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The fractior, i discrepancy between the giobaI U(I) cb/ral anomMy (described by a flux-i~tegrM of gauge-fie~fls a~d not 
necessa~ly an integer on non-compact, euclidean space-times) and the index ef the Dirae operator D is shown to be just 
(~+ (0)- 8 (0))/~r where ~ ± (0) are the left- and right-handed zero energy phase shif:s. 

~t is generaIiy accepted, that once the quantity 
Y = in de@D ), where D is the Dirac operator, is 
regularized so as to take care of both its infra-red 
(IR) and uitaoviolet (UV) divergences then in even 
(d = 2n) dimensions, its U(1) chirai variation 8F, 
or chira! anomNy [ii, is given by the formula 

8 F = 8  In det;eg(iD) = Kf (x)e(x) d= x, 
.g = (2i/  @) 

where reg deno'~es both reguiarizations, a ( x )  is the 
infinitesimal parameter  of U(1) chirM transformao 
tions, and ~(x}  is a pseudo-scaiar which is a 
divergence of a local function of the gauge-poten- 
tials i.e. 

= .... (2)  

Furthermore, this formula holds not only if, a~x,Z 
is purely locai ( a ( x ) - ,  0 as ]x 1 -~ co), which is 
the case usually considered in perturbative field 
theory [2I, and if a'~xj' is a constant (c~(x) = c for 
M1 x)  wbich is the case usually considered in 
geometric discussions of the giobM anomaly, but 

part of tg].s work was done in collaboration wi~h J. A{berty, 
FU But'in. 

also in the more generM case that a ( x )  is local in 
the sense that it may vary with x, but a ( x )  ~ c 4= 0 
as I xi  --~ co [3], 

In tNs paper  we wish to establish three resuks 
concerning the chiral anomaIy (1), First, we wish 
to show that the formuIa (1) has a namrai  decom- 
position into a locai and a globM (infra-red) part  
i.e. that 

OF ,3 

~ f A( i ", 
ac = ~  ~ x j ds% @) 

where 3 F / S a ,  contains no IR-divergent  and 
~ F / , 3 c  no UV-divergent part. This decomposition 
is, of course, obvious on a compact  space, where it 
amounts to no more than ;he extraction of the 
zero modes of i D, but our point is that there e~sts  
a n a t ~ a l  infra-red regalarization for w>icln it hoIds 
even on non-compact  spaces, for wMch the con- 

tin~ous spectrum of i D is not, in genera1, bounded 
away from zero. 

We then concentrate on the IR or, global, chiral 
variation and our second result is to show that this 
part  is given by the formula 
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u c % V ;  = 2i ~r k P y 5  

)+, -2i (4) 
k 

wi~ere t r (3Pys)  depotes the jump at zero-energy 
in d:e trace measure associated with the spectra[ 
projectior~s P ( k )  of - D : ,  n ~ denote the iefb and 
right-handed zero modes of ~D, and ~tw means 
~he limit of the scattering phase shifts for - D 2 as 
the energy tends to zero (labelled in a suitabie 
anguiar momentum bas s  k)o This formula shows 
that iz the non-compac[ case the usual zero-mode 
contribution to the g!obal anomaly is supple- 
-~e>ted by a contribution from the continuous 
spectrum of i D, and that this contribution has a 
simpie pi~ysica;: interpretation in terms of phase-. 
shifts. 

Finally0 by eliminating the anomaly 8 F / 8 c  from 
eqs. (4) and (3) one obtains the independent re- 
lationship 

, a S  ~ . \ . , .  } % , i x  j n ; 

2[ 

h 

between the surface integral of the gauge-fieids 
and the zero-modes and plhase-shifts of' the dif- 
ferent[ai operator -~D2 This formula is evidently 
a generalization to non-compact spaces of the 
Atiyah-Singer index theorem [4}~ and since it is 
independent of the anomaly, our third result is to 
derive it d[rectiy i.e. using on!y- ordinary quantum 
mechanical scattering theory for the simplest case 
of a ":we-dimensional space (d = 2). The case d = 2 
has the added interest that the phase-shifts 8 ~:(0) 
reduce to the (supersy-mmetric) Bohm-Aharonov  
pi-,ase-shifts [5}° It may be amusing to ~aote that eq. 
(5) actual!y incorporates three we!!-known but up-, 
patently u"eorrelated results, namely, the Levin- 
son theorem, the At iyah-Smger  index theorem 
and the Bohm-Abaronov  theorem, as can be seen 
by putting tb.e flux term, the phase-shift term, and 
ff.-,o h~,,usd state term resr~ec.qvelv equal to zero! 

To establish the above resu!ts we first aote that 
the IR and UV divergences of F = tr In(iD) have 
two very different origins. The ~R-divergence 
comes from. ~he fact the o y e r a t o r  in(i~) does no~ 

exist when the spectrum of i D is not bounded 
away from zero. This means that it can be re- 
moved by modifying the operator i D, ar.d the 
usuE modification is to introduce a small imagin- 
ary- mass-term ion. by- letting i D -+ i(D + m). How- 
ever° because m is not chiral!y invariant ( m - ,  
m eap(2iysa ) it is actually more convenient to 
replace m by a small chira! doub!et M = m + it~y 5, 
i.e. to Iet i}3 -+ {(~ + M) where the doublet (m, n) 
rotates under chh'al transformations (if desired M 
may be thought of as the (sma!]) vacuum expecta- 
tion value of a chira! fidd doublet [6] after a 
spontaneous breakdown of chiral symmetry), The 
UV-divergence, on .the other has& comes from 
the fact that the *,race of the operator in i (p  + M) 
does not exist, and thus it is removed by using one 
of the conventional UVoreguiarization schemes. 
Having removed it in this way one may write 

c =  tr,o + (6) 

where U denotes UV-regu{ariza~ion, and it makes 
sense to talk of chirai variations of F. it is d~en 
easy to see that the chbal variation of t" decompo- 
ses natu,.=aiiy into two parts corresponding to the 
variation i D and M; 

a~,d the advantage of the decomposition is that it 
is s[multaneous!y a decompositiop, into parts which 
are proportional to ~(x),~ and ~(x),  and into 
parts which are ]Ro and UV-convergent respec- 
tive!y. That is to say, 

, . :  i. P+M) (8) 
which is ~R-convergent in the sense teat  the limit 
M - + 0  may be taken inside the trace (and is 
actually only miidly UV-divergent) and 

~1",~ ' r [ { D + M ) - ~ : v  ' ' } o , = ~  .. , z : , ~ i ' c i e ~ x } i  

'; 02 ,o 2 ] 

"' Y" - -  >l  / L J (9) 

where 92 denotes ~he ch.iral invariam combination 
1 [  92 = m 2 + n 2 and D± = 20- + 2/s)~, which is UV- 

convergent on account of the minus sign (due to 
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~%). From now on we shalI consider only the 
UV-convergent variation 3F, u which contains all 
the infra-red information. 

When a(x) is constant and the zero-eigen -vaL 
ues of ( -  D 2) are isolated (as happens typiea1Iy in 
the compact case) one sees at once from (9) that 

ar,~ 
lira 77 = 2i(,~+ - ,,), (IO) 
p~O 

where n± are the multiplicities of the tel> and 
right-handed zero modes of iD. In genera'..', how- 
ever, the zero-eigenvalues of - D 2 are not isolated 
(the continuous part of the spectrum, stretches 
down to zero) and eq. (10) must be modified. By 
using the spectral representations of - D  2 it is . ± 

evident that in this more general case the formal 
modification is of the form 

:.ira ~r~ = 2ilim p ~ /~  d~tX) 

= 2i~(o) = 2~o+(o) - 2~ (o), (n) 

where e ( k )  is the trace of the difference of the 
spectral measares P + ( X ) -  P_(X)  where -D2± = 
f~h  d P ± ( k )  and e(O) means the i i ~ t  of o (h)  as 
k ter~,ds to zero from the + direction. (Note that in 
contrast to the ordinary measures ( f ,  P ( k ) f )  the 
measure ~(k)  may have a discontinuity not asso- 
ciated with a bound state. Note also that the total 
trace e(oo) is not necessariiy unity, or even finite.) 

What we now wish to show is that the formula 
(!1) leads to eq. (4) i°e. a(X) is just the sum of the 
phase sMfts. TNs resuh is actually a consequence 
of a more general statement, namdy,  that for any 
Schrbdinger hamiltonian H the projection valued 
spectra1 meas~dre P ( k )  is just the logarithm of the 
S-matrix ion the mass-she11). That is to say, there 
is a general resuk 

& ( ~ ) p ( X ) P o ( e )  

= : { r e ,  x )  -~ e o ( e )  ,,- s ( x )  ' ~ 

where P0~f~ are the projections onto scattering 
states of energy t7 of the free hamfkonian and 
k(E,  k) is a universal function (independent of 
H), and the result for 8(k) then follows by noting 
that In S = 2i8 and ta~.ng the trace of (12) for 
P = ( P + -  P_).  Since the general result (12) does 

,,~.ot appear to be weILknown (at least in this d ~'*..,.,. 
form) we now sketch fi'~e derivation. First by using 
the representation (1/2~ri) l ira, ,  0 In[(s - iQ/ (s  
+ i~)] for the eharacte~.stic function ~(s) of the 
positive real axis, we see that for any positive 
hamittonian H, 

P (X )  = f ° ° d e ( x ) e ( X -  x)  
d0 

~o h - x - i e  
2rd ~;oJo X -  x + i~ 

- _ - ~ ,  ( 1 3 )  

an equation which expresses the projections P(X) 
as explicit functions of the operator. Eq. (i2) then 
follows by sandwiching the Iogarithm of the iden- 
tity 

X - H - i e  t 
• x 

X - H + i ~  X _ g 0 + i ~ ( ~ , X ) ( X - H 0 - ! ~ ) ,  

where 

Z(~,  X) = i i -  v 1 4- , v 
[ ~ ' k - H + i ~  j 

2ie ] 
x ( a -  H )  2 + e 2 ' 

v =  ~ ' - , % ,  (15) 

between the free-projections Po(E), and noting 
that the timit as ¢ ~ 0  of Z(¢, X) is just the 
S-mat,bx S(X) as conventionaEy defined [71. Thus 
finally 

Po(E)[P+(X) - P_ (k)] Po(S) 

1 
= --po [ 

, z ) t < ( x ) - < ( x  ".' , )~%,e )  (~6) 

where 8 ±(),) are the generalized phase shifts. On 
taking the trace in an anguiar momentum basis 
(for fixed E )  one then sees that rrS(>,) is just the 
sum of the conventional phase shifts at energy k° 

Our final task is to give a a~.~,,c~ derivation of 
the generaIized index theorem (5) using only the 
theory of &~,~er,~mI equations. Such de , ra t ions  

s .mDmed by exp~,,~-mg the fact are enormously ~ "'°' '~"'" 
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that the operator  - D  2 is supersymmetric [8], ion. 

and in the two-dimensional case that we shall 
consider this reduces to the statement that 

i D =  
0 i D a + D 2 !  ( 0 D + ]  

iD; - D 2 0 j: = D _._ 0 ] 

For  s:,mpiicity we shall treat the case wb.ere the 
two-dimensional gauge field is spherically sym- 
metric ion. ~ ' , ~  = e~iB(x) where B(x)= B(r), 
and is of compact  support  i.e. there is a radius 
r = a such tha~ B(r) = 0 for r > a, and only sketch 
the generalization to arbitrary smooth  .g-fields of  
finite flux. A great advantage of the supersymmet-. 
tic formulation in the two-dimensional case is that 
the zero modes of - D 2  are just the zero modes of  
the first-order differential operators D Le. 

D + ~ + = 0 ,  D - ~ p _ = 0 ,  (19) 

respectively, and this circumstance allows us to 
obtain an expression for the flux through any 
circle of radius r (not necessarily r > a)  in terms 
of the radiai derivative and orbital angular 
momen tum m of the fidds, even without solving 
the equations explicitly. That  is to say, by  ex- 
pressing (19) in polar coordinates (r, ~) and in- 
tegrating over ~ one has 

= Aer de  

8 ~ D,.% 
= - ( ~ e e % d S - {  r d 8  

~ %  z .% 

(~D~% d &  = - 2 r r m - e g  % r (20) 

where m is the angular momen tum of the field % 
and ~=  ± a ~ o r d i n g  to whether % = ~ +  or @_• 
No te  that each integral in (20) is seperately 
gauge-invarian~ and that for r >1 a, 4 '(r) ,  and hence 
the (D~g~)-integral become independent  of  r. F rom 
eq. (20) one can already find the bound  states, 
since they must  be smaller than r ~ both as r --> 0 

and as g ~ ~o Hence they are just those for which 

m ~ < 3 ,  ( ,  + , ~ ) {  > 1, (21) 

where 4, denotes 4,(r) for r >~ a and we have used 
the fact that 4 ,(0)= 0. It follows from (21) that 
Oe > 0. Hence for each sign of 4' there can be 
bound  states for only one choice of  ~, and then 
only if m has the same sign as - 4 '  and 0 ~< I n !  
< I 0 - 1. in particular, for 14, I ~< 1 there are no 
bound  states of any kind "*~o tn this way one sees 
that (20) is Mready sufficient to establish the in- 
teger part  of the index theorem i.e. 

[ , 1  = . , .  - n_ ,  (22) 

where [4,] denotes the integer part  of  qa for the 
gene~qc case when 4, is not  an integer. This is the 
case in which we are most  interested, but  for the 
record it should be mentioned that if 4, is integer 
(22) becomes '~ An = ! 4' ] - 1 for [ 4' 1 >t- 2. 

Our  main interest, however, is the fractional 
part• For  that we have to investigate the continu.- 
ous part  of the spectrum of _ ~ 3 2  especially at 
iow energy and that is described by the second- 
order  differentia1 equations 

= ( - D  + l B)< = e2<, 

k 2 = E > 0 ,  ~ =  + i  

A!though. we cannot  
o n & o r d e r  dif%rential 
saved by the fact that 

. (23) 

completely solve these sec- 
equations explicitly, we are 
we can solve them explicitly 

in the exterior region r >/a,  and we can approxio 
mate  them by the zero-energy solutions in the 
interior region (for k --+ 0) and have good control 
on  the error because the inside region r ~< a is 
compact .  So the problem reduces essentially to 
matching the inside and outside solutions at r = a, 
and since the overall normalizat ion does not  matter  
for phase-shift analysis, and the system is spheri- 
cally symmetric, the matching problem reduces to 
matching the log-derivatives y = (rS~b)/~b at r = 

*~ There is no eigenvalue for i .0 ~ = i, and only 14~ i - 1 eigen~ 
vabJ.es for ]01 integer and [q~l > 1 because in two dimeno 
sions functions which fat{ off !ike r-" are not square-inte- 
grab]e. The discrepancy between tbds formula and the more 
conver:tienal resuI.: [ k n I = i ~> [ may be removed by chang- 
ing the range of the phase shift froPa the conventiona! range 
0~<8<~r to 0 <8 ~ r .  
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a. We now consider the outside and inside solu- 
tions in turn. 

Outside. ~n the radia! gauge A, = 0, the gauge- 
potential reduces to fiqe usual BA-potenfiai A o = 
¢ / r  outside, and since B = 0, eq. (23) reduces to 
the Bessel equation of order W where W = I m + 

i, for each angular momentum m. Thus the 
general outside solution (for non-integer W) is 

a, here J± ~v are the convee...tional Bessel functions, 
~nd ~ and fi are constants, whose ratio de- 
:ermines the phase-shift. ~n fact, from the asymp- 
:otic (kr--+ e~) form of the Bessel functions 

, - 1 / 2  ~ , ( ~ )  -, (~:r)  oos(K~- ~ w~- ~) ,  (25) 

>no sees at once that the scattering phase-shift 
relative to ~ = 0) is given by 

[ fi - a ) tan(½rrW)o (26) ana=i  j 
n particular tan 8 = + t an  ½~rW for ~---0 and 

= 0 respectively. 
inside. As we have said, the inside solutions q~ 

nay be approximated by the inside part of the 
ero-energy solutior~s q~ in (19) (whether or not the 

themseives correspond to bound states), and 
lace alI that we sha!i need for matcNng are the 
~g~derivatives (r3~ i~n ~)  theerror can be con- 
roiled by controlling the quantity ( r ~  in(~/~))~  
zhic~ from (23) is easity seen to be 

r a~ .;ng,~,/e~'~xr/. , ~  = - k  2 ~ . , ) rd  e ~ ( a ) } ( a )  

¢0 

Thus~ to first order in k 2 

(inside) = ( r ~ t [ r 3A~ ~ _ (ka)2z12 ' 
,+ ]o=i .~Jo 

= £ ~ , - d  ~%~(~) > O, (as) 

here 32 is strictly positive and independent of 
2 Hence, for matcNng, we need oMy know the 
.'to°energy quantity ( r  3,~/q0)~, and, as already 

emphasized in the bound-state discussion, this can 
be obtained from the  flux-equation (20) withou t 
actuaily soNing for ~( r ) ,  r~< a explicitlyo In fact 
from (20) one has 

(~a,.~/~)~ = - ~ ( ~  + ~ )  (29) 

and thus finaliy 

y(inside) = - 4 ( ,  + m) - (ka)2~ 2, a 2 > 0. 

(3O) 

Matching~ T o  match with y~msMe, we must 
now compute 7(outside), and for tNs we use the 
fact that since a is fixed and k ~ 0, the  Bessei 
functions d w ( k a  ) may be approximated for k --, 0 
by their values in the neighbourhood of the origin. 
Thus for smali k and fixed a one has 

(~k~)- ~ (3~) + r (1-  ~e/) 

From tNs equation it is easy to see that 

-d=r(~  w)  ~ w + r ) '  

! 
w~ere (32) 

Y=:\  ~{,utsid~ )a 

iS the relationship between the ratio .B/a *and the 
matching !og-deNvative 7. On making the match 
y(insMe) = 7 from (30) one then obtains 

fl / ' ( 1 -  W )  I~- .2w 

W+ ~( ~ + m) + ( ka)~a ~ x (33) 
w -  ~(~ + ~ )  - (k~)~a ~' 

where W = i ¢ + m i, as the equatiov,, to determine 
fi/~. 

From eq. (33) one sees that the ratio fl/~z ~ 0 
as k ~ 0 and hence the phase shift is given by 
tan 3 = - tan(,eW/2) in a~l cases except when ~(q~ 
+ m) = W <  I, or, equivalently, 0 < ~(m + ~) < 1, 
in which cases the a / f l  - '  0 as k -~ 0 and tan ~ = 
+ tan(rrW/2). Thus for each flux 2rr~ and chiral- 
ity e there is oMy one special value m~ of m for 
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which the sign of the phase--shift is the reverse of 
the normal  (BA) sign, a~d, furthermore,  since the 
inside solutions have to be regular at the origin, 
there is the further condit ion me < i f rom eq. 
(2i) ,  wNch show that the sigr~reversM takes piace 
for oniy one sigp~ of e for each give~ ~. In other  
words,  the anomalo 'as  phase~shift  tan 8 = 
tan(~V//2) occurs for o~iy one angutar  momer~  
taw, sector m = m~ aBd only one chiratity, and its 
value is just  w-ti;~_.es the fractional Dart f of ~5, i.e. 

Combin ing  this result wit]-~ ~he result (22) for the 
bound  states we see finally that  

* =  [ , t  + 7 =  ( : ~ ÷ -  ~_)  + 7  

= ( "  + - - -  ) + E ( (o)  - ( s s )  

which, since 2~¢  is just  the ff,'ux-integra~ ( i )  for 
the two-dimensions1 case, establishes the result for 
that  case. in fact we ?nave established a little more, 
nameiy,  that  the integer contr ibut ion actuaily 
con;es f rom the anguIar  -r, omer, tum sectors Ira!  
< i~  ! - 1 ( m e  ~< 0, ~¢ > 0), with uni~ multiplicity 
for  each m, and that  the fractional contr ibut ion 
comes f rom only the "miss ing"  angular  momen-  
turnsec~ r - ~ <  m < i4'~ 
Note  that  the formula  (35) hoIds also for the case 
of  integer ~ if one lets f - + i  and 8 + - 8 _ - , ~ r  
(not f - - ,  0 and 8+ - 8_ -+ 0). Those  fatal'liar with 
supersymmetr ic  quan tum mechanics wiii also note  
that  the existence of comribut ions  only for the 
angular  m o m e n t a  i m i < 4~t - I ( m e  ~ 0, or} > 0) 
impIies that  these are the oniy angutar  moment~rp., 
sectors for which the supersymmet ry  is r~ot spon- 
taneously broken,  and this can be verified directly. 
Finaily it might, be mee4ioned that, a l though we 
have restricted ourse!ves to tee spherically sym- 
metric, compac t  suppor t  case for clarity, there is 
no real dif f icuky in extending the results to the 
general  two-dirnensionai case° TNs  is because the 
finite~flux condit ion fB(x )  d2x < o<3 implies that  
B falls off  as r - +  oo, and tea t  the system is 
asymptot ical ly  sphericaily symmetric .  (In .:he 

~on-asymptot ic  region the a~g,alar momentum.  
generalizes to a winding number . )  

After  this work was compieted we became aware  
of  two other recent derivations [9,10I of the cer~tra! 
formuia  (5), However  the approach  ie. these two 
derivations is quite differenL in fact compiemen-  
tary, to ours. ir~ part icular  in bo th  derivations the 
relat ionship betwee~ the high- and tow-e~ergy 
parts  of the anoma!y  is used to obtai~ in format ion  
about  the bw~energy par t  (using the e ikona I ap-  
proximat ion  in ~he case of ref. [10]) whereas we go 
immediate ly  to the low-energy (giobaI) anomaiy  
and derive the informat ion  direct!y using the reIa- 
tion (9). Fur thermore ,  it, ref. [91 the index theorem 
(5) is verified for two exan-ples, using conicudonal  
v?..eti~.ods, whereas we have verified for only one of 
these exar~ples, but  o'ar explicit exploi tat ion of the 
supersyrnmetry of fhe Dirac opera tor  explicidy 
leads to a considerable s impiif icado~ of the proof .  
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