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1. Introduction

The Svetitsky-Yaffe conjecturé][f], 2] states that the Yadilis finite temperature transition in di-
mensiond+ 1 is described by an effective spin modetidimensions with short range interactions.
Combining this idea with strong coupling expansions andtisg Monte-Carlo (IMC) methods we
analyse the relationship betwe8b)(3) YM theory in 3+ 1 dimensions and effective theories for-
mulated aZ3 spin models in 3 dimensions.

2. SU(3) and characters of representations

Our effective operators aass function®dn SU(3). With group elements in diagonal forg,—
diag(e®,e®, e (®+®)) we associate a group character in the fundamental repatisenby

P =trg= x10(g) = €* + % g (@FR) (2.1)

with the typical example being the Polyakov loop. The patanmation [2]1) implies theeduced
Haar measuren the maximal Abelian torus,

dpred = J2d@d@, J? = 15— 6)11+ 3X30+ 3X03 — X22- (2.2)

Using Young tableaux one can express all charagtggsvith Dynkin labels[p,q] in terms of the
fundamental ones?”” and &7*.

3. Observables

We discuss YM theory on A2 x N-lattice. The Polyakov loop?x is measured in terms of its
lattice average,

_l _ N3
P:\—/;@x, V =N2. (3.1)

The observable relevant for the analysis of antiferromagmphases is
1 i Xi
M=o S Zasax), sorx) = (1% (3.2)
X

and measures thaifferenceof the Polyakov loop on odd and even sublattices.

Since we will have to deal with phases where the traced Poly&hop is located halfway
between theSU(3) center elements we project the value of the traced Polyaog bnto the
nearestsz-axis and define eotated Polyakov loojby

1r \
ReP :Pe 7 ImPJ b{%
P =4 -iReP+LImP :Pcg . (33) j 4@
Pes

1 3
—iReP— 2ImP
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4. Effective models for Yang-Mills theory

We start with the well-known lattice Wilson action
1 6
= 1- —Retru == 4.1
SN Bg < NC D) ) B a4gz ( )
and perform astrong coupling expansiofior small 8). Since the resulting ‘operators’ (Polyakov
loop monomials) arelimensionlesshere is no natural ordering scheme. We therefore use a trun-

cation scheme based on:

e Ordering by powers off which are closely related to the dimension of the corresimond
group representations.

¢ Ordering by the distance across which the Polyakov loops@upled.

In compact form the strong coupling expansion is given by

St=5 5 3 i (B) r!sw. NS (4.2)

I %.. ”/r[]_ Ly

with the basic building blocks

Swi = Xa(Px)Xn(Py) +cCC., L=(XYy). (4.3)

Herer counts the number of link operators contributing at eacleordhe coefficients (1. f'/

are the couplings between the operatByg,, sitting at nearest-neighbor (NN) links = (x.,yi>

in representation”;. The effective action hence describesigwork of link operatorshat are
collected into (possibly disconnected) ‘polymers’ cdmiting with ‘weight’ cl} %, One expects
the ‘weights’ or couplings to decrease as the dimensionkeoirivolved representations and inter-
link distances increase. In a strong coupling (srBakxpansion truncated &™) one has < k
and the additional restrictiof%?1| + - - - + |%:| < k with |Z| = p+ q for a given representatio

with Dynkin labels[p, q].

5. Atoy model — mean field vs. Monte-Carlo
We consider th&U(3) model [3,[4]

S=\ z (X10(Px) Xo1(Py) +c.c.) +As z (X10(P%) X20(Py) + X20( Px) X10( Py) +C.C.). (5.1)
(xy) (xy)

A mean field approximation can be applied to approximatetgmigine the associated phase

diagram. We use the following ansatz for the distributpof the field &2,
. pe(Zx) : sgnX) =1
pP[Z] — pmilZ] = [ | x(Px) with  px(Px) = { . (5.2)
U Po(Px) 1 sgn(x)=-1

The resulting phase diagram is displayed in fig. 1 (left pane

A straightforward Monte-Carlo simulation on af-Bittice with a Metropolis algorithm using
ourj enLaTT package leads to a phase diagram (fig. 1, right panel) sitoilthe one obtained
by the mean field analysis. This agreement is due to the pres&matri-critical point implying
an upper critical dimension of three. In summary, the fubhgd structure consists olsgmmetric
phase (in the center of each panel of Flg. 1femomagneticphase (upper left), aanti-center
phase (lower left) and aantiferromagnetidlower right) phase. The anti-center phase is related to
the ‘skewed’ phase of][5].
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Figure 1: Phase diagrams obtained by mean field anafysft) and Monte-Carlo simulatio(right).

6. Algorithms for first and second order transitions

The simulations for thenicroscopic YM theorwere done using standard heat bath algorithms. For
the effective modelsve employed standard Metropolis updates to find the phaggadima In the
vicinity of phase transitions we made use of the followinga@glly designed update scheme.

Forfirst ordertransitions we used a multicanonical algorittin [6] impraythe transition rate
near critical points. For larger lattices the distributiorof the order parameter (denotéfdwas
predicted using the scaling relation

logp(£,V) ~ A(£) +C(O)V . (6.1)

Forsecond ordephase transitions algorithms of Wolff or Swendsen-Wang tgad to strong
suppression of the dynamical critical exponent. Theserggos are useful for systems with invo-
lutory global symmetries, where the local application atsaymmetries leads to ergodic behavior
of the system. For our system therenis ergodic symmetrySo we had to modify the well-known
Wolff cluster algorithm [[r] as follows:

1. Choose a random numbi; between 0 anf = N3.
2. DoNy standard Metropolis sweeps at randomly drawn lattice point

3. For a suitable fixed numbé repeat the steps for building a cluster by using the complex
conjugation symmetry and if8z-symmetric equivalents.

4. DoV — Ny additional Metropolis sweeps, again at randomly choseicdasites.

7. Critical exponents for the antiferromagnetic SU(3) model

For the model [(5]1) with4 = O we observe a second order transition between symmetric and
antiferromagnetic phase. Critical exponentandy may be introduced in terms of the relations

M4
OU(N, M) ONYY with u:1—< ) X =N3>(M?). (7.1)

X (Arcrie) ONY/Y, :
o a)\l Alz)\l,crit 3 <M2>2

A Monte-Carlo simulation with our modified Wolff cluster @igthm leads to the following critical
exponents in comparison to tig Potts values:

4
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exponent  Zgz Potts [§] minimal Polyakov
v 0.664(4) 0.68(2)
y/v 1.97309) 1.96(2)

As the exponents coincide (up to statistical errors)3k¥3) model is indeed in the same univer-
sality class as th&z Potts model (thXY universality class).

8. Inverse Monte-Carlo — the basics

The inverse Monte-Carlo (IMC) method as designed]in [9)vedido determine (effective) actions
from given configurations. In our case, these are Polyakopdmbtained from gauge configura-
tions generated with the Wilson action. Via IMC we want toedetine the couplings of truncated
effective actions which (ideally) would give rise to the sadistribution of Polyakov loop config-

urations.

The IMC procedure is based on ansatzfor the effective action of the typ&s« = 5 AiS.
Translational invariance of the reduced Haar measure eaishwinger-Dyson equations (SDE),
see below. They constitute averdeterminedinear system for the effective couplings which
may be solved by least-square methods. As a further tedhnpa we require a suitable normal-
ization procedure to make sure that individual equatioesappropriately weighted T1LO].

9. Geometric SDE from invariant group integrals

Translational invariance of the Haar measure implies that

/ diraad@) (Laf)(@) = 0 for f € Lo(G) 9.1)

with L, being the left derivative on the group. Choosihg- FL?x,, with a class functiorr and a
fundamental characte, [LZ] one obtains

La(FL®Xp) = FL?Xp + (LaF ) (L%Xp), (9.2)
and [9.]l) reduces to
2 (9F a
g Xa

Making use ofL?x, = —c,x, and of

1 1
(LaX/J)(LaXv) = E(Cu +Cv) XuXv — > ZCZ\IVC/\X)\ (9.4)
A

with Casimir values;, and Clebsch-Gordan coefﬁciemgv the equation can be specialized to the
case ofSU(3). For a suitable functiofr, the SDE finally become

16 4 X

0= <—§@zs.,@x + (425 — 59722)3’%”% +(6-3 ‘L@Z‘z)sﬂ%.y»

4 2 (9.5)

- ZA] <(4@Z a éﬁl)s"@xsjﬁzz + (6_ :_3 ‘f@z‘ )S,L@xsj.gé;> .
J

5
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10. Algebraic SDE

For SU(3) (generalizations foBU(N) are possible[[31]) we have the identity
/ d2dP* df =0 (10.1)
Q

which holds for any functiorf vanishing ondQ. Choosing

x . Joh
(2,9 =392,2"), =5 -en-9, h=§ (10.2)
X
we obtain the ‘algebraic SDE’
3 9J? 2 5
0= <§ 92, % +X%2S.75.2, ) — z)\j (92S,9S,.2,) - (10.3)
11. IMC results
We have simulated the underlying YM the- , ,
ory with heat bath methods on different lat- _;’I’\g"ebraic
tice sizes near the critical coupling. The cor- L2y geometri
responding couplings for the effective mod- 1.0}
els were then determined via IMC]10]. The |
IMC codes were checked by simulating ef-<‘p‘>
fective theories with given input couplings 0.6
which were consistently reproduced by the g 4|
IMC procedure. In these tests the algebraic
and geometric Ward identities led to compa- 0.2y
rable results, limited only by the statistical ac- 09555 545" —— 80

curacy.
We compared the Polyakov loop arising=igure 2: Results obtained from algebraic and geomet-

from simulations of full YM theory and from ric SD equations compared to YM results.

effective actions based on both geometric and

algebraic SDE (on a P6«4-lattice). We found that the algebraic identities outperfed the geo-

metric ones in reproducing the YM critical behavior, in partar the critical coupling (Fid] 2).
Simulations with algebraic SDE on a364-lattice allowed to determine up to 11 effective

couplings as displayed in Fifj. 3 (left panel). The dominantis in the effective actions are

S =) (Xwo(Px)Xor(Fy) +cc), S= Z X1(P)x1(Py), S= ZX11 (Px), (11.1)
(xy)

i.e. two NN hopping terms and one single-site (‘potentitdtm.

Finally we have extended the IMC procedure to deal with NNra#@d-to-NN terms up to order
(B3 in the strong coupling expansion. This results inumstable behavioin the rendering
of observables which may be traced to the discontinuitis®@ated with the first order phase
transition (Fig[[3, right panel).
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Figure 3: Couplings obtained for NN interactions up &@(B3™) (left) and comparison of higher order

(next-to-NN) effective theoriegight).

12. Conclusions

SU(3) Polyakov loop models have a surprisingly rich phase stracithen the effective couplings
are allowed to vary unrestrictedly. Upon comparing crltegonents for the second-order antifer-
romagnetic phase transition we have seen thaSthg) Polyakov loop model is in the same uni-
versality class as th&; Potts model. The near-perfect agreement between mearafidionte-
Carlo results is due to the fact that the model has=a3 tricritical point. Matching the Polyakov
loop models taSU(3) YM theory via IMC leads to stable results only for small le¢ts and a low
number of couplings. Relaxing these restrictions leadsgtabilities obscuring, in particular, the
location of critical couplings. This behavior is due to thatfiorder nature of the phase transition
in lattice gluodynamics. Results f&U(2) YM theory [12], on the other hand, show that IMC is
applicable for systems with second order transitions aaddé¢o stable results.
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