen M expands. Thus the theory is asymptotially free. The main di�erene to 2 and 4dimensions is that here the wave funtion is a�eted by an anomalous saling already inthe 1-loop approximation. The anomalous dimension of the �eld is(g) = � ��� logZ3 = �h3!(4�)3g23: (3:28)The anomalous trae of T .To relate the sale anomaly to the trae of the energy momentum tensor it is onvenient toouple the dynamial �elds ovariantly to an external gravitational �eld. Then both thelassial and quantum mehanial energy momentum tensor an be derived by variationwith respet to the metri asT l�� = 2pg ÆSÆg�� and hT��i = 2pg Æ�Æg�� : (3:29)The so de�ned T l needs no further improvement [26℄. For a theory ontaining only di-mensionless oupling onstants its trae vanishes automatially if the �elds are onformallyoupled to gravity.If we sale the metri as g�� ! �2g�� the formula (3.29) redues tod�d� j�=1 = �2 Z Æ�Æg�� g�� = � Z pghT��i g�� : (3:30)19



Instead of saling the metri with �xed oordinates we an sale the oordinates and leavethe metri invariant. For di�eomorphism invariant �'s both transformations must have thesame e�et. In other words, if we sale the oordinates aording to (2.13), keep g��=Æ��and do not sale the �elds and oupling onstants, then this variation is related to thetrae of the energy momentum. This may now be exploited by di�erentiating the salingformula �[�M; �d''; �daga; � ~daha℄ = �[M; Z 123 '; ga(�); ha(�)℄ (3:31)with respet to the sale parameter. Here we have inserted the naive salings of the�elds and volume ouplings from (2.14). Similarly the ~da are the length-dimensions of therunning surfae ouplings ha whih one must introdue to guarantee (3.31).The variation of the e�etive ation due to the hangeM! �M yields the integratedtrae of hT��i, so that we �ndZ hT��i = �d'� dZ 123d� � Z ' Æ�Æ' +Xa n�daga� dgad� � Æ�Æga + � ~daha� dhad� � Æ�Æhao; (3:32)where the derivatives are evaluated at �=1. Now we replae � by the momentum sale� and the derivatives of the wave funtion renormalization and oupling onstants by theanomalous dimensions and beta-funtions. We obtainZ hT��i = �d'+12� Z ' � j +Xa n�daga + �(ga)� Æ�Æga + � ~daha + �(ha)� Æ�Æhao; (3:33)where we have inserted Æ�=Æ'=j.Note that we only used the general relation (3.31) in deriving (3.33), whih is adeep onsequene of renormalizability and valid order by order in perturbation theory.Therefore (3.33) is also valid order by order in perturbation theory and represents thegeneral struture of the trae anomaly of the energy-momentum tensor.In two dimensions the �rst term vanishes if =0 and only the two sums ontribute inthe 1-loop approximation. However the da annot vanish so that only free theories possessa traeless energy momentum tensor 3, up to surfae terms. For free theories only thesurfae beta-funtion term onstributes in (3.33). In the 1-loop approximation we mayreplae � on the right in (3.33) by S. Varying now the ation (3.1) with all ga =0 withrespet to h and inserting the beta-funtion �(h) from (3.6) we �ndZ hT��i = N �h6�E (3:34)3 Besides the free theories only models ontaining a Liouville mode possess an improvedtraeless tensor. But these models would need a separate disussion.20



for N free �elds in 2 dimensions. The �nite volume regulates the theory in the infraredbut at the same time introdues a length sale into the theory. This is the reason whyquantum utuations lead to a non-zero trae and this trae is very muh related to theCasimir e�et.In higher dimensions d' 6=0 and the soure must vanish for the trae to be zero. Thisis to be expeted sine already the lassial improved tensor has trae zero only on shelland the lassial on shell ondition is exatly the ondition j = 0. On shell the trae isgiven by the two sums in (3.33) whih ontain lassial and anomalous ontributions. Forthe lassially sale invariant theoriesS[�; g; h℄ = Z n12(���)2 + ga!�ao+ I Q(�ab; �); a = 2dd� 2 (3:35)with a surfae potential ontaining only dimensionless ouplings, the O(1) terms in (3.33)vanish and on shell only the anomalous part remains in the trae. To O(�h) we an replae� by the lassial ation to ompute this trae. For the theories (3.35) the volume potentialand ation are related on shell asS = b Z V + 12 I ��n�+ I Q; b = 22� d ; (3:36)so that (3.33) an be written asZ hT��i = �(g)bg S + �X �(hi) ��hi � �(g)bg � I Q� �(g)2bg I '�n': (3:35)We see that the 1-loop anomalous trae is ompletely determined by the volume and surfaebeta funtions and the sale invariant lassial ation. This formula holds for arbitrarysale invariant salar theories in d dimensions. Let us now onsider the 4 and 6-dimensionalases in turn.In 4 dimensions b=�1 in (3.35) and sale invariane requires that h1=h2=h5=0 inthe surfae potential (2.29). Thus we �ndZ hT��i = ��(g)g S + �(g)g I Q+ �(h3)�E + �(h4) I f(�)+ �(h6)12 I '2 tr�+ ��(g)2g + �(h7)�12 I �n'2; (3:38)with beta funtions from (3.18,3.19) and the ones following from (2.30). When the volumejMj tends to in�nity we may neglet the surfae terms and we onlude thatZ hT��i = � 3�h16�2 g S('): (3:39)21



In 6 dimensions b=� 12 and the analogous result readsZ hT��i = �2�(g)g S(') = 52 �h(4�)3 g23 S('); (3:40)where we inserted the beta-funtion from (3.27).
4. The saling behaviour of gauge theories in the 1-loop approximationIn this setion we onsider the saling behaviour of abelian and non-abelian gauge theo-ries oupled to one fermion avour enlosed in �nite spaetimes M of dimension d. Forfermions there are only two types of onsistent boundary onditions, namely the non-loalones introdued by Atiyah, Patodi and Singer (APS) [27℄ and the loal bag boundary on-ditions [28℄. For both the surfae Seeley-deWitt oeÆients are not known in more than2 dimensions. One an nevertheless �nd the saling law for the fermioni determinantwith respet to bag boundary onditions by indiret means, up to purely geometri terms.However, here we prefer to assume that M possesses no boundary, that is it may be ad-dimensional sphere, torus or some other ompat spaetime without boundaries. Weassume that M is imbedded in a at spae suh that the saling M! �M makes sense.The prie we pay for getting rid of the surfae terms is that now M (if it is not a torus)is urved. Furthermore, the on�guration spae of �elds beomes topologially non-trivialand the di�erent topologial setors are haraterized by the instanton numbers. Beauseof the index theorem there are fermioni zero modes and this leads to some tehnialsubtleties.We start with the lassial ation for the gauge �elds and massless fermions 4 in ad-dimensional Eulidean manifoldS = S[A; g℄ + S[ ; g℄;where S[A; g℄ = 14 Z pg G�� aGa�� ; S[ ; g℄ = � Z pg  yi�D� ; (4:1)and D� = ��+!�+A� is the ovariant derivative. Here !� = i2!AB� �AB denotes theonnetion, �=e�AA the Dira matries in urved spaetime, e�A the vierbein related tothe metri through g�� = e�Ae�BÆAB and �AB the generators of the quantum mehanialSO(4)�rotation. The gauge potential may be expanded as A� = �igAa�T a, where the4 Only for simpliity we assume the fermions to be massless. There is no major obstaleassuming the fermions to be massive. 22



SU(N)� generators T a obey the algebra [T a; T b℄= i fab T  together with the normalizationondition trTaTb= 12Æab. The Yang-Mills �eld strength and the urvature are de�ned by[D�; D� ℄ =� ig���Aa� � ��Aa� + gfabAb�A��+ ���!� � ��!� + [!�; !� ℄�� �igGa��Ta + i2R AB�� �AB :Although we use the same symbol g for the gauge oupling onstant and the determinantof the metri its atual meaning should be lear from the ontext.As for the salar theories we extrat the running oupling onstants from the hangeof the generating funtionalZ[M; j; �; g℄ = 1Xq=�1 eiq�Zq[M; j; �; g℄; (4:2)whenM sales into �M. Here j is an external bosoni urrent whih ouples to the gauge�eld and � a Grassmann-valued soure oupled to the Dira fermions. Z is a sum overdi�erent topologial setors labelled by an integer q, the instanton number. For Zq wehave the formal path integral representationZq[M; j;�; g℄ = 1N Z DA(q)� D yD � expn� 1�hS + 1�h Z pg �j �A+  y�+�y �o; (4:3)where the integration in Zq is restrited to gauge �elds with �xed instanton numberq = 1n! in(4�)n Z ddxpg ��1�2����2n tr �G�1�2G�3�4 � : : : �G�2n�1�2n� (4:4)in d=2n dimensions. Note that perturbation theory for Zq is not yet appliable and weare fored to reast it in a gauge �xed form.As in the previous ase of salar theories we evaluate Zq semilassially, i.e. up toone-loop-orretions by means of a steepest desent approximation. The extremum of theexponent is �xed by the lassial equations of motion� (D�[Al℄G�� [Al℄)a = j�a (4:5)and the ondition that Al ! A0l for vanishing external urrent j ! 0: Here A0l is aninstanton solution with topologial harge q. The fermioni �elds remain in�nitesimalutuations in our approximation. 23



We now expand the exponent about Al and retain only the terms quadrati in theutuations. Writing A�a=A�al +p�hB�a we �nd for the exponent in (4.3)S(1)eff =Wl(j; g) + Z pg  yiD=  + Z pg � y�+�y �+�h2 Z pg Ba��(D2)�� ab�(D�D�)ab+2gfabG��l �ÆabR���Bb� (4:6)where Wl(j; g) = �14 Z pg G�� al Ga��l + Z pg j �Al (4:7)is the lassial Shwinger funtional. It is understood that Al = Al(j) depends on theexternal urrent via the lassial �eld equation (4.5). In these expressions D� ontains thebakground �eld A�l and the onnetion !�.Now we are ready to evaluate the semilassial funtional Z(1)q . We have in mind theomputation of gauge invariant orrelators in instanton bakgrounds. The perturbativeexpansion about instantons is subtle due to the ourene of various zero-modes [29,30℄.Therefore we shall disuss the problems due to zero-modes rather arefully.For �xing the gauge we apply the wellknown Faddeev-Popov proedure [31℄. In topo-logially non-trivial bakgrounds the Faddeev-Popov operator possesses zero-modes. Theyare due to onstant in�nitesimal bakground gauge transformationsB� ! B��[Al�;�℄whih leave B invariant. If h denotes the little (or stable) algebra of the instanton, thatis the subalgebra ommuting with Al, then these are just the gauge transformations with�=�i�aT a, where the T a lie in h. More expliitly, h is the maximal subalgebra whihommutes with the su(2)-subalgebra de�ned by the instanton [30℄. To eliminate theseonstant gauge transformations one inserts1=�[A�℄ Z Dg Z Dh Æ�F [A�℄� (4:8)into the funtional integral. Here R Dg denotes the measure on SU(N)=H and R Dh themeasure on the stability group H. Now one proeeds in the usual way and alulates�[A�℄ = det0 ÆFÆg = det0Mgh ; (4:9)where the prime indiates that the zero modes of Mgh must be omitted. After absorbingall the volume-independent terms in the normalization of the Gaussian integral we �ndZ(1)q [M; j; �; g℄ = 1N (1) Z Dh Z DB(q)� D yD det0Mgh Æ�F [A�℄� e� 1�hS(1)eff : (4:10)24



We annot absorb R Dh in the normalization beause it exhibits an expliit dependeneon the volume of M as disussed below.At this point we hoose the bakground gauge F a(Al; B)=(D�B�)a suh that thatthe middle term in the seond line in (4.6) vanishes. The orresponding Faddeev-Popovoperator is Mgh(Al; g)ab = ��D2�ab ; (4:11a)where D2 is a matrix in the adjoint representation. The remaining quadrati operatorsating on the bosoni and fermioni utuations areMB(Al; g)ab�� = ��D2�ab�� � 2gfabG��l + ÆabR�� (4:11b)and M (Al; g)abkl = ��D2�abkl + ig2 G��lmT abm (��)kl + 12(R�����)kl; (4:11)where R�� = R AB�� �AB. For later purposes we displayed all the relevant indies: a; b; belong to the gauge algebra; i; k are Dira and �; � Lorentz indies. For notational sim-pliity we shall skip the indies in what follows. Note that Al plays the same role as �lin the salar theories.From the disussion of the gauge �xing we onlude that the utuation operators maypossess zero modes. As far as the pure gauge setor is onerned, that is the utuationoperators MB and Mgh, this problem has been luidly disussed in [30℄. Here we give onlythe results. One obtains for R DhZ Dh = �p2�gjMj 12 �dH 1VH ; (4:12)where dH and VH are the dimension and volume of the stability group H, respetively. Theutuation operatorMB may possess additional p zero modes arising from the variation ofthe olletive parameters frg. Expanding the utuations B� in terms of eigenfuntionsof MB one may onvert the integration over the expansion parameters f�rg; r = 1; ::; pbelonging to the zero modes to an integration over frgpY1 d�r = pY1 dr (det J) 12 ; (4:13)where J denotes the orresponding Jaobian.Finally sine in the setor with instanton harge q the Dira operator iD= and heneM has jqj zero modes of de�nite hirality, one must be autious in evaluating the fermionipath integral [32℄. Let  n(x) denote the orthonormal zero modes of iD= , G0(x; y) the'exited' Green's funtion belonging to iD= and det0 12M the fermioni determinant withzero eigenvalues exluded. 25



With all the notations �xed we �nally obtain for the one-loop funtionalZ(1)q [M; j; �; g℄ = e 1�hWl(M;j;g) �p2�gjMj 12 �dH 1VH Z pY1 dr (det J) 12�det0� 12MB(Al; g) det0Mgh(Al; g) det0 12M (Al; g)�Yn (�y;  n)( yn; �) e�R pg �yG0�: (4:14)
The produt of divergent determinants will be gauge invariantly regularized by the ��funtionmethod. This regularization seems to be the most onvenient one when dealing with dif-ferent topologial setors [32℄.Let us now onsider the resaled theory and onstrut its generating funtional Z[�M; ~j; ~�; ~g℄:Under a sale transformation (2.13) the �elds transform as~Al(~x) = � 12 (2�d)Al(x) ~ (~x) = � 12 (1�d) (x)~j(~x) = �� 12 (2+d)j(x) ~�(~x) = �� 12 (1+d)�(x); (4:15a)and the gauge oupling onstant as ~g = � 12 (d�4) g: (4:15b)Note that the metri g�� is not saled so that the onnetion !� transforms like a derivative��. The lassial ation and hene Wl are both invariant under the sale transformations(2.13), (4.15). However, only in 4 dimensions is the gauge oupling dimensionsless andthus the energy-momentum tensor traeless (see 3.33). The topologial harge (4.4) issale invariant. Note that if Al solves (4.5) with oupling g and urrent j then ~Al is asolution with resaled urrent and oupling onstant.As in the salar ase the lassial sale invariane is broken by quantum orretions .To see that more expliitly we establish the onnetion between the generating funtionalon �M Z(1)q [�M;~j; ~�; ~g℄ = e 1�hWl(�M;~j;~g) �2�~g2j ~Mj �dH=2 1VH Z pY1 d~r (det J) 12�det0� 12MB( ~Al; ~g) det0Mgh( ~Al; ~g) det0 12M ( ~Al; ~g)�Yn (~�y; ~ n)( ~ yn; ~�) e�R pg ~�y ~G0 ~� (4:16)
and the one on M (4.14). As for salars (see above (2.19)) we have � ~M (s) = �2s�M (s) forall utuation operators. Hene the produt of the resaled primed determinants an berelated to the unsaled ones as in (2.19) and one �ndslog det0� 12 ~MB det0 ~Mgh det0 12 ~M det0� 12MB det0Mgh det0 12M = � log � � �2�Mgh + �M � �MB	s=0: (4:17)26



Here we used the abbreviation ~M = M( ~Al; ~g) for the utuation operators on �M.Note that the �-funtions belonging to the bosoni and fermioni utuation operatorsontribute with di�erent signs in the last braket.Before alulating the �-funtions in (4.17) we disuss the saling behaviour of theother terms in Z(1)q . All the normalized zero-modes of the operators MB;Mgh and M sale as ~'(~x) = �� 12d'(x);that is transform di�erently as the utuation �elds in the funtional integral. Hene~gdHj ~MjdH=2 = ��2dHgdHjMjdH=2 ; pY1 d~r = �p pY1 dr; (~�y; ~ n)=�� 12 (�y;  n):Altogether the di�erent zero-modes ontribute a fator �p�2dH�jqj in the saling of Z(1)q .The fermioni Green's funtion sales as~G0(~x; ~y) = �1�dG0(x; y)so that R �yG0� is sale invariant. Thus we �nd the following saling lawZ(1)q [�M;~j; ~�; ~g℄ = �p�2dH�jqjZ(1)q [M; j; �; g℄ � e� log���2�Mgh+�M ��MB	js=0 : (4:18)In deriving (4.18) we have used the sale invariane of the lassial Shwinger funtional.Let us now expliitly evaluate the �-funtions at s = 0 for the various utuationoperators. Thereby we must be areful to projet out the zero modes of the operators Min the various ��funtions in order to �nally get the desired primed determinants [19,32℄.We get �M (0) = lims!0 1�(s) Z 10 dt ts�1Tr e�tM (1� P ); (4:19)where P (x; y) =Pn 'n(x)'yn(y) is the projetor onto the zero modes 'n of M . One seesat one that �MB(g)(0) = 1(4�) d2 Z ddxpg tr aBd2 (x; g) � p ; (4:20a)�Mgh(g)(0) = 1(4�) d2 Z ddxpg tr aghd2 (x; g) � dH (4:20b)and �M (g)(0) = 1(4�) d2 Z ddxpg tr a d2 (x; g) � jqj (4:20)instead of (2.22). Here tr denotes the trae over gauge, Dira and Lorentz indies. Theonstants p; dH and jqj lead to a fator ��p+2dH+jqj in (4.18), whih exatly hanels the27



fator �p�2dH�jqj oming from the zero-modes. Thus we obtain the following saling lawfor the Shwinger funtionalW(1)q [�M;~j; ~�; ~g℄ =W(1)q [M; j; �; g℄+ �h log�(4�) d2 Z pg tr�aBd2 (x; g)� 2aghd2 (x; g)� a d2 (x; g)	: (4:21)This saling law should be ompared with the orresponding one for salar �elds (2.20,2.22).There the surfae of M a�ets the saling of the Shwinger funtional whereas here thetopology of the lassial gauge �eld on�gurations and fermioni zero modes do not.Thesaling is the same in all instanton setors.The Seeley-de-Witt oeÆient an(x; g) for gauge ovariant operators of the formM = �D2 + C(x); where D� = �� + Al � + !�; (4:22)where C(x) denotes a general �eld of hermitean matries, have been alulated for n � 5and those for n � 3 are given in the appendix. We evaluate now the gauge �eld, fermioniand ghost ontributions in 2 and 4 dimensions in turn.
5. The running oupling onstant in four dimensions in leading log approximationBefore dealing with the realisti 4-dimensional ase we omment on the quite trivial sit-uation in two dimensions, that is on the saling behaviour of the Shwinger model. In 2dimensions the (would be) anomalous ontributions to the e�etive ation are given by theoeÆients a1 of the various utuation operators, and hene by the trae of C. For theghosts C=0, for the gauge �elds the Lorentz-trae of C vanishes and for the fermions itsDira trae is zero. Thus we haveZ(1)q [�M;~j; ~�; ~g℄ = Z(1)q [M; j; �; g℄ (5:1)in 2 spaetime dimensions. We see that the 1-loop generating funtional is invariant withrespet to the naive salings of the oupling onstants and �elds. A detailed omputationshows that even the full generating funtional of the Shwinger model is in the naive sensesale invariant. Of ourse this follows from the fat that in QED2 the gauge oupling and�elds are not renormalized.Now we apply the results of the previous setion to QCD, or more generally to fourdimensional nonabelian gauge theories with gauge group SU(N). In four dimensions thegauge oupling is dimensionless and its sale-dependene is a quantum e�et. Let usollet the di�erent ontributions to the anomalous saling (see Appendix A). We thereby28



omit all the purely geometri terms noting already here that there is no mixing betweenthem and the gauge ontributions. These geometri terms lead to running osmologial andgravitational onstants. In addition, the dimensionless onstants assoiated with dimensionfour operators in the gravitation �eld, e.g R2; D2R, beome sale dependent [11℄. In thefollowing the integrations are performed with respet to the invariant measure.Gauge �elds.For the gauge �eld utuations the C-�eld in (4.16) is CB = �2G+R and alulating theLorentz trae in (A2) yieldstr La2(x; g) = 4 112G��G�� � 412G��G�� + : : : = �53G��G�� + : : : ;where we have used that trLCB = 0. Thus we getZ pg tr a2(x; g) = �53 Z pg trAG��G�� + : : : ; (5:2a)where the trae has to be taken in the adjoint representation, denoted by A.Ghosts.For the ghosts Cgh = 0 andZ pg tr a2(x; g) = 112 Z pg trAG��G�� + : : : (5:2b)Fermions.For Dira fermions C = � 12G���� � 12R���� and the Dira trae yieldstrDa2(x; g) = 4 112G��G�� � 212G��G�� + : : : = �23G��G�� + : : : ;where have we used that trDC = 0. Thus we remain withZ pg tr a2(x; g) = �23 Z pg tr FG��G�� + : : : ; (5:2)where the fermions transform aording to some representation denoted by F . Let usde�ne the seond order Casimir TR of a representation R as trT aT b = ÆabTR. Above, : : :stand for all the purely geometrial ontributions whih we omited. Colleting the resultswe �nd the anomalous term in (4.15) to beg216�2 X log� Z pg G�� aGa�� ; where X = 116 TA � 23TF : (5:3)29



At this stage of the alulation it is again onvenient to introdue the e�etive ation, thatis the (partial) Legendre transform of the Shwinger funtion,�(1)q [M; a; �; g℄ = Z pg j � a�W(1)q [M; j; �; g℄; (5:4)where the mean �eld a and the urrent are related by a = ÆW=Æj. By using the samearguments as for salar �elds one �nds from (4.15) the following saling law for the e�etiveation �(1)q [�M; ~a; ~�; g℄ = 14(1� �h log�4�2 Xg2) Z d4xpgG�� a(a)Ga�� (a) + : : : ; (5:5)where we inserted (5.2) for the anomalous term in (4.15) and the lassial �eld has beenreplaed by the mean �eld a. Here : : : stand for those utuation terms, whih we do notneed at this stage. In order to read o� the saling of the �eld and oupling onstant from(5.5) we write the integral in (5.5) in terms of the mean �eld14(1� log �4�2 X g2) Z pg G�� aGa�� = 14(1� log�4�2 X g2) Z pgnaa�(��2Æ�� + ����)aa� � 4gfab��a�a � ab�a� + g2fabfadeab�a�da�a�eo:Now it is lear that the wave funtion has to be saled, and the sale fator Z3 is given bythe oeÆient multiplying the seond derivative term above. To restore the invariane ofthe e�etive ation we need to resale the �eld asa� �!pZ3a�; where Z3 = 1� �h log�4�2 X g2: (5:7)We reexpress � in terms of the saled �eld and the running oupling onstantg2(�) = g2Z3 = g2 11 � log�4�2 X g2 (5:8)and obtain this way the invariane of the e�etive ation�(1)q [�M; ~a; ~�; g℄ = �(1)q [M;pZ3a; �; g(�)℄: (5:9)Again we have used the fat that in all 1-loop ontributions to the e�etive ation (thedots in (5.5)) g and a an be replaed by the saled oupling onstant and �eld withouta�eting the 1-loop saling result.Note that 1=g and a sale the same way as required in a theory having one ouplingonstant in di�erent interation terms. The result (5.9) shows that we an restore saleinvariane if we supplement the naive lassial sale transformations with the above anoma-lous ones. Also note that the oupling g runs the same way in all the topologial setors.30



This result is usually obtained using the bakground�eld method [33,34 and referenestherein℄. In the 1-loop approximation onsidered here there is a simple relation between�(1)q [a℄ and the e�etive ation �(1)q;bg[abg; B℄ in the presene of the bakground �eld B eval-uated with the usual Feynman graph tehnique. One �nds �(1)q [a℄ = �(1)q;bg[abg =0; B= a℄so that in our alulation the mean �eld a simply replaes the �eld B introdued in thebakground�eld method to restore manifest gauge invariane.To ompare with the momentum spae renormalization one expresses (5.7,8) in termsof � to �nd the leading log expression for the �-funtion [25℄�(1)(g) = � ���g(�) = � �hX8�2 g3(�) (5:10)and the anomalous dimension of the gauge �elds(1)A (g) = � ��� logZ3 = �hX4�2 g2(�): (5:11)Conering the trae of the symmetri energy-momentum tensor T�� for gauge theoriesthe same arguments as those leading to (3.18) lead now to the anomlous divergene of theenergy momentum tensor Z hT��i = 2�(1)(g)g(�) S; (5:14)a result originally due to Collins, Dunan and Joglear [35℄.
6. ConlusionsIn this paper we have studied the 1-loop anomalous saling laws for the e�etive ations ofsalar and gauge theories on �nite spaetimes in various dimensions. We showed expliitlythat if we allow the oupling onstants and �elds to sale di�erently as suggested bydimensional analysis we an get rid of the sale dependene of the e�etive ation �. Theanomalous saling of the ouplings and �elds is just the one belonging to the 1-loop betafuntions and anomalous dimensions if the relative size � of spaetime is related to theenergy sale as �=1=�. However, if spaetime possesses a boundary we need to add surfaeterms to the lassial ation and the surfae oupling onstants must sale as well for � tostay invariant. From the invariane of � we derived a general formula for the (integrated)trae of the energy momentum tensor for spae-times with boundaries.In our expliit alulations we have inluded the 1-loop orretions to the lassialresults. It would be interesting to see how e�etively one an derive the �-funtions andanomalous dimensions from �nite size e�ets in higher orders. Finite size alulations are31



infrared �nite and already that ould be a good reason for extending our methods beyond1-loop. Sine the �-funtion method naturally extends to the operator regularization whihis appliable to higher order alulations [36℄ this should indeed be possible.As already pointed out in the introdution, our investigation of �eld theories on spae-times with boundaries have impliation for the Casimir e�et. To see that more learlyassume that spae-time is a ylinder, M = [0; �℄ � S. Then ��W[�;S; 0; g℄ is the freeenergy at temperature T =1=� andE0(S; g) = lim�!1 1� inf' �[�;S; '; g℄the ground state energy of the system with renormalized ouplings g and on�ned in thespae region S. From the sale invariane of � one derives then the following saling lawfor the ground state energy E0[�S; ~g℄ = 1�E0[S; g(�)℄: (6:1)In partiular, if the system is on�ned between two in�nite and parallel plates, then theenergy per surfae element sales as1AE0[�S; ~g℄ = 1�3 1AE0[S; g(�)℄: (6:2)For a lassially sale invariant theory this implies that the Casimir energyECas � E0[�S; g℄� E0[S; g℄ (6:4)an be reast into ECas = 1�E0[S; g(�)℄� E0[S; g℄: (6:5)This identity has the following interpretation: when we enlose a quantum system intoa spae S and (in a Gedanken experiment) hange the renormalized oupling onstantsaording to the renormalization ow, g ! g(�), then E0 hanges by the same amount aswhen we leave g �xed and move the walls so that S ! �S. This statement holds up tothe trivial 1=� fator in (6.5).Let us �nally omment on a apparently di�erent problem whih has been our moti-vation for studying the �nite size saling of the generating funtionals, namely the hiralsymmetry breaking in QCD. When one imposes the one-parameter hirality breaking bagboundary onditions on the fermions as in [28℄ then the parameter � appearing in theboundary onditions an be interpreted as �-parameter in QCD [37℄. Furthermore, it anbe argued that the hiral ondensate does not vanish for small volumes. This may notome as a surprise sine the boundary onditions expliitly break the axial SU(N). Wehave seen that even in the presene of boundaries the saling of orrelators is governed by32



the renormalization group oeÆients. Now the task would be to derive bounds on theQCD-beta-funtion and anomalous dimensions suh that the ondensate survives whenthe volume inreases and one leaves the perturbative, small volume regime and enters thenon-perturbative large volume setor.Aknowledgements: This work has been supported by the Swiss National Siene Foun-dation. We would like to thank J. Fr�ohlih, D. Wyler and I. Sahs for helpful disussions.
Appendix AIn this appendix we list the Seeley-deWitt oeÆients an and bn for operators of the form

M = �D2 + C(x); where D� = �� +A� + !�: (A1)
The relevant volume oeÆients an are [11,18,19,32℄Z pg a0(x) = Tr jMjZ pg a1(x) = Z pg tr �16R� C�Z pg a2(x) = 12! Z pg tr � 115D2R+ 136R2 � 190R��R�� + 190R����R����+ 16G��G�� � 13D2C � 13RC + C2�Z pg a3(x) = 13! Z pg tr �� C3 � 12CD2C � 12CG��G��+ 110(D�G��)(D�G��)� 115G��G��G���+ geom.terms :

(A2)
For Dirihlet boundary onditions and g�� = Æ�� the surfae oeÆients bn are given by33



[6,21℄ Z b 12 (x) = �p�2 Tr j�MjZ b1(x) = 13 I Tr tr� = 2�3 �EZ b 32 (x) = �p�192 I Tr �� 96C + 7( tr�)2 � 10 tr�2�Z b2(x) = 1945 I Tr �+ 40 tr�3 � 33 tr� tr (�)2 + 5( tr�)3�� 13 I Tr �C tr�� �nC�= (4�)2� 1180�E + 1280�2 I f(�)�� 13 I Tr �C tr�� �nC�;
(A3)

where we have introdued the topologial Euler number for 3-surfaes imbedded in atspaes, �E = � 112�2 I �2Tr�3 � 3Tr�Tr�2 + (Tr�)3� (A4a)and the onformally invariant third-order-polynomial [21℄f(�) = Tr�3 � Tr�Tr�2 + 29(Tr�)3: (A4b)The surfae integrals are performed with respet to the indued metri, i.e. H � � � �H p~gdd�1du � � � ; where the boundary is (loally) parametrized through funtions xa =xa(ui), and ~gij � gab �xa�ui �xb�uj (A5)is the indued metri on �M. The seond fundamental formKij � ��xa�ui �xb�uj na;b (A6)or more preisely its extrinsi form �ab = �xa�ui �xb�ujKij (A7)enter the above expression for the Seeley-deWitt oeÆients. In the body of the paper weassume thatM is at in whih ase gab=Æab and the ovariant derivative in (A6) beomesan ordinary one.
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We set up the 1-loop approximation to the partition funtion for the O(N)�sigma models[38℄. The main point is to use an expansion of the na��elds about the lassial bakgroundwhih respets the onstraint n2 = 1, up to ubi and higher order terms in the utuation�elds ��. We set na = Na + ����a � 12����Na; (B1)where the ��a; � = 2; ::; N together with Na form a orthonormal system in the spae of�elds �a�Na = 0�a���a = Æ�� (B2)NaNb + ��a��b = Æab:It is lear that n2 = 1+ O (�3). Expanding S to seond order yieldsS[n; g℄ = S[N; g℄ + 12g2 Z ��D����;where D�� = �D2�� + ���;D��� = ��Æ�� + ��a(����a) (B3)��� = (��a��Na) (��b��Nb) � Æ��(��Na � ��Na � g2ja �Na):For the funtional measure we �ndYx dNn(x) Æ(n2 � 1) = Yx dN�1�(x) (1 +O(�2));where we used that the Jaobian from the oordinate hange exatly anels the ontribu-tion from integrating out the Æ-distribution. Shifting � ! p�h� we �nd the 1-loop partitionfuntion Z(1)[M; j; g℄ = e 1�hWl[M;j;g℄ det� 12 D (B4)and W(1)[M; j; g℄ =Wl[M; j; g℄ � �h2 log det D: (B5)For the �-funtion we �nd with the help of Appendix A�D(0) = � 14� Z tr�= N�24� Z ��Na � ��Na � g2(N�1)4� Z jaNa: (B6)35
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