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t: We derive e�e
tive a
tions for SU(2) Polyakov loops using inverse MonteCarlo te
hniques. In a �rst approa
h, we determine the e�e
tive 
ouplings by requiringthat the e�e
tive ensemble reprodu
es the single{site distribution of the Polyakov loops.The latter is 
at below the 
riti
al temperature implying that the (untra
ed) Polyakovloop is distributed uniformly over its target spa
e, the SU(2) group manifold. This allowsfor an analyti
 determination of the Binder 
umulant and the distribution of the mean{�eld, whi
h turns out to be approximately Gaussian. In a se
ond approa
h, we employnovel latti
e S
hwinger{Dyson equations whi
h re
e
t the SU(2)�SU(2) invarian
e of thefun
tional Haar measure. Expanding the e�e
tive a
tion in terms of SU(2) group 
hara
tersmakes the numeri
s suÆ
iently stable so that we are able to extra
t a total number of 14
ouplings. The resulting a
tion is short{ranged and reprodu
es the Yang{Mills 
orrelatorsvery well.Keywords: e�e
tive �eld theory, e�e
tive a
tions, latti
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1. Introdu
tionThe de
on�nement phase transition in pure Yang{Mills theory [1, 2℄ is 
ontrolled by thedynami
s of the Polyakov loop variable Px. Above a 
riti
al temperature T
, the singletpart Lx � trPx=2 develops a nonvanishing va
uum expe
tation value (VEV). In this high{temperature phase one expe
ts to �nd a plasma of liberated gluons (and, in QCD, alsoquarks). The VEV of Lx thus represents an order parameter asso
iated with spontaneoussymmetry breaking. The symmetry in question is a global ZN symmetry, ZN being the
enter of the gauge group SU(N). While the Yang{Mills a
tion is 
enter symmetri
, Lx,although gauge invariant, transforms nontrivially, Lx ! zLx, z 2 ZN . Combining renor-malization group ideas and dimensional redu
tion, Svetitsky and Ya�e have 
onje
turedthat �nite{temperature SU(N) Yang{Mills theory in d dimensions is in the universality
lass of a ZN spin model in dimension d�1 [3, 4℄. For some re
ent and rather sophisti
ated
on�rmations of the statement on the latti
e the reader is referred to [5, 6, 7, 8℄.The universality argument implies that e�e
tive �eld theory methods may be putto use. It should make sense to map the mi
ros
opi
 theory, here Yang{Mills, onto ama
ros
opi
 one, des
ribed by an e�e
tive a
tion with ZN symmetry. For gauge groupSU(2), for instan
e, one 
an try to 
oarse{grain the gauge �elds all the way down to Z2Ising spins [9, 10, 11℄. An intermediate pro
edure is to establish an e�e
tive a
tion for the{ 1 {



Polyakov loop variable itself [12, 13, 14℄. This may be a
hieved analyti
ally using strong{
oupling or, equivalently, high{temperature expansions [13, 15, 16℄. Doing so for SU(2),one obtains a lo
al e�e
tive a
tion depending on all 
hara
ters �j(Px) [15, 16℄. The indexj 2 N=2 labels the irredu
ible representations of SU(2). In this most elementary 
ase, �j
an be expressed in terms of powers of Lx (the 
hara
ter of the fundamental representation,j = 1=2). For larger gauge groups, however, more and more 
hara
ters/representationsbe
ome relevant. This fa
t has re
ently been employed for model building, regarding theuntra
ed holonomy Px [17℄ or, equivalently, its eigenvalues [18℄ as the fundamental degreesof freedom. We parametrize the (latti
e) e�e
tive a
tion as follows,Se� =Xa �aSa ; (1.1)with 
enter{symmetri
 operators Sa and e�e
tive 
ouplings �a to be determined. As statedabove, for SU(2) it is suÆ
ient to work with only the tra
ed Polyakov loop, Lx. Thee�e
tive a
tion will then have the form [14℄,Se� [Lx℄ =Xx V [L2x℄ +Xxy LxK(2)xyLy + XxyuvLxLyK(4)xyuvLuLv + : : : : (1.2)The kernels K(a) depend on the 
ouplings �a and the temperature. By 
onstru
tion,the Z2 
enter symmetry (Lx ! �Lx) is manifest. Note that the representation (1.2)is rather general and leaves room for a plethora of operators, the 
ompa
t 
ontinuousvariable Lx 2 [�1; 1℄ being dimensionless. Later on, it will therefore be 
ru
ial to 
hoosean appropriate subset of all possible operators in order to 
apture the essential physi
s.In this respe
t it turns out useful to follow [17℄ and view the e�e
tive a
tion (1.1) asbeing embedded into a `sigma model' depending on Px, Se� [L℄ � Se� [Px℄. This yields anadditional global SU(2) symmetry,Px ! gPx g�1 ; g 2 SU(2) ; (1.3)whi
h is a remnant of the underlying SU(2) gauge invarian
e. The Haar measure DPx hasan even larger symmetry, namely SU(2)�SU(2), 
orresponding to the transformation lawPx ! gPx h ; g; h 2 SU(2) : (1.4)The invarian
e of the measure leads to novel S
hwinger{Dyson identities whi
h will be animportant ingredient in our derivation of the e�e
tive 
ouplings �a inherent in (1.1).The paper is organized as follows. In Se
tion 2 we derive exa
t (latti
e) S
hwinger{Dyson equations from the invarian
e of the Haar measure DPx. We pro
eed by analysingthe single{site distribution of the Polyakov loop variable Lx in Se
tion 3. This yieldsa semianalyti
 method to determine all 
ouplings �a apart from the one of the hoppingterm, �0. The latter is obtained in Se
tion 4 using the S
hwinger{Dyson equations whi
hare also employed to 
he
k the resulting e�e
tive a
tion. In Se
tion 5, we determine thee�e
tive potential in the symmetri
 phase from the single{site distribution. Finally, inSe
tion 6, we perform an extensive numeri
al analysis to improve the e�e
tive a
tion byin
luding a maximum number of 14 operators. Some te
hni
alities 
on
erning the analysisof histograms are relegated to an appendix.{ 2 {



2. Haar measure and S
hwinger{Dyson identitiesThe Polyakov loop variable on the latti
e is given by a holonomy or parallel transport
onne
ting the (periodi
) boundaries in temporal dire
tion,Px � NtYt=1Ut;x;0 ; (2.1)where the U 's are the standard link variables on a latti
e of size Nt �N3s (we will mostlyuse Nt = 4, Ns = 20). The e�e
tive a
tion for the Polyakov loops is obtained by insertingunity into the Yang{Mills partition fun
tion, su
h that (the tra
e of) (2.1) is imposed as a
onstraint, ZYM = Z DU exp(�SW [U ℄)= Z DU DP Æ�trPx � tr NtYt=1Ut;x;0� exp(�SW [U ℄)� Z DP exp(�Se� [P℄) ; (2.2)with DU and DP the appropriate Haar measures (see below) and SW the standard Wilsona
tion. Of 
ourse, the integration over link variables U in the last step 
annot be performedexa
tly. For this reason one has to resort to e�e
tive a
tions as given by (1.1) and (1.2),for instan
e [3, 4, 14℄. Using inverse Monte{Carlo (IMC) te
hniques, it should be possibleto determine a reasonable e�e
tive a
tion from Yang{Mills 
on�gurations.The main ingredient for this pro
edure are the S
hwinger{Dyson equations asso
i-ated with the symmetry of the measure DP under (1.4). To derive those we 
hoose theparametrization, Px � P 0x 1+ i�aP ax � P �x�� ; (2.3)whi
h is in SU(2), PyxPx = 1, if the 
omponents P �x de�ne a three{sphere S3 a

ordingto P �xP �x = (P 0x)2 + P axP ax = 1 : (2.4)We mention in passing that the points x where the Polyakov loop is given by 
enterelements, Px = �1, 
orrespond to the positions of monopoles in the Polyakov gauge[19, 20, 21℄, a parti
ular realization of `t Hooft's Abelian proje
tions [22℄.In terms of the 
oordinates (2.3), the tra
ed Polyakov loop be
omes Lx = P 0x, whilethe fun
tional Haar measure 
an be written asDP �Yx d4Px Æ(P �xP �x � 1) : (2.5)Obviously, this is invariant under rotations R 2 SO(4) generated by the angular momentaL��x � �i�P �x ��P �x � P �x ��P �x � : (2.6)
{ 3 {



These 
an be split up into `ele
tri
' and `magneti
' 
omponents (or `boosts' and 3d `rota-tions'), iL0ax � P 0x ��P ax � P ax ��P 0x � iKax ; (2.7)iLabx � P ax ��P bx � P bx ��P ax � i�ab
L
x ; Lax � 12�ab
Lb
x : (2.8)Summarizing, the SO(4) generators L��x rotate the four{ve
tor P �x , while the SO(3) gen-erators Lax rotate the three{ve
tor P ax . The self{ and anti{selfdual 
ombinations,Max � 12(Lax �Kax) ; (2.9)Nax � 12(Lax +Kax) ; (2.10)generate left and right multipli
ation, respe
tively,Px ! gPx ; Px ! Px h ; g; h 2 SU(2) : (2.11)Global SU(2) (gauge) transformations of the Polyakov loop as given by (1.3) are generatedby Labx (or Lax) whi
h do not di�erentiate with respe
t to the tra
e P 0x and thus leave anyfun
tional of P 0x = Lx invariant. Typi
al su
h invariants areP 0x ; P axP ax � 1� P 0xP 0x ; : : : : (2.12)The S
hwinger{Dyson equations that follow from the SO(4) invarian
e of the Haar measure(2.5) are given by Z DP L��x �F [P℄ exp(�Se� [P℄)	 = 0 ; (2.13)where F [P℄ is an arbitrary fun
tional of Px. As the e�e
tive a
tion depends on Px solelythrough the SU(2) invariant P 0x, Se� [P℄ � Se� [P 0℄, only the generators L0ax � Kax lead tonontrivial relations whi
h 
an be written ashKaxF [P℄ � F [P℄KaxSe� [P℄i = 0 ; (2.14)using the expe
tation value notation,hOi � Z�1 Z DPO[P℄ exp(�Se� [P℄) : (2.15)Be
ause Kax transforms like a ve
tor under gauge rotations, (2.14) in general will not begauge invariant. However, we are still free to 
hoose the fun
tional F [P℄ at our will. If wepi
k F ax [P℄ � P ax G[P 0℄ ; (2.16)with an arbitrary fun
tional G[P 0℄, we have the a
tion of Kax,iKaxF by = ÆabÆxyP 0xG� P axP by G0x ; (2.17){ 4 {



where we have denoted G0x � �G=�P 0x . Plugging this into (2.14), setting x = y and takingthe tra
e one �nds the gauge invariant S
hwinger{Dyson equations,h3P 0xG� P axP ax(G0x �GS0e� ;x)i = 0 : (2.18)The same result is obtained using F ax [P℄ � KaxH[P 0℄ instead of (2.16) and identifyingH 0x � �Gx. Let us rewrite (2.18) as a fun
tional integral,Z DP �3P 0xG� P axP ax(G0x �GS0e� ;x)� exp(�Se�) = 0 ; (2.19)and parametrize Px a

ording toPx = exp i�a�ax = 1 
os �x + i�anax sin �x ; nax � P ax=(P bxP bx)1=2 : (2.20)Then, the tra
ed Polyakov loop is Lx � 
os �x while the Haar measure (2.5) be
omesDP =Yx sin2 �x d�x d2nx4�2 : (2.21)As the fun
tional integral (2.19) only depends on invariants we 
an integrate over thedire
tions n (yielding an irrelevant volume fa
tor) so that we are left with an integralinvolving only the redu
ed Haar measure,DL �Yx d�x sin2 �x =Yx d(
os �x) sin �x =Yx dLxp1� L2x �Yx DLx ; (2.22)namely,Z Yy d�y sin2 �y �3 
os �xG� sin2 �x(G0x �GS0e� ;x)� exp(�Se�) = 0 : (2.23)A more 
ompa
t form for these relations is a
hieved in terms of total derivatives,0 = Z Yy 6=x d�y sin2 �y Z d�x ÆÆ�x �sin3 �xG exp(�Se�)	= Z Yy 6=x d�y sin2 �y Z d(
os �x) ÆÆ(
os �x) �sin3 �xG exp(�Se�)	 : (2.24)Note that the sin3 � term ensures the absen
e of surfa
e terms. With (2.24) we have foundthe S
hwinger{Dyson relations of the redu
ed theory involving only the invariant L = 
os �.We do not have a simple geometri
al explanation for the invarian
e of the redu
ed Haarmeasure DL leading to (2.24). The SO(4) symmetry of the measure DP, however, is verynatural.In terms of the Polyakov loop Lx, (2.23) is the expe
tation valueh3LxG� (1� L2x)(G0x �GS0e� ;x)i = 0 : (2.25){ 5 {



Comparing with (2.18) we noti
e that it does not matter whether the expe
tation value istaken with the full or redu
ed Haar measure as long as G = G[L℄. If we insert the ansatz(1.1), the S
hwinger{Dyson equations (2.25) be
ome a linear system for the 
ouplings �a,Xa h(1� L2x)GS0a;xi�a = h(1 � L2x)G0xi � 3 hLxGi : (2.26)To solve this unambiguously we need as many independent operators G as there are 
ou-plings �a. A parti
ularly natural pro
edure, whi
h also turns out to be rather stablenumeri
ally, is to 
hoose G � S0b;y. Any of these operators 
ontains an odd number of Lx'sso that the minimal set of S
hwinger{Dyson equations relates only nontrivial expe
tationvalues, Xa h(1 � L2x)S0b;yS0a;xi�a = h(1 � L2x)S00b;yxi � 3 hLxS0b;yi : (2.27)At this stage, keeping x and y �xed, the problem of determining the 
ouplings �a is wellposed mathemati
ally. Numeri
ally, of 
ourse, it is better to use all the information one
an get, for instan
e by s
anning through all possible distan
es x � jx � yj, x < Ns=2.The resulting overdetermined system is then solved by least{square methods. Anotherpossibility is to add new equations to (2.27) by 
hoosing further appropriate monomialsor polynomials in Lx for the operator G. This philosophy will be extensively adopted inSe
tion 6. Before that, however, we will try to pro
eed in a (semi{)analyti
al fashion.3. Single{site distributions of Polyakov loops3.1 De�nitionsFrom the e�e
tive a
tion of Polyakov loops Se� [L℄ one 
an derive new probability densitiesby integrating over (part of) the loop variables L. Of 
ourse, this amounts to some kind of
ourse{graining so that via the new densities one will only have a

ess to gross propertiesof the e�e
tive a
tion. Nevertheless, these densities, if 
hosen properly, exa
tly repro-du
e 
ertain expe
tation values 
al
ulated within the full e�e
tive ensemble. Consider, forinstan
e, the lo
al moments,`p � hLpxi � Z�1 Z Yy DLy Lpx exp (�Se� [L℄) ; (3.1)where, as usual, the partition fun
tion Z is the integral over exp(�Se�). Splitting o� theLx{integration, (3.1) 
an be rewritten as`p = hLpxi � Z 1�1DLx Lpx pW [Lx℄ � hLpxiW ; (3.2)with the probability density pW obtained via integrating over all Ly 6= Lx,pW [Lx℄ � Z�1 Z Yy 6=xDLy exp (�Se� [Ly℄) � Z�1 exp (�W [Lx℄) : (3.3)
{ 6 {



Due to translational invarian
e, pW (like `p) does not depend on the site x. Thus, DLpW [L℄is the probability to �nd the value of the Polyakov loop in the interval [L;L + dL℄. TheZ2{symmetry of the e�e
tive a
tion implies that the power p in (3.1) and (3.2) has to beeven, p = 2q, at least for �nite volume (no spontaneous symmetry breaking). Therefore,knowing pW gives a

ess to all lo
al moments `2q and (by taking the logarithm) to all lo
al
umulants 
2q as well. A parti
ularly important quantity is the Binder 
umulant [23, 24℄,de�ned as the quotient b4 � 
4
22 = `4`22 � 3 ; (3.4)whi
h measures the deviation from a Gaussian distribution. This will be analysed in somedetail later on.From the de�nition (3.3) it is obvious that pW is blind against spatial 
orrelationsof Polyakov loops. In other words, one 
annot 
al
ulate two{point fun
tions like Gxy �hLxLyi. In prin
iple, this 
an be remedied by a slight generalization of (3.3). To this endwe de�ne a new probability density depending on Lx and Ly,pW2 [Lx; Ly℄ � Z�1 Z Yz 6=x;yDLz exp (�Se� [L℄) � Z�1 exp (�W2[Lx; Ly℄) : (3.5)Then, one 
an 
al
ulate the following two{point 
orrelators,hLpxLqyi = Z DLxDLy LpxLqy pW2 [Lx; Ly℄ : (3.6)Obviously, pW and pW2 are related a

ording topW [Lx℄ = Z DLy pW2 [Lx; Ly℄ : (3.7)If there were no 
orrelations, one would have fa
torization, pW2 [Lx; Ly℄ = pW [Lx℄pW [Ly℄.3.2 Determination of single{site distributionsAt �rst glan
e, there seems to be not mu
h of a gain by introdu
ing densities like thesingle{site distribution pW . Note, however, that pW [L℄ is mu
h simpler than our originaldensity pS � Z�1 exp(�Se�) whi
h depends on N3s variables rather than just one. Inaddition, pW 
an be obtained rather easily from our Monte Carlo data. The results arefairly smooth histograms whi
h are displayed in Figure 1 (for details see App. A). The mostimportant observation, however, is the �nding that pW is 
at below T
, that is, one hasan equipartition for Lx. Apparently, this is a remnant of the SO(4) symmetry dis
ussed inSe
tion 2. Taking the (negative) logarithm of pW we obtain the single{site potential W [L℄shown in Figure 2.We are thus led to employ the following ansatz for the potential W from (3.3), distin-guishing between temperatures below (�) and above (+) the 
riti
al value, T
,W�[L℄ = 
onst ; (3.8)W+[L℄ = 
onst0 +Xk �2k2k L2kx : (3.9)
{ 7 {
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Figure 1: Single{site density pW [L℄ for temperatures above (�,�) and below T
 (+). For T < T
(� < �
 ' 2:299), the density is 
at, pW = 2=�. Input: 200 to 400 
on�gurations, Ns = 20, Nt = 4.Demanding h1i = 1 these imply for the density pW ,p�W [L℄ = exp(�W�)=Z� = 2=� ; (3.10)p+W [L℄ = exp(�W+[L℄)=Z+ : (3.11)Things are parti
ularly straightforward below T
, so let us dis
uss this 
ase �rst. Theresult (3.10) shows that, after normalization, the single{site distribution of Polyakov loopsbelow T
 is known exa
tly. Furthermore, it is simple enough so that the asso
iated (lo
al)moments 
an be determined analyti
ally,`�2q � hL2qiW� = 2� Z 1�1 dLp1� L2 L2q = 1p� �(q + 1=2)�(q + 2) = 2�q (2q � 1)!!(q + 1)! : (3.12)The generating fun
tion for these moments 
an also be 
al
ulated expli
itly,Z�(t) � hetLiW� = 2� Z DLetL =Xl�0 `�2l(2l)! t2l = 2t I1(t) ; (3.13)I1 being the standard modi�ed Bessel fun
tion. For the Binder 
umulant (3.4) we thus�nd the result b�4 = `�4(`�2 )2 � 3 = 1=8(1=4)2 � 3 = �1 : (3.14)
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Figure 2: The single{site potential W [L℄ shifted by the 
onstant o�set w. For T < T
 (� < �
 '2:299), W [L℄ is 
at. Input: 200 to 400 
on�gurations, Ns = 20, Nt = 4.We have 
he
ked that (3.12) and (3.14) hold numeri
ally both for the histograms pW andthe e�e
tive Yang{Mills probability density pS . The results for the Binder 
umulant aredisplayed in Figure 3.It may seem strange that we get a 
at distribution pW below T
. However, this doesnot imply that the e�e
tive potential, whi
h de�nes the distribution of the mean �eld �L,be
omes trivial (see Se
t. 5).To pro
eed, we have to spe
ify our ansatz for the e�e
tive a
tion beyond (1.1) and(1.2). Svetitsky and Ya�e have argued [3, 4, 14℄ that, 
lose to the phase transition, thee�e
tive intera
tions should be short ranged so that Se� is of Ginzburg{Landau type,Se� = �0Xx;i LxLx+i +Xx Xk>0 �2k2k (Lx)2k � �0S0 + �2S2 + : : : : (3.15)The high{temperature 
hara
ter expansions mentioned in the introdu
tion yield additionalhopping terms of the form LpxLqy : : : [15, 16, 25℄. The relevan
e of these terms will bedi
ussed in Se
tion 6.Let us investigate the 
onsequen
es of the ansatz (3.15) for the single{site distribution.{ 9 {
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Figure 3: The Binder 
umulant b4 as obtained from the simulated Yang{Mills 
on�gurations (�)with Ns = 20 
ompared to the single{site distribution pW (�). Below �
 ' 2:30, the exa
t result(3.10) for pW (i.e. W = 
onst) has been used. Above �
, W has been �tted to a polynomial (seebelow).Plugging the former into the de�nition (3.3) yieldse�W� = Z 1�1 Yy 6=xDLy exp0���0Xy;i LyLy+i � Xy;k>0 �2k2k L2ky 1A= exp �Xk>0 �2k2k L2kx !Z 1�1 Yy 6=xDLy exp (��0LxMx) exp(�S0e� [Ly℄) ; (3.16)where, in the se
ond line, we have introdu
ed the �eldMx � �S0�Lx =Xi (Lx+i + Lx�i) ; (3.17)representing the sum of all nearest neighbors of Lx. In addition, we have de�ned a modi�eda
tion S0e� whi
h is obtained from Se� by setting Lx = 0,S0e� [L℄ � Se� [L℄��Lx=0 : (3.18)Now, the left{hand side of (3.16) is 2Z�=� and hen
e independent of Lx. Thus we mayput Lx = 0 everywhere on the right{hand side yielding the identity,2Z�=� = e�W� = Z 1�1 Yy 6=xDLy exp(�S0e� [Ly℄) � Z 0 : (3.19)
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A

ordingly, e�W� is the partition fun
tion asso
iated with a
tion S0e� . We 
an go onestep further and expand the exponential 
ontaining the nearest{neighbor �eld Mx on theright{hand side of (3.16). This is a
tually a hopping{parameter expansion in �0 whi
h,upon using (3.19), implies1 = exp �Xk>0 �2k2k L2kx !Xn�0 (��0)nn! LnxhMnx i0 : (3.20)Here, we have de�ned modi�ed expe
tation values asso
iated with S0e� and Z 0,hO[L℄i0 � Z Yy 6=xDLy O[L℄ exp(�S0e� [L℄)=Z 0 : (3.21)The Z2{symmetry of the e�e
tive a
tion requires n to be even, n = 2m. Denoting�2m � hM2mx i0 ; (3.22)we �nally have 1Xm=0 �2m0 �2m(2m)! L2mx = exp 1Xk=1 �2k2k L2kx ! : (3.23)To lowest order in Lx (m = 0) this 
onsistently reprodu
es the normalization (3.19),h1i0 = 1 = e�W�=Z 0. A general interpretation 
an be given as follows. To have equipartitionrequires a deli
ate balan
e between the hopping term (�0) and the `potential' terms (�2k).Setting �0 = 0 (so that the e�e
tive a
tion leads to a produ
t measure) implies that all�2k have to vanish and vi
e versa: �2k = 0 implies �0 = 0.To further evaluate the identity (3.23) we note that it 
an be viewed as a parti
ularexample of a linked{
luster or Mayer expansion [26, 27, 28℄ expressing the moments �2m0 �2min terms of the 
umulants �02k � (2k � 1)! �2k : (3.24)The relation between moments and 
umulants 
an a
tually be solved for arbitrary m (seee.g. [29℄), �2m0 �2m = mXn=1 1n! mXk1;:::;kn=1k1+:::+kn=m (2m)!(2k1)! : : : (2kn)! nYi=1 �02ki : (3.25)This somewhat 
lumsy formula yields for the �rst few orders�20 �2 = �02 ; (3.26)�40 �4 = �04 + 3�022 ; (3.27)�60 �6 = �06 + 15�02�04 + 15�032 ; (3.28)�80 �8 = �08 + 28�02�06 + 35�024 + 210�04�022 + 105�042 : (3.29)It is quite obvious that by inverting (3.25) we 
an express the 
ouplings �2k (or 
umulants�02k) in terms of the moments �2m. Alternatively, one may take the logarithm of (3.23){ 11 {



and 
ompare 
oeÆ
ients. In any 
ase, the �rst few 
umulants are�02 = �20 �2 ; (3.30)�04 = �40 ��4 � 3�22� ; (3.31)�06 = �60 ��6 � 15�4�2 + 30�32� ; (3.32)�08 = �80 ��8 � 28�6�2 + 420�4�22 � 630�42 � 35�24� : (3.33)These identities almost solve our problem of determining Se� as they express the unknown
ouplings �2k in terms of �0 (unknown as yet) and the modi�ed expe
tation values �2mfrom (3.22).Things be
ome simple if one allows for only a �nite number (say K) of 
ouplings �2kin the Svetitsky{Ya�e a
tion (3.15). Then, there is only a �nite number of independentmoments �2k, k = 1; : : : K. This is quite obvious from e.g. (3.33). Setting �8 = 0 = �08determines the moment �8 and all higher ones in terms of �2, �4 and �6.For K = 1, (3.23) yields the general expression�2m = (2m� 1)!! ��2�20�m � (2m� 1)!! �m2 ; m = 1; 2; : : : : (3.34)We thus have found fa
torization: all higher moments �2m, m > 1 
an be expressed interms of the lowest one, �2 � �2=�20. Of 
ourse, this is 
onsistent with Se� being quadrati
in Lx (vanishing of quarti
 and higher 
umulants �02k).For K = 2, we have three 
ouplings, �0, �2 and �4. In this 
ase, (3.23) implies thefollowing generalization of (3.34),�2m = (2m� 1)!! �m2 [m=2℄Xk=0 �m2k�(2k � 1)!!� �43�22 � 1�k ; (3.35)whi
h shows that all moments �2m 
an be expressed in terms of �2 and �4. The �rsttwo fa
tors in the sum 
ount the number of ways in whi
h one 
an form k pairs out ofm elements. The term raised to power k is a
tually (one third of) the Binder 
umulantasso
iated with the moments �2m. If it were zero we would get ba
k at (3.34).Clearly, in order to determine the 
ouplings �2k one does not want to 
al
ulate themoments �2k by performing a new and 
ostly Monte Carlo simulation with the a
tion S0e� ,setting Lx = 0 at a parti
ular site x. One expe
ts, however, that, for large latti
es, onewill have the approximate identityhM2mi0 ' hM2mi ; m > 0 ; (3.36)where the latter expe
tation is taken in the full Yang{Mills ensemble. For our numeri
alevaluation we have tested assumption (3.36) as follows. De�ne the expe
tation valueshM2mx i� � Z�1� Z Yy DLyM2mx exp �� Se� [Ly℄� �L2x� ; (3.37)so that one has hM2mx i = hM2mx i0 ; hM2mx i0 = hM2mx i1 : (3.38){ 12 {



If (3.36) is to hold then hM2mx i� must be approximately independent of �. We have 
he
kedthis by simulating the leading{order a
tion,S� � �02 XhxyiLxLy +�L2x � �0Xx;i LxLx+i +�L2x ; (3.39)for di�erent values of � on a latti
e of size 163 with �0 = �0:3 (symmetri
 phase). The
al
ulated expe
tation values hM2xi� displayed in Table 1 show that hM2xi� is indeed inde-pendent of � to an a

ura
y of about 0.5 %.� 0 1 10 100 1000 10000hM2xi� 1.951 1.947 1.962 1.954 1.939 1.961Table 1: The expe
tation value hM2xi� as a fun
tion of the parameter � suppressing the single{sitevariable Lx. Input parameters are Ns = 16, �0 = �0:3 (symmetri
 phase).For T > T
, we use the ansatz (3.9). This implies that formulae (3.20{3.33) still hold,however, with �2k now repla
ed by �2k � �2k. We have 
he
ked that the identi�
ation(3.36) also holds in the broken phase (
hoosing �0 = �1, see Table 2).� 0 1 10 100 1000 10000hM2xi� 18.79 18.87 18.83 18.78 18.80 18.78Table 2: The expe
tation value hM2xi� as a fun
tion of the parameter � suppressing the single{sitevariable Lx. Input parameters are Ns = 16, �0 = �1 (broken phase).The 
ouplings �2k 
an be obtained by �tting W+[L℄ (see Figure 2) a

ording to (3.9).The �t values are displayed in Tables 3 and 4.� �2=2 �4=42.40 �0:4468 0.07032.34 �0:2712 0.05262.32 �0:1772 0.02612.30 �0:0717 0.0120
� �2=2 �4=4 �6=62.40 �0:4531 0.0901 �0:01522.34 �0:2626 0.0249 0.02162.32 �0:1612 �0:0259 0.04082.30 �0:0666 �0:0087 0.0133Table 3: Two{parameter �t to W+[L℄. Table 4: Three{parameter �t to W+[L℄.Summarizing we note that we have good analyti
al and numeri
al 
ontrol of the single{site distribution pW or, equivalently, the histograms displayed in Figure 1. Below T
, thehistogram is 
at, p�W = 
onst, above T
, W+ � log p+W is a simple polynomial in L2 with
oeÆ
ients given in Tables 3 and 4. { 13 {



4. Determination of the e�e
tive a
tionThe 
al
ulation of the 
ouplings �2k, k � 0, in the e�e
tive a
tion pro
eeds in threesteps. First we determine the moments �2m from the Polyakov{loop ensemble using theapproximate identity (3.36). Se
ond, from (3.30{3.33), we obtain the 
ouplings �2k =�02k=(2k � 1)!, k > 0, in terms of the moments �2k and �0. Third, we determine �0.The �rst step 
onsists of straightforward numeri
s based on our Wilson ensemblesobtained for several values of � near �
. The results for the �2m are displayed in Table 5.A dis
ussion of the errors will be given below after the �2k have been determined.� 2.20 2.25 2.28 2.29 2.30 2.32 2.34 2.40�2 1.93 2.086 2.242 2.327 2.466 2.946 3.336 4.173�4 10.16 11.55 13.07 13.89 15.27 20.16 24.22 33.60�6 80.88 96.06 113.0 121.7 137.6 194.1 241.5 357.6�8 829.3 1019 1237 1341 1551 2297 2922 4536Table 5: The moments �2m for di�erent values of the Wilson 
oupling � (Ns = 20, Nt = 4).With the moments �2m at hand we �nd the 
ouplings�2k = �2k0 �2k ; k > 0 ; (4.1)where the �2k 
an be expressed in terms of the �2k a

ording to (3.30{3.33). The �nalstep 
onsists in the determination of �0. To this end we make use of the S
hwinger{Dysonrelations (2.26) 
hoosing the operators G � L2l�1x whi
h results inh(1�L2x)MxL2l�1x i�0+Xk>0h(1�L2x)L2k+2l�2x i�2k = (2l�1) h(1�L2x)L2l�2x i�3 hL2lx i: (4.2)For T < T
, where the single{site distribution is known exa
tly, the right{hand side of (4.2)vanishes. This 
an either be inferred from the analyti
al result (3.12) or by noting thatthe term in question is a total derivative,(2l � 1) h(1 � L2x)L2l�2x i � 3 hL2lx i = � 2� Z 1�1 dL ��L h(1� L2)3=2 L2l�1i = 0 : (4.3)Plugging (4.1) into (4.2) and dividing by �0 (assumed to be nonzero) yields a nonlinearequation of degree 2k � 1 in �0. With the 
oeÆ
ients �2k and all nonlo
al expe
tationvalues (
orrelators) determined numeri
ally, the 
oupling �0 
an be obtained straightfor-wardly. As there are 2k� 1 solutions we take the one whi
h is approximately independentof the number K of 
ouplings �2k. The resulting values of all 
ouplings (for K = 2 andK = 3) are displayed in Tables 6 and 7. Following [30℄, the (relative) errors have beenestimated by varying the number of operators in the e�e
tive a
tion. In the �{regime 
ho-sen, they roughly grow linearly with � while the in
rease with the label 2k of the 
oupling{ 14 {



� �0 �2=2 �4=42.20 �0:438(5) 0.186(3) �0:0017(3)2.25 �0:473(5) 0.233(5) �0:0031(5)2.28 �0:500(5) 0.280(6) �0:005(1)2.29 �0:509(5) 0.301(6) �0:007(1)2.30 �0:63(1) 0.45(2) �0:019(1)2.32 �0:69(1) 0.60(2) �0:053(4)2.34 �0:70(1) 0.68(3) �0:088(7)2.40 �0:73(4) 0.9(1) �0:21(4)Table 6: Numeri
al values for the 
ouplings �0 and �2k=2k, k � K = 2. The 
riti
al Wilson
oupling is �
 = 2:299 (Ns = 20, Nt = 4).� �0 �2=2 �4=4 �6=62.20 �0:438(5) 0.186(3) �0:0017(3) 0.000(1)2.25 �0:476(5) 0.237(5) �0:0032(5) 0.000(1)2.28 �0:507(5) 0.288(6) �0:006(1) 0.000(1)2.29 �0:510(5) 0.303(6) �0:007(1) 0.000(4)2.30 �0:63(1) 0.45(2) �0:020(1) 0.002(1)2.32 �0:69(1) 0.62(2) �0:057(5) 0.011(2)2.34 �0:70(1) 0.70(3) �0:093(7) 0.024(4)2.40 �0:76(4) 1.0(1) �0:26(5) 0.11(5)Table 7: Numeri
al values for the 
ouplings �0 and �2k=2k, k � K = 3. The 
riti
al Wilson
oupling is �
 = 2:299 (Ns = 20, Nt = 4).(or, equivalently, the maximum power 2k of Lx present) is exponential but, nevertheless,numeri
ally small.With the e�e
tive 
ouplings determined we are in the position to 
he
k our results bysimulating the e�e
tive a
tion. For both � = 2:20 and � = 2:40 we have produ
ed 10000
on�gurations distributed a

ording to Se� using the 
ouplings from Table 7. In Figures4 and 5 we 
ompare the single{site distributions obtained from the e�e
tive theory withthose of Yang{Mills. The out
ome is quite satisfa
tory. In parti
ular, one notes that thein
lusion of a L6{term (K = 3) still improves the mat
hing of the histograms 
ompared tothe 
ase K = 2.
{ 15 {
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Figure 4: Comparison of single{site histograms based on simulating Yang{Mills (�) vs. the e�e
tivea
tion for T < T
. The 
urves for two and three 
ouplings �2k, i.e. K = 2 (+) and K = 3 (�),respe
tively, fall on top of ea
h other. Input: � = 2:20, Ns = 20, Nt = 4.
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Figure 5: Comparison of single{site histograms based on simulating Yang{Mills (�) vs. the e�e
tivea
tion with two (+) and three (�) 
ouplings �2k for T > T
. Input: � = 2:40, Ns = 20, Nt = 4.
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� �0 �2 �4 �62.20 input �0:43803 0:37182 �0:00681 0:000242.20 output �0:43824 0:37351 �0:00621 0:000202.40 input �0:76000 1:9572 �1:0216 0:697612.40 output �0:76027 1:9605 �1:0222 0:69039Table 8: Comparison of 
ouplings used as input of simulation with 
ouplings obtained as outputof IMC applied to the e�e
tive a
tion.A further important 
he
k is provided by reprodu
ing the input 
ouplings of Table 7via our IMC pro
edure. The results displayed in Table 8 show quite 
onvin
ingly that themethod works. If we allow for additional operators in the numeri
s (whi
h are not presentin the e�e
tive a
tion) the numbers of Table 8 remain un
hanged while the 
ouplings ofthe new operators are 
onsistently of order 10�5, i.e. 
ompatible with zero.5. The 
onstraint e�e
tive potentialWith an e�e
tive a
tion being found, one 
ould go on and 
al
ulate the 
onstraint e�e
tivepotential [31℄ whi
h de�nes the distribution of the 
onstant mean �eld,�L � 1
Xx Lx ; 
 = N3s : (5.1)In perturbation theory, the e�e
tive potential has been evaluated long ago [32, 33℄. Itdes
ribes a `gas' of gluons at high temperature, i.e. deep in the de
on�ned phase. Re
entmodels for the e�e
tive potential whi
h also des
ribe the 
on�ned phase are based on theeigenvalues of the Polyakov loop Px [18℄ and not just their sum Lx. As stated in theintrodu
tion, this di�eren
e be
omes obsolete for SU(2).It thus seems of interest to investigate the e�e
tive potential on the latti
e. Thisapparently requires further Monte{Carlo simulations of the e�e
tive a
tion Se� [L℄ with themean �eld �L held �xed, following the approa
h adopted in [31, 34℄. It turns out, however,that these additional e�orts 
an be avoided by making use of some statisti
al properties ofthe single{site distribution pW dis
ussed in Se
tion 3.The 
onstraint e�e
tive potential V is de�ned in terms of the probability density ofthe mean �eld (5.1),pV [ �L℄ � Z�1V e�
V [�L℄ � Z�1 Z DLÆ��L� 
�1Xx Lx� exp(�Se� [L℄) ; (5.2)with the normalization ZV given by the partition fun
tionZV � ZV (0) � Z 1�1 d�Le�
V [�L℄ : (5.3)
{ 17 {



In what follows, we will try to obtain the mean{�eld distribution pV from the single{site distribution pW . We note, �rst of all, that, due to translational invarian
e, the �rstmoments 
oin
ide,h�LiV � Z d�L �LpV [ �L℄ = 
�1Xx Z�1 Z Yy DLy Lx e�Se� [L℄ � hLiW � hLi : (5.4)The higher moments, on the other hand, are di�erent,hLpiW = Z Yy DLy Lpx e�Se� [L℄ = hLpi (5.5)h�LpiV = 
�p Xx1;:::xphLx1 : : : Lxpi � �(p) : (5.6)For the mean{�eld distribution we thus get generalized sus
eptibilities �(p), while pW yieldsexpe
tation values of arbitrary powers of L at a single spatial site, taken in the ensemble ofPolyakov loops extra
ted from Yang{Mills. This has been dis
ussed at length in Se
tion 3.To obtain a 
onne
tion between arbitrary moments we suppose that the generatingfun
tions asso
iated with pV and pW are related a

ording toZV (t) � hexp t�LiV = hYx exp(tLx=
)iV !'Yx hexp(tL=
)iW � [ZW (t=
)℄
 : (5.7)Here, we have made the assumption that only a small fra
tion of the random variablesfLx : x 2 
g are statisti
ally dependent. This is justi�ed for large volumes and short{range 
orrelations. A

ording to the law of large numbers we expe
t the 
olle
tive randomvariable �L =Px Lx=
 to have a Gaussian distribution if the Lx are randomly distributed1.Let us 
he
k to whi
h extent this is realized.Below T
, ZW � Z� is exa
tly known from (3.13) so thatZV (t) ' �2
t I1(t=
)�
 =Xk t2k(2k)! h�L2ki ; ZV (0) = 1 : (5.8)Thus, by expanding the Bessel fun
tion (to power 
) we know all moments or sus
eptibil-ities of pV . Expli
itly, one �ndsh�L2iV = 14
 ; (5.9)h�L4iV = 18
3 + 3(
� 1)16
3 ; (5.10)h�L6iV = 564
5 + 15(
� 1)32
5 + 15(
� 1)(
� 2)64
5 : (5.11)In the large{volume limit, 
!1, the leading terms yieldh�L2kiV = (2k � 1)!!(4
)k = (2k � 1)!! h�L2ikV ; (5.12)1Note, however, that with �L being a 
ompa
t variable, we 
annot expe
t a Gaussian in a stri
t mathe-mati
al sense. { 18 {



an identity typi
al for a Gaussian distribution. As a 
ross 
he
k, we 
al
ulate the Binder
umulant asso
iated with pV . From (5.9) and (5.10) we haveb4;V � h�L4iVh�L2i2V � 3 = � 1
 ; (5.13)whi
h obviously vanishes in the in�nite{volume limit in a

ordan
e with (5.12). Summingup the moments (5.12), we obtain the large{volume partition fun
tionZV (t) ' exp(t2=8
) ; (5.14)whi
h turns out to be Gaussian in t. Substituting t = iu, we haveZV (iu) = Z d�L exp(�
V [ �L℄ + iu�L) ' exp(�u2=8
) : (5.15)To extra
t the mean{�eld distribution pV = exp(�
V )=ZV we take the Fourier transformwith respe
t to u and �nd pV [ �L℄ 'p2
=� exp(�2
�L2) ; (5.16)whi
h is a perfe
t Gaussian distribution with varian
e�2 � 1=4
 = h�L2iV : (5.17)The fa
t that �L is 
ompa
t does not really matter as in the large{volume limit assumed,the Gaussian is sharply lo
alized at �L = 0. This is indeed seen from Figure 6 whi
h showsthat a Gaussian �t to the distribution of �L,pV;�t[ �L℄ = 1p2�� exp(��L2=2�2) ; (5.18)works perfe
tly well.This is 
orroborated by 
omparing the �t values for � with the expe
tation values
al
ulated from Yang{Mills as displayed in Table 9 for di�erent volumes and bin sizes.The agreement between the �tted width and the expe
tation value h�L2i1=2 is quiteimpressive, in parti
ular for large volumes, as expe
ted. Due to the approximations made,however, we do not reprodu
e the absolute numbers given by (5.17). If we de�ne
 � �2(
1)�2(
2) = 
2
1 ; (5.19)we get for 
1 = 73 and 
2 = 163 the numeri
al value 
 = (16=7)3 = 11:94 while the resultsof Table 9 yield 
 = 11:1 � 0:4 ; Nt = 6 ; (5.20)
 = 11:5 � 0:9 ; Nt = 7 ; (5.21)where the error has been estimated by varying the bin sizes. Thus, at least for suÆ
ientlylow temperature (large Nt) we obtain the 
orre
t s
aling of the width with the volume.
{ 19 {
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Figure 6: Gaussian �ts to the distribution pV [ �L℄ obtained from simulating Yang{Mills on latti
esof size 163�7 and 73�7. The value Nt = 7 for the temporal extension 
orresponds to the symmetri
phase.

�Nt 
on�g.s/bin � h�L2i1=273 � 6 120 0.0837 0.077373 � 6 80 0.0845 0.077373 � 7 120 0.0582 0.054973 � 7 80 0.0588 0.0549163 � 6 250 0.0249 0.0252163 � 7 150 0.0167 0.0164163 � 7 250 0.0167 0.0164Table 9: Width � of the Gaussian �t (5.18) 
ompared to the expe
tation value h�L2i1=2 
al
ulatedfrom the SU(2) Monte Carlo ensemble. The values for the temporal extension Nt 
orrespond tothe symmetri
 phase.
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6. Reprodu
ing the two{point fun
tionThe pro
edure developed so far is based on the single{site distribution of the Polyakov loopwhi
h is under good (semianalyti
) 
ontrol. By 
onstru
tion, the e�e
tive a
tion obtainedin this way reprodu
es the Yang{Mills distribution quite well (re
all Fig.s 4 and 5). Atthis point it is natural to ask how well we are reprodu
ing 
orrelators of the Polyakov loop.After all, these are intimately related to the 
on�ning potential (T < T
) or the Debye mass(T > T
), see e.g. [14℄. In Fig.s 7 and 8 we 
ompare the Yang{Mills two{point fun
tionwith the one obtained from the Svetitsky{Ya�e e�e
tive a
tion (3.15) using the (input)
ouplings from Table 8.
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K = 3� = 2:29� = 2:30� = 2:32� = 2:34� = 2:40� = 2:34� = 2:32� = 2:30� = 2:29Figure 7: The Yang{Mills two{point fun
tion (YM) 
ompared to the one obtained from theSvetitsky{Ya�e e�e
tive a
tion with four 
ouplings (sim). Input: � = 2:20, Ns = 20, Nt = 4.The �gures suggest that we are doing quite well in the symmetri
 phase (� = 2:20,i.e. T < T
). In the broken phase (� = 2:40, i.e. T > T
), however, there is room forimprovement both in the exponential de
ay and the value hLi2 of the plateau. To assessthe (dis)agreement quantitatively, we �t all two{point fun
tions a

ording toGx0 � hLxL0i = a� exp(�bx) + exp �� b(Ns � x)��+ 
 : (6.1)The values for the �t parameters are listed in Table 10 and 
orroborate the qualitativestatements made above. We refrain from listing the �2 for ea
h �t as we are only interestedin a 
omparison of the IMC �t parameters with those of the Yang{Mills 
urves. Anassessment of the error 
an be obtained by 
he
king the plateau of the two{point fun
tion(in the broken phase) against an independent measurement of hLi2 whi
h, for � = 2:40,Ns = 20, Nt = 4 yields hLi2 = 0:0756(22) : (6.2){ 21 {
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tion (YM) 
ompared to the one obtained from theSvetitsky{Ya�e e�e
tive a
tion with four 
ouplings (sim). Input: � = 2:40, Ns = 20, Nt = 4.� a b 
2.20 YM 0:2493 1:9627 0:0009sim 0:1971 1:8309 0:00012.40 YM 0:2006 2:0715 0:0752sim 0:1295 1:4499 0:0802Table 10: Comparison of the �t parameters from (6.1) asso
iated with Fig.s 7 and 8.This agrees fairly well with the parameter 
 in the third line of Table 10 while the 
entralIMC value (fourth line) di�ers by 6.5%.In order to improve the mat
hing between the e�e
tive theory and Yang{Mills weobviously have to in
lude more operators. In previous appli
ations of IMC, this has mainlybeen done for Ising systems [10, 11, 35, 30℄ or twodimensional nonlinear sigma models[36, 37℄. In these 
ases, the set of operators is restri
ted as they square to unity. For thePolyakov loop, however, the situation is di�erent, as arbitrary (ultralo
al) powers as well ashopping terms asso
iated with arbitrary powers are allowed, i.e. terms like Lp1x1Lp2x2Lp3x3 : : :.It turns out the the IMC pro
edure tends to get destabilized upon in
luding more andmore monomials in Lx. As a result, the values for the 
ouplings depend rather stronglyon the number of operators present and of equations used in the overdetermined linearsystem. In addition, the determinants of the matri
es to be inverted may be
ome as small{ 22 {



as 10�40. We thus had to work with symboli
 programs like Maple, setting the number ofdigits to 60 or even more. Nevertheless, the instabilities prevailed. Inspired by the resultsfrom the high{temperature expansion on the latti
e [15, 16℄, we have tried to over
omethese problems by 
hanging our operator basis from monomials in L to 
hara
ters. Beingorthogonal 
lass fun
tions, these seem to be the natural 
andidates for an e
onomi
 set ofoperators. At this point it should be noted that for an e�e
tive a
tion with a �nite numberof terms di�erent 
hoi
es of bases are not equivalent.As stated in the introdu
tion, for SU(2) the 
hara
ters 
an be expressed as polynomialsin the tra
ed Polyakov loop, L = trP=2 = 
os �, a

ording to�j(L) � sin �(2j + 1)��sin � = [j℄Xp=0(�1)p�2j + 12p+ 1�L2j�2p(1� L2)p ; j = 0; 12 ; 1; : : : : (6.3)This formula allows to reobtain the L{representation from the 
hara
ters. The �rst fewrelations are �1=2 = 2L ; �1 = 4L2 � 1 ; �3=2 = 8L3 � 4L ; : : : : (6.4)These are suÆ
ient to obtain monomials up to terms of order L3xL3y. To streamline notationit is useful to de�ne a basi
 link variable asso
iated with latti
e points x and y and SU(2)`
olor spin' j, Xj;xy � �j(Lx)�j(Ly) ; (6.5)whi
h we represent graphi
ally as� X1=2;xy = 4LxLy ; (6.6)� X1;xy = 16L2xL2y � 4L2x � 4L2y + 1 ; (6.7)� X3=2;xy = 64L3xL3y � 32LxL3y � 32L3xLy + 16LxLy ; (6.8)...A link with n `internal' lines thus 
orresponds to the representation labelled by j = n=2.These links are the basi
 building blo
ks of our basis of e�e
tive operators. The leadingorder of the high{temperature expansion [15, 16℄ is then given by the nearest{neighborexpression, SLO �Xx;i;j �jXj;x;x+i ; (6.9)with �j a known fun
tion of the temporal Wilson 
oupling �t and extension Nt that de-
reases rapidly with `
olor spin' j. If we rewrite the basi
 link (6.5) as Xj;x;x+r, we havetwo parameters 
ontrolling our basis, the representation label j and the e�e
tive range(`link length') r = jrj. Several test runs of the IMC routines have 
on�rmed good 
onver-gen
e in j so that we will restri
t ourselves to the lowest representations. The maximumrange we allow for is the plaquette diagonal, i.e. r � p2. To further restri
t the number ofoperators, we limit ourselves to a maximum number of four links of type (6.5) that 
an bedrawn within a single plaquette. A typi
al term, for instan
e, is thus given by� X1=2;x;x+iX1=2;x;x+j X1=2;x;x+i+jX1=2;x+i;x+j : (6.10){ 23 {



�0:111(1) �0:0200(2) �0:0048(1) 0:00257(5) 0:0037(1) 0:00191(4) �0:00052(1)�0:159(8) �0:060(3) �0:0061(6) 0:0065(6) 0:005(1) 0:0055(5) 0:0000(1)
0:00090(4) �0:00085(3) 0:00070(6) �0:00004(1) 0:00021(2) �0:0083(2) 0:00008(2)0:0010(2) �0:0005(1) 0:0005(2) �0:0006(2) 0:0000(1) 0:043(4) �0:0006(1)Table 11: E�e
tive operators and 
ouplings for � = 2:20 (upper entries) and � = 2:40 (lowerentries), Ns = 20, Nt = 4.Altogether we have 14 operators 
orresponding to 18 monomials in L. They are displayed inTable 11 together with the 
ouplings asso
iated with them. Several 
omments are in orderat this point. By allowing for all possible distan
es x = 0; 1; : : : ; 10 in the S
hwinger{Dysonequations (2.27), we obtain a maximum number of 140 equations for our 14 operators. Thevalues of the 
ouplings remain fairly stable if we vary the number of equations used in theIMC least{square routine (
hanges being approximately 1% for the relevant 
ouplings). Themajor part of the errors listed 
omes from variations estimated via in
lusion of additionaloperators. In analogy with the Svetitsky{Ya�e ansatz the relative errors grow exponentiallywith the number of basi
 links in
luded. As the asso
iated 
ouplings are small numeri
ally,the larger errors have little in
uen
e on `observables' like the two{point fun
tions.For the operators (6.6 { 6.8) we �nd rapid de
rease of the 
ouplings with spin j.The leading order hopping term, (r = 1) (whi
h has the smallest relative error)dominates by one order of magnitude 
ompared to the terms with r = p2. This alreadyindi
ates that the e�e
tive intera
tions are short{ranged in a

ordan
e with the Svetitsky{Ya�e 
onje
ture.If we enumerate the 
ouplings by g1; : : : g14 from left to right, we may express the newe�e
tive a
tion as ~Se� � 14Xa=1 ga ~Sa ; (6.11)Note that, a

ording to (6.6 { 6.8), the old LO 
oupling �0 is given by a (rapidly 
onvergent)series in j,�0 = 4 g1 + 16 g14 + terms with j > 3=2 = 8><>:�0:445 for � = 2:20�0:646 for � = 2:40 : (6.12)These numeri
al values for �0 agree reasonably well with those of Table 8, whereonly four operators had been used. The ben
hmark test to be performed, however, is the{ 24 {
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tion (YM) 
ompared to the one obtained from the
hara
ter a
tion with 14 
ouplings (sim). Input: � = 2:20, Ns = 20, Nt = 4.� a b 
2.20 YM 0:2493 1:9627 0:0009sim 0:2509 1:9837 0:00012.40 YM 0:2006 2:0715 0:0752sim 0:2051 1:9257 0:0758Table 12: Comparison of the �t parameters from (6.1) asso
iated with Fig.s 9 and 10.
al
ulation of the two{point fun
tion Gx0 using the new e�e
tive 
ouplings ga. Fig.s 9 and10 show that we have indeed improved the mat
hing between Yang{Mills and the e�e
tivea
tion.This is quantitatively 
on�rmed by repeating the �ts of (6.1) and Table 10. As we nowhave 14 
oupling parameters instead of just four, the �ts must improve, and this is indeedwhat Table 12 shows. Both the Yang{Mills and the IMC result for the 
oeÆ
ient 
 (in thebroken phase) 
ompare now favourably with the expe
tation value (6.2). Altogether, this
onvin
ingly demonstrates the improvement in the e�e
tive a
tion, in parti
ular for thebroken phase.
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tion (YM) 
ompared to the one obtained from the
hara
ter a
tion with 14 
ouplings (sim). Input: � = 2:40, Ns = 20, Nt = 4.7. Summary and dis
ussionIn this paper we have derived e�e
tive a
tions des
ribing the dynami
s of the (tra
ed)Polyakov loop variable Lx � trPx=2, and hen
e of the de
on�nement phase transition. Ithas turned out useful, however, to regard the e�e
tive a
tion as being derived from a moregeneral theory depending on the untra
ed Polyakov loopPx [17℄. This theory is a nonlinearsigma model with target spa
e SU(2) �= S3 and hen
e the symmetry SU(2) � SU(2)
orresponding to left and right multipli
ation of Px by group elements. Although thee�e
tive a
tions in L 
learly do not have this symmetry, it is nevertheless inherited bythe fun
tional Haar measure whi
h implies novel S
hwinger{Dyson equations for Polyakovloop 
orrelators. In addition, it seems that a remnant of this symmetry shows up in thesingle{site distribution pW of Lx whi
h is 
at below T
 meaning that Px is distributeduniformly over the group manifold. Obviously, it would be desirable to really prove thisequipartition for whi
h we have found 
onvin
ing numeri
al eviden
e. As the single{sitedistribution of Lx is exa
tly known in the 
on�nement phase, we 
an give exa
t predi
tionsfor all moments hL2ki and for the Binder 
umulant, b4 = �1. Above T
, we have �ttedthe log{distribution W � log pW by polynomials so that also in this 
ase we have goodquantitative 
ontrol of the distribution.It turns out that W [L℄ and a Ginzburg{Landau (or Svetitsky{Ya�e) e�e
tive a
tionSe� [L℄ are related in a manner that is simple enough to pro
eed by analyti
 means. Assum-ing that expe
tations taken in the e�e
tive a
tion are un
hanged if Lx is 
hanged at a singlesite (another relation valid numeri
ally but still subje
t to a proof) we have been able toexpress the e�e
tive 
ouplings �2k (k 6= 0) of Se� [L℄ in terms of the parameters of W . The{ 26 {



remaining 
oupling �0 is then determined by means of the S
hwinger{Dyson equations.The single{site distributions resulting from the e�e
tive theory Se� [L℄ agree very well withthose obtained dire
tly from Yang{Mills. Furthermore, the Svetitsky{Ya�e e�e
tive a
tionperfe
tly ful�lls the S
hwinger{Dyson equations based on the SO(4) invarian
e of the Haarmeasure.For the symmetri
 phase (T < T
) we have also determined the (
onstraint) e�e
tivepotential from the single{site distribution pW assuming that the intera
tions are suÆ
ientlyshort{ranged su
h that the law of large numbers may be invoked. As expe
ted we obtaina Gaussian distribution for the mean �eld �L if the volume is large and the temperaturesmall enough.By de�nition, one 
annot 
al
ulate 
orrelations from single{site distributions. Vi
eversa, the mat
hing of these distributions does not imply that the 
orrelation fun
tionsmat
h as well. A dire
t 
omparison shows that the two{point fun
tions of the Yang{Millsand Svetitsky{Ya�e ensembles di�er somewhat, in parti
ular in the broken phase. To im-prove the mat
hing we have 
hanged our operator basis from monomials in Lx to 
hara
ters,whi
h are orthogonal polynomials in Lx. Te
hni
ally, this results in a numeri
ally ratherstable inverse Monte Carlo pro
edure, even if the number of operators is large. We haveobtained the e�e
tive 
ouplings for a total number of 14 operators. The resulting e�e
tivetheory has short{range intera
tions and reprodu
es the Yang{Mills two{point fun
tion inboth phases very well.Further resear
h will be devoted to the following issues. The predi
tions of the e�e
tivea
tions for the dynami
s of the phase transition should be investigated in detail. Thisin
ludes an analysis of the e�e
tive potential(s) near and beyond the transition point aswell as 
al
ulations of 
riti
al exponents. The latter will yield a 
he
k whether the e�e
tivea
tion Se� [L℄ is indeed in the universality 
lass of the Z2{Ising{model. In addition, itshould be possible to generalize the methods developed in this paper to higher SU(N)gauge groups. Work in these dire
tions is under way.A
knowledgmentsThe authors thank D. Antonov, P. van Baal and J. Wess for fruitful dis
ussions andA. Kir
hberg for a 
areful reading of the manus
ript. The work of T.H. was supportedby DFG under 
ontra
t Wi 777/5-1.A. Histograms and binsGiven a probability density pW [L℄ one de�nes the asso
iated (
umulative) distributionfun
tion PW [L℄ � Z L�1 dL0p1� L02 pW [L0℄ : (A.1)Density pW and distribution PW are related to our histograms as follows. We have a totalnumber N of `events' or `measurements' saying that a Polyakov loop at site x belonging to{ 27 {



��������
����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

��������
��������
��������

��������
��������
��������

PW

∆ iL

c i

L i−1 L i

���
���
���

���
���
���

���
���
���
���

���
���
���
���������

������
������
������
������

������
������
������
������
������

��������������

��������������

��

−1 L1

1

Figure 11: General histogram for distribution fun
tion PW [L℄.an arbitrary 
on�guration takes its value in some pres
ribed interval (`bin'). A

ordingly,N is a fairly large number,N = N3s �N
on�g = 203 � 400 = 3:2 � 106 : (A.2)The number of bins (labeled by integers i) is denoted by I, the number of events in bini by Ci. This number represents the height of the ith 
olumn in the histogram 
ountingthe absolute numbers of events with values in [Li�1; Li℄ . The relative 
ounting rate isobtained by normalization,
i � Ci=N = PW [Li℄� PW [Li�1℄ = pW [ �Li℄q1� �L2i �Li ; (A.3)where �Li � Li�Li�1 and �Li 2 [Li�1; Li℄ 
hosen appropriately. The situation is depi
tedin Figure 11.Good statisti
s is a
hieved if the 
ounting rate 
i is approximately 
onstant be
ausethen all bins will be equally `populated'. This 
an be a
hieved by suitably 
hoosing the binsizes �Li whi
h, however, is somewhat tri
ky be
ause of the nontrivial measure in (A.1).If we ignore this for the moment and 
hoose an equidistant partition,�Li = �L = 2=I ; (A.4)the total 
ount in bin i be
omesCi = 2NI pW [ �Li℄q1� �L2i : (A.5)This yields rather bad statisti
s near the boundaries L = �1, in parti
ular for T > T
,due to the suppression by the measure. For instan
e, 
hoosing � = 2:4, I = 100, i.e.�L = 1=50, one typi
ally �nds C1 ' 14000 data points in the �rst bin (near L = �1),while the population of the bins near L = 0 is larger by a fa
tor of �ve, C50 ' 73000. Thesuppression by the geometry thus `wins' against the density whi
h is peaked near L = �1.{ 28 {



In the quantity of interest, the probability density,pW [ �Li℄ = Ciq1� �L2i I2N ; (A.6)one divides by the measure fa
tor whi
h tends to zero near L = �1. This yields thepeaks near L = �1 but at the same time further enhan
es the statisti
al error 
lose tothe boundaries. For T < T
, this is not mu
h of a problem as we have equipartition,pW [L℄ = 
onst = p�W = 2=�, and the density is known anyhow. For T > T
, however, (A.6)implies that the bulk of the density is lo
ated where the statisti
al error is largest. Onthe other hand, the behavior of pW in this regime determines the higher order 
ouplings�2k. The lesson to be learned is that the partition should be modi�ed su
h as to 
orre
tlyin
orporate the e�e
t of the measure. To this end, we demand that the 
ounting rate be
onstant, 
i = 
, for T < T
, hen
e, from (A.3),
 = p�W q1� �L2i �Li = 1=I : (A.7)Thus, in order to properly take into a

ount the measure, the bin size �Li has to be 
hosensu
h that q1� �L2i �Li = 
onst = 
=p�W = 1Ip�W : (A.8)This 
an be a
hieved by going over to 
ontinuum notation,
=p�W = Z LiLi�1 dLp1� L2 � PW [Li℄� PW [Li�1℄ ; (A.9)and solving this re
ursion for Li numeri
ally with PW (L) given byPW [L℄ = 12 hLp1� L2 + ar
sin(L)i : (A.10)Alternatively, one may produ
e an ordered list of all data points for L, and partition thislist in su
h a way that all bins 
ontain the same number C of `events'. The sampling pointsLi are then given by the smallest (or largest, depending on the 
ounting 
onvention) valueof L in bin i.For T > T
, the density pW is then given bypW [ �Li℄ = Ip�WN Ci : (A.11)This has been displayed in Figure 1. Obviously, measure e�e
ts are now absent and thedi�eren
e between Ci and C represents the deviation from equipartition.Referen
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