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1. IntrodutionDue to their intimate relationship with Lie algebras, the various one- and two-dimensional Toda systems are among the most important models of the theory of in-tegrable non-linear equations [1-19℄. In partiular, the standard onformal Toda �eldtheories, whih are given by the LagrangeanLToda(') = �2� lXi;j=1 12j�ij2Kij��'i��'j � lXi=1m2i expn12 lXj=1Kij'jo� ; (1:1)where � is a oupling onstant, Kij is the Cartan matrix and the �i are the simpleroots of a simple Lie algebra of rank l, have been the subjet of many studies [1,3,4,8-13,19℄. It has been �rst shown by Leznov and Saveliev [1,3℄ that the Euler-Lagrangeequations of (1.1) an be written as a zero urvature ondition, are exatly integrable,and possess interesting non-linear symmetry algebras [3,4,10,11,13,19℄. These symmetryalgebras are generated by hiral onserved urrents, and are polynomial extensions ofthe hiral Virasoro algebras generated by the traeless energy-momentum tensor. Thehiral urrents in question are onformal primary �elds, whose onformal weights aregiven by the orders of the independent Casimirs of the orresponding simple Lie algebra.Polynomial extensions of the Virasoro algebra by hiral primary �elds are generally knownas W-algebras [20℄, whih are expeted to play an important role in the lassi�ationof onformal �eld theories and are in the fous of urrent investigations [20-29℄. Theimportane of Toda systems in two-dimensional onformal �eld theory is in fat greatlyenhaned by their realizing the W-algebra symmetries.It has been disovered reently that the onformal Toda �eld theories an be nat-urally viewed as Hamiltonian redutions of the Wess-Zumino-Novikov-Witten (WZNW)theory [12,13℄. The main feature of the WZNW theory is its aÆne Ka-Moody (KM)symmetry, whih underlies its integrability [30,31℄. The WZNW theory provides themost `eonomial' realization of the KM symmetry in the sense that its phase spae isessentially a diret produt of the left � right KM phase spaes. The WZNW ! TodaHamiltonian redution is ahieved by imposing ertain �rst lass, onformally invari-ant onstraints on the KM urrents, whih redue the hiral KM phase spaes to phasespaes arrying the hiral W-algebras as their Poisson braket struture [12,13℄. Thusthe W-algebra is related to the phase spae of the Toda theory in the same way as theKM algebra is related to the phase spae of the WZNW theory. In the above manner,the W-symmetry of the Toda theories beomes manifest by desribing these theories as3



redued WZNW theories. This way of looking at Toda theories has also numerous otheradvantages, desribed in detail in [13℄.The onstrained WZNW (KM) setting of the standard Toda theories (W-algebras)allows for generalizations, some of whih have already been investigated [14-18,26-29℄.An important reent development is the realization that it is possible to assoiate ageneralized W-algebra to every embedding of the Lie algebra sl(2) into the simple Liealgebras [16-18℄. The standard W-algebra, ourring in Toda theory, orresponds to theso alled prinipal sl(2). In fat, these generalized W-algebras an be obtained fromthe KM algebra by onstraining the urrent to the highest weight gauge, whih hasbeen originally introdued in [13℄ for desribing the standard ase. Another interestingdevelopment is the W ln-algebras introdued by Bershadsky [26℄ and further studied in[28℄. It is known that the simplest non-trivial ase W 23 , whih was originally proposed byPolyakov [27℄, falls into a speial ase of theW-algebras obtained by the sl(2) embeddingsmentioned above. It has not been lear, however, as to whether the two lasses of W-algebras are related in general, or to what extent one an further generalize the KMredution to ahieve new W-algebras.In the present paper, we undertake the �rst systemati study of the Hamiltonianredutions of the WZNW theory, aiming at unovering the general struture of the redu-tion and, at the same time, try to answer the above question. Various di�erent questionsarising from this main problem are also addressed (see Contents), and some of theman be examined on its own right. As this provides our motivation and in fat most ofthe later developments originate from it, we wish to reall here the main points of theWZNW ! Toda redution before giving a more detailed outline of the ontent.To make ontat with the Toda theories, we onsider the WZNW theory*SWZ(g) = �2 Z d2x ��� Tr (g�1��g)(g�1��g)� �3 ZB3 Tr (g�1dg)3 ; (1:2)for a simple, maximally non-ompat, onneted real Lie group G. In other words, weassume that the simple Lie algebra, G, orresponding to G allows for a Cartan deom-position over the �eld of real numbers. The �eld equation of the WZNW theory an bewritten in the equivalent forms��J = 0 or �+ ~J = 0 ; (1:3)* The KM level k is �4��. The spae-time onventions are: �00 = ��11 = 1 andx� = 12 (x0 � x1). The WZNW �eld g is periodi in x1 with period 2�r.4



where J = ��+g � g�1 ; and ~J = ��g�1��g : (1:4)These equations express the onservation of the left- and right KM urrents, J and ~J ,respetively. The general solution of the WZNW �eld equation is given by the simpleformula g(x+; x�) = gL(x+) � gR(x�) ; (1:5)where gL and gR are arbitrary G-valued funtions, i.e., onstrained only by the boundaryondition imposed on g.Let now M�, M0 and M+ be the standard generators of the prinipal sl(2) subalge-bra of G [32℄. By onsidering the eigenspaes Gm ofM0 in the adjoint of G, adM0 = [M0; ℄,one an de�ne a grading of G by the eigenvaluesm. Under the prinipal sl(2) this gradingis an integral grading, in fat the spins ourring in the deomposition of the adjoint ofG are the exponents of G, whih are related to the orders of the independent Casimirsby a shift by 1. It is also worth noting that the grade 0 part ofG = G+ + G0 + G� ; G� = NXm=1G�m ; (1:6)is a Cartan subalgebra, and (by using some automorphism of the Lie algebra) one anassume that the generatorM0 is given by the formulaM0 = 12P�>0H�, where H� is thestandard Cartan generator orresponding to the positive root �, and the generators M�are ertain linear ombinations of the step operators E��i orresponding to the simpleroots �i, i = 1; : : : ; rankG.The basi observation of [12,13℄ has been that the standard Toda theory an beobtained from the WZNW theory by imposing �rst lass onstraints whih restrit theurrents to take the following form:J(x) = �M� + j(x); with j(x) 2 (G0 + G+) ; (1:7a)and ~J(x) = ��M+ + ~j(x); with ~j(x) 2 (G0 + G�) : (1:7b)(For larity, we note that one should in priniple inlude some dimensional onstantsin M� whih are dimensionless, but suh onstants are always put to unity in thispaper, for simpliity.) To derive the Toda theory (1.1) from the WZNW theory (1.2),one uses the generalized Gauss deomposition g = g+ � g0 � g� of the WZNW �eld g,5



where g0;� are from the subgroups G0;� of G orresponding to the Lie subalgebras G0;�,respetively. In this framework the Toda �elds 'i are given by the middle-piee of theGauss deomposition, g0 = exp[ 12Pli=1 'iHi℄, whih is invariant under the triangularKM gauge transformations belonging to the �rst lass onstraints (1.7). Note that herethe elements Hi 2 G0 are the standard Cartan generators assoiated to the simple roots.In fat, the Toda �eld equation an be derived diretly from the WZNW �eld equationby inserting the Gauss deomposition of g into (1.3) and using the onstraints (1.7).The e�etive ation of the redued theory, (1.1), an also be obtained in a natural way,by using the Lagrangean, gauged WZNW implementation of the Hamiltonian redution[13℄. In their pioneering work [1,3℄, Leznov and Saveliev proved the exat integrability ofthe onformal Toda systems by exhibiting hiral quantities by using the �eld equationand the speial graded struture of the Lax potential A�, in terms of whih the Todaequation takes the zero urvature form[�+ �A+ ; �� �A�℄ = 0 : (1:8)In our framework the exat integrability of Toda systems is seen as an immediate on-sequene of the obvious integrability of the WZNW theory, whih survives the redutionto Toda theory. In other words, the hiral �elds underlying the integrability of the Todaequation are available from the very beginning, that is, they ome from the �elds enteringthe left � right deomposition of the general WZNW solution (1.5). Furthermore, theToda Lax potential itself emerges naturally from the trivial, hiral Lax potential of theWZNW theory. To see this one �rst observes that the WZNW �eld equation is a zerourvature ondition, sine one an write for example the �rst equation in (1.3) as[�+ � J ; �� � 0℄ = 0 : (1:9)Using the onstraints of the redution, the Toda zero urvature ondition (1.8) of [1,3℄arises from (1.9) by onjugating this equation by g�1+ (x+; x�), namely by the inverse ofthe upper triangular piee of the generalized Gauss deomposition of the WZNW �eld g[18℄.The W-symmetry of the Toda theory appears in the WZNW setting in a very diretand natural way. Namely, one an interpret the W-algebra as the KM Poisson braketalgebra of the gauge invariant di�erential polynomials of the onstrained urrents in (1.7).Conentrating on the left setor, the gauge transformations at on the urrent aording6



to J(x)! ea(x+) J(x) e�a(x+) + �(ea(x+))0 e�a(x+); (1:10)where a(x+) 2 G+ is an arbitrary hiral parameter funtion.* The onstraints (1.7) arehosen in suh a way that the following Virasoro generatorLM0(x) � LKM(x)� Tr (M0J 0(x)); where LKM(x) = 12�Tr(J2(x)); (1:11)is gauge invariant, whih ensures the onformal invariane of the redued theory.One obtains an equivalent interpretation of the W-algebra by identifying it withthe Dira braket algebra of the di�erential polynomials of the urrent omponents inertain gauges, whih are suh that a basis of the gauge invariant di�erential polynomialsredues to the independent urrent omponents after the gauge �xing. We all the gaugesin question Drinfeld-Sokolov (DS) gauges [13℄, sine suh gauges has been used also in[5℄. They have the nie property that any onstrained urrent J(x) an be brought to thegauge �xed form by a unique gauge transformation depending on J(x) in a di�erentialpolynomial way. The most important DS gauge is the highest weight gauge [13℄, whihis de�ned by requiring the gauge �xed urrent to be of the following form:Jred(x) = �M� + jred(x) ; jred(x) 2 Ker(adM+) ; (1:12)where Ker(adM+) is the kernel of the adjoint of M+. In other words, jred(x) is restritedto be an arbitrary linear ombination of the highest weight vetors of the sl(2) subalgebrain the adjoint of G. The speial property of the highest weight gauge is that in this gaugethe onformal properties beome manifest. Of ourse, the quantity Lred(x) obtainedby restriting LM0(x) in (1.11) to the highest weight gauge generates a Virasoro algebraunder Dira braket. (Note that in our ase Lred(x) is proportional to theM+-omponentof jred(x).) The important point is that, with the exeption of the M+-omponent, thespin s omponent of jred(x) is in fat a primary �eld of onformal weight (s + 1) withrespet to Lred(x) under the Dira braket. Thus the highest weight gauge automatiallyyields a primary �eld basis of the W-algebra, from whih one sees that the spetrum ofonformal weights is �xed by the sl(2) ontent of the adjoint of G [13℄.In the above we arrived at the desription of theW-algebra as a Dira braket algebraby gauge �xing the �rst lass system of onstraints orresponding to (1.7). However, it is* Throughout the paper, the notation f 0 = 2�1f is used for every funtion f , inludingthe spatial Æ-funtions. For a hiral funtion f(x+) one has then f 0 = �+f .7



lear now that it would have been possible to de�ne the W-algebra as the Dira braketalgebra of the omponents of jred in (1.12) in the �rst plae. One this point is realized,a natural generalization arises immediately [16-18℄. Namely, one an assoiate a lassialW-algebra to any sl(2) subalgebra S = fM�; M0; M+g of any simple Lie algebra G, byde�ning it to be the Dira braket algebra of the omponents of jred in (1.12), where onesimply substitutes the generators M� of the arbitrary sl(2) subalgebra S for those of theprinipal sl(2). As we shall see in this paper, this Dira braket algebra is a polynomialextension of the Virasoro algebra by primary �elds, whose onformal weights are relatedto the spins ourring in the deomposition of the adjoint of G under S by a shift by 1, inomplete analogy with the ase of the prinipal sl(2). We shall designate the generalizedW-algebra assoiated to the sl(2) embedding S as WGS .With the main features of the WZNW ! Toda redution and the above de�nitionof the WGS -algebras at our disposal, now we sketh the philosophy and the outline ofthe present paper. We start by giving the most important assumption underlying ourinvestigations, whih is that we onsider those redutions whih an be obtained byimposing �rst lass KM onstraints generalizing the ones in (1.7). To be more preise,our most general onstraints restrit the urrent to take the following form:J(x) = �M + j(x); with j(x) 2 �? ; (1:13)where M is some onstant element of the underlying simple Lie algebra G, and �? is thesubspae onsisting of the Lie algebra elements trae orthogonal to some subspae � of G.We note that earlier in (1.7a) we have hosen � = G+ and M =M�, but we do not needany sl(2) struture here. The whole analysis is based on requiring the �rst-lassness ofthe system of linear KM onstraints orresponding the pair (�;M) aording to (1.13).However, this �rst-lassness assumption is not as restritive as one perhaps might thinkat �rst sight. In fat, as far as we know, our �rst lass method is apable of overing allHamiltonian redutions of the WZNW theory onsidered to date. The many tehnialadvantages of using purely �rst lass KM onstraints will be apparent.The investigations in this paper are organized aording to three distint levels ofgenerality. At the most general level we only make the �rst-lassness assumption anddedue the following results. First, we give a omplete Lie algebrai analysis of theonditions on the pair (�;M) imposed by the �rst-lassness of the onstraints. We shallsee that � in (1.13) has to be a subalgebra of G on whih the Cartan-Killing form vanishes,and that every suh subalgebra is solvable. The Lie subalgebra � will be referred to asthe `gauge algebra' of the redution. For a given �, the �rst-lassness imposes a further8



ondition on the elementM , and we shall desribe the spae of the allowedM 's. Seond,we establish a gauged WZNW implementation of the redution, generalizing the onefound previously in the standard ase [13℄. This gauged WZNW setting of the redutionwill be �rst seen lassially, but it will be also established in the quantum theory byonsidering the phase spae path integral of the onstrained WZNW theory. Third, thegauged WZNW framework will be used to set up the BRST formalism for the quantumHamiltonian redution in the general ase. Fourth, by making the additional assumptionthat the left and right gauge algebras are dual to eah other with respet to the Cartan-Killing form, we will be able to give a detailed loal analysis of the e�etive theoriesresulting from the redution. This duality assumption will also be related to the parityinvariane of the e�etive theories, whih is satis�ed in the standard Toda ase where theleft and right gauge algebras are G+ and G� in (1.6), respetively. In general, the WZNWredution not only allows us to make ontat with known theories, like the Toda theoryin (1.1), where the simpliity and the large symmetry of the `parent' WZNW theory arefully exploited for analyzing them, but also leads to new theories whih are `integrableby onstrution'.At the next level of generality, we study the onformally invariant redutions. Thebasi idea here is that one an guarantee the onformal invariane of the redued theoryby exhibiting a Virasoro density suh that the orresponding onformal ation preservesthe onstraints in (1.13). Generalizing (1.11), we assume that this Virasoro density is ofthe form LH(x) = LKM(x)� Tr (HJ 0(x)) ; (1:14)where H is some Lie algebra element, to be determined from the ondition that LHweakly ommutes with the �rst lass onstraints. We shall desribe the relations whihare imposed on the triple of quantities (�;M;H) by this requirement, and thereby obtaina Lie algebrai suÆient ondition for onformal invariane.At the third level of generality, we deal with polynomial redutions andW-algebras.The above mentioned suÆient ondition for onformal invariane is a guarantee for LHbeing a gauge invariant di�erential polynomial. We shall provide an additional onditionon the triple of quantities (�;M;H) whih allows one to onstrut out of the urrentin (1.13) a omplete set of gauge invariant di�erential polynomials by means of a poly-nomial gauge �xing algorithm. The KM Poisson braket algebra of the gauge invariantdi�erential polynomials yields a polynomial extension of the Virasoro algebra generatedby LH . The most important appliation of our suÆient ondition for polynomialityonerns the WGS -algebras mentioned previously.9



Let us remember that, for an arbitrary sl(2) subalgebra S of G, the WGS -algebra anbe de�ned as the Dira braket algebra of the highest weight urrent in (1.12) realizedby purely seond lass onstraints. However, we shall see in this paper that these seondlass onstraints an be replaed by purely �rst lass onstraints even in the ase ofarbitrary, integral or half-integral, sl(2) embeddings. Sine the �rst lass onstraintssatisfy our suÆient ondition for polynomiality, we an realize the WGS -algebra as theKM Poisson braket algebra of the orresponding gauge invariant di�erential polynomials.After having our hands on �rst lass KM onstraints leading to the WGS -algebras, weshall immediately apply our general onstrution to exhibiting redued WZNW theoriesrealizing these W-algebras as their hiral algebras for arbitrary sl(2)-embeddings. Inthe non-trivial ase of half-integral sl(2)-embeddings, these generalized Toda theoriesrepresent a new lass of integrable models, whih will be studied in some detail. It is alsoworth noting that realizing the WGS -algebra as a KM Poisson braket algebra of gaugeinvariant di�erential polynomials should in priniple allow for quantizing it through theKM representation theory, for example by using the general BRST formalism whih willbe set up in this paper. As a �rst step, we shall give a onise formula for the Virasoroentre of this algebra in terms of the level of the underlying KM algebra.The existene of purely �rst lass KM onstraints leading to the WGS -algebra mightbe perhaps surprizing to the reader, sine earlier in [16℄ it was laimed to be inevitablyneessary to use at least some seond lass onstraints from the very beginning, whenreduing the KM algebra toWGS in the ase of a half-integral sl(2) embedding. Contraryto their laim, we will demonstrate that it is possible and in fat easy to obtain theappropriate �rst lass onstraints whih lead to WGS . Roughly speaking, this will beahieved by disarding `half' of those onstraints whih form the seond lass part in themixed system of the onstraints imposed in [16℄. The mixed system of onstraints anbe reovered by a partial gauge �xing of our purely �rst lass KM onstraints. Similarly,Bershadsky's onstraints [26℄, used to de�ne the W ln-algebra, are also a mixed system inthe above sense, i.e., it ontains both �rst and seond lass parts. We an also replaethese onstraints by purely �rst lass ones without hanging the �nal redued phasespae. In this proedure we shall unover the hidden sl(2) struture of the W ln-algebras,namely, we shall identify them in general as further redutions of partiularWGS -algebras.The study of WZNW redutions embraes various subjets, suh as integrable mod-els, W-algebras and their �eld theoreti realizations. We hope that the readers withdi�erent interests will �nd relevant results throughout this paper, and �nd an interplayof general onsiderations and investigations of numerous examples.10



2. General struture of KM and WZNW redutionsThe purpose of this hapter is to investigate the general struture of those redutionsof the KM phase spae and orresponding redutions of the full WZNW theory whihan be de�ned by imposing �rst lass onstraints setting ertain urrent omponentsto onstant values. In the rest of the paper, we assume that the WZNW group, G,is a onneted real Lie group whose Lie algebra, G, is a non-ompat real form of aomplex simple Lie algebra, G. We shall �rst unover the Lie algebrai impliationsof the onstraints being �rst lass, and also disuss a suÆient ondition whih may beused to ensure their onformal invariane. In partiular, we shall see why the ompatreal form is outside our framework. We then set up a gauged WZNW theory whihprovides a Lagrangean realization of the WZNW redution, for the ase of general �rstlass onstraints. Finally, we shall desribe the e�etive �eld theories resulting from theredution in some detail in an important speial ase, namely when the left and rightKM urrents are onstrained for suh subalgebras of G whih are dual to eah other withrespet to the Cartan-Killing form.2.1. First lass and onformally invariant KM onstraintsHere we analyze the general form of the KM onstraints whih will be used sub-sequently to redue the WZNW theory. The analysis applies to eah urrent J and ~Jseparately so we hoose one of them, J say, for de�niteness. To �x the onventions, we�rst note that the KM Poisson braket readsfhu; J(x)i ; hv; J(y)igjx0=y0 = h[u; v℄; J(x)iÆ(x1 � y1) + �hu; viÆ0(x1 � y1); (2:1)where u and v are arbitrary generators of G and the inner produt hu ; vi = Tr (u � v) isnormalized so that the long roots of G have length squared 2. This normalization meansthat in terms of the adjoint representation one has hu ; vi = 12g tr (adu � adv), where gis the dual Coxeter number. It is worth noting that hu ; vi is the usual matrix traein the de�ning, vetor representation for the lassial Lie algebras Al and Cl, and itis 12 � trae in the de�ning representation for the Bl and Dl series. We also wish topoint out that the KM Poisson braket together with all the subsequent relations whihfollow from it hold in the same form both on the usual anonial phase spae and on the11



spae of the lassial solutions of the theory. This is the advantage of using equal timePoisson brakets and spatial Æ-funtions even on the latter spae, where J(x) dependson x = (x0; x1) only through x+ (see the footnote on page 7).The KM redution we onsider is de�ned by requiring the onstrained urrent to beof the following speial form:J(x) = �M + j(x) ; with j(x) 2 �? ; (2:2)where � is some linear subspae andM is some element of G. Equivalently, the onstraintsan be given as �(x) = h ; J(x)i � �h ; Mi = 0 ; 8  2 � : (2:3)In words, our onstraints set the urrent omponents orresponding to � to onstantvalues. It is lear both from (2.2) and (2.3) that M an be shifted by an arbitraryelement from the spae �? without hanging the atual ontent of the onstraints. Thisambiguity is unessential, sine one an �x M , for example, by requiring that it is fromsome given linear omplement of �? in G, whih an be hosen by onvention.In our method we assume that the above system of onstraints is �rst lass, andnow we analyze the ontent of this ondition. Immediately from (2.1), we have*f��(x); ��(y)g = �[�;�℄(x)Æ(x1 � y1) + !M (�; �)Æ(x1 � y1) + h�; �iÆ0(x1 � y1); (2:4)where the seond term ontains the restrition to � of the following anti-symmetri 2-formof G: !M (u; v) � hM ; [u ; v℄i ; 8u ; v 2 G : (2:5)It is evident from (2.4) that the onstraints are �rst lass if, and only if, we have[� ; �℄ 2 �; h� ; �i = 0 and !M (� ; �) = 0; for 8� ; � 2 �: (2:6)This means that the linear subspae � has to be a subalgebra on whih the Cartan-Killing form and !M vanish. It is easy to see that the three onditions in (2.6) an beequivalently written as[� ; �?℄ � �?; � � �? and [M ; �℄ � �? ; (2:7)* For simpliity, we set � to 1 in the rest of the paper, exept in Chapter 5, where �ours in the formula of the Virasoro entre.12



respetively. Subalgebras � satisfying � � �? exist in every real form of the omplexsimple Lie algebras exept the ompat one, sine for the ompat real form the Cartan-Killing inner produt is (negative) de�nite.We note that for a given � the third ondition and the ambiguity in hoosingM anbe onisely summarized by the (equivalent) statement thatM 2 [� ; �℄?=�? : (2:8)The onstraints de�ned by the zero element of this fator-spae are in a sense trivial.It is lear that, for a subalgebra � suh that � � �?, the above fator-spae ontainsnon-zero elements if and only if [�;�℄ 6= �. Atually this is always so beause � � �?implies that � is a solvable subalgebra of G. To prove this, we �rst note that if � isnot solvable then, by Levi's theorem [33℄, it ontains a semi-simple subalgebra, in whihone an �nd either an so(3; R) or an sl(2; R) subalgebra. From this one sees that thereexists at least one generator � of � for whih the operator ad� is diagonalizable with realeigenvalues. It annot be that all eigenvalues of ad� are 0 sine G is a simple Lie algebra,and from this one gets that h� ; �i 6= 0, whih ontradits � � �?. Therefore one anonlude that � is neessarily a solvable subalgebra of G.The seond ondition in (2.6) an be satis�ed for example by assuming that every 2 � is a nilpotent element of G. This is true in the onrete instanes of the redutionstudied in Chapters 3 and 4. We note that in this ase � is atually a nilpotent Liealgebra, by Engel's theorem [33℄. However, the nilpoteny of � is not neessary forsatisfying � � �?. In fat, a solvable but not nilpotent � an be found in Appendix A.The urrent omponents onstrained in (2.3) are the in�nitesimal generators of theKM transformations orresponding to the subalgebra �, whih at on the KM phasespae as J(x) �! eai(x+)i J(x) e�ai(x+)i + (eai(x+)i)0 e�ai(x+)i ; (2:9)where the ai(x+) are parameter funtions and there is a summation over some basisi of �. Of ourse, the �rst lass onditions are equivalent to the statement that theonstraint surfae, onsisting of urrents of the form (2.2), is left invariant by the abovetransformations. From the point of view of the redued theory, these transformationsare to be regarded as gauge transformations, whih means that the redued phase spaean be identi�ed as the spae of gauge orbits in the onstraint surfae. Taking this intoaount, we shall often refer to � as the gauge algebra of the redution.13



We next disuss a suÆient ondition for the onformal invariane of the onstraints.We assume that M =2 �? from now on. The standard onformal symmetry generatedby the Sugawara Virasoro density LKM(x) is then broken by the onstraints (2.3), sinethey set some omponent of the urrent, whih has spin 1, to a non-zero onstant. Theidea is to irumvent this apparent violation of onformal invariane by hanging thestandard ation of the onformal group on the KM phase spae to one whih does leavethe onstraint surfae invariant. One an try to generate the new onformal ation byhanging the usual KM Virasoro density to the new Virasoro densityLH(x) = LKM(x)� hH; J 0(x)i; (2:10)where H is some element of G. The onformal ation generated by LH(x) operates onthe KM phase spae asÆf;H J(x) �� Z dy1 f(y+) fLH(y) ; J(x)g= f(x+)J 0(x) + f 0(x+)�J(x) + [H; J(x)℄�+ f 00(x+)H ; (2:11)for any parameter funtion f(x+), orresponding to the onformal oordinate transfor-mation Æf x+ = �f(x+). In partiular, j(x) in (2.2) transforms under this new onformalation aording toÆf;H j(x) = f(x+)j0(x) + f 00(x+)H + f 0(x+)�j(x) + [H; j(x)℄ + ([H;M ℄ +M)�; (2:12)and our ondition is that this variation should be in �?, whih means that this onformalation preserves the onstraint surfae. From (2.12), one sees that this is equivalent tohaving the following relations:H 2 �?; [H;�?℄ � �? and ([H;M ℄ +M) 2 �? : (2:13)In onlusion, the existene of an operator H satisfying these relations is a suÆientondition for the onformal invariane of the KM redution obtained by imposing (2.3).The onditions in (2.13) are equivalent to LH(x) being a gauge invariant quantity, indu-ing a orresponding onformal ation on the redued phase spae. Obviously, the seondrelation in (2.13) is equivalent to [H;�℄ � � : (2:14)An element H 2 G is alled diagonalizable if the linear operator adH possesses aomplete set of eigenvetors in G. By the eigenspaes of adH , suh an element de�nes a14



grading of G, and below we shall refer to a diagonalizable element as a grading operator ofG. In the examples we study later, onformal invariane will be ensured by the existeneof a grading operator subjet to (2.13).If H is a grading operator satisfying (2.13) then it is always possible to shift M bysome element of �? (i.e., without hanging the physis) so that the new M satis�es[H;M ℄ = �M ; (2:15)instead of the last ondition in (2.13). It is also lear that if H is a grading operator thenone an take graded bases in � and �?, sine these are invariant subspaes under adH .On re-inserting (2.15) into (2.12) it then follows that all omponents of j(x) are primary�elds with respet to the onformal ation generated by LH(x), with the exeption ofthe H-omponent, whih also survives the onstraints aording to the �rst ondition in(2.13).As an example, let us now onsider some arbitrary grading operator H and denoteby Gm the eigensubspae orresponding to the eigenvalue m of adH . Then the gradedsubalgebra G�n, whih is de�ned to be the diret sum of the subspaes Gm for all m � n,will qualify as a gauge algebra � for any n > 0 from the spetrum of adH . In this ase�? = G>�n and the fator spae [�;�℄?=�?, whih is the spae of the allowed M 's, anbe represented as the diret sum of G�n and that graded subspae of G<�n whih isorthogonal to [�;�℄. It is easy to see that one obtains onformally invariant �rst lassonstraints by hoosing M to be any graded element from this fator spae. Indeed, ifthe grade of M is �m then LH=m yields a Virasoro density weakly ommuting with theorresponding onstraints.In summary, in this setion we have seen that one an assoiate a �rst lass systemof KM onstraints to any pair (�,M) subjet to (2.6) by requiring the onstrained urrentto take the form (2.2), and that the onformal invariane of this system of onstraintsis guaranteed if one an �nd an operator H suh that the triple (�,M ,H) satis�es theonditions in (2.13).2.2. Lagrangean realization of the Hamiltonian redutionWe shall exhibit here a gauged WZNW theory providing the Lagrangean realizationof those Hamiltonian redutions of the WZNW theory whih an be de�ned by imposing15



�rst lass onstraints of the type (2.3) on the KM urrents J and ~J of the theory. Itshould be noted that, in the rest of this hapter, we do not assume that the onstraintsare onformally invariant.To de�ne the WZNW redution, we an hoose left and right onstraints ompletelyindependently. We shall denote the pairs onsisting of an appropriate subalgebra and aonstant matrix orresponding to the left and right onstraints as (�;M) and (~�;� ~M),respetively. The redued theory is obtained by �rst onstraining the WZNW phasespae by setting�i = hi ; Ji � hi ; Mi = 0; and ~�i = �h~i ; ~Ji � h~i ; ~Mi = 0; (2:16)where the i and the ~i form bases of � and ~�, respetively, and then fatorizing theonstraint surfae by the anonial transformations generated by these onstraints. Onean apply this redution either to the usual anonial phase spae or to the spae ofsolutions of the lassial �eld equation. These are equivalent proedures sine the twospaes in question are isomorphi. For later purpose we note that the onstraints generatethe following hiral gauge transformations on the spae of solutions:g(x+; x�) �! e(x+) � g(x+; x�) � e�~(x�) ; (2:17)where (x+) and ~(x�) are arbitrary � and ~� valued funtions.For ompleteness, we wish to mention here how the above way of reduing theWZNW theory �ts into the general theory of Hamiltonian (sympleti) redution ofsymmetries [34℄. In general, the Hamiltonian redution is obtained by setting the phasespae funtions generating the symmetry transformations through Poisson braket (inother words, the omponents of the momentum map) to some onstant values. Theredued phase spae results by fatorizing this onstraint surfae by the subgroup ofthe symmetry group respeting the onstraints. The symmetry group we onsider is theleft � right KM group generated by � � ~� and our Hamiltonian redution is speial inthe sense that the full symmetry group preserves the onstraints. Of ourse, the latterfat is just a reformulation of the �rst-lassness of our onstraints.We now ome to the main point of the setion, whih is that the redued WZNWtheory, de�ned in the above by using the Hamiltonian piture, an be identi�ed as thegauge invariant ontent of a orresponding gauged WZNW theory. This gauged WZNWinterpretation of the redution was pointed out in the onrete ase of the WZNW !standard Toda redution in [13℄, and we below generalize that onstrution to the presentsituation. 16



The gauged WZNW theory we are interested in is given by the following ationfuntional: I(g; A�; A+) � SWZ(g)+Z d2x �hA�; �+gg�1 �Mi+hA+; g�1��g � ~Mi+ hA�; gA+g�1i� ; (2:18)where the gauge �elds A�(x) and A+(x) vary in � and ~�, respetively. The main propertyof this ation is that it is invariant under the following non-hiral gauge transformations:g ! �g~��1; A� ! �A���1 + ��� ��1; A+ ! ~�A+~��1 + (�+~�)~��1 ; (2:19a)where � = e(x+;x�) and ~� = e~(x+;x�) ; (2:19b)for any (x+; x�) 2 � and ~(x+; x�) 2 ~�. The proof of the invariane of (2.18) under(2.19) an proeed along the same lines as for the speial ase in [13℄. In the proof onerewrites SWZ(�g~��1) by using the well-known Polyakov-Wiegmann identity [35℄, and inthis step one uses the fat that the WZNW ation vanishes for �elds in the subgroupsof G with Lie algebras � or ~�. This is an obvious onsequene of the relations � � �?and ~� � ~�?. The other ruial point is that the terms in (2.18) ontaining the onstantmatries M and ~M are separately invariant under (2.19). It is easy to see that thisfollows from the third ondition in (2.6). For example, under an in�nitesimal gaugetransformation belonging to � ' 1 + , the term hA�;Mi hanges byÆ hA�;Mi = �h��;Mi+ !M (;A�) ; (2:20)whih is a total divergene sine the seond term vanishes, as both A� and  are from�. The Euler-Lagrange equation derived from (2.18) by varying g an be written equiv-alently as��(�+gg�1 + gA+g�1) + [A�; �+gg�1 + gA+g�1℄ + �+A� = 0 ; (2:21a)or �+(g�1��g + g�1A�g)� [A+; g�1��g + g�1A�g℄ + ��A+ = 0 ; (2:21b)and the �eld equations obtained by varying A� and A+ are given byh ; �+gg�1 + gA+g�1 �Mi = 0; 8  2 � ; (2:21)17



and h~ ; g�1��g + g�1A�g � ~Mi = 0; 8 ~ 2 ~� ; (2:21d)respetively. We now note that by making use of the gauge invariane, A+ and A� anbe set equal to zero simultaneously. The important point for us is that, as is easy tosee, in the A� = 0 gauge one reovers from (2.21) both the �eld equations (1.3) of theWZNW theory and the onstraints (2.16). Furthermore, one sees that setting A� to zerois not a omplete gauge �xing, the residual gauge transformations are exatly the hiralgauge transformations of equation (2.17).The above arguments tell us that the spae of gauge orbits in the spae of lassialsolutions of the gauged WZNW theory (2.18) an be naturally identi�ed with the reduedphase spae belonging to the Hamiltonian redution of the WZNW theory determined bythe �rst lass onstraints (2.16). It an be also shown that the Poisson braket indued onthe redued phase spae by the Hamiltonian redution is the same as the one determinedby the gauged WZNW ation (2.18). In summary, we see that the gauged WZNW theory(2.18) provides a natural Lagrangean implementation of the WZNW redution.2.3. E�etive �eld theories from left-right dual redutionsThe aim of this setion is to desribe the e�etive �eld equations and ation fun-tionals for an important lass of the redued WZNW theories. This lass of theories isobtained by making the assumption that the left and right gauge algebras � and ~� aredual to eah other with respet to the Cartan-Killing form, whih means that one anhoose bases i 2 � and ~j 2 ~� so thathi; ~ji = Æij : (2:22)This tehnial assumption allows for having a simple general algorithm for disentanglingthe onstraints:�i = hi; �+g g�1 �Mi = 0; and ~�i = h~i; g�1��g � ~Mi = 0; (2:23)whih de�ne the redution. We shall omment on the physial meaning of the assumptionat the end of the setion, here we only point out that it holds, e.g., if one hooses � and18



~� to be the images of eah other under a Cartan involution* of the underlying simple Liealgebra.For onreteness, let us onsider the maximally non-ompat real form whih anbe de�ned as the real span of a Chevalley basis Hi, E�� of the orresponding omplexLie algebra G, and in the ase of the lassial series An, Bn, Cn and Dn is given bysl(n + 1; R), so(n; n + 1; R), sp(2n;R) and so(n; n;R), respetively. In this ase theCartan involution is (�1)� transpose, operating on the Chevalley basis aording toHi �! �Hi E�� �! �E�� : (2:24)It is obvious that hv ; vti > 0 for any non-zero v 2 G and from this one sees that �t isdual to � with respet to the Cartan-Killing form, i.e., (2.22) holds for ~� = �t. It shouldalso be mentioned that there is a Cartan involution for every non-ompat real form ofthe omplex simple Lie algebras, as explained in detail in [36℄.Equation (2.22) implies that the left and right gauge algebras do not interset, andthus we an onsider a diret sum deomposition of G of the formG = � + B + ~� ; (2:25a)where B is some linear subspae of G. Here B is in priniple an arbitrary omplementaryspae to (� + ~�) in G, but one an always make the hoieB = (� + ~�)? ; (2:25b)whih is natural in the sense that the Cartan-Killing form is non-degenerate on thisB. Choosing B aording to (2.25b) is espeially well-suited in the ase of the parityinvariant e�etive theories disussed at the end of the setion. We note that it mightalso be onvenient if one an take the spae B to be a subalgebra of G, but this is notneessary for our arguments and is not always possible either.We an assoiate a `generalized Gauss deomposition' of the group G to the diretsum deomposition (2.25), whih is the main tool of our analysis. By `Gauss deomposing'an element g 2 G aording to (2.25), we mean writing it in the formg = a � b �  ; with a = e ; b = e� and  = e~ ; (2:26)* A Cartan involution � of the simple Lie algebra G is an automorphism for whih�2 = 1 and hv; �(v)i < 0 for any non-zero element v of G.19



where , � and ~ are from the respetive subspaes in (2.25).There is a neighbourhood of the identity in G onsisting of elements whih allow aunique deomposition of this sort, and in this neighbourhood the piees a, b and  anbe extrated from g by algebrai operations. (Atually it is also possible to de�ne b asa produt of exponentials orresponding to subspaes of B, and we shall make use ofthis freedom later, in Chapter 4.) We make the assumption that every G-valued �eld weenounter is deomposable as g in (2.26). It is easily seen that in this `Gauss deompos-able setor' the omponents of b(x+; x�) provide a omplete set of gauge invariant loal�elds, whih are the loal �elds of the redued theory we are after. Below we explainhow to solve the onstraints (2.23) in the Gauss deomposable setor of the WZNWtheory. More exatly, for our method to work, we restrit ourselves to onsidering those�elds whih vary in suh a Gauss deomposable neighbourhood of the identity where thematrix Vij(b) = hi; b~jb�1i (2:27)is invertible. Due to the assumptions, the analysis given in the following yields a loaldesription of the redued theories. It is lear that for a global desription one shoulduse pathes on G obtained by multiplying out the Gauss deomposable neighbourhoodof the identity, but we do not deal with this issue here.First we derive the �eld equation of the redued theory by implementing the on-straints diretly in the WZNW �eld equation ��(�+gg�1) = 0. (This is allowed sine theWZNW dynamis leaves the onstraint surfae invariant, i.e., the WZNW Hamiltonianweakly ommutes with the onstraints.) By inserting the Gauss deomposition of g into(2.23) and making use of the onstraints being �rst lass, the onstraint equations anbe rewritten as hi; �+bb�1 + b(�+�1)b�1 �Mi = 0 ;h~i; b�1��b+ b�1(a�1��a)b� ~Mi = 0 : (2:28)With the help of the inverse of Vij(b) in (2.27), one an solve these equations for �+�1and a�1��a in terms of b,�+�1 = b�1T (b)b; and a�1��a = b ~T (b)b�1; (2:29a)where T (b) =Xij V �1ij (b)hj; M � �+bb�1ib~ib�1;~T (b) =Xij V �1ij (b)h~i; ~M � b�1��bib�1jb : (2:29b)20



It is easy to obtain the e�etive �eld equation for the �eld b(x+; x�) by using this expliitform of the onstraints. This an be ahieved for example by noting that, by applyingthe operator Ada�1 to equation (1.9) (i.e., by onjugating it by a�1) the WZNW �eldequation an be written in the form[�+ �A+ ; �� �A�℄ = 0 (2:30)with A+ = �+b b�1 + b(�+�1)b�1 and A� = �a�1��a : (2:31)Thus, by inserting the onstraints (2.29) into the above form of the WZNW equation,we see that the �eld equation of the redued theory is the zero urvature ondition ofthe following Lax potential:A+(b) = �+b b�1 + T (b) and A�(b) = �b ~T (b)b�1 : (2:32)More expliitly, the e�etive �eld equation reads��(�+bb�1) + [b ~T (b)b�1; T (b)℄ + ��T (b) + b(�+ ~T (b))b�1 = 0: (2:33)The expression on the left-hand-side of (2.33) in general varies in the full spae G, butnot all the omponents represent independent equations. The number of the independentequations is the number of the independent omponents of the WZNW �eld equationminus the number of the onstraints in (2.23), sine the onstraints automatially implythe orresponding omponents of the WZNW equation. Thus there are exatly as manyindependent equations in (2.33) as the number of the redued degrees of freedom. Infat, the independent �eld equations an be obtained by taking the Cartan-Killing innerprodut of (2.33) with a basis of the linear spae B in (2.25), and the inner produt of(2.33) with the i and the ~i vanishes as a onsequene of the onstraints in (2.23) togetherwith the independent �eld equations. To see this one �rst realls that the left-hand-side of(2.33) is, upon imposing the onstaints, equivalent to a�1(��J)a. Thus the inner produtof this with �, and similarly that of (�+ ~J)�1 with ~�, vanishes as a onsequene of theonstraints. From this, by using the identity a�1(��J)a = �b(�+ ~J)�1b�1, one anonlude that the inner produt of a�1(��J)a with ~� also vanishes as a onsequene ofthe onstraints and the independent �eld equations.At this point we would like to mention ertain speial ases when the above equationssimplify. First we note that if one has[B ; �℄ � � and [B ; ~�℄ � ~� ; (2:34)21



then T (b) =M � �~�(�+bb�1) and ~T (b) = ~M � ��(b�1��b) ; (2:35)where we introdued the operators�� =Xi jiih~ij and �~� =Xi j~iihij ; (2:36)whih projet onto the spaes � and ~�, and assumed thatM 2 ~� and ~M 2 �. (The latterassumption an be done without loss of generality due to the duality ondition (2.22)).One obtains (2.35) from (2.29) by taking into aount that in this ase Vij(b) in (2.27) isthe matrix of the operator Adb ating on ~�, and thus the inverse is given by Adb�1 . Theniest possible situation ours when B = (�+ ~�)? is a subalgebra of G and also satis�es(2.34). In this ase one simply has T =M and ~T = ~M and thus (2.33) simpli�es to��(�+bb�1) + [b ~Mb�1 ; M ℄ = 0 : (2:37)The derivative term is now an element of B and by ombining the above assumptions withthe �rst lass onditions [M;�℄ � �? and [ ~M; ~�℄ � ~�? one sees that the ommutatorterm in (2.37) also varies in B, whih ensures the onsisteny of this equation.The e�etive �eld equation (2.33) is in general a non-linear equation for the �eldb(x+; x�), and we an give a proedure whih an in priniple be used for produing itsgeneral solution. We are going to do this by making use of the fat that the spae ofsolutions of the redued theory is the spae of the onstrained WZNW solutions fatorizedby the hiral gauge transformations, aording to equation (2.17). Thus the idea is to�nd the general solution of the e�etive �eld equation by �rst parametrizing, in terms ofarbitrary hiral funtions, those WZNW solutions whih satisfy the onstraints (2.23),and then extrating the b-part of those WZNW solutions by algebrai operations. Inother words, we propose to derive the general solution of (2.33) by looking at the originof this equation, instead of its expliit form.To be more onrete, one an start the onstrution of the general solution by�rst Gauss-deomposing the hiral fators of the general WZNW solution g(x+; x�) =gL(x+) � gR(x�) asgL(x+) = aL(x+) � bL(x+) � L(x+); gR(x�) = aR(x�) � bR(x�) � R(x�): (2:38)Then the onstraint equations (2.23) beome�+L�1L = b�1L T (bL)bL and a�1R ��aR = bR ~T (bR)b�1R : (2:39)22



In addition to the the purely algebrai problems of omputing the quantities T and ~T andextrating b from g = gL � gR = a � b � , these �rst order systems of ordinary di�erentialequations are all one has to solve to produe the general solution of the e�etive �eldequation. If this an be done by quadrature then the e�etive �eld equation is alsointegrable by quadrature. In general, one an proeed by trying to solve (2.39) for thefuntions L(x+) and aR(x�) in terms of the arbitrary `input funtions' bL(x+) andbR(x�). Clearly, this involves only a �nite number of integrations whenever the gaugealgebras � and ~� onsist of nilpotent elements of G. Thus in this ase (2.33) is exatlyintegrable, i.e., its general solution an be obtained by quadrature.We note that in onrete ases some other hoie of input funtions, instead of thehiral b's, might prove more onvenient for �nding the general solutions of the systemsof �rst order equations on gL and gR given in (2.39) (see for instane the derivation ofthe general solution of the Liouville equation given in [12℄).It is natural to ask for the ation funtional underlying the e�etive �eld theoryobtained by imposing the onstraints (2.23) on the WZNW theory. In fat, the e�etiveation is given by the following formula:Ie�(b) = SWZ(b)� Z d2x hb ~T (b)b�1 ; T (b)i: (2:40)One an derive the following ondition for the extremum of this ation:hÆbb�1; ��(�+bb�1) + [b ~T (b)b�1; T (b)℄ + ��T (b) + b(�+ ~T (b))b�1i = 0: (2:41)It is straightforward to ompute this, the only thing to remember is that the objetsb ~Tb�1 and b�1Tb introdued in (2.29) vary in the gauge algebras � and ~�. The arbitraryvariation of b(x) is determined by the arbitrary variation of �(x) 2 B, aording tob(x) = e�(x), and thus we see from (2.41) that the Euler-Lagrange equation of the ation(2.40) yields exatly the independent omponents of the e�etive �eld equation (2.33),whih we obtained previously by imposing the onstraints diretly in the WZNW �eldequation.The e�etive ation given above an be derived from the gauged WZNW ationI(g; A�; A+) given in (2.18), by eliminating the gauge �elds A� by means of their Euler-Lagrange equations (2.21-d). By using the Gauss deomposition, these Euler-Lagrangeequations beome equivalent to the relationsa�1D�a = b ~T (b)b�1 ; and D+�1 = �b�1T (b)b ; (2:42)23



where the quantities T (b) and ~T (b) are given by the expressions in (2.29b) andD� denotesthe gauge ovariant derivatives, D� = �� � A�. Now we show that Ie�(b) in (2.40) anindeed be obtained by substituting the solution of (2.42) for A� bak into I(g; A�; A+)with g = ab. To this �rst we rewrite I(ab; A�; A+) by using the Polyakov-Wiegmannidentity [35℄ asI(ab ; A�; A+) = SWZ(b)� Z d2x�ha�1D�a ; b(D+�1)b�1i+ hb�1��b ; D+�1i � h�+bb�1 ; a�1D�ai+ hA�;Mi+ hA+; ~Mi�: (2:43)This equation an be regarded as the gauge ovariant form of the Polyakov-Wiegmannidentity, and all but the last two terms are manifestly gauge invariant. The e�etiveation (2.40) is derived from (2.43) together with (2.42) by noting, for example, thath��aa�1 ; Mi is a total derivative, whih follows from the fats that a(x) 2 e� andM 2 [� ; �℄?, by (2.8).Above we have used the �eld equations to eliminate the gauge �elds from the gaugedWZNW ation (2.18) on the ground that A� and A+ are not dynamial �elds, but`Lagrange multiplier �elds' implementing the onstraints. However, it should be notedthat without further assumptions the Euler-Lagrange equation of the ation resultingfrom (2.18) by means of this elimination proedure does not always give the e�etive�eld equation, whih an always be obtained diretly from the WZNW �eld equation.One an see this on an example in whih one imposes onstraints only on one of the hiralsetors of the WZNW theory. From this point of view, the role of our assumption on theduality of the left and right gauge algebras is that it guarantees that the e�etive ationunderlying the e�etive �eld equation an be derived from I(g; A�; A+) in the abovemanner. To end this disussion, we note that for g = ab the non-degeneray of Vij(b)in (2.27) is equivalent to the non-degeneray of the quadrati expression hA� ; gA+g�1iin the omponents of A� = Ai�i and A+ = Ai+~i. This quadrati term enters into thegauged WZNW ation given by (2.18), and its non-degeneray is learly important inthe quantum theory, whih we onsider in Chapter 5.We mentioned at the beginning of the setion that, onsidering a maximally non-ompat G, one an make sure that the duality assumption expressed by (2.22) holdsby hoosing � and ~� to be the transposes of eah other. Here we point out that thispartiular left-right related hoie of the gauge algebras an also be used to ensure theparity invariane of the e�etive �eld theory. To this �rst we notie that, in the ase of amaximally non-ompat onneted Lie group G, the WZNW ation SWZ(g) is invariant24



under any of the following two `parity transformations' g �! Pg:(P1g)(x0; x1) � gt(x0;�x1) ; and (P2g)(x0; x1) � g�1(x0;�x1): (2:44)If one hooses ~� = �t and ~M = M t to de�ne the WZNW redution then the paritytransformation P1 simply interhanges the left and right onstraints, � and ~� in (2.23),and thus the orresponding e�etive �eld theory is invariant under the parity P1. Thespae B = (� + ~�)?, i.e., the hoie in (2.25b), is invariant under the transpose in thisase, and thus the gauge invariant �eld b transforms in the same way under P1 as gdoes in (2.44). Of ourse, the parity invariane an also be seen on the level of thegauged ation I(g; A�; A+). Namely, I(g; A�; A+) is invariant under P1 if one extendsthe de�nition in (2.44) to inlude the following parity transformation of the gauge �elds:(P1A�)(x0; x1) � At�(x0;�x1) : (2:45)The P1-invariant redution proedure does not preserve the parity symmetry P2, but it ispossible to onsider redutions preserving just P2 instead of P1. In fat, suh redutionsan be obtained by taking ~� = � and ~M =M .Finally, it is obvious that to onstrut parity invariant WZNW redutions in general,for some arbitrary but non-ompat real form G of the omplex simple Lie algebras, onean use �� instead of the transpose, where � is a Cartan involution of G.
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3. Polynomiality in KM redutions and the WGS -algebrasIn the previous hapter we desribed the onditions for (2.2) de�ning �rst lassonstraints and for LH(J) in (2.10) being a gauge invariant quantity on this onstraintsurfae. It is lear that the KM Poisson brakets of the gauge invariant di�erential poly-nomials of the urrent always lose on suh polynomials and Æ-distributions. The algebraof the gauge invariant di�erential polynomials is of speial interest in the onformally in-variant ase when it is a polynomial extension of the Virasoro algebra. In Setion 3.1 weshall give an additional ondition on the triple (�;M;H) whih allows one to onstrutout of the urrent in (2.2) a omplete set of gauge invariant di�erential polynomials bymeans of a di�erential polynomial gauge �xing algorithm. We all the KM redutionpolynomial if suh a polynomial gauge �xing algorithm is available, and also all theorresponding gauges Drinfeld-Sokolov (DS) gauges, sine our onstrution is a general-ization of the one given in [5℄. The KM Poisson braket algebra of the gauge invariantdi�erential polynomials beomes the Dira braket algebra of the urrent omponents inthe DS gauges, whih we onsider in Setion 3.2. The extended onformal algebra WGSmentioned in the Introdution is espeially interesting in that its primary �eld basis ismanifest and given by the sl(2) struture, as we shall see in Setion 3.3. One of our mainresults is that we shall �nd here �rst lass KM onstraints underlying this algebra, suhthat they satisfy our suÆient ondition for polynomiality. Thus we an represent WGSas a KM Poisson braket algebra of gauge invariant di�erential polynomials, whih inpriniple allows for its quantization through the KM representation theory. The impor-tane of the WGS -algebras is learly demonstrated by the result of Setion 3.4, where weshow that the W ln-algebras of [26℄ an be interpreted as further redutions of partiularWGS -algebras. This makes it possible to exhibit primary �elds for the W ln-algebras andto desribe their struture in detail in terms of the orresponding WGS -algebras, whih isthe subjet of [37℄.3.1. A suÆient ondition for polynomialityLet us suppose that (�;M;H) satisfy the previously given onditions, (2.6) and(2.13), for J(x) =M + j(x) ; j(x) 2 �? (3:1)26



desribing the onstraint surfae of onformally invariant �rst lass onstraints, where His a grading operator and M is subjet to[H;M ℄ = �M ; M =2 �? : (3:2)Then, as we shall show, the following two additional onditions:� \ KM = f0g ; where KM = Ker(adM ) ; (3:3)and �? � G>�1 ; (3:4a)allow for establishing a di�erential polynomial gauge �xing algorithm whereby one anonstrut out of J(x) in (3.1) a omplete set of gauge invariant di�erential polynomials.Before proving this result, we disuss some onsequenes of the onditions, whihwe shall need later. In the present situation �, �? and G are graded by the eigenvaluesof adH , and �rst we note that (3.4a) is equivalent toG�1 � � : (3:4b)Indeed, this follows from the fat that the spaes Gh and G�h are dual to eah other withrespet to the Cartan-Killing form, whih is a onsequene of its non-degeneray andinvariane under adH . Of ourse, here and below the grading is the one de�ned by H,and we note that G�1 are non-trivial beause of (3.2). The ondition given by (3.4a) playsa tehnial role in our onsiderations, but perhaps it an be argued for also physially,on the basis that it ensures that the onformal weights of the primary �eld omponentsof j(x) in (3.1) are non-negative with respet to LH (2.10). Seond, let us observe thatin our situation M satisfying (3.2) is uniquely determined, that is, there is no possibilityof shifting it by elements from �?, simply beause there are no grade �1 elements in �?,on aount of (3.4a). Equation (3.3) means that the operator adM maps � into �? in aninjetive manner, and for this reason we refer to (3.3) as the non-degeneray ondition.Combining the non-degeneray ondition with (3.2), (3.4a) and (2.7) we see that ourgauge algebra � an ontain only positive grades:� � G>0 : (3:5)This implies that every  2 � is represented by a nilpotent operator in any �nite dimen-sional representation of G, and that G�0 � �? : (3:6)27



It follows from (3.2) that [H;KM ℄ � KM , whih is telling us that KM is also graded, andwe see from (3.3) and (3.4b) that KM � G<1 : (3:7)Finally, we wish to establish a ertain relationship between the dimensions of G and KM .For this purpose we onsider an arbitrary omplementary spae TM to KM , de�ning alinear diret sum deomposition G = KM + TM : (3:8)It is easy to see that for the 2-form !M we have !M (KM ;G) = 0, and the restrition of!M to TM is a sympleti form, in other words:!M (TM ; TM ) is non�degenerate : (3:9)(We note in passing that TM an be identi�ed with the tangent spae at M to theoadjoint orbit of G through M , and in this piture !M beomes the Kirillov-Kostantsympleti form of the orbit [34℄.) The non-degeneray ondition (3.3) says that one anhoose the spae TM in (3.8) in suh a way that � � TM . One then obtains the inequalitydim(�) � 12dim(TM ) = 12�dim(G)� dim(KM )� ; (3:10)where the fator 12 arises sine !M is a sympleti form on TM , whih vanishes, by (2.6),on the subspae � � TM .After the above lari�ation of the meaning of onditions (3.3) and (3.4), we nowwish to show that they indeed allow for exhibiting a omplete set of gauge invariantdi�erential polynomials among the gauge invariant funtions. Generalizing the argumentsof [5,13,15℄, this will be ahieved by demonstrating that an arbitrary urrent J(x) subjetto (3.1) an be brought to a ertain normal form by a unique gauge transformation whihdepends on J(x) in a di�erential polynomial way.A normal form suitable for this purpose an be assoiated to any graded subspae� � G whih is dual to � with respet to the 2-form !M . Given suh a spae �, it ispossible to hoose bases ih and �jk in � and � respetively suh that!M (lh; �ik) = ÆilÆhk; (3:11)where the subsript h on lh denotes the grade, and the indies i and l denote theadditional labels whih are neessary to speify the base vetors at �xed grade. It is28



to be noted that, by de�nition, the subsript k on elements �jk 2 � does not denote thegrade, whih is (1�k). The normal (or redued) form orresponding to � is given by thefollowing equation:Jred(x) =M + jred(x) where jred(x) 2 �? \�? : (3:12)In other words, the set of redued urrents is obtained by supplementing the �rst lassonstraints of equation (2.3) by the gauge �xing ondition��(x) = hJ(x); �i � hM; �i = 0 ; 8� 2 � : (3:13)We all a gauge whih an be obtained in the above manner a Drinfeld-Sokolov (DS)gauge. It is not hard to see that the spae V = �? \ �? is a graded subspae of �?whih is disjoint from the image of � under the operator adM and is in fat omplementaryto the image, i.e., one has �? = [M;�℄ + V : (3:14)It also follows from the non-degeneray ondition (3.3) that any graded omplement Vin (3.14) an be obtained in the above manner, by means of using some �. Thus it ispossible to de�ne the DS normal form of the urrent diretly in terms of a omplementaryspae V as well, as has been done in speial ases in [5,13,18℄.As the �rst step in proving that any urrent in (3.1) is gauge equivalent to one inthe DS gauge, let us onsider the gauge transformation by gh(x+) = exp[Pl alh(x+)lh℄for some �xed grade h. Suppressing the summation over l, it an be written as*j(x)! jgh(x) = eah�h(j(x) +M)e�ah�h + (eah�h)0e�ah�h �M : (3:15)Taking the inner produt of this equation with the basis vetors �ik in (3.11) for all k � h,we see that there is no ontribution from the derivative term. We also see that the onlyontribution from eah�hj(x)e�ah�h = j(x) + [ah(x+) � h; j(x)℄ + : : : (3:16)* Throughout the hapter, all equations involving gauge transformations, Poissonbrakets, et., are to be evaluated by using a �xed time, sine they are all onsequenesof equation (2.1). By this onvention, they are valid both on the anonial phase spaeand on the hiral KM phase spae belonging to spae of solutions of the theory.29



is the one oming from the �rst term, sine all ommutators ontaining the elements lhdrop out from the inner produt in question as a onsequene of the following ruialrelation: [lh; �ik℄ 2 �; for k � h; (3:17)whih follows from (3.4b) by noting that the grade of this ommutator, (1+ h� k), is atleast 1 for k � h. Taking these into aount, and omputing the ontribution from thosetwo terms in jgh(x) whih ontain M by using (3.11), we obtainh�ik; jgh(x)i = h�ik; j(x)i � aih(x+)Æhk; for all k � h: (3:18)We see from this equation thath�ik; j(x)i = 0 () h�ik; jgh(x)i = 0 ; for k < h ; (3:19)and aih(x+) = h�ih; j(x)i ) h�ih; jgh(x)i = 0 ; for k = h: (3:20)These last two equations tell us that if the gauge-�xing ondition h�ik; j(x)i = 0 is satis�edfor all k < h then we an ensure that the same ondition holds for jgh(x) for the extendedrange of indies k � h, by hoosing aih(x+) to be h�ih; j(x)i. From this it is easy to seethat the DS gauge (3.13) an be reahed by an iterative proess of gauge transformations,and the gauge-parameters aih(x+) are unique polynomials in the urrent at eah stage ofthe iteration.In more detail, let us write the general element g(a(x+)) 2 e� of the gauge group asa produt in order of desending grades, i.e., asg(a(x+)) = ghn � ghn�1 � � �gh1 ; with ghi(x+) = eahi (x+)�hi ; (3:21a)where hn > hn�1 > : : : > h1 (3:21b)is the list of grades ourring in �. Let us then insert this expression intoj ! jg = g(j +M)g�1 + g0g�1 �M ; (3:22a)and onsider the ondition jg(x) = jred(x) ; (3:22b)with jred(x) in (3.12), as an equation for the gauge-parameters ah(x+). One sees fromthe above onsiderations that this equation is uniquely soluble for the omponents of30



the ah(x+) and the solution is a di�erential polynomial in j(x). This implies that theomponents of jred(x) an also be uniquely omputed from (3.22), and the solution yieldsa omplete set of gauge invariant di�erential polynomials of j(x), whih establishes therequired result. The above iterative proedure is in fat a onvenient tool for omputingthe gauge invariant di�erential polynomials in pratie [15℄. We remark that, of ourse,any unique gauge �xing an be used to de�ne gauge invariant quantities, but they are ingeneral not polynomial, not even loal in j(x).We also wish to note that an arbitrary linear subspae of G whih is dual to V in(3.14) with respet to the Cartan-Killing form an be used in a natural way as the spaeof parameters for desribing those urrent dependent KM transformations whih preservethe DS gauge. In fat, it is possible to give an algorithm whih omputes the W-algebraand its ation on the other �elds of the orresponding onstrained WZNW theory by�nding the gauge preserving KM transformations implementing the W-transformations.This algorithm presupposes the existene of suh gauge invariant di�erential polynomialswhih redue to the urrent omponents in the DS gauge, whih is ensured by the abovegauge �xing algorithm, but it works without atually omputing them. This issue istreated in detail in [13,18℄ in speial ases, but the results given there apply also to thegeneral situation investigated in the above.3.2. The polynomiality of the Dira braketIt follows from the polynomiality of the gauge �xing that the omponents of thegauge �xed urrent jred in (3.12) generate a di�erential polynomial algebra under Dirabraket. In our proof of the polynomiality we atually only used that the graded subspae� of G is dual to the graded gauge algebra � with respet to !M and satis�es the ondition([� ; �℄)�1 � � ; (3:23)whih is equivalent to the existene of the bases lh and �ik satisfying (3.11) and (3.17).We have seen that this ondition follows from (3.3) and (3.4), but it should be noted thatit is a more general ondition, sine the onverse is not true, as is shown by an exampleat the end of this setion.Below we wish to give a diret proof for the polynomiality of the Dira braket31



algebra belonging to the seond lass onstraints:� (x) = h� ; J(x)�Mi = 0 where � 2 flhg [ f�ikg : (3:24)The proof will shed a new light on the polynomiality ondition. We note that for ertainpurposes seond lass onstraints might be more natural to use than �rst lass ones sinein the seond lass formalism one diretly deals with the physial �elds. For example, theWGS -algebra mentioned in the Introdution is very natural from the seond lass pointof view and an be realized by starting with a number of di�erent �rst lass systems ofonstraints, as we shall see in the next setion.We �rst reall that, by de�nition, the Dira braket algebra of the redued urrentsis fjured(x);jvred(y)g� = fjured(x); jvred(y)g�X�� Z dz1dw1fjured(x); �(z)g���(z; w)f�(w); jvred(y)g ; (3:25)where, for any u 2 G, jured(x) = hu; jred(x)i is to be substituted by hu; J(x)�Mi underthe KM Poisson braket, and ���(z; w) is the inverse of the kernelD��(z; w) = f�(z); �(w)g ; (3:26)in the sense that (on the onstraint surfae)X� Z dx1���(z; x)D��(x;w) = Æ��Æ(z1 � w1): (3:27)To establish the polynomiality of the Dira braket, it is useful to onsider the matrixdi�erential operator D��(z) de�ned by the kernel D��(z; w) in the usual way, i.e.,X� D��(z)f�(z) =X� Z dw1D��(z; w)f�(w) ; (3:28)for a vetor of smooth funtions f�(z), whih are periodi in z1. From the struture ofthe onstraints in (3.24), � = (� ; ��), one sees that D��(z) is a �rst order di�erentialoperator possessing the following blok strutureD�� = �D~ D�D~�~ D~�� � = � 0 E�Ey F � ; (3:29)where Ey is the formal Hermitian onjugate of the matrix E, (Ey)� = (E�)y. It is learthat the Dira braket in (3.25) is a di�erential polynomial in jred(x) and Æ(x1 � y1)32



whenever the inverse operatorD�1(z), whose kernel is ���(z; w), is a di�erential operatorwhose oeÆients are di�erential polynomials in jred(z). On the other hand, we see from(3.29) that the operator D is invertible if and only if its blok E is invertible, and in thatase the inverse takes the form(D�1)�� = � (Ey)�1FE�1 �(Ey)�1E�1 0 � : (3:30)Sine E(z) and F (z) are polynomial (even linear) in jred(z) and in �z and the inverseof F (z) does not our in D�1(z), it follows that D�1(z) is a polynomial di�erentialoperator if and only if E�1(z) is a polynomial di�erential operator.To show that E�1 exists and is a polynomial di�erential operator we note that interms of the basis of (� + �) in (3.24) the matrix E is given expliitly by the followingformula: Emh ;�nk (z) = ÆhkÆmn + h[mh ; �nk ℄; jred(z)i+ hmh ; �nk i�z : (3:31)The ruial point is that, by the grading and the property in (3.17), we haveEmh ;�nk (z) = ÆhkÆnm ; for k � h : (3:32)The matrix E has a blok struture labelled by the (blok) row and (blok) olumnindies h and k, respetively, and (3.32) means that the bloks in the diagonal of E areunit matries and the bloks below the diagonal vanish. In other words, E is of the formE = 1 + ", where " is a stritly upper triangular matrix. It is lear that suh a matrixdi�erential operator is polynomially invertible, namely by a �nite series of the formE�1 = 1� "+ "2 + : : :+ (�1)N"N ; ("N+1 = 0); (3:33)whih �nishes our proof of the polynomiality of the Dira braket in (3.25). One an usethe arguments in the above proof to set up an algorithm for atually omputing the Dirabraket. The proof also shows that the polynomiality of the Dira braket is guaranteedwhenever E is of the form (1+") with " being nilpotent as a matrix. In our ase this wasensured by a speial grading assumption, and it appears an interesting question whetherpolynomial redutions an be obtained at all without using some grading struture.The zero blok ours in D�1 in (3.30) beause the seond lass onstraints originatefrom the gauge �xing of �rst lass ones. We note that the presene of this zero blokimplies that the Dira brakets of the gauge invariant quantities oinide with theiroriginal Poisson brakets, namely one sees this from the formula of the Dira braket by33



keeping in mind that the gauge invariant quantities weakly ommute with the �rst lassonstraints.Finally, we want to show that ondition (3.23) is weaker than (3.3-4). This is bestseen by onsidering an example. To this let now G be the maximally non-ompat realform of a omplex simple Lie algebra. If fM�;M0;M+g is the prinipal sl(2) embeddingin G, with ommutation rules as in (3.34) below, we simply hoose the one-dimensionalgauge algebra � � fM+g and take M � M�. The !M -dual to M+ an be taken tobe � = M0, and then (3.23) holds. To show that onditions (3.3-4) annot be satis�ed,we prove that a grading operator H for whih [H;M�℄ = �M� and GH�1 � �, does notexist. First of all, [H;M�℄ = �M� and hM�;M+i 6= 0 imply [H;M+℄ = M+, and thus�H�1 = fM+g. Furthermore, writing H = (M0 +�), we �nd from [H;M�℄ = �M� that� must b e an sl(2) singlet in the adjoint of G. However, in the ase of the prinipalsl(2) embedding, there is no suh singlet in the adjoint, and hene H = M0. But thenthe ondition GM0�1 � � is not ful�lled.3.3. First lass onstraints for the WGS -algebrasLet S = fM� ; M0 ; M+g be an sl(2) subalgebra of the simple Lie algebra G:[M0;M�℄ = �M� ; [M+;M�℄ = 2M0 : (3:34)We argued in the Introdution that it is natural to assoiate an extended onformalalgebra, denoted as WGS , to any suh sl(2) embedding [16,18℄. Namely, we de�ned theWGS -algebra to be the Dira braket algebra generated by the omponents of the on-strained KM urrent of the the following speial form:Jred(x) =M� + jred(x) ; with jred(x) 2 Ker(adM+) ; (3:35)whih means that jred(x) is a linear ombination of the sl(2) highest weight states in theadjoint of G. This de�nition is indeed natural in the sense that the onformal propertiesare manifest, sine, as we shall see below, with the exeption of the M+-omponentthe spin s omponent of jred(x) turns out to be a primary �eld of onformal weight(s+ 1) with respet to LM0 . Before showing this, we shall onstrut here �rst lass KMonstraints underlying the WGS -algebra, whih will be used in Chapter 4 to onstrutgeneralized Toda theories whih realize the WGS -algebras as their hiral algebras. We34



expet the WGS -algebras to play an important organizing role in desribing the (primary�eld ontent of) onformally invariant KM redutions in general, and shall give argumentsin favour of this idea later.We wish to �nd a gauge algebra � for whih the triple (�; H = M0;M = M�)satis�es our suÆient onditions for polynomiality and (3.35) represents a DS gauge forthe orresponding onformally invariant �rst lass onstraints. We start by notiing thatthe dimension of suh a � has to satisfy the relationdimKer(adM+) = dimWGS = dimG � 2dim� : (3:36)From this, sine the kernels of adM� are of equal dimension, we obtain thatdim� = 12dimG � 12dimKer(adM�) ; (3:37)whih means by (3.10) that we are looking for a � of maximal dimension. By the repre-sentation theory of sl(2), the above equality is equivalent todim� = dimG�1 + 12dimG 12 ; (3:38)where the grading is by the, in general half-integral, eigenvalues of adM0 . We also know,(3.4b) and (3.5), that for our purpose we have to hoose the graded Lie subalgebra � ofG in suh a way that G�1 � � � G>0. Observe that the non-degeneray ondition (3.3)is automatially satis�ed for any suh � sine in the present ase Ker(adM�) � G�0, andM0 2 �? is also ensured, whih guarantees the onformal invariane, see (2.13).It is obvious from the above that in the speial ase of an integral sl(2) subalgebra,for whih G 12 is empty, one an simply take� = G�1 : (3:39)For grading reasons, !M�(G�1;G�1) = 0 (3:40)holds, and thus one indeed obtains �rst lass onstraints in this way.One sees from (3.38) that for �nding the gauge algebra in the non-trivial ase of ahalf-integral sl(2) subalgebra, one should somehow add half of G 12 to G�1, in order tohave the orret dimension. The key observation for de�ning the required halving of G 12onsists in notiing that the restrition of the 2-form !M� to G 12 is non-degenerate. This35



an be seen as a onsequene of (3.9), but is also easy to verify diretly. By the wellknown Darboux normal form of sympleti forms [34℄, there exists a (non-unique) diretsum deomposition G 12 = P 12 +Q 12 (3:41)suh that !M� vanishes on the subspaes P 12 and Q 12 separately. The spaes P 12 andQ 12 , whih are the analogues of the usual momentum and oordinate subspaes of thephase spae in analyti mehanis, are of equal dimension and dual to eah other withrespet to !M� . The point is that the �rst-lassness onditions in (2.6) are satis�ed ifwe de�ne the gauge algebra to be � = G�1 + P 12 ; (3:42)by using any sympleti halving of the above kind. It is obvious from the onstrutionthat the �rst lass onstraints,J(x) =M� + j(x) with j(x) 2 �? ; (3:43)obtained by using � in (3.42) satisfy the suÆient onditions for polynomiality given inSetion 3.1. With this � we have �? = G�0 +Q� 12 ; (3:44a)where Q� 12 is the subspae of G� 12 given byQ� 12 = [M�;P 12 ℄ : (3:44b)By ombining (3.42) and (3.44) one also easily veri�es the following diret sum deom-position: �? = [M�;�℄ + Ker(adM+) ; (3:45)whih is just (3.14) with V = Ker(adM+). This means that (3.35) is indeed nothing butthe equation of a partiular DS gauge for the �rst lass onstraints in (3.43), as required.This speial DS gauge is alled the highest weight gauge [13℄. Similarly as for any DSgauge, there exists therefore a basis of gauge invariant di�erential polynomials of theurrent in (3.43) suh that the base elements redue to the omponents of jred(x) in (3.35)by the gauge �xing. The KM Poisson braket algebra of these gauge invariant di�erentialpolynomials is learly idential to the Dira braket algebra of the orresponding urrent36



omponents, and we an thus realize the WGS -algebra as a KM Poisson braket algebraof gauge invariant di�erential polynomials.The seond lass onstraints de�ning the highest weight gauge (3.35) are natural inthe sense that in this ase � in (3.24) runs over the basis of the spae TM� = [M+ ; G℄whih is a natural omplement of KM� = Ker(adM�) in G, eq. (3.8).In the seond lass formalism, the onformal ation generated by LM0 on the WGS -algebra is given by the following formula:Æ�f;M0 jred(x) � � Z dy1 f(y+) fLM0(y) ; jred(x)g� ; (3:46)where the parameter funtion f(x+) refers to the onformal oordinate transformationÆf x+ = �f(x+), f. (2.11), and jred(x) is to be substituted by J(x)�M� when evaluatingthe KM Poisson brakets entering into (3.46), like in (3.25). To atually evaluate (3.46),we �rst replae LM0 by the objetLmod(x) = LM0(x)� 12hM+ ; J 00(x)i ; (3:47)whih is allowed under the Dira braket sine the di�erene (the seond term) vanishesupon imposing the onstraints. The ruial point to notie is that Lmod weakly ommuteswith all the onstraints de�ning (3.35) (not only with the �rst lass ones) under the KMPoisson braket. This implies that with Lmod the Dira braket in (3.46) is in fatidential to the original KM Poisson braket and by this observation we easily obtainÆ�f;M0 jred(x) = f(x+) j0red(x) + f 0(x+)�jred(x) + [M0; jred(x)℄)� 12f 000(x+)M+: (3:48)This proves that, with the exeption of the M+-omponent, the sl(2) highest weightomponents of jred(x) in (3.35) transform as onformal primary �elds, whereby the on-formal ontent of WGS is determined by the deomposition of the adjoint of G under Sin the aforementioned manner. We end this disussion by noting that in the highestweight gauge LM0(x) beomes a linear ombination of the M+-omponent of jred(x) anda quadrati expression in the omponents orresponding to the singlets of S in G. Fromthis we see that LM0(x) and the primary �elds orresponding to the sl(2) highest weightstates give a basis for the di�erential polynomials ontained in WGS , whih is thus indeeda (lassial) W-algebra in the sense of the general idea in [20℄.In the above we proposed a `halving proedure' for �nding purely �rst lass on-straints for whih WGS appears as the algebra of the orresponding gauge invariant dif-ferential polynomials. We now wish to larify the relationship between our method and37



the onstrution in a reent paper by Bais et al [16℄, where the WGS -algebra has been de-sribed, in the speial ase of G = sl(n), by using a di�erent method. We reall that theWGS -algebra has been onstruted in [16℄ by adding to the �rst lass onstraints de�nedby the pair (G�1;M�) the seond lass onstraintshu ; J(x)i = 0 ; for 8 u 2 G 12 : (3:49)Clearly, we reover these onstraints by �rst imposing our omplete set of �rst lassonstraint belonging to (�;M�) with � in (3.42), and then partially �xing the gauge byimposing the ondition hu ; J(x)i = 0 ; for 8 u 2 Q 12 : (3:50)One of the advantages of our onstrution is that by using only �rst lass KM onstraintsit is easy to onstrut generalized Toda theories whih possessWGS as their hiral algebra,for any sl(2) subalgebra, namely by using our general method of WZNW redutions. Thiswill be elaborated in the next hapter. We note that in [16℄ the authors were atuallyalso led to replaing the original onstraints by a �rst lass system of onstraints, inorder to be able to onsider the BRST quantization of the theory. For this purpose theyintrodued unphysial `auxiliary �elds' and thus onstruted �rst lass onstraints in anextended phase spae. However, in that onstrution one has to hek that the auxiliary�elds �nally disappear from the physial quantities. Another important advantage ofour halving proedure is that it renders the use of any suh auxiliary �elds ompletelyunneessary, sine one an start by imposing a omplete system of �rst lass onstraintson the KM phase spae from the very beginning. We study some aspets of the BRSTquantization in Chapter 5, and we shall see that the Virasoro entral harge given in [16℄agrees with the one omputed by taking our �rst lass onstraints as the starting point.The �rst lass onstraints leading toWGS are not unique, for example one an onsideran arbitrary halving in (3.41) to de�ne �. We onjeture that these W-algebras alwaysour under ertain natural assumptions on the onstraints. To be more exat, let ussuppose that we have onformally invariant �rst lass onstraints determined by thepair (�;M�) where M� is a nilpotent matrix and the non-degeneray ondition (3.3)holds together with equation (3.37). By the Jaobson-Morozov theorem, it is possibleto extend the nilpotent generator M� to an sl(2) subalgebra S = fM�;M0;M+g. It isalso worth noting that the onjugay lass of S under the automorphism group of G isuniquely determined by the onjugay lass of the nilpotent element M�. For this andother questions onerning the theory of sl(2) embeddings into semi-simple Lie algebras38



the reader may onsult refs. [32,33,38,39℄. We expet that the above assumptions on(�;M�) are suÆient for the existene of a omplete set of gauge invariant di�erentialpolynomials and their algebra is isomorphi to WGS , where M� 2 S. We are not yet ableto prove this onjeture in general, but below we wish to sketh the proof in an importantspeial ase whih illustrates the idea.Let us assume that we have onformally invariant �rst lass onstraints desribedby (�;M�; H) subjet to the suÆient onditions for polynomiality given in Setion 3.1,suh that H is an integral grading operator of G. We note that these are exatly theassumptions satis�ed by the onstraints in the non-degenerate ase of the generalizedToda theories assoiated to integral gradings [18℄. In this ase equation (3.37) is atuallyautomatially satis�ed as a onsequene of the non-degeneray ondition (3.3). One analso show that it is possible to �nd an sl(2) algebra S = fM�;M0;M+g for whih inaddition to [H;M�℄ = �M� one has[H;M0℄ = 0 and [H;M+℄ =M+ ; (3:51)and that for this sl(2) algebra the relationKer(adM+) � GH�0 (3:52)holds, where the supersript indiates that the grading is de�ned by H. For the sl(2)subjet to (3.51) the latter property is in fat equivalent to Ker(adM�) � GH�0, whih isjust the non-degeneray ondition as in our ase � = GH>0. The proof of these statementsis given in Appendix B.We introdue a de�nition at this point, whih will be used in the rest of the paper.Namely, we all an sl(2) subalgebra S = fM�;M0;M+g an H-ompatible sl(2) fromnow on if there exists an integral grading operator H suh that [H;M�℄ = �M� issatis�ed together with the non-degeneray ondition. The non-degeneray ondition anbe expressed in various equivalent forms, it an be given for example as the relation in(3.52), and its (equivalent) analogue for M�.Turning bak to the problem at hand, we now point out that by using the H-ompatible sl(2) we have the following diret sum deomposition of �? = GH�0:GH�0 = [M�;GH>0℄ + Ker(adM+): (3:53)This means that the set of urrents of the form (3.35) represents a DS gauge for thepresent �rst lass onstraints. This implies the required result, that is that the W-algebra belonging to the onstraints de�ned by � = GH>0 together with a non-degenerate39



M� is isomorphi to WGS with M� 2 S. In this example both LH(x) and LM0(x) aregauge invariant di�erential polynomials. Although the spetrum of adH is integral byassumption, in some ases the H-ompatible sl(2) is embedded into G in a half-integralmanner, i.e., the spetrum of adM0 an be half-integral in ertain ases. We shall returnto this point later. We further note that in general it is learly impossible to build suhan sl(2) out of M� for whih H would play the role ofM0. It is possible to prove that inthose ases there is no full set of primary �elds with repet to LH whih would ompletethis Virasoro density to a generating set of the orresponding di�erential polynomialW-algebra. We have seen that suh a onformal basis is manifest for WGS , whih seems toindiate that in the present situation the onformal struture de�ned by the sl(2), LM0 ,is preferred in omparison to the one de�ned by LH .We also would like to mention an interesting general fat about the WGS -algebras,whih will be used in the next setion. Let us onsider the deomposition of G under thesl(2) subalgebra S. In general, we shall �nd singlet states and they span a Lie subalgebrain the Lie subalgebra Ker(adM+) of G. Let us denote this zero spin subalgebra as Z. Itis easy to see that we have the semi-diret sum deompositionKer(adM+) = Z +R; [Z;R℄ � R; [Z;Z℄ � Z; (3:54)where R is the linear spae spanned by the rest of the highest weight states, whih havenon-zero spin. It is not hard to prove that the subalgebra of the original KM algebrawhih belongs to Z, survives the redution to WGS . In other words, the Dira brakets ofthe Z-omponents of the highest weight gauge urrent, jred in (3.35), oinide with theiroriginal KM Poisson brakets, given by (2.1). Furthermore, this Z KM subalgebra atson the WGS -algebra by the orresponding original KM transformations, whih preservethe highest weight gauge:Jred(x)! eai(x+)�i Jred(x) e�ai(x+)�i + (eai(x+)�i)0 e�ai(x+)�i ; (3:55)where the �i form a basis of Z. In partiular, one sees that the WGS -algebra inherites thesemi-diret sum struture given by (3.54) [16℄. The point we wish to make is that it ispossible to further redue theWGS -algebra by applying the general method of onformallyinvariant KM redutions to the present Z KM symmetry. In priniple, one an generatea huge number of new onformally invariant systems out of the WGS -algebras in thisway, i.e., by applying onformally invariant onstraints to their singlet KM subalgebras.For example, if one an �nd a subalgebra of Z on whih the Cartan-Killing form of Gvanishes, then one an onsider the obviously onformally invariant redution obtained40



by onstraining the orresponding omponents of jred in (3.35) to zero. We do not explorethese `seondary' redutions of the WGS -algebras in this paper. However, their potentialimportane will be highlighted by the example of the next setion.Finally, we note that, for a half-integral sl(2), one an onsider (instead of using� in (3.42)) also those onformally invariant �rst lass onstraints whih are de�ned bythe triple (�;M0;M�) with any graded � for whih G�1 � � � (G�1 + P 12 ) . Thepolynomiality onditions of Setion 3.1 are learly satis�ed with any suh non-maximal�, and the orresponding extended onformal algebras are in a sense between the KMand WGS -algebras.3.4. The WGS interpretation of the W ln-algebrasThe W ln-algebras are ertain onformally invariant redutions of the sl(n;R) KMalgebra introdued by Bershadsky [26℄ using a mixed set of �rst lass and seond lassonstraints. It is known [16℄ that the simplest non-trivial ase W 23 , originally proposedby Polyakov [27℄, oinides with the WGS -algebra belonging to the highest root sl(2) ofsl(3; R). The purpose of this setion is to understand whether or not these redued KMsystems �t into our framework, whih is based on using purely �rst lass onstraints, andto unover their possible onnetion with the WGS -algebras in the general ase. (In thissetion, G = sl(n;R).) In fat, we shall onstrut here purely �rst lass KM onstraintsleading to theW ln-algebras. The onstrution will demonstrate that theW ln-algebras anin general be identi�ed as further redutions of partiular WGS -algebras. The seondaryredution proess is obtained by means of the singlet KM subalgebras of the relevantWGS -algebras, in the manner mentioned in the previous setion.By de�nition [26℄, the KM redution yielding the W ln-algebra is obtained by on-straining the urrent to take the following form:JB(x) =M� + jB(x); jB(x) 2 �?; (3:56)where � denotes the set of all stritly upper triangular n� n matries andM� = el+1;1 + el+2;2 + :::+ en;n�l; (3:57)the e's being the standard sl(n;R) generators (l � n � 1), i.e., M� has 1's all alongthe l-th slanted line below the diagonal. The urrent in (3.56) orresponds to imposing41



the onstraints �Æ(x) = 0 for all Æ 2 �, like in (2.3). Generally, these onstraintsomprise �rst and seond lass parts, where the �rst lass part is the one belonging tothe subalgebra D of � de�ned by the relation !M�(D;�) = 0, (see (2.4)). The seondlass part belongs to the omplementary spae, C, of D in �. In fat, for l = 1 theonstraints are the usual �rst lass ones whih yield the standard W-algebras, but theseond lass part is non-empty for l > 1. The above KM redution is so onstrutedthat it is onformally invariant, sine the onstraints weakly ommute with the Virasorodensity LHl(x), see (2.10), where Hl = 1lH1 and H1 is the standard grading operator ofsl(n;R), for whih [H1 ; eik℄ = (k � i)eik.We start our onstrution by extending the nilpotent generator M� in (3.57) to ansl(2) subalgebra S = fM�;M0;M+g. In fat, parametrizing n = ml + r with m = �nl �and 0 � r < l, we an takeM0 = diag� r timesz }| {m2 ; � � �; (l�r) timesz }| {m� 12 ; � � �; � � � ; r timesz }| {�m2 ; � � ��; (3:58)where the mutipliities, r and (l� r), our alternately and end with r. The meaning ofthis formula is that the fundamental of sl(n;R) branhes into l irreduible representationsunder S, r of spin m2 and l � r of spin m�12 . The expliit form of M+ is a ertain linearombination of the eik's with (k � i) = l, whih is straightforward to ompute.We desribe next the �rst and the seond lass parts of the onstraints in (3.56) inmore detail by using the grading de�ned by M0. We observe �rst that in terms of thisgrading the spae � admits the deomposition� = �0 + G 12 + G1 + G>1 : (3:59)From this and the de�nition of !M� , the subalgebra D omprising the �rst lass partan also be deomposed into D = D0 +D1 + G>1 ; (3:60)where D0 = Ker (adM�) \�0 (3:61)is the set of the sl(2) singlets in �, and D1 is a subspae of G1 whih we do not needto speify. By ombining (3.59) and (3.60), we see that the omplementary spae C, towhih the seond lass part belongs, has the strutureC = Q0 + G 12 + P1 ; (3:62)42



where the subspae Q0 is omplementary to D0 in �0, and P1 is omplementary to D1in G1. The 2-form !M� is non-degenerate on C by onstrution, and this implies by thegrading that the spaes Q0 and P1 are sympletially onjugate to eah other, whih isreeted by the notation.We shall onstrut a gauge algebra, �, so that Bershadsky's onstraints will be reov-ered by a partial gauge �xing from the �rst lass ones belonging to �. As a generalizationof the halving proedure of the previous setion, we take the following ansatz:� = D + P 12 + P1 ; (3:63)where P 12 is de�ned by means of some sympleti halving G 12 = P 12 +Q 12 , like in (3.41).It is important to notie that this equation an be reasted into� = D0 + P 12 + G�1 ; (3:64)whih would be just the familiar formula (3.42) if D0 was not here. By using (3.57) and(3.58), D0 an be identi�ed as the set of n�n blok-diagonal matries, �, of the followingform: � = blok-diagf�0; �0;�0; :::::;�0; �0;�0g; (3:65)where the �0's and the �0's are idential opies of stritly upper triangular r � r and(l � r)� (l � r) matries respetively. This implies thatdimD0 = 14[l(l� 2) + (l� 2r)2℄ ; (3:66)whih shows that D0 is non-empty exept when l = 2; r = 1, whih is the ase of W 2nwith n = odd. The fat that D0 is in general non-empty gives us a trouble at this stage,namely, we have now no guarantee that the above � is atually a subalgebra of G. Byusing the grading and the fat that D0 is a subalgebra, we see that � in (3.64) beomesa subalgebra if and only if [D0 ; P 12 ℄ � P 12 : (3:67)We next show that it is possible to �nd suh a `good halving' of G 12 for whih P 12 satis�es(3.67).For this purpose, we use yet another grading here. This grading is provided by usingthe partiular diagonal matrix, H 2 G, whih we onstrut out of M0 in (3.58) by �rstadding 12 to its half-integral eigenvalues, and then substrating a multiple of the unitmatrix so as to make the result traeless. In the adjoint representation, we then have43



adH = adM0 on the tensors, and adH = adM0 � 1=2 on the spinors. We notie fromthis that the H-grading is an integral grading. In fat, the relationship between the twogradings allows us to de�ne a good halving of G 12 as follows:P 12 � G 12 \ GH1 ; and Q 12 � G 12 \ GH0 : (3:68)SineM� is of grade �1 with respet to both gradings, the spaes given by (3.68) learlyyield a sympeti halving of G 12 with respet to !M� . That this is a good halving, i.e.,it ensures the ondition (3.67), an also be seen easily by observing that D0 has grade0 in the H-grading, too. Thus we obtain the required subalgebra � of G by using thispartiular P 12 in (3.64).Let us onsider now the �rst lass onstraints orresponding to the above onstrutedgauge algebra �, �(x) = 0 for  2 �, whih bring the urrent into the formJ�(x) =M� + j�(x) ; j�(x) 2 �? : (3:69)It is easy to verify that the original onstraint surfae (3.56) an be reovered from (3.69)by a partial gauge �xing in suh a way that the residual gauge transformations are exatlythe ones belonging to the spae D. In fat, this is ahieved by �xing the gauge freedomorresponding to the piee (P 12 + P1) of �, (3.63), by imposing the partial gauge �xingondition �qi(x) = 0 ; qi 2 (Q0 +Q 12 ); (3:70)where the qi form a basis of the spae (Q0 +Q 12 ) and the �q's are de�ned like in (2.3).This implies that the redued phase spae de�ned by the onstraints in (3.69) is the sameas the one determined by the original onstraints (3.56). In onlusion, our purely �rstlass onstraints, (3.69), have the same physial ontent as Bershadsky's original mixedset of onstraints, (3.56).Finally, we give the relationship between Bershadsky's W ln-algebras and the sl(2)systems. Having seen that the redued KM phase spaes arrying the W ln-algebras anbe realized by starting from the �rst lass onstraints in (3.69), it follows from (3.64)that the W ln-algebras oinide with partiular WGS -algebras if and only if the spae D0 isempty, i.e., for W 2n with n = odd. In order to establish the WGS interpretation of W ln inthe general ase, we point out that the redued phase spae an be reahed from (3.69)by means of the following two step proess based on the sl(2) struture. Namely, onean proeed by �rst �xing the gauge freedom orresponding to the piee (P 12 +G�1) of �,and then �xing the rest of the gauge freedom. Clearly, the onstraint surfae resulting in44



the �rst step is the same as the one obtained by putting to zero those omponents of thehighest weight gauge urrent representingWGS whih orrespond to D0. The �nal reduedphase spae is obtained in the seond step by �xing the gauge freedom generated by theonstraints belonging to D0, whih we have seen to be the spae of the upper triangularsinglets of S. Thus we an onlude that W ln an be regarded as a further redution ofthe orresponding WGS , where the `seondary redution' is of the type mentioned at theend of Setion 3.3. One an exhibit primary �eld bases for the W ln-algebras and desribetheir struture in detail in terms of the underlying WGS -algebras by further analysing theseondary redution, but this is outside the sope of the present paper, see [37℄.
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4. Generalized Toda theoriesLet us remind ourselves that, as has been detailed in the Introdution, the standardonformal Toda �eld theories an be naturally regarded as redued WZNW theories, andas a onsequene these theories possess the hiral algebras WGS � ~WGS as their anonialsymmetries, where S is the prinipal sl(2) subalgebra of the maximally non-ompat realLie algebra G. It is natural to seek for WZNW redutions leading to e�etive �eld theorieswhih would realize WGS � ~WGS as their hiral algebras for any sl(2) subalgebra S of anysimple real Lie algebra. The main purpose of this hapter is to obtain, by ombining theresults of setions 2.3 and 3.3, generalized Toda theories meeting the above requirementin the non-trivial ase of the half-integral sl(2) subalgebras of the simple Lie algebras.Before turning to desribing these new theories, next we briey reall the main featuresof those generalized Toda theories, assoiated to the integral gradings of the simple Liealgebras, whih have been studied before [3,4,14-18℄. The simpliity of the latter theorieswill motivate some subsequent developments.4.1. Generalized Toda theories assoiated with integral gradingsThe WZNW redution leading to the generalized Toda theories in question is set upby onsidering an integral grading operator H of G, and taking the speial ase� = GH�1 and ~� = GH��1 ; (4:1)and any non-zero M 2 GH�1 and ~M 2 GH1 ; (4:2)in the general onstrution given in Setion 2.3. We note that by an integral gradingoperator H 2 G we mean a diagonalizable element whose spetrum in the adjoint of Gonsists of integers and ontains �1, and that GHn denotes the grade n subspae de�nedby H. In the present ase B in (2.25b) is the subalgebra GH0 of G, and, beause of thegrading struture, the properties expressed by equation (2.34) hold. Thus the e�etive�eld equation reads as (2.37) and the orresponding ation is given by the simple formulaIHe� (b) = SWZ(b)� Z d2x hb ~Mb�1;Mi ; (4:3)46



where the �eld b varies in the little group GH0 of H in G.Generalized, or non-Abelian, Toda theories of this type have been �rst investigatedby Leznov and Saveliev [1,3℄, who de�ned these theories by postulating their Lax poten-tial, AH+ = �+b � b�1 +M ; AH� = �b ~Mb�1 ; (4:4)whih they obtained by onsidering the problem that if one requires a G-valued pure-gauge Lax potential to take some speial form, then the onsisteny of the system ofequations oming from the zero urvature ondition beomes a non-trivial problem. Inomparison, we have seen in Setion 2.3 that in the WZNW framework the Lax potentialoriginates from the hiral zero urvature equation (1.9), and the onsisteny and theintegrability of the e�etive theory arising from the redution is automati.It was shown in [3,4,16℄ in the speial ase when H, M and ~M are taken to bethe standard generators of an integral sl(2) subalgebra of G, that the non-Abelian Todaequation allows for onserved hiral urrents underlying its exat integrability. Theseurrents then generate hiralW-algebras of the typeWGS , for integrally embedded sl(2)'s.By means of the argument given in Setion 3.3, we an establish the struture of thehiral algebras of a wider lass of non-Abelian Toda systems [18℄. Namely, we see that ifM and ~M in (4.2) satisfy the non-degeneray onditionsKer(adM ) \ GH�1 = f0g and Ker(ad ~M ) \ GH��1 = f0g ; (4:5)then the left�right hiral algebra of the orresponding generalized Toda theory is isomor-phi to WGS� � ~WGS+ , where S� (S+) is an sl(2) subalgebra of G ontaining the nilpotentgenerator M ( ~M), respetively. The H-ompatible sl(2) algebras S� ourring here arenot always integrally embedded ones. Thus for ertain half-integral sl(2) algebras WGSan be realized in a generalized Toda theory of the type (4.3). As we would like to havegeneralized Toda theories whih possess WGS as their symmetry algebra for an arbitrarysl(2) subalgebra, we have to ask whether the theories given above are already enoughfor this purpose or not. This leads to the tehnial question as to whether for everyhalf-integral sl(2) subalgebra S = fM�;M0;M+g of G there exists an integral gradingoperator H suh that S is an H-ompatible sl(2), in the sense introdued in Setion 3.3.The answer to this question is negative, as proven in Appendix C, where the relationshipbetween integral gradings and sl(2) subalgebras is studied in detail. Thus we have to�nd new integrable onformal �eld theories for our purpose.47



4.2. Generalized Toda theories for half-integral sl(2) embeddingsIn the following we exhibit a generalized Toda theory possessing the left � righthiral algebra WGS � ~WGS for an arbitrarily hosen half-integral sl(2) subalgebra S =fM� ; M0 ; M+g of the arbitrary but non-ompat simple real Lie algebra G. Clearly, ifone imposes �rst lass onstraints of the type desribed in Setion 3.3 on the urrents ofthe WZNW theory then the resulting e�etive �eld theory will have the required hiralalgebra. We shall hoose the left and right gauge algebras in suh a way to be dual toeah other with respet to the Cartan-Killing form.Turning to the details, �rst we hoose a diret sum deomposition of G 12 of the typein (3.41), and then de�ne the indued deomposition G� 12 = P� 12 +Q� 12 to be given bythe subspaesQ� 12 � P?12 \ G� 12 = [M� ; P 12 ℄ and P� 12 � Q?12 \ G� 12 = [M� ; Q 12 ℄ : (4:6)It is easy to see that the 2-form !M+ vanishes on the above subspaes of G� 12 as aonsequene of the vanishing of !M� on the orresponding subspaes of G 12 . Thus wean take the left and right gauge algebras to be� = (G�1 + P 12 ) and ~� = (G��1 + P� 12 ) ; (4:7)with the onstant matries M and ~M entering the onstraints given by M� and M+,respetively. The duality hypothesis of Setion 2.3 is obviously satis�ed by this onstru-tion.In priniple, the ation and the Lax potential of the e�etive theory an be obtainedby speializing the general formulas of Setion 2.3 to the present partiular ase. In ourase B = Q 12 + G0 +Q� 12 ; (4:8)and the physial modes, whih are given by the entries of b in the generalized Gaussdeomposition g = ab with a 2 e� and  2 e~�, are now onveniently parametrized asb(x) = exp[q 12 (x)℄ � g0(x) � exp[q� 12 (x)℄ ; (4:9)where q� 12 (x) 2 Q� 12 and g0(x) 2 G0, the little group of M0 in G. Next we introduesome notation whih will be useful for desribing the e�etive theory.48



The operator Adg0 maps G� 12 to itself and, by writing the general element u of G� 12as a two-omponent olumn vetor u = (u1 u2)t with u1 2 P� 12 and u2 2 Q� 12 , we andesignate this operator as a 2� 2 matrix:Adg0 jG� 12 = �X11(g0) X12(g0)X21(g0) X22(g0)� ; (4:10)where, for example, X11(g0) and X12(g0) are linear operators mapping P� 12 and Q� 12 toP� 12 , respetively. Analogously, we introdue the notationAdg�10 jG 12 = �Y11(g0) Y12(g0)Y21(g0) Y22(g0)� ; (4:11)whih orresponds to writing the general element of G 12 as a olumn vetor, whose upperand lower omponents belong to P 12 and Q 12 , respetively.The ation funtional of the e�etive �eld theory resulting from the WZNW redu-tion at hand reads as follows:ISe�(g0; q 12 ;q� 12 ) = SWZ(g0)� Z d2x hg0M+g�10 ; M�i+ Z d2x �h��q 12 ; g0�+q� 12 g�10 i+ h� 12 ; X�111 � �� 12 i� ; (4:12a)where the objets �� 12 2 P� 12 are given by the formulae� 12 = [M+; q� 12 ℄ + Y12 � ��q 12 and �� 12 = [M�; q 12 ℄�X12 � �+q� 12 : (4:12b)The Euler-Lagrange equation of this ation is the zero urvature ondition of the followingLax potential: AS+ =M� + �+g0 � g�10 + g0(�+q� 12 +X�111 � �� 12 )g�10 ;AS� =� g0M+g�10 � ��q 12 + Y �111 � � 12 : (4:13)The above new (onformally invariant) e�etive ation and Lax potential are amongthe main results of the present paper. Clearly, for an integrally embedded sl(2) thisation and Lax potential simplify to the ones given by equation (4.3) and (4.4).The derivation of the above formulae is not ompletely straightforward, and nextwe wish to sketh the main steps. First, let us remember that, by (2.29a), to speializethe general e�etive ation given by (2.40) and the Lax potential given by (2.32) to oursituation, we should express the objets �+�1 and a�1��a in terms of b by using the49



onstraints on J and ~J , respetively. (In the present ase it would be tedious to omputethe inverse matrix of Vij in (2.27), whih would be needed for using diretly (2.29b).)For this purpose it turns out to be onvenient to parametrize the WZNW �eld g by usingthe grading de�ned by the sl(2), i.e., asg = g+ � g0 � g� where g+ = a � exp[q 12 ℄; g� = exp[q� 12 ℄ �  : (4:14)We reall that the �elds a, , g0 and q� 12 have been introdued previously by means ofthe parametrization g = ab, with b in (4.9). Also for later onveniene, we write g� asg+ = exp[r�1 + p 12 + q 12 ℄ and g� = exp[r��1 + p� 12 + q� 12 ℄ : (4:15)Note that here and below the subsript denotes the grade of the variables, and p� 12 2P� 12 . In our ase this parametrization of g is advantageous, sine, as shown below, theuse of the grading struture failitates solving the onstraints.For example, the left onstraint are restritions on J<0, for whih we haveJ<0 = (g+g0Ng�10 g�1+ )<0 with N = �+g� � g�1� : (4:16)By onsidering this equation grade by grade, starting from the lowest grade, it is easy tosee that the onstraints orresponding to G�1 � � are equivalent to the relationN��1 = g�10 M�g0 : (4:17)The remaining left onstraints set the P� 12 part of J� 12 to zero, and to unfold theseonstraints �rst we note thatJ� 12 = [p 12 + q 12 ; M�℄ + g0 �N� 12 � g�10 ; with N� 12 = �+p� 12 + �+q� 12 : (4:18)By using the notation introdued in (4.10), the vanishing of the projetion of J to P� 12is written as [q 12 ; M�℄ +X11 � �+p� 12 +X12 � �+q� 12 = 0 ; (4:19)and from this we obtain�+p� 12 = X�111 � �[M� ; q 12 ℄�X12 � �+q� 12	 : (4:20)Combining our previous formulae, �nally we obtain that on the onstraint surfae of theWZNW theoryN = g�10 M�g0 + �+q� 12 +X�111 (g0) � �[M� ; q 12 ℄�X12(g0) � �+q� 12	 : (4:21)50



A similar analysis applied to the right onstraints yields that they are equivalent to thefollowing equation:�g�1+ � ��g+ = �g0M+g�10 � ��q 12 + Y �111 (g0) � �[M+ ; q� 12 ℄ + Y12(g0) � ��q 12	 : (4:22)By using the relations established above, we an at this stage easily ompute b�1Tb =�+�1 and b ~Tb�1 = a�1��a as well, and substituting these into (2.40), and using thePolyakov-Wiegmann identity to rewrite SWZ(b) for b in (4.9), results in the ation in(4.12) indeed. The Lax potential in (4.13) is obtained from the general expression in(2.32) by an additional `gauge transformation' by the �eld exp[�q 12 ℄, whih made the�nal result simpler. Of ourse, for the above analysis we have to restrit ourselves to aneighbourhood of the identity where the operators X11(g0) and Y11(g0) are invertible.The hoie of the onstraints leading to the e�etive theory (4.12) guarantees that thehiral algebra of this theory is the required one,WGS � ~WGS , and thus one should be able toexpress theW-urrents in terms of the loal �elds in the ation. To this �rst we reall thatin Setion 3.1 we have given an algorithm for onstruting the gauge invariant di�erentialpolynomials W (J). The point we wish to make is that the expression of the gaugeinvariant objet W (J) in terms of the loal �elds in (4.12) is simply W (�+b b�1+ T (b)),where b is given by (4.9). Applying the reasoning of [40,18℄ to the present ase, this followssine the funtion W is form-invariant under any gauge transformation of its argument,and the quantity (�+b b�1 + T (b)) is obtained by a (non-hiral) gauge transformationfrom J , namely by the gauge transformation de�ned by the �eld a�1 2 e�, see equations(2.31-2). (In analogy, when onsidering a right moving W-urrent one gauge transformsthe argument ~J by the �eld  2 e~�.) We an in priniple ompute the objet T (b), asexplained in the above, and thus we have an algorithm for �nding the formulae of theW 's in terms of the loal �elds g0 and q� 12 .The onformal symmetry of the e�etive theory (4.12) is determined by the left andright Virasoro densities LM0(J) and L�M0( ~J), whih survive the redution. To see thisonformal symmetry expliitly, it is useful to extrat the Liouville �eld � by means of thedeomposition g0 = e�M0 �ĝ0, where ĝ0 ontains the generators from G0 orthogonal toM0.One an easily rewrite the ation in terms of the new variables and then its onformalsymmetry beomes manifest sine e� is of onformal weight (1; 1), ĝ0 is onformal salar,and the �elds q� 12 have onformal weights (12 ; 0) and (0; 12 ), respetively. This assignmentof the onformal weights an be established in a number of ways, one an for examplederive it from the orresponding onformal symmetry transformation of the WZNW �eldg in the gauged WZNW theory, see eq. (5.30). We also note that the ation (4.12) an be51



made generally ovariant and thereby our generalized Toda theory an be re-interpretedas a theory of two-dimensional gravity sine � beomes the gravitational Liouville mode[14℄.We would like to point out the relationship between the generalized Toda theorygiven by (4.12) and ertain non-linear integrable equations whih have been assoiatedto the half-integral sl(2) subalgebras of the simple Lie algebras by Leznov and Saveliev,by using a di�erent method. (See, e.g., equation (1.24) in the review paper in J. Sov.Math. referred to in [3℄.) To this we note that, in the half-integral ase, one an alsoonsider that WZNW redution whih is de�ned by imposing the left and right onstraintsorresponding to the subalgebras G�1 and G��1 of � and ~� in (4.7). In fat, the Laxpotential of the e�etive �eld theory orresponding to this WZNW redution oinideswith the Lax potential postulated by Leznov and Saveliev to set up their theory. Thus,in a sense, their theory lies between the WZNW theory and our generalized Toda theorywhih has been obtained by imposing a larger set of �rst lass KM onstraints. Thismeans that the theory given by (4.12) an also be regarded as a redution of theirtheory.There is a ertain freedom in onstruting a �eld theory possessing the requiredhiral algebra WGS , for example, one has a freedom of hoie in the halving proedureused here to set up the gauge algebra. The theories in (4.12) obtained by using di�erenthalvings in equation (3.41) have their hiral algebras in ommon, but it is not quiteobvious if these theories are always ompletely equivalent loal Lagrangean �eld theoriesor not. We have not investigated this `equivalene problem' in general.A speial ase of this problem arises from the fat that one an expet that in someases the theory in (4.12) is equivalent to one of the form (4.3). This is ertainly so inthose ases when for the half-integral sl(2) ofM0 andM� one an �nd an integral gradingoperator H suh that: (i) [H ; M�℄ = �M�, (ii) P 12 + G�1 = GH�1, (iii) P� 12 + G��1 =GH��1, (iv) Q� 12 + G0 + Q 12 = GH0 , where one uses the M0 grading and the H-gradingon the left- and on the right hand sides of these onditions, respetively. By de�nition,we all the halving G 12 = P 12 + Q 12 an H-ompatible halving if these onditions aremet. (We note in passing that an sl(2) whih allows for an H-ompatible halving isautomatially an H-ompatible sl(2) in the sense de�ned in Setion 3.3, but, as shown inAppendix C, not every H-ompatible sl(2) allows for an H-ompatible halving.) Thosegeneralized Toda theories in (4.12) whih have been obtained by using H-ompatiblehalvings in the WZNW redution an be rewritten in the simpler form (4.3) by means52



of a renaming of the variables, sine in this ase the relevant �rst lass onstraints are inthe overlap of the ones whih have been onsidered for the integral gradings and for thehalf-integral sl(2)'s to derive the respetive theories. Sine the form of the ation in (4.3)is muh simpler than the one in (4.12), it appears important to know the list of thosesl(2) embeddings whih allow for an H-ompatible halving, i.e., for whih onditions(i) : : : (iv) an be satis�ed with some integral grading operator H and halving. We studythis group theoreti question for the sl(2) subalgebras of the maximally non-ompatreal forms of the lassial Lie algebras in Appendix C. We show that the existene of anH-ompatible halving is a very restritive ondition on the half-integral sl(2) subalgebrasof the sympleti and orthogonal Lie algebras, where suh a halving exists only for thespeial sl(2) embeddings listed at the end of Appendix C. In ontrast, it turns out thatfor G = sl(n;R) an H-ompatible halving an be found for every sl(2) subalgebra, sinein this ase one an onstrut suh a halving by proeeding similarly as we did in Setion3.4 (see (3.68)). This means that in the ase of G = sl(n;R) any hiral algebra WGS anbe realized in a generalized Toda theory assoiated to an integral grading.It is interesting to observe that those theories whih an be alternatively written inboth forms (4.3) and (4.12) allow for several onformal strutures. This is so sine in thisase at least two di�erent Virasoro densities, namely LH and LM0 , survive the WZNWredution.4.3. Two examples of generalized Toda theoriesWe wish to illustrate here the general onstrution of the previous setion by workingout two examples. First we shall desribe a generalized Toda theory assoiated to thehighest root sl(2) of sl(n + 2; R). This is a half-integral sl(2) embedding, but, as weshall see expliitly, the theory (4.12) an in this ase be reasted in the form (4.3), sinethe orresponding halving is H-ompatible. We note that the W-algebras de�ned bythese sl(2) embeddings have been investigated before by using auxiliary �elds in [29℄. Itis perhaps worth stressing that our method does not require the use of auxiliary �eldswhen reduing the WZNW theory to the generalized Toda theories whih possess theseW-algebras as their symmetry algebras, see also Setion 5.3. Aording to the grouptheoreti analysis in Appendix C, the simplest ase when a WGS -algebra de�ned by ahalf-integral sl(2) embedding annot be realized in a theory of the type (4.3) is the ase53



of G = sp(4; R). As our seond example, we shall elaborate on the generalized Todatheory in (4.12) whih realizes the W-algebra belonging to the highest root sl(2) ofsp(4; R).i) Highest root sl(2) of sl(n+ 2; R)In the usual basis where the Cartan subalgebra onsists of diagonal matries, thesl(2) subalgebra S is generated by the elementsM0 = 12 0� 1 � � � 00 0n 00 � � � �11A and M+ =M t� = 0� 0 � � � 10 0n 00 � � � 01A : (4:23)Note that here and below dots mean 0's in the entries of the various matries. Theadjoint of sl(n+ 2) deomposes into one triplet, 2n doublets and n2 singlets under thisS. It is onvenient to parametrize the general element, g0, of the little group of M0 asg0 = e�M0 � e T �0� 1 : : : 00 ~g0 00 � � � 11A ; where T = 12 + n 0�n � � � 00 �2In 00 � � � n1A (4:24)is trae orthogonal to M0 and ~g0 is from sl(n). We note that T and M0 generate theentre of the orresponding subalgebra, G0. We onsider the halving of G� 12 whih isde�ned by the subspaes P� 12 and Q� 12 onsisting of matries of the following form:p 12 = 0� 0 pt 00 0n 00 � � � 01A ; q 12 = 0� 0 � � � 00 0n q0 � � � 01A ;p� 12 = 0� 0 � � � 0~p 0n 00 � � � 01A ; q� 12 = 0� 0 � � � 00 0n 00 ~q t 01A ; (4:25)where q and ~p are n-dimensional olumn vetors and pt and ~q t are n-dimensional rowvetors, respetively. One sees that the P and Q subspaes of G� 12 are invariant underthe adjoint ation of g0, whih means that the blok-matries in (4.10) and (4.11) arediagonal, and thus �� 12 = [M�; q� 12 ℄. One an also verify that X11 = e� 12�� ~g0, andthat using this the e�etive ation (4.12) an be written as follows:Ie�(g0; q 12 ; q� 12 ) = SWZ(g0)� Z d2x he��e� 12�+ (�+~q)t � ~g�10 � (��q)+e 12�+ ~qt � ~g�10 � qi; (4:26)54



where dot means usual matrix multipliation. With respet to the onformal struturede�ned by M0, e� has weights (1; 1), the �elds q and ~q have half-integer weights ( 12 ; 0)and (0; 12 ), respetively,  and ~g0 are onformal salars. In partiular, we see that � isthe Liouville mode with respet to this onformal struture.In fat, the halving onsidered in (4.25) an be written like the one in (3.68), byusing the integral grading operator H given expliitly asH =M0 + 12T = 1n+ 2 �n+ 1 00 �In+1 � : (4:27)It is an H-ompatible halving as one an verify that it satis�es the onditions (i) : : : (iv)mentioned at the end of Setion 4.2, see also Appendix C. It follows that our reduedWZNW theory an also be regarded as a generalized Toda theory assoiated with theintegral grading H. In other words, it is possible to identify the e�etive ation (4.26)as a speial ase of the one in (4.3). To see this in onrete terms, it is onvenient toparametrize the little group of H asb = exp(q 12 ) � g0 � exp(q� 12 ); where g0 = e�H � e�S �0� 1 � � � 00 ~g0 00 � � � 11A ; (4:28)and S =M0� (n+22n )T is trae orthogonal to H. It is easy to hek that by inserting thisdeomposition into the e�etive ation (4.3) and using the Polyakov-Wiegmann identityone reovers indeed the e�etive ation (4.26), with� = �+ � and  = 12�� 2 + n2n �: (4:29)The onformal struture de�ned by H is di�erent from the one de�ned by M0. In fat,with respet to the former onformal struture � is the Liouville mode and all other�elds, inluding q and ~q, are onformal salars.ii) Highest root sl(2) of sp(4; R)We use the onvention when the sympleti matries have the formg = �A BC �At� ; where B = Bt ; C = Ct ; (4:30)55



and the Cartan subalgebra is diagonal. The sl(2) subalgebra S orresponding to thehighest root of sp(4; R) is generated by the matriesM0 = 12(e11 � e33); M+ = e13 ; and M� = e31 ; (4:31)where eij denotes the elementary 4 � 4 matrix ontaining a single 1 in the ij-position.The adjoint of sp(4) branhes into 3 + 2 � 2 + 3 � 1 under S. The three singlets generatean sl(2) subalgebra di�erent from S, so that the little group of M0 is GL(1) � SL(2).GL(1) is generated by M0 itself and the orresponding �eld is the Liouville mode. Usingusual Gauss-parameters for the SL(2), we an parametrize the little group of M0 asg0 = e�M0 0B� 1 0 0 00 e + ��e� 0 �e� 0 0 1 00 �e� 0 e� 1CA : (4:32)We deompose the G� 12 subspaes (spanned by the two doublets) into their P and Qparts as followsp 12 + q 12 = 0B� 0 p 0 q0 0 q 00 0 0 00 0 �p 01CA ; p� 12 + q� 12 = 0B� 0 0 0 0~p 0 0 00 ~q 0 �~p~q 0 0 0 1CA : (4:33)Now the little group, or more preisely the SL(2) generated by the three singlets, mixesthe P and Q subspaes of G� 12 so that the matries Xij and Yij in (4.10) and (4.11)possess o�-diagonal elements:Xij = e� 12� � e + ��e� �e� �e� e� � ; Yij = Xji: (4:34)Inserting this into (4.12) yields the following e�etive ation:ISe�(g0; q; ~q) =SWZ(g0)� Z d2x"e� � 2e� 12�� (��q) � (�+~q)+ 2e 12� �~q + e� 12�� ���q� � �q + e� 12�� ��+~q�e + ��e� #; (4:35)for the Liouville mode �, the onformal salars  ; �; � and the �elds q, ~q with weights(12 ; 0) and (0; 12 ), respetively.It is easy to see diretly from its formula that it is impossible to obtain the aboveation as a speial ase of (4.3). Indeed, if the expression in (4.35) was obtained from(4.3) then the non-derivative term � ~q q(e + ��e� )�1 ould only be gotten from theseond term in (4.3), but, sine g0 and b are matries of unit determinant, this termould never produe the denominator in the non-derivative term in (4.35).56



5. Quantum framework for WZNW redutionsIn this hapter we study the quantum version of the WZNW redution by using thepath-integral formalism and also re-examine some of the lassial aspets disussed inthe previous hapters. We �rst show that the on�guration spae path-integral of theonstrained WZNW theory an be realized by the gauged WZNW theory of Setion 2.2.We then point out that the e�etive ation of the redued theory, (2.40), an be derivedby integrating out the gauge �elds in a onvenient gauge, the physial gauge, in whihthe gauge degrees of freedom are frozen. A nontrivial feature of the quantum theory mayappear in the path-integral measure. We shall �nd that for the generalized Toda theoriesassoiated with integral gradings the e�etive measure takes the form determined fromthe sympleti struture of the redued theory. This means that in this ase the quantumHamiltonian redution results in the quantization of the redued lassial theory; in otherwords, the two proedures, the redution and the quantization, ommute. We shall alsoexhibit the W-symmetry of the e�etive ation for this example. By using the gaugedWZNW theory, we an onstrut the BRST formalism for the WZNW redution inthe general ase. For onformally invariant redutions, this allows for omputing theorresponding Virasoro entre expliitly. In partiular, we derive here a nie formulafor the Virasoro entre of WGS for an arbitrary sl(2) embedding. We shall verify thatour result agrees with the one obtained in [16℄, in spite of the apparent di�erene in thestruture of the onstraints.5.1. Path-integral for onstrained WZNW theoryIn this setion we wish to set up the path-integral formalism for the onstrainedWZNW theory. For this, we reall that lassially the redued theory has been obtainedby imposing a set of �rst-lass onstraints in the Hamiltonian formalism. Thus what weshould do is to write down the path-integral of the WZNW theory �rst in phase spaewith the onstraints implemented and then �nd the orresponding on�guration spaeexpression. The phase spae path-integral an formally be de�ned one the anonialvariables of the theory are spei�ed. A pratial way to �nd the anonial variables is thefollowing [41℄. Let us start from the WZNW ation SWZ(g) in (1.2) and parametrize thegroup element g 2 G in some arbitrary way, g = g(�). We shall regard the parameters57



�a, a = 1; :::; dimG, as the anonial oordinates in the theory. To �nd the anonialmomenta, we introdue the 2-form A = 12Aab(�) d�ad�b to rewrite the Wess-Zumino termas 13Tr (dg g�1)3 = dA: (5:1)The 2-form A is well-de�ned only loally on G, sine the Wess-Zumino 3-form is losedbut not exat. Fortunately we do not need to speify A expliitly below. We next de�neNab(�) by � �g��a� g�1 = Nab(�)T b; (5:2)where T b are the generators of G. The matrix N is easily shown to be non-singular,detN 6= 0. Upon writing SWZ(g) = R d2xL(g), the anonial momentum onjugate to �ais found to be �a = �L��0�a = �hNab(�)(�0g g�1)b �Aab(�)�1�bi: (5:3)The Hamiltonian of the WZNW theory is then given by H = R dx1H withH = �a�0�a � L = 12�Tr �P 2 + (��1g g�1)2�; (5:4)where P a = (N�1)ab(�b + �Ab�1�): (5:5)Sine P = ��0g g�1 in the original variables, the Hamiltonian density takes the usualSugawara form as expeted.Classially, the onstrained WZNW theory has been de�ned as the usual WZNWtheory with its KM phase spae redued by the set of onstraints given by (2.16), whihin the anonial variables read�i = hi; P + �(�1g g�1 �M)i = 0;~�i = h~i; g�1Pg � �(g�1�1g + ~M)i = 0; (5:6)with the bases i 2 �, ~i 2 ~�. As in Setion 2.2, no relationship is assumed here betweenthe two subalgebras, � and ~�. Now we write down the phase spae path-integral for theonstrained WZNW theory. Aording to Faddeev's presription [42℄ it is de�ned asZ = Z d�d� Æ(�)Æ(~�)Æ(�)Æ(~�) det jf�; �gj det jf~�; ~�gj� exp� i Z d2x (�a�0�a �H)�; (5:7)58



where we implement the �rst lass onstraints by inserting Æ(�) and Æ(~�) in the path-integral. The Æ-funtions of � and ~� refer to gauge �xing onditions orresponding tothe onstraints, � and ~�, whih at as generators of gauge symmetries. By introduingLagrange-multiplier �elds, A� = Ai�i and A+ = Ai+~i, (5.7) an be written asZ = Z d�d�dA+dA�Æ(�)Æ(~�) det jf�; �gj det jf~�; ~�gj� exp� i Z d2x �Tr (��0� +A��+A+ ~�)�H��: (5:8)By hanging the momentum variable from �a to P a in (5.5), the measure aquires adeterminant fator, d� = dP detN , and the integrand of the exponent in (5.8) beomesTr (��0� + A��+ A+ ~�)�H= �Tr h�12�1�P �2 + 1�P (A� + gA+g�1 + �0g g�1)�N�1A �1�(�0g g�1)� 12(�1g g�1)2 + A�(�1g g�1 �M)� A+(g�1�1g + ~M)i: (5:9)Sine the matrix N(�) is independent of P , we an easily perform the integration overP provided that the remaining Æ-funtions and the determinant fators are also P -independent. We an hoose the gauge �xing onditions, � and ~�, so that this is true.(For example, the physial gauge whih we will hoose in the next setion ful�lls thisdemand.) Then we end up with the following formula of the on�guration spae path-integral:Z = Z d� detN dA+dA�Æ(�)Æ(~�) det jf�; �gj det jf~�; ~�gj eiI(g;A�;A+); (5:10)where I(g; A�; A+) is the gauged WZNW ation (2.18). We note that the measure forthe oordinates in this path-integral is the invariant Haar measure,d�(g) =Ya d�a detN =Ya (dg g�1)a: (5:11)This is a onsequene of the fat that the phase spae measure in (5.7) is invariant underanonial transformations to whih the group transformations belong.The above formula for the on�guration spae path-integral means that the gaugedWZNW theory provides the Lagrangian realization of the Hamiltonian redution, whihwe have already seen on the basis of a lassial argument in Setion 2.2.59



5.2. E�etive theory in the physial gaugeHaving seen how the onstrained WZNW theory is realized as the gauged WZNWtheory, we next disuss the e�etive theory whih arises when we eliminate all the un-physial degrees of freedom in a partiularly onvenient gauge, the physial gauge. Weshall rederive, in the path-integral formalism, the e�etive ation whih appeared in thelassial ontext earlier in this paper. For this purpose, within this setion we restritour attention to the left-right dual redutions onsidered in Setion 2.3. It, however,should be noted that this restrition is not absolutely neessary to get an e�etive a-tion by the method given below. In this respet, it is also worth noting that Polyakov's2-dimensional gravity ation in the light-one gauge an be regarded as an e�etive a-tion in a non-dual redution, whih is obtained by imposing a onstraint only on theleft-urrent for G = SL(2) [43,12℄. We will not pursue the non-dual ases here.To eliminate all the unphysial gauge degrees of freedom, we simply gauge themaway from g, i.e., we gauge �x the Gauss deomposed g in (2.25) into the formg = ab! b: (5:12)More spei�ally, with the parametrization a(x) = exp [�i(x)i℄, (x) = exp [~�i(x)~i℄ wede�ne the physial gauge by �i = �i = 0; ~�i = ~�i = 0: (5:13)We here note that for this gauge the determinant fators in (5.8) are atually onstants.Now the e�etive ation is obtained by performing the A� integrations in (5.10). Theintegration of A� gives rise to the delta-funtion,Yi Æ�hi; bA+b�1 + �+b b�1 �Mi�; (5:14)with i 2 � normalized by the duality ondition (2.22). One then noties that the delta-funtion (5.14) implies exatly ondition (2.29) with �+ �1 replaed by A+. Hene,with the help of the matrix Vij(b) in (2.27) and T (b) in (2.29), it an be rewritten as(detV )�1 Æ�A+ � b�1T (b)b�: (5:15)Finally, the integration of A+ yieldsZ = Z d�e�(b) eIeff(b); (5:16)60



where Ie�(b) is the e�etive ation (2.40)*, and d�e�(b) is the e�etive measure given byd�e�(b) = (detV )�1 d�(g)Æ(�)Æ(~�) = (detV )�1 d�(g)d�d~� �����=~�=0: (5:17)Of ourse, as far as the e�etive ation is onerned, the path-integral approahshould give the same result as the lassial one, beause the integration of the gauge�elds is Gaussian and hene equivalent to the lassial elimination of the gauge �eldsby their �eld equations. However, a non-trivial feature may arise at the quantum levelwhen the e�etive path-integral measure (5.17) is taken into aount. Let us examine thee�etive measure in the simple ase where the spae B = (� + ~�)?, with whih b 2 eB,forms a subalgebra of G satisfying (2.34), and thus the e�etive ation in (5.16) simpli�esto Ie�(b) = SWZ(b)� � Z d2x hb ~Mb�1;Mi: (5:18)In this ase, the 1-form appearing in the measure d�(g) of (5.11),dg g�1 = da a�1 + a(db b�1)a�1 + ab(d �1)b�1a�1; (5:19)turns out, in the physial gauge, to bedg g�1���=~�=0 = id�i + db b�1 + Vij(b)~id~�j : (5:20)As a result, the determinant fator in (5.17) is anelled by the one oming from (5.20),and the e�etive measure admits a simple form:d�e�(b) = db b�1: (5:21)The point is that this is exatly the measure whih is determined from the sympletistruture of the e�etive theory (5.18) obtained by the lassial Hamiltonian redution.This tells us that in this ase the quantum Hamiltonian redution results in the quanti-zation of the redued lassial theory. In partiular, sine the above assumption for B issatis�ed for the generalized Toda theories assoiated with integral gradings, we onludethat these generalized Toda theories are equivalent to the orresponding onstrained* Atually, the e�etive ation always takes the form (2.40) if one restrits the WZNW�eld to be of the form g = ab with a 2 e�,  2 e~� and b suh that Vij(b) is invertible.The duality between � and ~� is not neessary but an be used to ensure this tehnialassumption. 61



(gauged) WZNW theories even at the quantum level, i.e., inluding the measure. Thisresult has been established before in the speial ase of the standard Toda theory (1.1)in [44℄, where the measure d�e�(b) is simply given by Qi d'i.We end this setion by noting that it is not lear whether the measure determinedfrom the sympleti struture of the redued lassial theory is idential to the e�etivemeasure (5.17) in general. In the general ase both measures in question ould beomequite involved and thus one would need some geometri argument to see if they areidential or not.
5.3. The W-symmetry of the generalized Toda ation IHe�(b)In the previous setion we have seen the quantum equivalene of the generalizedToda theories given by (4.3) and the orresponding onstrained WZNW theories. Itfollows from their WZNW origin that the generalized Toda theories possess onservedW-urrents. It is thus natural to expet that their e�etive ations, IHe� in (4.3) and ISe� in(4.12), allow for symmetry transformations yielding the W-urrents as the orrespondingNoether urrents. We demonstrate below that this is indeed the ase on the example ofthe theories assoiated with integral gradings, when the ation takes a simple form. Wehowever believe that there are symmetries of the e�etive ation orresponding to theonserved hiral urrents inherited from the KM algebra for any redued WZNW theory.Let us onsider a gauge invariant di�erential polynomial W (J) in the onstrainedWZNW theory giving rise to the e�etive theory desribed by the ation in (4.3). In termsof the generalized Toda �eld b(x), this onserved W-urrent is given by the di�erentialpolynomial We�(�) =W (M + �); where � � �+b b�1: (5:22)This equality [34,15℄ holds beause the onstrained urrent J and (M + �) (whih is,inidentally, just the Lax potential AH+ in (4.4)) are related by a gauge transformation,as we have seen. By hoosing some test funtion f(x+), we now assoiate to We� (�) thefollowing transformation of the �eld b(x):ÆW b(y) = hZ d2x f(x+)ÆWe�(x)Æ�(y) i � b(y) ; (5:23)and we wish to show that ÆW b is a symmetry of the ation IHe�(b). Before proving this, we62



notie, by ombining the de�nition in (5.23) with (5.22), that (ÆW b)b�1 is a polynomialexpression in f , � and their �+-derivatives up to some �nite order.We start the proof by noting that the hange of the ation under an arbitraryvariation Æb is given by the formulaÆIHe�(b) = � Z d2y hÆb b�1(y) ; b(y) ÆIHe�Æb(y)i= � Z d2y hÆb b�1(y) ; ���(y) + [b(y) ~Mb�1(y);M ℄i : (5:24)In the next step, we use the �eld equation to replae ��� by �[b ~Mb�1;M ℄ in the obviousequality ��We�(x) = Z d2y hÆWe�(x)Æ�(y) ; ���(y)i; (5:25)and then, from the fat that ��We� = 0 on-shell, we obtain the following identity:Z d2y hÆWe�(x)Æ�(y) ; [b(y) ~Mb�1(y);M ℄i = 0 ; (5:26)Of ourse, the previous argument only implies that (5.26) holds on-shell. However, wenow make the ruial observation that (5.26) is an o�-shell identity, i.e., it is valid for any�eld b(x) not only for the solutions of the �eld equation. This follows by notiing thatthe objet in (5.26) is a loal expression in b(x) ontaining only x+-derivatives. In fat,any suh objet whih vanishes on-shell has to vanish also o�-shell, beause one an �ndsolutions of the �eld equation for whih the x+-dependene of the �eld b is presribed inan arbitrary way at an arbitrarily hosen �xed value of x�.By using the above observation, it is easy to show that ÆW b in (5.23) is indeed asymmetry of the ation. First, simply inserting (5.23) into (5.24), we haveÆW IHe�(b) = � Z d2x f(x+) Z d2y hÆWe�(x)Æ�(y) ; ���(y) + [b(y) ~Mb�1(y);M ℄i: (5:27)We then rewrite this equation asÆW IHe�(b) = � Z d2x f(x+)��We� (x); (5:28)with the aid of the identities (5.26) and (5.25). This then proves thatÆW IHe�(b) = 0 ; (5:29)63



sine the integrand in (5.28) is a total derivative, thanks to ��f = 0. One an alsosee, from equation (5.23), that We� is the Noether harge density orresponding to thesymmetry transformation ÆW b of IHe�(b).5.4. BRST formalism for WZNW redutionsSine the onstrained WZNW theory an be regarded as the gauged WZNW theory(2.18), one is naturally led to onstrut the BRST formalism for the theory as a basis forquantization. Below we disuss the BRST formalism based on the gauge symmetry (2.19)and thus return to the general situation of Setion 5.1 where no relationship between thetwo subalgebras, � and ~�, is supposed.Prior to the onstrution we here note how the onformal symmetry is realized inthe gauged WZNW theory when there is an operator H satisfying the ondition (2.13).(For simpliity, in what follows we disuss the symmetry assoiated to the left-movingsetor.) In fat, with suh H and a hiral test funtion f+(x+) one an de�ne thefollowing transformation, Æg = f+�+g + �+f+Hg;ÆA� = f+�+A� + �+f+[H;A�℄;ÆA+ = f+�+A+ + �+f+A+; (5:30)
whih leaves the gauged WZNW ation I(g; A�; A+) invariant. This orresponds exatlyto the onformal transformation in the onstrained WZNW theory generated by theVirasoro density LH in (2.10), as an be on�rmed by observing that (5.30) implies theonformal ation (2.11) for the urrent with f(x+) = f+(x+). We shall derive later theVirasoro density as the Noether harge density in the BRST system.Turning to the onstrution of the BRST formalism, we �rst hoose the spae �� � Gwhih is dual to � with respet to the Cartan-Killing form (and similarly ~�� dual to ~�).Following the standard proedure [45℄ we introdue two sets of ghost, anti-ghost andNakanishi-Lautrup �elds, f 2 �; �+; B+ 2 ��g and fb 2 ~�; �b�; B� 2 ~��g. The BRSTtransformation orresponding to the (left-setor of the) loal gauge transformation (2.19)64



is given by ÆBg = �g;ÆBA� = D�;ÆB = �2; ÆB�+ = iB+;ÆBB+ = 0;ÆB(others) = 0; (5:31)with D� = ��� [A�; ℄. After de�ning the BRST transformation �ÆB for the right-setorin an analogous way, we write the BRST ation by adding a gauge �xing term and aghost term to the gauged ation,IBRST = I(g; A�; A+) + Igf + Ighost: (5:32)The additional terms an be onstruted by the manifestly BRST invariant expression,Igf+Ighost = �i�(ÆB + �ÆB) Z d2x �h�+; A�i+ h�b�; A+i�= � Z d2x �hB+; A�i+ hB�; A+i+ ih�+; D�i+ ih�b�; D+bi�; (5:33)where we have hosen the gauge �xing onditions as A� = 0. Then the path-integral forthe BRST system is given byZ = Z d�(g) dA+dA�d d�+db d�b�dB+dB� eiIBRST ; (5:34)whih, upon integration of the ghosts and the Nakanishi-Lautrup �elds, redues to (5.10).(Stritly speaking, for this we have to generalize the gauge �xing onditions in (5.10) tobe dependent on the gauge �elds.) By this onstrution the nilpoteny, Æ2B = 0, and theBRST invariane of the ation, ÆBIBRST = 0, are easily heked.It is, however, onvenient to deal with the simpli�ed BRST theory obtained byperforming the trivial integrations of A� and B� in (5.34),IBRST(g; ; �+; b;�b�) = SWZ(g) + i� Z d2x �h�+; ��i+ h�b�; �+bi�: (5:35)We note that this e�etive BRST theory is not merely a sum of a free WZNW setor andfree ghost setor as it appears, but rather it onsists of the two interrelated setors inthe physial spae spei�ed by the BRST harge de�ned below. At this stage the BRSTtransformation whih leaves the simpli�ed BRST ation (5.35) invariant readsÆBg = �g;ÆB = �2; ÆB�+ = ����hi(�+g g�1 �M�) + (�+ + �+)i;ÆB(others) = 0; (5:36)65



where ��� = Pi j�i ihij is the projetion operator onto the dual spae �� with thenormalized bases, hi; �j i = Æij . From the assoiated onserved Noether urrent, ��jB+ =0, the BRST harge QB is de�ned to beQB = Z dx+jB+(x) = Z dx+h; �+g g�1 �M � �+i: (5:37)The physial spae is then spei�ed by the ondition,QBjphysi = 0: (5:38)In the simple ase of the WZNW redution whih leads to the standard Toda theory, theBRST harge (5.37) agrees with the one disussed earlier [46℄.In the ase where there is an H operator whih guarantees the onformal invariane,the BRST system also has the orresponding onformal symmetry,Æg = f+�+g + �+f+Hg;Æ = f+�++ �+f+[H; ℄;Æ�+ = f+�+�+ + �+f+(�+ + [H; �+℄); Æb = f+�+b;Æ�b� = f+�+�b�; (5:39)inherited from the one (5.30) in the gauged WZNW theory. If the H operator furtherprovides a grading, one �nds from (5.39) that the urrents of grade �h have the (left-)onformal weight 1�h, exept the H-omponent, whih is not a primary �eld. Similarly,the ghosts , �+ of grade h, �h have the onformal weight h, 1�h, respetively, whereasthe ghosts b, �b are onformal salars. Now we de�ne the total Virasoro density operatorLtot from the assoiated Noether urrent, ��jC+ = 0, byZ dx+jC+(x) = 1� Z dx+f+(x+)Ltot(x): (5:40)The (on-shell) expression is found to be the sum of the two parts, Ltot = LH + Lghost,where LH is indeed the Virasoro operator (2.10) for the WZNW part, andLghost = i��h�+; �+i+ �+hH; �+ + �+i�; (5:41)is the part for the ghosts. The onformal invariane of the BRST harge, ÆQB = 0, orequivalently, the BRST invariane of the total onformal harge, ÆBLtot = 0, are readilyon�rmed. 66



Let us �nd the Virasoro entre of our BRST system. The total Virasoro entre totis given by the sum of the two ontributions,  from the WZNW part and ghost from theghost one. The Viraso entre from LH is given by = k dimGk + g � 12khH;Hi; (5:42)where k is the level of the KM algebra and g is the dual Coxeter number. On the otherhand, the ghosts ontribute to the Virasoro entre by the usual formula,ghost = �2X� �1 + 6h(h� 1)�; (5:43)where the summation is performed over the eigenvetors of adH in the subalgebra �.(One an on�rm (5.43) by performing the operator produt expansion with Lghost in(5.41).)5.5. The Virasoro entre in two examplesBy elaborating on the general result of the previous setion, we here derive expliitformulas for the total Virasoro entre in two important speial ases of the WZNWredution.i) The generalized Toda theory IHe�(b)In this ase the summation in (5.43) is over the eigenstates of adH with eigenvaluesh > 0, sine � = GH>0. We an establish a onise formula for tot, (5.46) below, by usingthe following group theoreti fats.First, we an assume that the grading operator H 2 G is from the Cartan subalgebraof the omplex simple Lie algebra G ontaining G. Seond, the salar produt h ; ide�nes a natural isomorphism between the Cartan subalgebra and the spae of roots,and we introdue the notation ~Æ for the vetor in root spae orresponding to H underthis isomorphism. More onretely, this means that we set H = Pi ÆiHi by usingan orthonormal Cartan basis, hHi; Hji = Æij . Third, we reall the strange formula ofFreudenthal-deVries [47℄, whih (by taking into aount the normalization of h ; i andthe duality between the root spae and the Cartan subalgebra) readsdimG = 12g j~�j2 ; (5:44)67



where ~� is the Weyl vetor, given by half the sum of the positive roots. Fourth, we hoosethe simple positive roots in suh a way that the orresponding step operators, whih arein general in G and not in G, have non-negative grades with respet to H.By using the above onventions, it is straightforward to obtain the following expres-sions Xh>0 1 = dim� = 12(dimG � dimGH0 ); Xh>0h = 2(~� � ~Æ);Xh>0h2 = 12tr (adH)2 = ghH;Hi = gj~Æj2; (5:45)for the orresponding terms in (5.43). Substituting these into (5.43) and also (5.44) into(5.42),one an �nally establish the following nie formula of the total Virasoro entre [14℄:tot = + ghost = dimGH0 � 12���pk + g ~Æ � 1pk + g ~����2: (5:46)In partiular, in the ase of the redution leading to the standard Toda theory (1.1) theresult (5.46) is onsistent with the one diretly obtained in the redued theory [8,10℄.ii) The WGS -algebra for half-integral sl(2) embeddingsFor sl(2) embeddings the role of the H is played by M0 and in the half-integral asewe have � = G�1 + P 12 = G>0 � Q 12 . It follows that the value of the total Virasoroentre an now be obtained by substrating the ontribution of the `missing ghosts'orresponding to Q 12 , whih is 12dimG 12 , from the expression in (5.46). We thus obtainthat in this ase tot = Nt � 12Ns � 12���pk + g ~Æ � 1pk + g ~����2; (5:47a)where Nt = dimG0 ; and Ns = dimG 12 ; (5:47b)are the number of tensor and spinor multiplets in the deomposition of the adjoint of Gunder the sl(2) subalgebra S, respetively. We note that, as proven by Dynkin [39℄, it ispossible to hoose a system of positive simple roots so that the grade of the orrespondingstep operators is from the set f0; 12 ; 1g, and that ~Æ is (12�) the so alled de�ning vetorof the sl(2) embedding in Dynkin's terminology.As has been mentioned in Setion 3.3, Bais et al [16℄ (see also [29℄) studied a similarredution of the KM algebra for half-integral sl(2) embeddings where all the urrent68



omponents orresponding to G>0 are onstrained from the very beginning. In theirsystem, the onstraints (3.49) of G 12 , being inevitably seond-lass, are modi�ed into�rst-lass by introduing an auxiliary �eld to eah onstraint of G 12 . Aordingly, theauxiliary �elds give rise to the extra ontribution �12dimG 12 in the total Virasoro entre.It is lear that adding this to the sum of the WZNW and ghost parts (whih is of theform (5.46) withM0 substituted for H), renders the total Virasoro entre of their systemidential to that of our system, given by (5.47). This result is natural if we reall the fatthat their redued phase spae (after omplete gauge �xing) is atually idential to ours.It is obvious that our method, whih is based on purely �rst-lass KM onstraints anddoes not require auxiliary �elds, provides a simpler way to reah the idential reduedtheory.
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6. DisussionThe main purpose of this paper has been to study the general struture of theHamiltonian redutions of the WZNW theory. Considering the number of interestingexamples resulting from the redution, this problem appears important for the theory oftwo-dimensional integrable systems and in partiular for onformal �eld theory.Our most important result perhaps is that we established the gauged WZNW settingof the Hamiltonian redution by �rst lass onstraints in full generality. It was then usedhere to set up the BRST formalism in the general ase, and for obtaining the e�etiveations for the left-right dual redutions. We hope that the general framework we set upwill be useful for further studies of this very rih problem.The other major onern of the paper has been to investigate the W-algebras andtheir �eld theoreti realizations arising from the WZNW redution. We found �rst lassKM onstraints leading to the WGS -algebras whih allowed us to onstrut generalizedToda theories realizing these interesting extended onformal algebras. We believe thatthe sl(2)-embeddings underlying the WGS -algebras are to play an important organizingrole in general for understanding the struture, espeially the primary �eld ontent, ofthe onformally invariant redued KM systems. We illustrated this idea by showingthat the W ln-algebras are nothing but further redutions of WGS -algebras belonging topartiular sl(2)-embeddings (see also [37℄). In our study of W-algebras we employedtwo (apparently) new methods, whih are likely to have a wider range of appliabilitythan what we exploited here. The �rst is the method of sympleti halving whereby weonstruted purely �rst lass KM onstraint for the WGS as well as for the W ln-algebras.The seond is what we all the sl(2)-method, whih an be summarized by saying thatif one has onformally invariant �rst lass onstraints given by some (�;M�) with M�nilpotent, then one should build the sl(2) ontaining M� and try to analyse the systemin terms of this sl(2). We used this method to investigate, in the non-degenerate ase,the generalized Toda sytems belonging to integral gradings, and also to provide theWGS -interpretation of the W ln-algebras.We wish to remark here that, as far as we know, the tehnial problem onerningthe inequivalene of those WGS -algebras whih belong to group theoretially inequivalentsl(2) embeddings has not been takled yet.It is well known [22℄ that the standard W-algebras an be identi�ed as the seond70



Poisson braket struture of the generalized KdV hierarhies of Drinfeld-Sokolov [5℄. Asimilar relationship between W-algebras and KdV type hierarhies has been establishedvery reently in more general ases [28,48,49℄. In partiular, the W ln-algebras have beenrelated to the so alled frational KdV hierarhies. It would be learly worthwhile tostudy in general the relationship between the generalized Drinfeld-Sokolov hierahies of[48℄ and the WGS -algebras together with their further redutions, see also [16,17℄.We gave a general loal analysis of the e�etive theories arising in the left-rightdual ase of the redution, and investigated in partiular the generalized Toda theoriesobtained by the redution in some detail. In the ase of the generalized Toda theoriesassoiated with the integral gradings we exhibited the way in whih the W-symmetryoperates as an ordinary symmety of the ation, and demonstrated that the quantumHamiltonian redution is onsistent with the anonial quantization of the redued las-sial theory. It would be nie to have the analogous problems under ontrol also in moregeneral ases. In our analysis we restrited the onsiderations to Gauss-deomposable�elds. The fat that the Gauss deomposition may break down an introdue apparentsingularities in the loal desription of the e�etive theories, but the WZNW desriptionis inherently global and remains valid for non Gauss-deomposable �elds as well [12,13℄.It is hene an interesting problem to further analyze the global (topologial) aspets ofthe phase spae of the redued WZNW theories.We should also note that it is possible to remove the tehnial assumption of left-right duality. In partiular, the study of purely hiral WZNW redutions ould be ofimportane, as they are likely to give natural generalizations of Polyakov's 2d gravityation [43,12℄.In this paper we assumed the existene of a gauge invariant Virasoro density LH , ofthe form given by (2.10), for obtaining onformally invariant redutions. Based on thisassumption, we ame to realize that, when H provides a grading of � and M , the sl(2)built out of M = M� plays an important role. However, the example of Appendix Aindiates that there is another lass of onformally invariant redutions where the formof the surviving Virasoro density is di�erent from that of an LH . The study of this novelway of preserving the onformal invariane may open up a new perspetive on onformalredutions of the WZNW theory as well as on W-algebras.There are many further interesting questions related to the Hamiltonian redutionsof the WZNW theory, whih we ould not mention in this paper. We hope to be able topresent those in future publiations. 71
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Appendix A: A solvable but not nilpotent gauge algebraIn all the ases of the redution we onsidered in Chapters 3 and 4, the gauge algebra� was a graded nilpotent subalgebra of G. On the other hand, we have seen in Setion2.1 that the �rst-lassness of the onstraints imply that � is solvable. We want hereto disuss a onstrained WZNW model for whih the gauge algebra is solvable but notnilpotent. Interestingly enough, it turns out that in this example no H satisfying (2.13)exists whih would render the onstraints onformally invariant. However, onformalinvariane an still be maintained, showing learly that the existene of suh an H isonly a suÆient but not a neessary ondition.We hoose the Lie algebra G to be sl(3; R) and the gauge algebra � as generated bythe following three generators1 = E�1 = 0� 0 1 00 0 00 0 01A ; 2 = E�1+�2 = 0� 0 0 10 0 00 0 01A ; (A:1a)3 = 1p3(2H1 +H2) + 12(E�2 � E��2) = 0B� 1p3 0 00 � 12p3 120 � 12 � 12p3 1CA ; (A:1b)where the Cartan-Weyl generators are normalized by [Hi; E��i℄ = �E��i and[E�i ; E��i℄ = 2Hi, for the simple positive roots �i. Note that, being diagonalizableover the omplex numbers, 3 is not a nilpotent operator. The algebra of � is[1; 2℄ = 0; [1; 3℄ = �p32 1 + 122; [2; 3℄ = �121 � p32 2: (A:2)It is easy to verify that � is a solvable, not-nilpotent Lie algebra. It quali�es as a gaugealgebra sine Tr (i j) = 0.It is readily heked that the spaes �? and [�;�℄? are given by�? = spanfH2; E�1 ; E�1+�2 ; 2H1 +p3E�2 ; 2H1 �p3E��2g;[�;�℄? = spanfH1; H2; E�1 ; E�1+�2 ; E�2; E��2g: (A:3)Thus [�;�℄?=�?, whih is the spae of the M 's leading to �rst lass onstraints, isone-dimensional, and we an takeM = �Y � �p3(4H1 + 2H2) = �p3 0� 2 0 00 �1 00 0 �11A (A:4)73



without loss of generality.The next question is the onformal invariane. As disussed in Setion 2.1, a suf-�ient ondition for onformal invariane is provided by the existene of a (modi�ed)Virasoro density LH = LKM � �xhH; J(x)i weakly ommuting with the onstraints. Forthis to work, the generator H must satisfy the three onditions in (2.13). However, it isan easy matter to show that those onditions are ontraditory in the present ase, andtherefore no suh H exists.The above analysis an also be arried out for the simpler gauge algebra spannedby 3 only. This gauge algebra is obviously nilpotent, sine it is Abelian. Nevertheless,the previous onlusions remain: There exists no H whih would render the �rst lassonstraints onformally invariant, for any M 6= 0 from [�;�℄?=�?. This shows theimportane of the gauge generators being nilpotent operators, rather than the gaugealgebra being nilpotent. It would be interesting to know whether there is always an Hsatisfying (2.13) for gauge algebras onsisting of nilpotent operators.Although there is no H suh that the onstraints are preserved by LH , we annevertheless onstrut another Virasoro density � whih does preserve the onstraints.It is given by �(x) = LKM (x)� �ht3; J(x)i: (A:5)For M given in (A.4), the onstraints readh1; J(x)i = h2; J(x)i = 0 ; h3; J(x)i = � ; (A:6)and are heked to weakly ommute with �: f�(x); hi; J(y)ig � 0 on the onstraintsurfae (A.6). (Note that, when going from LKM to �, we have not hanged the onformalentral harge, whih is lassially zero.) Therefore we expet the redued theory to beinvariant under the onformal transformation generated by � being its Noether hargedensity. We now proeed to show that it is indeed the ase. Before doing this, we displaythe form of � on the onstraint surfae:�(x) = T 21 (x) + T 22 (x) ; (A:7a)T1 = 12 hE�2 + E��2 ; Ji ; T2 = hH2; Ji: (A:7b)Following the analysis of Setion 2.3, we take the left and right gauge algebras to bedual to eah other (hi; ~ji = Æij)� = spanf1; 2; 3g; ~� = spanf~1; ~2; ~3g = spanft1; t2; t3g; (A:8)74



and onsider M = �Y and ~M = �Y t = �Y . We write the SL(3; R) group elements asg = a � b � , with a 2 exp�, b 2 expH and  2 exp ~�, with H = spanfY;H2g the Cartansubalgebra. We did not onform to the general presription given in Setion 2.3, whihrequired to write g = ab with b 2 expB for a spae B omplementary to � + ~� in G,eqs.(2.25-26). Had we done that, the resulting e�etive ation would have looked muhmore ompliated. Here, we simply take a set of oordinates in whih the ation lookssimple.The redution yields an e�etive theory for the group-valued �eld b, of whih thee�etive ation is given by (2.40) with (2.29b). Using the parametrization b = exp (�Y ) �exp (2�H2), the expliit form of the e�etive ation isIe�(�; �) = Z d2xn�+����+ �+���� � (�+�� �)(���� �)osh2 � o: (A:9)By inspetion, we see that this e�etive ation is going to be onformally invariant if the�eld � is a salar, and if the transformation of � is suh that �� �+� and � � ��� are(1,0) and (0,1) vetors respetively. It implies that, under a onformal transformationx� �! x� � f�(x�), the �elds � and � transform asÆ� = f+ (�+�� �) + f� (���� �);Æ� = f+ �+� + f� ���: (A:10)We now want to show our previous laim: the ation (A.9) is onformally invari-ant under the onserved Virasoro density �(x), whih reprodues the f+-transformations(A.10) by Poisson brakets. (The f�-transformations ould also be realized by onstrut-ing the orresponding Virasoro density ~� in the right-handed setor in a similar way.)For this, we �rst note that in terms of the redued variables � and � the two urrentomponents T1 and T2 of (A.7b) readT1 = �(�� �+�) tanh � ; and T2 = �+�: (A:11)These expressions an be obtained as follows. Writing g = a�b� and using the onstraints(2.29b), the onstrained urrent readsJ = a[T (b) + �+b � b�1℄a�1 + �+a � a�1; (A:12)with T (b) given by (2.29). Although neither T1 nor T2 is gauge invariant, the quantitywe want to ompute, �(x), is gauge invariant. As a result, it annot depend on the gauge75



variables ontained in a. Hene we an just as well put a = 1 in (A.12). Doing that, thede�nitions (A.7b) yield (A.11). We thus �nd the following expression for �:� = (�� �+�)2 tanh2 � + (�+�)2: (A:13)It is an easy matter to show, by using the �eld equations obtained from the ation (A.9),sinh2 � �+���+ tanh � ��+�(���� �) + ���(�+�� �)� = 0 ;osh2 � �+��� � tanh � (���� �)(�+�� �) = 0 ; (A:14)that � is indeed hiral, satisfying ��� = 0 : (A:15)Moreover one also heks the following Poisson braketsf�(x); �(y)g = �(�+�� �) Æ(x1 � y1) ;f�(x); �(y)g = �(�+�) Æ(x1 � y1); (A:16)whih reprodue the transformations (A.10). Thus the density � features all what isexpeted from the Noether harge density assoiated with the onformal symmetry.Finally, we present here for ompleteness the general solution of the equations ofmotion (A.14). Along the lines of Setion 2.3, it an be obtained as follows:� = (�L + �R) + tan�1h sinh(�L � �R)sinh(�L + �R) tan(�L � �R)i+ �x+ + �x�;osh(2�) = osh(2�L) osh(2�R) + sinh(2�L) sinh(2�R) os(2(�L � �R)); (A:17)where f�L; �L; �Lg and f�R; �R; �Rg are arbitrary funtions of x+ and x� only, respe-tively, and the three funtions of eah hirality are related by the equations,�+�L + �+�L osh(2�L) = 0 ; ���R + ���R osh(2�R) = 0 : (A:18)
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Appendix B: H-ompatible sl(2) and the non-degeneray onditionOur purpose in this tehnial appendix is to analyse the notion of the H-ompatiblesl(2) subalgebra, whih has been introdued in Setion 3.3. We reall that the sl(2)subalgebra S = fM�;M0;M+g of the simple Lie algebra G is alled H-ompatible if His an integral grading operator, [H ; M�℄ = �M�, and M� satisfy the non-degenerayonditions Ker(adM�) \ GH� = f0g: (B:1)Note that the seond property in this de�nition is equivalent to the fat that S ommuteswith (H �M0). We prove here the results stated in Setion 3.3, and also establish analternative form of the non-degeneray ondition, whih will be used in Appendix C.Let us �rst onsider an arbitrary (not neessarily integral) grading operator H ofG and some non-zero element M� from GH�1. We wish to show that to eah suh pair(H;M�) there exists an sl(2) subalgebra S = fM�;M0;M+g for whih M+ 2 GH+1. om-mutes To exhibit the S-triple in question, we need the Jaobson-Morozov theorem, whihhas already been mentioned in Setion 3.3. In addition, we shall also use the followinglemma, whih an be found in [33℄ (Lemma 7 on page 98, attributed to Morozov).Lemma: Let L be a �nite-dimensional Lie algebra over a �eld of harateristi 0 andsuppose L ontains elements h and e suh that [h ; e℄ = �e and h 2 [L ; e℄. Then thereexists an element f 2 L suh that[h ; f ℄ = f and [f ; e℄ = 2h : (B:2)Turning to the proof, we �rst use the Jaobson-Morozov theorem to �nd generators(m�;m0;m+) in G ompleting m� � M� to an sl(2) subalgebra. We then deomposethe elements m0 and m+ into their omponents of de�nite grade, i.e., we writem0 =Xn mn0 and m+ =Xn mn+ ; (B:3)where n runs over the spetrum of the grading operator H. Sine M� is of grade �1, itfollows from the sl(2) ommutation relations that[m00 ; M�℄ = �M� and [m1+ ; M�℄ = 2m00 ; (B:4)77



and these relations tell us that h = m00 and e = M� satisfy the onditions of the abovelemma. Thus there exists an element f satisfying (B.2), whih we an write as f =Pn fnby using the H-grading again. The proof is �nished by verifying that M+ � f1 andM0 � m00 together with M� span the required sl(2) subalgebra of G.From now on, let H be an integral grading operator. For an elementM� of grade �1,respetively, the pair (H;M�) is alled non-degenerate if it satis�es the orrespondingondition in (B.1).We laim that if S = fM�;M0;M+g is an sl(2) for whih the generatorsM� are fromGH�1, then the non-degeray of the pairs (H;M�) and (H;M+) are equivalent statements.This will follow immediately from the sl(2) struture if we prove that the non-degenerayof the pair (H;M�) is equivalent to the following equality:dimKer(adM�) = dimGH0 : (B:5)It is enough to prove this latter statement for a pair (H;M�), sine then for a pair(H;M+) it an be obtained by hanging H to �H. To prove this let us �rst rearrangethe identity dimG = dimKer(adM�) + dim [M�;G℄ (B:6)by using the grading asdimKer(adM�)� dimGH0 =�dimGH+ � dim [M�;GH+ ℄	+ �dimGH� � dim [M�;GH0 + GH� ℄	 : (B:7)Sine both terms on the right hand side of this equation are non-negative, we see thatdimKer(adM�) � dimGH0 ; (B:8)and equality is ahieved here if and only ifdimGH+ = dim [M�;GH+ ℄ and [M�;GH0 + GH� ℄ = GH� : (B:9)On the other hand, we an show that the two equalities in (B.9) are atually equivalent toeah other. To see this, let us assume that the seond equality in (B.9) is not true. Thisis learly equivalent to the existene of some non-zero u 2 GH+ suh that hu ; [M�;GH0 +GH� ℄i = f0g. By the invariane and the non-degeneray of the Cartan-Killing form, this isin turn equivalent to [M�; u℄ = 0, whih means that the �rst equality in (B.9) is not true.By notiing that the �rst equality in (B.9) is just the non-degeneray ondition for the78



pair (H;M�), we an onlude that the non-degeneray ondition is indeed equivalentto the equality in (B.5).We wish to mention a onsequene of the results proven in the above. To this letus onsider a non-degenerate pair (H;M�). By our more general result, we know thatthere exists suh an sl(2) subalgebra S = fM�;M0;M+g for whihM+ is from GH+1. Thepoint to mention is that this S is an H-ompatible sl(2) subalgebra, as has already beensated in Setion 3.3. In fat, it is now easy to see that this follows from the equivalene of(B.1) with (B.5) by taking into aount that the kernels of adM� are of equal dimensionby the sl(2) struture.
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Appendix C: H-ompatible sl(2) embeddings and halvingsIn Setion 3.3, we showed that, given a triple (�;M;H) satisfying the onditions for�rst-lassness, onformal invariane and polynomiality (eqs. (2.6), (2.13) and (3.2-4)),the orrespondingW-algebra is isomorphi toWGS , provided that H is an integral gradingoperator. Here S = fM�;M0;M+g is some sl(2) subalgebra ontaining M� = M . Anatural question is what sl(2) subalgebras arise in this way, or equivalently, given anarbitrary sl(2) subalgebra, an the resulting WGS -algebra be obtained as the W-algebraorresponding to the triple (�;M;H), for some integral grading operator H ? Whetherthis ours or not depends only on how the sl(2) is embedded, and it is therefore a puregroup-theoreti question. Aording to Setion 3.3, the sl(2) subalgebras having thisproperty are the H-ompatible ones. This appendix is devoted to establishing when agiven sl(2) embedding is H-ompatible, and if so, what the orresponding H is.The question of an sl(2) being H-ompatible is very muh related to another one,whih was mentioned at the end of Setion 4.2. We noted that in some instanes, ageneralized Toda theory assoiated to an sl(2) embedding ould as well be regarded as aToda theory assoiated to an integral grading operator H. This means that the e�etiveation of the theory is a speial ase of both (4.12) and (4.3) at the same time. We haveseen that this is the ase when the orresponding halving is H-ompatible, i.e., when theLie algebra deomposition G = (G�1+P 12 )+(Q 12 +G0+Q� 12 )+(P� 12 +G��1) (subsriptsare M0-grades) an be niely reasted into G = GH�1 + GH0 + GH��1. Our seond problem,addressed at the end of the appendix, is to �nd the list of those sl(2) subalgebras whihallow for an H-ompatible halving. Clearly, an sl(2) subalgebra whih possesses an H-ompatible halving is also H-ompatible in the above sense, but it will turn out that theonverse is not true.Let S = fM�;M0;M+g be an sl(2) subalgebra embedded in a maximally non-ompat real simple Lie algebra G. For the lassial algebras Al, Bl, Cl and Dl, thesereal forms are respetively sl(l+1; R), so(l; l+1; R), sp(2l; R) and so(l; l; R). (We do notonsider the exeptional Lie algebras.) For S to be an H-ompatible sl(2), one should�nd an H in G with the following properties:1. adH is diagonalizable with eigenvalues being integers,2. H �M0 must ommute with the S-triple,80



3. dimKer(adH) = dimKer(adM�).We remark that here the equivalene of relations (B.1) and (B.5), proven in the previousappendix, has been taken into aount. Under onditions 1-3, the deomposition�? = [M�;�℄ + Ker(adM+) (C:1)holds, where � = GH�1 in the (�;M�; H) setting, or � = P 12 + GM0�1 in the sl(2) setting,respetively. (For larity, note that these two gauge algebras are in general not equal.)As a onsequene, Jred(x) = M� + jred(x) with jred(x) 2 Ker(adM+) is a DS gauge inboth settings, and thus the W-algebras are the same.In order to answer the question of whether an sl(2) embedding is H-ompatible,it is useful to know what these embeddings atually are. For a lassial omplex Liealgebra G, this question has been ompletely answered by Malev (and Dynkin for theexeptional omplex Lie algebras) [39℄. The result an be niely stated in terms of theway the fundamental vetor representation redues into irreduible representations of thesl(2):Al : the sl(2) redution of the (l+1)-dimensional representation an be arbitrary,Bl : the (2l + 1)-dimensional representation of Bl redues in suh a way that the multi-pliity of eah sl(2) spinor appearing in the redution is even,Cl : the 2l-dimensional representation of Cl redues in suh a way that the multipliityof eah sl(2) tensor appearing in the redution is even,Dl : same restrition as the Bl series: the spinors ome in pairs.The above onditions are neessary and suÆient, i.e., every possible sl(2) ontent sat-isfying the above requirements atually ours for some sl(2) embedding. Moreover, forthe lassial omplex Lie algebras, the way the fundamental redues ompletely spei�esthe sl(2) subalgebra, up to automorphisms of the embedding G [39℄.The above desription of the sl(2) embeddings remains valid for the maximally non-ompat lassial real Lie algebras, exept the last statement. First of all, this means thatthe above restritions apply to the possible deompositions of the fundamental under thesl(2) subalgebras in the real ase as well. It is also obvious that those sl(2) embeddingsfor whih the ontent of the fundemantal is di�erent are inequivalent. The onverse81



however eases to be true in the real ase in general: inequivalent sl(2) subalgebras anhave the same multiplet ontent in the fundamental of G. The answer to the problem ofH-ompatibility will in fat be provided by looking more losely at the deomposition ofthe fundamental of G under the sl(2) subalgebra in question, as will be lear below.As an immediate onsequene of ondition 2, H �M0 is an sl(2) invariant and anonly depend on the value of the Casimir. If, in the redution of the fundamental of G, aspin j representation ours with multipliity mj , the sl(2) generators ~M and H an bewritten ~M =Xj ~M (j) � Imj ; (C:2a)H =M0 +Xj I2j+1 �D(j); (C:2b)where In denotes the unit n� n matrix, and the D(j)'s are mj �mj diagonal matries.Hene, within eah irreduible representation of sl(2), H is equal to M0 shifted by aonstant. Obviously, this is also true in the adjoint representation and, in turn, thisimplies that adH takes the value zero at most one in eah sl(2) multiplet in the adjointof G. From ondition 3, adH must take the value zero exatly one, i.e., eah sl(2)representation must interset Ker(adH) exatly one. In partiular, the sl(2) singletsmust be adH -eigenvetors with zero eigenvalue.The trivial solution H =M0 exists whenever adM0 is diagonalizable on the integers,i.e., when the redution of the fundamental of G is either purely tensorial or purelyspinorial. From now on, we suppose that the redution involves both kinds of sl(2)representations.1) Al algebras.The problem for the Al series is simple to solve sine, in this ase, an H always exists.As a proof, we expliitly give an H whih ful�lls all the requirements. In (C.2b), we setD(j) = �� � Imj if j 2 N ,(�+ 12) � Imj if j 2 N + 12 , (C:3)where � is a onstant that makes H traeless. In order to show that the H so de�nedhas the required properties, we reall that for the Al algebras, the adjoint representation82



is obtained by tensoring the fundamental with its ontragredient. As a result, the rootsare the di�erenes of the weights of the fundamental (up to a singlet) and we haveadH = adM0 + [D(j1)�D(j2)℄; (C:4)where j1 and j2 are the spins of the states in the fundamental representation from whiha given state in the adjoint representation is formed. That the onditions 1-3 are satis�edis obvious from the fat that adH = adM0 on tensors and adH = adM0 � 12 on spinors,with + 12 ourring as many times as � 12 .It should be pointed out that (C.3) is by no means the only solution. Sine in theprodut j1 � j2, the highest weights have an M0-eigenvalue at least equal to jj1 � j2j,another solution is given by D(j) = (�+ j) � Imj .2) Cl algebras.For the sympleti algebras, the adjoint representation is obtained from the symmetriprodut of the fundamental with itself and we therefore haveadH = adM0 + [D(j1) +D(j2)℄: (C:5)Sine the symmetri produt of a tensor with itself produes a singlet, whih must belongto Ker(adH), we have 2D(t) = 0 for every integer j = t. Hene in the fundamentalrepresentation, H = M0 on tensors. Similarly, the symmetri produt of a spinor withitself always produes a triplet, one member of whih must belong to Ker(adH). Thisimplies that the diagonal entries of 2D(s) are either 0 or �1, for every half-integer j = s.However D(s) annot have a zero on the diagonal, beause adH would not be integral onthe representations ontained in s � t. Therefore, in the fundamental, H = M0 � 12 onspinors.Let us now look at the ms spinor representations of spin s, say s1; s2; : : : ; sms . Theprodut si�sj of any two of those ontains a singlet, and that implies D(si)+D(sj) = 0.This equality must hold for any pair of spin s representations, whih is impossible unlessms � 2.Let us onsider the restrition gs of the sympleti form to the spin s representations.The restrited form is non-degenerate, beause the original non-degenerate metri isblok-diagonal with respet to the eigenvalues of the sl(2) Casimir.83



If ms = 1, then the H given byM0� 12 �I on the unique spin s representation, shouldbe in the sympleti algebra: gsH+Htgs = 0. SineM0 is already sympleti, we requirethat the identity be sympleti, whih is impossible for a non-degenerate form. Henems must be 2.If ms = 2, H �M0 and gs look like (in the basis where M0 and H are diagonal)H �M0 = �� 12 00 � 12 � ; gs = � a b�bt � ; (C:6)where the bloks a and  are antisymmetri. H�M0 being sympleti leads to a =  = 0.To summarize, for an integral H to exist, the sl(2) embedding must be suh that: (i)the multipliity of any spinor representation in the fundamental of G is 2, (ii) if (s; s0) issuh a pair of spinors, they must be the dual of eah other with respet to the sympletiform. If these two onditions are met, then H is given in the fundamental byH = �M0 on tensors,M0+=� 12 on a pair of spinors s=s0. (C:7)Conditions 1-3 are satis�ed sine (C.7) implies adH = adM0 on singlets, adH = adM0�(1or 0) on tensors and adH = adM0 � 12 on spinors.3) Bl and Dl algebras.The analysis here is similar to what has been done in 2), and we an therefore go throughthe proof quikly.For the orthogonal algebras, the adjoint is got from the antisymmetri produt ofthe fundamental with itself and we still haveadH = adM0 + [D(j1) +D(j2)℄: (C:8)The antisymmetri produt of a tensor (spinor) with itself produes a triplet (singlet),so that with respet to the sympleti algebras, the situation is reversed in the sensethat the tensors and the spinors have their roles interhanged: H =M0 � 12 on tensors,H =M0 on spinors and mt � 2 for any tensor representation of spin t.If as in 2), we look at the restrition gt of the orthogonal metri to the spin ttensors, we have mt = 2 on aount of the non-degeneray of gt. From this, we get at84



one that there an be no solution for the Bl algebras. Indeed, the fundamental beingodd-dimensional, at least one tensor representation must ome on its own.On the 2(2t+ 1)-dimensional subspae made up by the two spin t tensors, H �M0and gt take the formH �M0 = �� 12 00 � 12 � ; gs = � a bbt � ; (C:9)where a and  are now symmetri. Requiring that H � M0 be orthogonal, we againobtain a =  = 0.Therefore, for the orthogonal algebras, we get the following onlusions. There isno solution for the Bl series if the sl(2) embedding is not integral. As to the Dl series,the sl(2) embedding must be suh that: (i) every tensor in the fundamental of G has amultipliity equal to 2, (ii) if (t; t0) is suh a pair of tensors, they must be the dual of eahother with respet to the orthogonal metri. In this ase, H is given in the fundamentalby H = �M0+=� 12 on a pair of tensors t=t0,M0 on spinors. (C:10)Summarizing the analysis, the H-ompatible sl(2) embeddings are the followingones:Al : any sl(2) subalgebra,Bl : only the integral sl(2)'s,Cl : those for whih eah spinor ours in the fundamental of Cl with a multipliity0 or 2, the pairs of spinors being sympletially dual,Dl : those for whih eah tensor ours in the fundamental of Dl with a multipliity0 or 2, the pairs of tensors being orthogonally dual.The reader may wish to hek that the above results are onsistent with the isomorphismsB2 � C2 and A3 � D3.We now ome to the seond question alluded to at the beginning of this appendix,85



namely the problem of H-ompatible halvings. From the de�nition, an sl(2) subalgebraallows for an H-ompatible halving if in addition to onditions 1-3 one also has4. P 12 + G�1 = GH�1, and P� 12 + G��1 = GH��1.In partiular, this fourth ondition implies GM00 � GH0 . So we readily obtain that H andM0 must satisfy adH = adM0 ; on tensors; (C:11)sine we know, from the previous analysis, that adH � adM0 is a onstant in everyrepresentation (ondition 2). Therefore, we an simply look at those solutions of the �rstproblem whih satisfy (C.11) and hek if ondition 4 is fully satis�ed or not. We getthat the sl(2) embeddings allowing for an H-ompatible halving are as follows:Al : any sl(2) subalgebra. There are only two solutions for H given by setting in(C.2b): D(j) = (�� �(j)) � Imj with �(j) = 0= 12 for a tensor/spinor,Bl : only the integral sl(2)'s with H =M0,Cl : only the integral sl(2)'s,Dl : the integral sl(2)'s, and those for whih the fundamental of Dl redues intospinors and two singlets, with H given by (C.10).
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