
Pole struture of the Hamiltonian �-funtion for a singular potentialH. Falomira, P. A. G. Pisania and A. Wipfba) IFLP, Departamento de F��sia - Faultad de Cienias Exatas, UNLP C.C. 67, (1900) La Plata, Argentinab) Theoretish{Physikalishes Institut, Friedrih{Shiller{Universit�at Jena, Max{Wien{Platz 1, 07743 Jena, Germany(Deember 11, 2001)We study the pole struture of the �-funtion assoiated tothe Hamiltonian H of a quantum mehanial partile livingin the half-line R+, subjet to the singular potential gx�2 +x2. We show that H admits nontrivial self-adjoint extensions(SAE) in a given range of values of the parameter g. The�-funtions of these operators present poles whih depend ong and, in general, do not oinide with half an integer (theyan even be irrational). The orresponding residues dependon the SAE onsidered.PACS numbers: 02.30.Tb, 02.30.Sa, 03.65.DbMathematial Subjet Classi�ation: 81Q10, 34L05, 34L40I. INTRODUCTIONIn Quantum Field Theory under external onditions,quantities like e�etive ations and vauum energies,whih desribe the inuene of external �elds or bound-aries on the physial system, are generially divergentand require a renormalization to get a physial meaning.In this ontext, a powerful and elegant regularizationsheme is based on the use of spetral funtions, suh asthe assoiated �-funtion [1,2℄ and heat-kernel (for reentreviews see, for example, [3{6℄).It is well known [7,8℄ that for an ellipti boundaryvalue problem in a �-dimensional ompat manifold withboundary, desribed by a di�erential operator A of or-der !, with smooth oeÆients and de�ned on a domainof funtions subjet to loal boundary onditions, the �-funtion �A(s) � TrfA�sg (1)has a meromorphi extension to the omplex s-plane pre-senting isolated simple poles at s = (� � j)=!, withj = 0; 1; 2; : : :In the ase of positive de�nite operators, the �-funtionis related, via Mellin transform, to the trae of the heat-kernel of the problem, Trfe�tAg. The pole struture of�A(s) determines the small-t asymptoti expansion of thistrae [8℄, Trfe�tAg � 1Xj=0 aj(A) t(j��)=! ; (2)where the oeÆients are related to the residues byaj(A) = Resjs=(��j)=! �(s) �A(s): (3)

However, for the ase of a di�erential operator withoeÆients presenting singularities, less is known aboutthe struture of the �-funtion or the heat-kernel traeasymptoti expansion.Callias [9{11℄ has argued that, when the oeÆient inthe zero-th order term in an ellipti, (essentially) self-adjoint, seond order di�erential operator presents a sin-gularity like 1=x2, the heat-kernel trae asymptoti ex-pansion in terms of powers t(j��)=2 (as in (2)) is ill-de�ned, and an expansion inluding log t and perhapsmore general powers of t (t� with � 6= n=2) wouldbe in order. In partiular, onsidering Hamiltonians Hwith these harateristis, it has been given in [9,10℄ asmall-t asymptoti expansion for the diagonal elemente�tH(x; x) whih also presents t(j��)=2 log t terms, andwhere some of the oeÆients are distributions with sup-port onentrated at the singularities.It is the aim of the present artile to analyze thepole struture of the �-funtion of a Hamiltonian H de-sribing a quantum Shr�dinger partile living in thehalf-line R+, subjet to a singular potential given byV (x) = gx�2 + x2, with g 2 R.For ertain range of values of g, this Hamiltonian (aseond order di�erential operator) admits nontrivial self-adjoint extensions in L2(R+) (eah one desribing a dif-ferent physial system). We will show that the assoiated�-funtion presents isolated simple poles whih dependon g, whih (in general) do not lie at s = (1 � j)=2 forj = 0; 1; : : :, and an even be irrational numbers. More-over, we will �nd that the residues at these simple polesdepend on the self-adjoint extension of H onsidered.This pole struture for the �-funtion implies a small-t asymptoti expansion for the heat kernel trae of theproblem in terms of powers whih (in general) are not halfan integer. Moreover, the oeÆients in this expansiondepend on the seleted self-adjoint extension.The struture of the paper is the following: In SetionII we speify the adjoint of the Hamiltonian operator andin Setion III we determine its de�ieny subspaes. TheHamiltonian self-adjoint extensions are haraterized inSetion IV, and in Setion V is desribed the orrespond-ing spetrum. In Setion VI we give an integral represen-tation for the �-funtion of eah SAE of the Hamiltonianand in Setion VII we disuss the struture of its sin-gularities. In Setion VIII we analyze some partiularases, and we establish our onlusions in Setion IX.Appendix A is devoted to the onstrution of the lo-1



sure of H , and in Appendix B we outline the neessaryasymptoti expansions.II. THE HAMILTONIAN AND ITS ADJOINTLet us onsider the operatorH = � d2dx2 + V (x); (4)with V (x) = gx2 + x2; (5)densely de�ned on the domain D(H) = C10 (R+), the lin-ear spae of funtions '(x) with ontinuous derivatives ofall order and ompat support non ontaining the origin.It is easily seen that H is a symmetri operator.In order to onstrut the SAE [12℄ of H we must getits adjoint, Hy, and determine the de�ieny subspaes.The operator Hy is de�ned on the subspae of square-integrable funtions  (x) for whih ( ;H') is a on-tinuous linear funtional of ' 2 D(H). This requiresthe existene of �(x) 2 L2(R+) suh that ( ;H') =(�; ');8' 2 D(H). If this is the ase, then �(x) isuniquely de�ned, sine D(H) is dense in L2(R+) and,by de�nition, Hy = �.For  2 D(Hy) and 8' 2 D(H) we have( ;H') = R10  (x)�(�'00(x) + V (x)'(x)) == ((� 00 + V (x) ); ') = (�; '); (6)where the derivatives of  are taken in the sense of dis-tributions.Equation (6) implies that  00(x) = V (x) (x)��(x), aloally integrable funtion. Then, its primitive  0(x) isabsolutely ontinuous for x > 0.Therefore, the domain of Hy is the subspae of squareintegrable funtions having an absolutely ontinuous �rstderivative and suh thatHy (x) = � 00(x) + V (x) (x) 2 L2(R+) (7)(without requiring any boundary ondition at x = 0).In the next Setion we will determine the de�ienysubspaes of H , K� = Ker(Hy � i).III. DEFICIENCY SUBSPACES OF HTo ompute the de�ieny indies [12℄ of H , n� =dimK�, we must solve the eigenvalue problemHy�� = ��00�(x) + V (x)��(x) = ���; (8)for �� 2 D(Hy) and � 2 C, with =(�) 6= 0.

By means of the following Ansatz (suggested by theexpeted behavior of the solutions of (8) for x! 0+ andx!1), � = x�e�x22 F (x2); (9)with � = 1=2 +pg + 1=4; (10)we get from (8) the Kummer's equation for F(z):zF 00(z) + (b� z)F 0(z)� aF (z) = 0; (11)where a = (2�+ 1� �)=4 and b = �+ 1=2.For real �, we have g � �1=4 and � � 1=2. In thisase it an be seen [13℄ that the only solution of eq. (11)leading to a square-integrable at in�nity solution of eq.(8) is given by the Kummer funtion F (z) = U(a; b; z).Then, the eigenfuntions of Hy are proportional to��(x) = x� e�x22 U �2�+ 1� �4 ;�+ 12;x2� : (12)We must now study the behavior of �� near the origin,where U(a; b; z) behaves as z�a(1 + O(1=z)) [13℄. Wemust onsider two di�erent regions for the parameter �.For � � 3=2, �� 2 L2(R+) , a = (2�+ 1� �)=4 =�n, with n 2 N. As a onsequene, if � =2 R, �� =2L2(R+), and the de�ieny subspaes are trivial.This means that, for � � 3=2, H is essentially self-adjoint, and its disrete spetrum is given by the ondi-tion �a 2 N, i. e.�n = 4n+ 2�+ 1; (13)with n = 0; 1; 2; : : : The orresponding eigenfuntions are�n = x�e� x22 U ��n;�+ 12;x2� : (14)On the other hand, for 1=2 � � < 3=2, one an see [13℄that �� 2 L2(R+);8� 2 C. Then, the de�ieny sub-spaesK� are one-dimensional, and the de�ieny indiesn� = 11. In this region, H admits di�erent self-adjointextensions.1This is in aordane to Weyl's riterion [12℄ aording towhih, for ontinuous V (x), H is essentially self-adjoint if andonly if it is in the limit point ase, both at in�nity and at theorigin.In addition, if V (x) � M > 0, for x large enough, then His in the limit point ase at in�nity. In onsequene, in thepresent ase H is essentially self-adjoint if and only if it is inthe limit point ase at zero.In partiular, for positive V (x) (g � 0), if V (x) � 3=4 x�2for x suÆiently lose to zero then H is in the limit point aseat the origin. On the ontrary, if V (x) � (3=4 � ") x�2, forsome " > 0, then H is in the limit irle ase at zero.This on�rms our results onerning the self-adjointness ofH in the di�erent regions of the parameter g.2



IV. SELF-ADJOINT EXTENSIONS OF HSine n+ = 1 = n� for 1=2 � � < 3=2, there existsa one-parameter family of self-adjoint extensions of H ,whih are in a one-to-one relationship with the isometriesfrom K+ onto K� [12℄.The de�ieny subspaes K+ and K� are generated by�+ � ��=i and �� � ��=�i = ��+, respetively. Then,eah isometry U : K+ ! K� an be identi�ed with theparameter  2 [0; �) de�ned byU�+ = e�2i��: (15)The orresponding self-adjoint operator, H , is de�nedon a dense subspae [12℄D(H) � D(Hy) = D(H)�K+ �K�; (16)where H is the losure of H . Funtions � 2 D(H) anbe written as� = �0 +A ��+ + e�2i��� ; (17)with �0 2 D(H) and A a onstant. Sine H is a restri-tion of Hy, we haveH� = Hy� = H�0 + iA ��+ � e�2i��� : (18)In the following we take g � 0) 1 � � < 3=2. As wewill see, ondition (17) determines the behavior of � 2D(H) near the origin. Taking the logarithmi derivativeof � we get, �0� = ei�00 + 2A< �ei�0+�ei�0 + 2A< (ei�+) : (19)In this expression, the terms oming from �+ give theleading ontributions for small x. In fat, in AppendixA we show that �0(x) = o(x�) and �00(x) = o(x��1).Then, for the right hand side of eq. (19) we get [13℄ (seeeq. (12)),�0(x)�(x) = 1� �x + (2�� 1)�( 12 � �)�(�� 12 )�os ( � 1)os ( � 2) � x2��2 + o(x2��2); (20)where we have alled 1 = arg f�[(�2�+ 3� i)=4℄g and2 = arg f�[(2�+ 1� i)=4℄g.Thus, the limit of eq. (19) for x! 0+ gives the appro-priate boundary ondition for the funtions in the domainof the partiular SAE . As we will see, this boundary on-dition will �nally determine a disrete spetrum for H .

V. THE SPECTRUMThe boundary ondition spei�ed in eq. (20) harater-izes the domain of a partiular SAE of the operator H ,H . In order to determine its spetrum, we must �nd thesolutions of (8), �� as given in (12) with � 2 R, whihsatisfy this boundary ondition. Their behavior near theorigin is given by (see eq. (12) and [13℄),�0�(x)��(x) = 1� �x + (2�� 1)�( 12 � �)�(�� 12 )�� � 2�+1��4 �� ��2�+3��4 � � x2��2 + o(x2��2): (21)Comparison of eqs. (20) and (21) immediately leads usto � ��� �4 �� �1� �� �4 � = �(; �); (22)where we have de�ned the parameters� = 2�+ 14 = 14 �2 +p1 + 4g� 2 [3=4; 1)�(; �) = os ( � 1)= os ( � 2): (23)Eq. (22) determines a disrete spetrum for eah SAE.In Figure 1. we plot both sides of eq. (22) as a funtionof �, for � = 4=5 and � = 1. The absiss� of the in-tersetions of this two funtions give the orrespondingspetrum.Notie that eah SAE an equivalently be harater-ized by � 2 R [ f�1g. Then, we will also use thenotation H(�) to design this SAE.
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FIG. 1. F (�) � �(���4 )�( 1����4 ) as a funtion of �, for � = 4=5.The solutions of F (�) = � give the spetrum of the SAEidenti�ed by �.3



The spetrum of H(�) is bounded from below, andpresents a negative eigenvalue for those SAE harater-ized by � > �(�)=�(1 � �) (even though the potentialV (x) � 2pg � 0). Moreover, there is no ommon lowerbound; instead, any negative real is in the spetrum ofsome SAE.For any value of g, there are two partiular SAE forwhih the spetrum an be easily worked out (see eq.(22)):� For � = 0 the spetrum is given by�n = 4(n+ 1� �); (24)with n = 0; 1; 2; : : :� For � = �1 the spetrum is given by�n = 4(n+ �); (25)with n = 0; 1; 2; : : :For other values of �, the eigenvalues grow linearlywith n, 4(n� 1 + �) < �n < 4(n+ �): (26)The ase with g = 0It is instrutive to onsider the partiularly simple ase ofthe harmoni osillator in the half-line, for whih there is nosingularity in the potential. Indeed, for g = 0 (� = 1 or� = 3=4), the boundary ondition (eq. (20)) reads,�0(x)�(x) = �2� +O(x) (27)or, equivalently,limx!0+ ��0(x) + 2� �(x)	 = 0; (28)whih orresponds to Robin boundary onditions at the ori-gin. Dirihlet and Neumann boundary onditions are ob-tained for � = �1 and � = 0, respetively.Let's now study the eigenfuntions and eigenvalues of theself-adjoint extensions of H orresponding to di�erent valuesof �. Dirihlet boundary onditions (� = �1)Sine � = 3=4, the eigenvalues (see eq. (25)) are given by�n = 4n+ 3; (29)where n = 0; 1; 2; : : :Sine the Hamiltonian (eq. (4)) orresponds in this aseto a partile with mass m = 1=2 and frequeny ! = 2, theeigenvalues of this SAE an be written as �n = ![(2n + 1) +

1=2℄, whih oinides with the spetrum of the odd parityeigenvetors of the harmoni osillator on the omplete realline.In fat, the eigenfuntions are given by (see eq. (12) and[13℄), �n = 2�2n�1e� x22 H2n+1(x): (30)Neumann boundary onditions (� = 0)In this ase, the eigenvalues (see eq. (24)) are given by�n = 4n + 1; (31)where n = 0; 1; 2; : : :. This eigenvalues an be written as�n = !(2n+1=2), whih oinides with the even parity setorof the harmoni osillator spetrum on the omplete real line.The eigenfuntions are now given by (see eq. (12)),�n = 2�2ne�x22 H2n(x): (32)Robin boundary onditions (� 6= 0;�1)For �nite � 6= 0, the eigenfuntions are given by (eq. (12)),�� = xe�x22 U �3� �4 ; 32 ; x2� ; (33)and the orresponding eigenvalues are determined by thetrasendental equation� � 3��4 �� � 1��4 � = �(; 3=4): (34)Notie that, for general Robin boundary ondition, theground state is negative (less than the minimum of the po-tential) for � > �[ 34 ℄=�[ 14 ℄.VI. THE INTEGRAL REPRESENTATION FORTHE �-FUNCTIONThe spetrum of eah SAE of the operator H in (4)is determined by eq. (22), for any given � 2 [�1;1).In this setion, we will study the pole struture of theassoiated �-funtion, de�ned as��(s) � TrnH�s(�)o =Xn ��s�;n: (35)Notie that, sine the eigenvalues grow linearly with n(see eq. (26)), ��(s) is analyti in the half-plane <(s) > 1.For �nite �, let us de�ne the holomorphi funtion,4



f(�) = 1� �1� �� �4 � � �� ��� �4 � ; (36)with 34 � � < 1. The eigenvalues of the self-adjointoperator H(�) orrespond to the zeroes of f(�) whih,onsequently, are all real. They are also positive, withthe only possible exeption of the �rst one, aording tothe disussion in the previous Setion.Moreover, the zeroes of f(�) are simple. To prove this,let's assume the onverse is true, i. e. there is a � 2 Rsuh that f(�) = f 0(�) = 0. Taking into aount thatf 0(�) =  (1����4 )4�(1����4 ) � �  (���4 )4�(���4 ) == 14 � [ (1����4 )� (���4 )℄�(1����4 ) +  (�� �=4) f(�)� ; (37)we see that our assumption requires that (1� �� �=4) =  (�� �=4) ; (38)whih is not the ase for any � 2 R, if 34 � � < 1.Therefore, the �-funtion an be represented as theintegral on the omplex plane��(s) = 12�i IC ��s f 0(�)f(�) + �(��0;�)��s0;� ; (39)where C is a urve whih enirles the positive zeroes off(�) ounterlokwise. In eq. (39), �(y) = 1 for y > 0and �(y) = 0 for y � 0.Let us onsider the dominant asymptoti behavior ofthe quotient f 0(�)f(�) == � �1� �� �4 ��  ��� �4 ��4�1� � �(1����4 )�(���4 ) � + 14  (�� �=4): (40)For j arg(��)j < � and j�j ! 1, it is suÆient to write (�� �=4) = log (��) +O(1); (41) (1� �� �=4)�  (�� �=4) = O(��1); (42)� �1� �� �4 �� ��� �4 � = O(�1�2�): (43)Consequently, for <(s) > 1 the path of integration in(39) an be deformed to a vertial line, to get��(s) = �12�i Z i1+0�i1+0 ��s f 0(�)f(�) d�+ h(s); (44)where h(s) (the ontribution of the negative eigenvalue,if any) is a holomorphi funtion.

VII. POLE STRUCTURE OF THE �-FUNCTIONThe integral in eq. (44) de�nes ��(s) as an analytifuntion in the half-plane <(s) > 1, whih an be mero-morphially extended to the whole omplex s-plane. Itan be written as�(s) = � 12�i Z i1i f 0(�)f(�) ��s d��� 12�i Z �i�i1 f 0(�)f(�) ��s d�+ h1(s) == �e�is�=22� Z 11 f 0(i�)f(i�) ��s d���eis�=22� Z 11 f 0(�i�)f(�i�) ��s d�+ h1(s); (45)
where h1(s) is a holomorphi funtion.In Appendix B we work out the asymptoti expansionof f 0(�)=f(�), whih is given byf 0(�)f(�) � 14 log (��) + 14 1Xk=0 k(�) (��)�k++ 1XN=1 1Xn=0CN;n(�; �) (��)�N(2��1)�2n�1; (46)where the oeÆients k(�) are polynomials in � whoseexpliit form is not needed for our purposes, andCN;n(�; �) == � �42��1��N �2�� 1 + 2nN � bn(�;N); (47)with bn(�;N) de�ned in eq. (B7) (see also eq. (B8)).As an be seen from eq. (46), the asymptoti expansionof f 0(�)=f(�) ontains the logarithmi term 14 log(��),and a series of non positive integer powers of �, bothoming from the  -funtion in the last term in the righthand side of (40). There is also a series of dereasing �-dependent powers of �, whih omes from the �rst termin the right hand side of (40).For the dominant logarithmi term we get from (45)� 18� Z 11 �e�i�s2 log (e�i�2 �) + ei�s2 log (ei �2 �) ���s d�= sin(� s2 )8 (s� 1) � os(� s2 )4� (s� 1)2 = 14 1(s� 1) + h2(s); (48)5



where h2(s) is holomorphi. The analyti extension ofthis term presents a unique simple pole at s = 1, with aresidue equal to 1=4.The remaining terms in the asymptoti expansion off 0(�)=f(�) are of the form Aj(��)�j , for some j � 0(see eq. (46)). Replaing this in eq. (45) we get�Aj2� Z 11 he�i�2 (s�j) + ei�2 (s�j)i ��s�j d� == �Aj� os��2 (s� j)� 1s� (1� j) == �Aj sin(�j)� 1s� (1� j) + h3(s); (49)
where h3(s) is holomorphi.So, from eah power dependent term in the asymptotiexpansion of f 0(�)=f(�), proportional to (��)�j , we geta unique simple pole at s = 1 � j, with a residue givenby �(Aj=�) sin(�j).Notie that this residue vanishes for integer values ofj. In partiular, this is the ase for all the ontributionoming from the asymptoti expansion of  (� � �=4) inthe last term in the right hand side of eq. (40), exept forthe �rst one, the logarithmi term leading to eq. (48). Infat, this is the only singularity present in the � = �1and � = 0 ases (see eq. (40)).But in general, for 34 � � < 1, there are also poles atnon integer values of s, as follows from (46).In onlusion, besides the pole at s = 1 with residue1=4, for eah pair of integers(N;n); with N = 1; 2; 3; : : : ; and n = 0; 1; 2; : : : ; (50)the �-funtion of the SAE of H haraterized by the pa-rameter �, ��(s), has a ontribution with a simple poleat the negative values = �N(2�� 1)� 2n 2 (�N � 2n;�N2 � 2n℄; (51)with a �-dependent residue given byRes (�)js=�N(2��1)�2n == (�1)N� CN;n(�; �) sin(2�N�): (52)This is our main result, establishing the existene of �-dependent poles of the �-funtion whih, in general, arenot loated at a half an integer value of s. Moreover, theresidues depend on the SAE onsidered.Finally, notie that when � is a rational number, therean be several (but a �nite number of) pairs (N;n) on-tributing to the same pole. They must satisfyn� n0N �N 0 = 12 � � = �pq 2 (�1=2;�1=4℄ ; (53)

where p; q 2 N.On the ontrary, when � is irrational the poles om-ing from di�erent pairs (N;n), also irrational, are notoinident. A. Poles and residues of ��(s)Let us reall that the logarithmi term in the expansion(46) leads to a pole at s = 1 (see eq. (48)) with a residuegiven by Res (�)js=1 = 14 ; (54)independently of the SAE onsidered.The other poles an be organized in sequenes har-aterized by the integer N = 1; 2; : : : In eah sequene,suessive poles di�er by �2.For example, the poles orresponding to the pairs (N =1; n), with n = 0; 1; 2; : : :, are loated at (see eq. (51))�1� 2n < s = 1� 2�� 2n � �12 � 2n; (55)and have residues given byRes (�)js=1�2��2n = �C1;n(�; �)� sin(2��): (56)Similarly, the poles arising from the (N = 2; n � 0)terms in the asymptoti expansion (46) are loated at�2� 2n < s = 2� 4�� 2n < �1� 2n; (57)and have residues given byRes (�)js=2�4��2n = C2;n(�; �)� sin(4��): (58)Notie that the poles in the N -th sequene haveresidues proportional to �N (see eq. (47)).Finally, let us stress that a pole of ��(s) at a non integers = �N(2��1)�2n, as in (51), implies the presene of aterm in the small-t asymptoti expansion of Tr�e�tH(�)	of the form A[N(2��1)+2n℄ tN(2��1)+2n; (59)with a oeÆient related to the residue byA[N(2��1)+2n℄ == �(�N(2�� 1)� 2n) Res ��(s)js=�N(2��1)�2n : (60)
6



B. �-funtion singularities from the asymptotiexpansion of the eigenvaluesThe singular behavior found for ��(s) an be on�rmed(at least for the �rst few poles) by determining from (22)the asymptoti expansion of the eigenvalues ��;n for n�1. Indeed, one an make the Ansatz��;n4 = 1� �+ n+ "; (61)and self-onsistently determine " through suessive or-retions. For the �rst terms we get��;n4 � 1� �+ n+ �� sin(2� �)n1�2 �++�� �1� 3�+ 2�2� sin(2� �)n�2��� �22� sin(4� �)n2�4 � + : : :; (62)where we have retained only powers of n greater than�2. This leads, for the �-funtion in eq. (35), to��(s) � 4�s �(s) + s 4�s (�� 1) �(s+ 1)++s (s+ 1) 4�s (�� 1)22 �(s+ 2)��s 4�s �� sin (2��) �(s+ 2�)��s (s+ 2�) 4�s �� (�� 1) sin(2� �) �(1 + s+ 2�)++s 4�s �22� sin(4� �) �(s� 1 + 4�) + : : : ; (63)where �(z) is the Riemann �-funtion, whih presents aunique simple pole at z = 1, with a residue equal to 1.This result shows a pole struture in agreement withthe one previously desribed.VIII. PARTICULAR CASESIn this Setion we will show how our results redue tothe usual ones for g = 0 (when there is no singularity inthe potential). We will also show that, for � = 0 and� = �1, the �-funtion presents a unique simple pole.A. The � = 0 and � = �1 SAEThe �-funtion for the SAE haraterized by � = 0 and� = �1 an be exatly evaluated, sine in these ases

the spetrum was expliitly omputed in eqs. (24) and(25) respetively. We get�0(s) = 4�s 1Xn=0(n+ 1� �)�s = 4�s�(s; 1� �);��1(s) = 4�s 1Xn=0(n+ �)�s = 4�s�(s; �); (64)where �(s; q) is the Hurwitz �-funtion, whose analytiextension presents only a simple pole at s = 1, with aresidue Res �(s; q)js=1 = 1. This leads, in both ases, toa unique simple pole for the �-funtion at s = 1, with aresidue equal to 1=4, in agreement with eq. (48).In fat, from eqs. (52) and (47) it is evident that all theresidues orresponding to negative poles vanish for � = 0.On the other hand, for � = �1, f 0(�)=f(�) redues to14 (���=4) (see eq. (40)), and the only term leading to asingularity is the logarithm in the asymptoti expansion(46), as already disussed (see eq. (48)).B. The harmoni osillator in the half-lineFor the harmoni osillator in the half-line (g = 0 or� = 3=4) we still �nd a simple pole at s = 1, with residue1=4 (the only singularity for Dirhlet or Neumann bound-ary onditions, as previously disussed).For �nite �, the remaining singularities are loated at(see eq. (51)),s = �N2 � 2n; N = 1; 2; 3; : : : ; n = 0; 1; 2; : : : ; (65)with residues given by (see eq. (52)),Res (�)js=�N2 �2n == (�1)N� CN;n (� = 3=4; �) sin�3�2 N�; (66)whih vanish for even N .Then, eah pole (exept for the �rst one, at s = 1)orresponds to a negative half-integer,s = �k � 1=2; k = 0; 1; 2: : : : (67)Moreover, it is lear that for �nitely many pairs (N;n)satisfying N + 4n = 2k + 1, the orresponding poles lieat the same point.Therefore, the residue of ��(s) at s = �k � 1=2 mustbe omputed by adding all these ontributions, hara-terized by N = 2(k � 2n) + 1, with n = 0; 1; 2; : : : ; [k=2℄.We get Res (��(s))js=�k� 12 == (�1)k+1� [k=2℄Xn=0 C[2(k�2n)+1℄;n (� = 3=4; �): (68)7



For example, for k = 0, the residue isRes (��(s))js=� 12 = � 1� C1;0 (� = 3=4; �) = �� (69)and, for k = 1,Res (��(s))js=� 32 = 1� C3;0 (� = 3=4; �) = � 4� �3: (70)IX. CONCLUSIONSIn this artile we have analyzed the pole struture ofthe �-funtion of the Hamiltonian desribing a quantumShr�dinger partile living in the half-line R+, subjetto the singular potential V (x) = gx�2 + x2.We have spei�ed the domain of the adjoint of theHamiltonian, Hy, and determined the de�ieny sub-spaes of H , initially de�ned on C10 (R+). We haveshown that, for �1=4 � g < 3=4, H admits nontriv-ial self-adjoint extensions whih depend on a ontinuousreal parameter �.For omputational onveniene, we have limited ouranalysis to the range 0 � g < 3=4.One determined the losure of H (studied in Ap-pendix A), we were able to haraterize eah SAE H(�)by the behavior (singular, in general) near the origin ofthe funtions in the orresponding domain of de�nition.This relation also allowed for the identi�ation of thespetrum of H(�) with the zeroes of an analyti funtionf(�).The asymptoti expansion of f(�) (outlined in Ap-pendix B) led to the determination of the poles andresidues of the �-funtion assoiated with H(�), ��(s).We have shown that the poles of ��(s) an be organizedin sequenes haraterized by an integer N = 1; 2; 3; : : :,and are loated at s = �N(2� � 1) � 2n, with n =0; 1; 2; : : : and � = (1 +pg + 1=4)=2 2 [3=4; 1). Notiethat these values of s are not, in general, half an integer(whih are the expeted positions of the poles for a se-ond order di�erential operator with smooth oeÆientson a ompat segment), and they are irrational numbersfor irrational values of �.We have also found that the residues depend on theparameter � haraterizing the SAE H(�).We have on�rmed this �-funtion pole struture (forthe �rst poles) through the omparison with the resultsobtained from the asymptoti behavior of the eigenval-ues.These results also imply that the small-t asymptotiexpansion of the heat kernel of H(�) ontains powers oft whih (in general) are not half an integer, and that theorresponding oeÆients depend on the SAE.Finally, several partiular ases were analyzed, �ndingthat our results are onsistent with the known ones. Inpartiular, for the harmoni osillator (g = 0) in the half

line, subjet to any loal boundary ondition at x = 0,the poles lie at half-integer values of s.A �nal remark is in order: Notie that the unusual polestruture previously desribed is a onsequene of havinga potential with a moderate singular behavior near theorigin. In fat, for g � 3=4, where the Hamiltonian H isessentially self-adjoint due to a stronger singular behaviorof V (x), the �-funtion simply redues to 4�s �(s; �) (seeeq. (13)), whih presents a unique pole at s = 1 withresidue 1=4.A similar pole struture is obtained for the Hamilto-nian �-funtion of harged Dira partiles living in (2+1)-dimensions, in the presene of both a uniform magneti�eld and a singular magneti tube with a non-integerux. This problem was onsidered in [14℄, where it wasshown that the Hamiltonian restrited to a ritial angu-lar momentum subspae admits nontrivial SAE, whosespetra are determined by a trasendental equation sim-ilar to (22). These results will be reported elsewhere.ACKNOWLEDGEMENTSWe thank E.M. Santangelo and M.A. Mushietti foruseful disussions.The authors aknowledge support from Fundai�on An-torhas and DAAD (grant 13887/1-87).HF and PAGP also aknowledge support from CONI-CET (grant 0459/98) and CIC-PBA (Argentina).APPENDIX A: CLOSURE OF HIn this Setion we will justify to disregard the ontri-butions from the funtions in the domain of the losureH to the boundary ondition, eq. (20). Indeed, we willshow that if � 2 D(H) then�(x) = o(x�) and �0(x) = o(x��1) (A1)near the origin, for any � < 3=2.In order to determine the losure of the Hamilto-nian's graph we must onsider those Cauhy sequenesin D(H) = C10 (R+), f'ngn2N, suh that fH'ngn2Nare also Cauhy sequenes. Notie that, sine the oef-�ients in H are real (see eq. (4)), we an onsider realfuntions.Let us all ' = 'n �'m, with n;m 2 N. Then '! 0and H'! 0 as n;m!1.Consider �rst the salar produt(';H') = Z 10 '��'00 + gx2 '+ x2'� dx == Z 10 �'02 + gx2 '2 + x2'2� dx � jj'jj jjH'jj ! 0(A2)8



for n;m!1. Therefore, for g > 0, we onlude thatf'0n(x)gn2N; �'n(x)x �n2N and fx'n(x)gn2N (A3)are also Cauhy sequenes.We will now prove the followingLemma: Let f'ngn2N be a Cauhy sequene in D(H) =C10 (R+) suh that, for g > 0, 1 � a < 2 and g 6= (a2 �1)=4,fH'ngn2N; �'n(x)xa �n2N; and �'0n(x)xa�1 �n2N (A4)are also Cauhy sequenes. Then,� 'n(x)x1+a=2�n2N and �'0n(x)xa=2 �n2N (A5)are Cauhy sequenes too.Proof: As before, let ' = 'n � 'm. First notie that,for 1 � a < 2,Z 10 �x1�a=2 '(x)�2 dx � Z 10 ('(x))2 dx++ Z 11 (x'(x))2 dx � jj'(x)jj2 + jjx'(x)jj2: (A6)Then, from (A3), we see that nx1�a=2 'n(x)on2N is alsoa Cauhy sequene.A straightforward alulation shows that�'(x)xa ; H'(x)� = Z 10 (�'0(x)xa=2 �2++ �g � a(a+ 1)2 �� '(x)x1+a=2�2 + �x1�a=2 '(x)�2) dx:(A7)Similarly,�'0(x)xa�1 ; H'(x)� = Z 10 (��a� 12 ��'0(x)xa=2 �2+g�a+ 12 �� '(x)x1+a=2�2 +�a� 32 ��x1�a=2 '(x)�2) dx:(A8)Now, taking into aount that the sum of fundamentalsequenes is also a Cauhy sequene, we see that�A '(x)xa +B '0(x)xa�1 ; H'(x)�! 0 (A9)

when n;m!1, for any pair of real numbers A and B.The oeÆients of �'0(x)xa=2 �2 and � '(x)x1+a=2�2 in theexpression of the salar produt in (A9) areA� B�a� 12 � andA�g � a(a+ 1)2 �+B g�a+ 12 � (A10)respetively. One an see that, by hoosing one of themas zero, the other is non vanishing (exept for g = (a2 �1)=4).It is easily seen that these results prove the Lemma.For a = 1, from (A3) and the Lemma, we onludethat �'n(x)x3=2 �n2N and �'0n(x)x1=2 �n2N (A11)are Cauhy sequenes.Let us �rst suppose that g is an irrational number.Then, applying iteratively the Lemma from (A11) onean show that, for any positive integer k,� 'n(x)x2[1�(1=2)k℄�n2N and � '0n(x)x2[1�(1=2)k℄�1�n2N (A12)are Cauhy sequenes.Finally, for any given " > 0 there are integers k1 andk2 suh that (1=2)k1 � " � (1=2)k2 . Taking into aountthat 1x2�" � 1x2[1�(1=2)k1 ℄ ; for 0 < x � 1;1x2�" � 1x2[1�(1=2)k2 ℄ ; for x � 1; (A13)one immediately onludes that �'n(x)x2�" �n2N is aCauhy sequene.A similar onlusion is easily obtained for�'0n(x)x1�" �n2N.Let us now suppose that g is a rational number. Then,from (A3) and (A11) it is seen that we an hoose anirrational a 2 (1; 3=2) from whih the Lemma an alsobe applied iteratively to arrive to the same onlusions.In the following we will onsider the behavior of thefuntions near the origin.For any " > 0, we an write9



x�� '(x) = Z x0 �y�� '(y)�0 dy == Z x0 y��+1�" ��� '(y)y2�" + '0(y)y1�" � dy: (A14)So, for x � 1, � < 3=2 and " small enough, we have��x�� '(x)�� � �Z 10 y2(��+1�")dy�1=2�j�j ��������'(y)y2�" �������� ++ ��������'0(y)y1�" ���������!n;m!1 0: (A15)Therefore, the sequene fx�� 'n(x)gn2N, with � < 3=2,is uniformly onvergent in [0; 1℄, and its limit is a ontin-uous funtion vanishing at the origin,limn!1 �x�� 'n(x)� = x�� �(x); (A16)limx!0+ �x�� �(x)� = 0: (A17)In partiular, for � = 0 we have the uniform limitlimn!1'n(x) = �(x); (A18)whih oinides with the limit of this sequene inL2(R+).On the other hand, we an also writeZ x0 y��+1H'(y) dy = �x��+1 '0(x)++ Z x0 y��+1�"�(��+ 1) '0(y)y1�" + g '(y)y2�"� dy++ Z x0 y��+2 y '(y) dy: (A19)
Therefore, for x � 1, � < 3=2 and " suÆiently small, wehave ��x��+1 '0(x)�� � �Z 10 y2(��+1) dy�1=2 jjH'(y)jj+�Z 10 y2(��+1�") dy�1=2�j�� 1j ��������'0(y)y1�" ��������+ g ��������'(y)x2�" ���������++�Z 10 y2(��+2) dy�1=2 jjy '(y)jj !n;m!1 0:(A20)Consequently, the sequene fx��+1 '0n(x)gn2N, with� < 3=2, is uniformly onvergent in [0; 1℄, and its limit isa ontinuous funtion vanishing at the origin,

limn!1 �x��+1 '0n(x)� = x��+1 �(x); (A21)limx!0+ �x��+1 �(x)� = 0: (A22)In partiular, for � = 1 we have the uniform limitlimn!1'0n(x) = �(x); (A23)whih oinides with the limit of this sequene in L2(R+)(see (A3)).Let us now show that �(x) = �0(x). Indeed, for x � 1,we have �����(x) � Z x0 �(y) dy���� �� j�(x) � 'n(x)j + ����Z x0 (�(y)� '0n(y)) dy���� �� j�(x) � 'n(x)j + jj�� '0njj !n!1 0: (A24)So, �(x) is a di�erentiable funtion whose �rst derivativeis �(x).Equations (A17) and (A22) imply that, given "1 > 0and � < 3=2,j�(x)j < "1 x� and j�0(x)j < "1 x��1 (A25)if x < Æ, for some Æ > 0 small enough. This proves ourassertion.APPENDIX B: ASYMPTOTIC EXPANSIONSIn this appendix we will ompute the asymptoti ex-pansion for f 0(�)=f(�) as given in eq. (40).The asymptoti expansion for the polygamma funtionappearing in the right hand side of eq. (40) an be easilyobtained from Stirling's formula [13℄, (�� �=4) � log (��) + 1Xi=0 i(�)(��)�k ; (B1)where the oeÆients i(�) are polynomials in � whihwe will not need to expliitly know for our purposes.On the other hand, taking into aount (43), we anwrite asymptotially for the �rst term in the right handside of eq. (40)
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� �1� �� �4 ��  ��� �4 ��1� � �(1����4 )�(���4 ) �P1N=0 �N ��(1����4 )�(���4 ) �N � �1� �� �4 ��  ��� �4 �� ==P1N=0 �N ��(1����4 )�(���4 ) �N 4 dd(��) log ��(1����4 )�(���4 ) � ==P1N=0 �NN 4 dd(��) ��(1����4 )�(���4 ) �N : (B2)From the Stirling's formula [13℄ we getlog"� �1� �� �4 �� ��� �4 � # � (1� 2�) log(��4 )++( 1Xm=1am(�)(��)�2m); (B3)where the oeÆients in the series are given byam(�) = 24m�12m+ 1 ��(1� �)2m � �2m�+��� 1=2m ��� �(1� �)2m + �2m�+ (2m+ 1) mXp=1 B2pp(2p� 1)��� 2m� 12p� 2 �h�2(m�p)+1 � (1� �)2(m�p)+1i�:(B4)Then, "� �1� �� �4 �� ��� �4 � #N �� ���4��N(2��1) 1Xn=0 bn(�;N) (��)�2n; (B5)where1Xn=0 bn(�;N) z�2n � eN 1Xm=1 am(�) z�2m : (B6)The oeÆients bn(�;N) are polynomials in � and Ngiven bybn(�;N) = Xr1+2r2+:::+nrn=nNr1+r2+:::+rn �� a1(�)r1 a2(�)r2 : : : an(�)rnr1! r2! : : : rn! ; (B7)

where the sum extends over all sets of non negative in-tegers r1; r2; : : : ; rn suh that r1 + 2 r2 + : : :+ n rn = n.For the �rst �ve oeÆients we getb0(�;N) = 1;b1(�;N) = 83 N � �1� 3�+ 2�2� ;b2(�;N) = 3245 N � �5N � �1� 3�+ 2�2�2++6 ��1 + 10�2 � 15�3 + 6�4��b3(�;N) = 2562835 N � �1� 3�+ 2�2��� �360� 18 (�60 + 7N) �+ 35N2 �2�� 30 �72� 42N + 7N2� �3++5 �216� 378N + 91N2� �4��84N (�9 + 5N) �5 + 140N2 �6� ;b4(�;N) = 51242525 N � �1� 3�+ 2�2��� (�45360+ 36 (�3780+ 221N) ���252 �60� 9N + 5N2� �2++7 �32400� 8604N + 540N2 + 25N3� �3��315 ��240+ 36N � 32N2 + 5N3� �4++21 ��10800+ 9684N � 2700N2 + 275N3� �5��63 ��1200 + 3156N � 1420N2 + 175N3� �6++6N �9468� 10080N + 1925N2� �7��1260N2 (�12 + 5N) �8 + 1400N3 �9� : (B8)Now, replaing eq. (B5) in eq. (B2) we get� �1� �� �4 ��  ��� �4 ��4 �1� � �(1����4 )�(���4 ) � � � 1XN=1 1Xn=0 4N(2��1)���N �2�� 1 + 2nN � bn(�;N) (��)�N(2��1)�2n�1 �� 1XN=1 1Xn=0CN;n(�; �) (��)�N(2��1)�2n�1: (B9)Finally, eqs. (B1) and (B9) lead to the asymptoti ex-pansion for f 0(�)=f(�) in eq. (46).11
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