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The fractional discrepancy between the giobal U(1) chiral anomaly {(desciibed by a flux-integral of gauge-fields and not
necessarily an integer on non-compact, euclidean space-times) and the index of the Dirac operator 1 is showsn o be just
L0y~ 8_(0))/m where & (0) are the left- and right-handsd zero energy phase shifts,

It is generally accepted that once the guantity
T=1n det(ip), where D is the Dirac operator, is
regularized 50 as to take care of both ifs infra-red
(IR) and uita-violet (UVY) divergences then in even
{ d 2n) dimensions, its U(1) chiral variation 81,

r chiral anomaly {1}, is given by the formula

8 = ﬁmde.-egw) K{ {a(x)e{x) 4%x,

K={2/n0(1/4n)", (1)

where Teg denotes both regularizations, a{x) is the
infinitesimal parameter of U(1} chiral transforma-
tions, and ¢{(x) is & pseudo-scalar which is a
divergence of a local function of the gauge-poien-
tials 1.8

d)( x) = aanalaz ° Fazn_,azn = aa‘i’a("‘)' <2>

Furthermore, this formula holds not only if a{x)
is purely local (a{x} =0 28 {x]| — o0), which is
the case usually considered in perturbative field
theory {2}, and if a{x) is 2 constant {a{x} = ¢ for
ali x} which is the case usually considered in
geometric discussions of the giobal anomaly, but

is work was done in colishoration with J. Alberty,

also in the more general case that af{x) is local in
the sense that it may vary with x, but a{x) = ¢ # 9§
as | x| — o0 3L

in this paper we wish to establish three result
concerning the chiral anomaly (1), First, we wish
to show that the formula (1) has g natural decom-
position into 2 local and 2 globa! {infra-red) part
ie, that

2l S in dety, (i) = ¢, {x)
s = 3] Ly =q) x R
8, {x} Ba,(x} Y S
.
gl
- TPV W e ¢ {
Y —é%\xi ds*, (3}

where i/ ?wz‘p contains no IR-divergent, and
' /8¢ no UV-divergent part. This decomposition
is, of course, obvicus on a compact space, where it
amounts to no more than the extraction of the
zero modes of iD, but our point is that there exists
a natural infra-red regularization for which i holds
gven on non-compact spaces, for which the con-
tinuous spectrum of i is not, in general, bounded
away from zero.

We then concentrate on the IR or, giobal, chiral
variation and our second result 18 to show that this
part is given by the formula
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¥s}. From now on we shell consider only the
UV-convergent variation &1, which contains all
the infra-red information,

When af x) is constant ama he zero-eigen val

ues of {— D?) are isolated (as ! apﬁpe 15 typically in
the compact case) one sees at once from (8) that
. oI, .

m 2 =2in, —n_}, {16}

o0 S0

where n, are the multiplicities of the left- and
right-handed zero modes of iD. In general, how-
ever, the zero-sigenvalues of — P37 are not isolated
{the continucus part of the spectrum streiches
down to zeroy and eq. {10} must be modified. By
using the spectral representations of ‘“{@1 it is
evident that in this more general case the formal
modification is of the form

. eF * da{h}

fim — = 2ilim -——<~2( z

p0 O P Vg pTHA
= 2i¢{0} = 2ic (0} — Zic_{0}, {11}

where ofl) is the trace of the difference of the
spectral measures P (A)Y—~ P_ fA) where -th =
f°h d2 (W} and o(C) means the imit of o{A) as
>\ tends to zero from the + direction. (Note that in
conirast to the ordinary measures {f, P{A}/) the
measure of{ A} may have z discontinuity not asso»
clated with a bound state. Note also that the total
trace o{o0) is not necessarily unity, or even finite.)
What we now wish to show is that the formul
11} leads to eq. (4} ie o{A) is 335- the sum of the
phase shifts. This result is actually a conseguence
of & more general siatement, namely, that for an
Schrédinger hamiltonian H the projection valued
spectral measure P{A) is just the logarithm of the
8S-mairix {on the mass-shell), That i3 to say, there
is a general result

P EYP(N} P E)
= k(E, R} + P E) ln SOVNPE),

v

12)

o~

where Fo{ £} are the projections onto scattering
states of emergy £ of the free hamilionian and
k{E, A} is a universal function (independent of
H, and the result for 8(A) then follows by notin
that In §=2i8 and taking the {race of {12) for
P={P, — P _} Since the general result (12) does
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1ot appear to he well-known (at least in this direct
form} we now sketch the derivation. First by using
the representation (1/2#1) Hm, |, Inf(s —ie)/(s
+ie)} for the characteristic function #{s) of the
positive real axis, we see that for any positive
hamiltonian H,

j=o]
Pﬁj=i;dPU$Mk~x}

_ i P A— X —ie

27 i}‘gua CP(X}M/\ X+ i
1 A—H—ie

= e {13
Tt minT T (3)

an eguation which expresses the projections P{A)
as explicit functions of the operator. Bg. (32) then
follows by sandwiching the logarithm of the iden-
tity

A-H—ie i p vy N
A—HH{“‘}wHﬁuZ\ES}‘"A“H@“*”’
(14)
where
T
i { i
Zle, AM¥y={1-V¥ ¥
AN b g
2ie
X.__—M._
{h— H}; + ¢
V=H-Hg, (s

between the free-projections FPy{£), and noting
that the Hmit as ¢~ 0 of Zfe¢, &) is just the
S-matrix S(R) as conventionally defined {71 Thus
finglly

PEMP (W)~ P_

1 .
=;%unw4xnw~

M P(E)
(M]PLE), {36}

where 8 {A) are the generalized phase shifts. On
taking the trace in an angular momentum ba
{for fixed £) one then sees that w8{R) is just
sum of the conventional phase shifis at energy ?&.,
Cur final task is to give g direct derivation of
the generalized index theorem (5} using only the
theory of differential equations. Such derivations
are enormously simplified by exploiting the faot

435



Yoiume 175, number 4

that the operator —D? is supersymmetric [8], ie.
~-pr= {Q+» o}
where = {2y P31 F ) (17)

and in the two-dimensional case that we shall
consider this reduces to the statement that

6 D,
D. o]
(18}

For simphcity we shail treat the case where the
two-dimensional gauge field is spherically sym-
metric Le. F (x}=¢, B{x} where B{x}=B(r),
and is of compact sun:)orﬁ 1.2, there is a radius
7= g such that B{r) =0 for » > @, and only skeich
the generalization to arbitrary smooth B-fields of
zamze flux. A great advantage of the supersymmet-
fic Lormﬂazﬂo in the two-dimensional case is that
the zero modes of — P? are just the zero modes of
the first-order differential operators D ie.

D+<.D+:Gs D“‘?~=0s (19>

respectively, and this circumstance aliows us to
obtain an expression for the flux ihmugh any

circle of radius r (not necessarily » > g) i terms
of the radial derivative and orbital angular
momentum m of the fields, even without solving
the equations explicitfy. That is to say, by ex-
pressing {(19) in polar coordinates (¢, #) and in-
tegrating over § one has

2mé{r) =¢A,,mw

8 2o,
= ~¢%dﬁ~e¢—ﬂrdﬁ
@ D3
- Dr '« N
= ~4,77'm~5¢~—(§:r dé, {20}

where m is the angular momentum of the field ¢,
and €= % according to whether o, =9, or @_.
Mote that each integral in (28} is seperaiely
gauge-invariant and that for » > 4, $(r), and hence
the (D o )-integral become independent of 7. From

G. {20) one can already find the bound states,
since they must be smailer than »~ ' both as v — 0
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and as r — oo. Hence they are just those for which

me<l1, {(¢p+mle>1, {21)

where ¢ denotes ${r) for » 2 ¢ and we have used
the fact that $(0)=0. 1t follows from (21) that
¢e > 0. Hence for each sign of 9 there can be
bound states for only one choice of ¢, and then
only if m has the same sign as —¢ and 8 < {m)|
< {¢i—1. in particular, for {¢] <1 there are no
bound states of any kind ¥ In this way one sees
that (20) is already sufficient to establish the in-
teger part of the index theorem ie.

fol=n,—n_, (22}

where [¢] denotes the integer part of ¢ for the
generic case when ¢ Is not an integer. This is the
case in which we are most interested, but for the
record it should be mentioned that if ¢ is integer
(22) becomes ¥ An={g|—1for {¢] =2
Cur main interest, however, is the fractional
part. For that we have to investigate the coniinu-
ous part of the spectrum of — D2 esperially at
iow energy and that is described by the second-
order differential equations

~DA = kN = (—DP+ $eB ), =k,
kP=EFE>0, e=41. (23}

Although we cannot completely solve these sec-
ond-crder differential equations explicitly, we are
saved by the fact that we can solve them explicitly
in the exterior region r > ¢, and we can approxi-
mate them by the zerc-energy solutions in the
interior region {for £ — 0} and have good control
on the error because the inside region r< g is
compact. So the problem reduces essentially to
maiching the inside and outside solutions at r = 4,
and since the overall normalization does not matier
for phase-shift anmaiysis, and the system is spheri-
cally symmetric, the matching problem reduces to
matching the log-derivatives v = (8 ) /Y at r=
¥ There is no eigenvalue for j¢] =1, and only |¢i—1 cigen-
vaiues for i¢] integer and [¢]>1 because in two dimen-
sions functions which fali off like ™% are not square-inte-
grable. The discrepancy between this formuls and the more
conventiona! result {47 = |¢| may be removed by chang-
ing the range of the phase shift from the conventional range
Og8<micO<8gw.
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a. We now consider the outside and inside sciu-
tioms in turn,

Curside. In the radial gauge 4, = 0, the gauge-
potential reduces to the usual BA-pozemm Ag=
¢/ r outside, and since B =10, gq. {23) reduces 1o
the Bessel squation of order W where W= |m+
¢, for each angular momentam m. Ahus the
general outside sclution {for non-integer W) is

b=Todmlr) e,

Y p N
by = ady{kr)y + B _y {kr}, (24)
where J , , are the conventional Bessel functions,
and o and @ are constants, wi“ose ratzy de-

ermines the phase-shift. In fact, from the asymp-
otic {kr — o) form of the Bessel functions

Vi) = (3" Pooslhr — W — Lu),  (25)

e sees at once that the scaltering phase-shift
relative to ¢ == G) is given by

{

;\ %g = tan(4m). (26)
n particular tan 8= +tan 37W for a=0 and
= ( respectively.

Inside. As we have said, the inside solutions
nay be approximated by the inside part of the
erg-energy solutions ¢ in (19) {whether or not the

them@eives correspond to bound states), and

wee all that we shall need for meiching are the

g-Gerivatives. (#3, in ) theerror can be con-
mi\,a by controfling the quantity (#8, In{d /@),
hich from (23} is sasily seen to be

0
-8, 1n(0/9)) =~k @s’/fdf/@(a}ﬂa)

an 8 =

= k2] ”@zrdr/@%ay (27)

Thus, to first order in k?

s Py rar"f/\ /r&,!p\t 2 42
{inside =(~—~——e = i —{ka)y 4,
vl 7
3 -
2:/{}@%‘&2‘/@"‘@2{@) >0, (28)

here 47 is strictly positive and independent of
%, Hence, for matching, we need only know the
ro-energy quantity (r 8,9/9),, and, as already

PHYSICS LETTERS B
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emphasized in the bound-state discussion, this can
be cbtained from the flux-equation (20) without
actually sobving for o(r), » < a explcitly, In fact
from {Z0) one has

{réo/9),= —e{¢+m) {29)
and thus finally
vl(inside} = —e{p+m) — {ka)' 4>, 4> 0.

(3¢)

Marching. To wmatch with y{inside) we must
now compute y{outside), and for this we use the
fact that since g is fixed and & — 0, the Bessel
functions Jy-(ka} may be approximated for & — O
by their values in the neighbourhood of the origi
Thus for small £ and fixed g one has

N W
‘;’oatsxce ka) F’l + V/\ ( kd
B8 s N~ 4
+ o} 31
F{} _ W)‘ {i’r{ﬁ) { }
rom this equation it is easy 1o see that
8 _1 v W—v)
o« {‘ (7k \Wry )

where vy = z/_.?_‘i{fsﬂi_@_:

% (32
\ l;’«auts:de ;a ' }

is the relationship between the ratic 8/a and the
matching log-derivative v. On 'nak‘ng the match
v{inside} = y from {30) one then obiains

g r{1- W, (1 N2
o ra+wy (3ka)
Welg+ + /k
e E\qS m) a (33}
W—e{p+m)—{ka) 42
where W= {¢+mi, as the eguation to determine
B/ o

From eg. {33) one sees that the ratic §/a— 0
as & — 0 and hence the phase shift is given by
tan & = —tand w W /2) in all cases except when (¢
+my= W <1, or equivalently, 0 <elm + ¢) < 1,
i which cases the a/8 =0 as k=0 and tan 8 =
~+tan{ W/ 2} Thus for each flux 27¢ and chiral-
ity « there is only one special value m of m for

437
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which the sign of the phase-shift is the reverse of
the normal {BA) sign, and, furthermore, since the
inside solutions have to be regular at the origin,
there is the further condition me<1 Irom eq.
{21}, which show that the sign-reversal takes place
for only one sign of ¢ for each given ¢. In other
words, the anomalous phase-shift tan & =
tand ¥ /2) occurs for only one angular momen-
tum sector m = m, and only one chirality, and its

value is just w-times the fractional part [ of ¢, i.c.
I wEnN 7 — i
5”’[{@} =04 i{’i & (G> - Wlfﬁmm; (34}

3

Combining this resnlt with the result (22) for the
bound states we see finally that

o= g"b} +f= {n+ - YZ_} +f

= (n - n) T = LT -mO)  (5)
Iz

which, since 2w¢ s just the flux-integral (1) for
the two-dimensional case, ¢stablishes the result for
that case. In fact we have estabiished a little more,
namely, that the integer coniribution actually
comes from the angular momentom sectors ||
<tgi=1{me <0, ed = O}, with unit multiplicity
for each m, and that the fractional contribution
comes from only the “missing” angular momen-
rum sector {91—1< {m| <} (m$<0, ep>0)
Note that the formula (35) holds aiso for the case
of integer & if one lets f—1 and 8§, ~8&_—»wn
(not f— 0 and 8, —8_ — (). Those familiar with
supersymimeiric guantum mechanics will also note
that the existence of contributions only for the
angular momenta (mi <ig|—1{mdp <0, e > Q)
implies that these are the only angular momentum
sectors for which the supersymmelry is not spon-
taneously broken, and this can be verified divectly.
Finglly it might be mentioned that, although we
have restricted ourselves to the sphericaily sym-
metric, compact support case for clarity, there is
no real difficulty in extending the results to the
generai two-dimensional case. This is because the
finite-flux condition {8(x) d’x < oo impiies that
B falls off as »— oo, and that the system is
asympiotically spherically symmetric. {In the
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non-asymptotic region the angular momentum
generalizes (0 a winding number.)

After this work was completed we became aware
of two other recent derivations [9,10] of the central
formula {5). However the approach in these two
derivations is quite different, in fact complemen-
tary, 1o ours. in particular in both derivations the
relationship between the high- and low-energy
parts of the anomaly is used to Obtain nformation
about the low-energy part {using the eikonal ap-
proximation in the case of ref. {10]) whereas we go
immediately to the low-energy (giobal} anomaly
and derive the information directly using the rela-
tion {9). Furthermore, in ref. {9] the index theorem
(5} is verified for two examples, using conicutional
methods, whereas we have verified for only one of
these examnples, but our explicit exploitation of the
supersymmetry of the Dirac operator explicitly
feads to a considerable simplification of the proof.

Two of us {RM, LOR) thark F. Nicodemi
for discussions, R.M. thanks the DIAS for
hospitality during a period when this work was
carried out and highly appreciates a2 MPI-Grant
{1984). A.W. wishes to thank the Deutsche For-
schungsgemeinschaft for financial support.
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