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We study the renormalization group flow of the O(N) nonlinear sigma model in arbitrary dimen-
sions. The effective action of the model is truncated to fourth order in the derivative expansion and
the flow is obtained by combining the non-perturbative renormalization group and the background
field method. We investigate the flow in three dimensions and analyze the phase structure for ar-
bitrary N . While a nontrivial fixed point is present in a reduced truncation of the effective action
and has critical properties which can be related to the well-known features of the O(N) universality
class, one of the fourth order operators destabilizes this fixed point and has to be discussed care-
fully. The results about the renormalization flow of the models will serve as a reference for upcoming
simulations with the Monte-Carlo renormalization group.
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I. INTRODUCTION

Nonlinear sigma models (NLSM) are of great inter-
est since they appear as effective models for many quan-
tum systems in various branches of physics, ranging from
solid state physics (e.g. quantum Hall effect) to particle
physics (e.g. theory of light mesons) [1–8]. They are par-
ticularly useful in the description of theories whose sym-
metries are broken below a certain scale. From a pertur-
bative point of view, NLSM are considered as fundamen-
tal theories only in two dimensions, while in higher di-
mensions they are mainly used as effective theories, since
the coupling constant has negative mass dimension and
the theories are not perturbatively renormalizable. How-
ever, there is the possibility that in d = 3 dimensions
these models are non-perturbatively renormalizable, i.e.
“asymptotically safe” [9]. The concept of asymptotic
safety has mainly been applied in order to provide a
non-perturbative renormalization of gravity [10]. It is
known that NLSM and gravity exhibit many structural
similarities, since both are described by non-polynomial
interactions and have the same power counting behavior.
Further, both have been shown to be non-perturbatively
renormalizable in a large-N expansion (see [11] and refer-
ences therein). NLSM can therefore serve as interesting
laboratory to test and develop techniques for the more
involved theory of gravity.

A promising approach to explore the non-perturbative
quantization of asymptotically safe theories is provided
by the “functional renormalization group” (FRG) [10,
12]. It describes the scale dependence of a quantum field
theory and in particular of its effective action by means
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of an exact functional equation. In order to treat theo-
ries with nontrivial target spaces like the NLSM, some
advanced background techniques have been developed
within the FRG framework, which still require a deeper
understanding. Nonlinear O(N) models provide a useful
testing ground for these conceptual issues, because they
attracted a lot of attention within statistical field theory
and, as a result, their critical properties are well-known.

The FRG approach is a suitable tool to investigate
the phase structure of physical systems. A second or-
der phase transition, for instance, is related to a fixed
point of the renormalization group flow. While we will
explicitly study the nonlinear O(N) model, it is expected
that they possess the same critical properties as their lin-
ear counterparts. The hypothesis of universality states
that two short-range theories with the same dimension
and the same symmetries belong to the same universal-
ity class. This expectation is strongly supported by many
explicit computations for d = 3, see [1, 13–16] and ref-
erences therein. While Monte Carlo simulations yield
the critical exponents within an O(N)-invariant formula-
tion, there is further need of non-perturbative analytical
studies that are manifestly covariant and can confirm the
critical properties of the nonlinear models.

Understanding the phase structure of field theories
with curved target spaces and advancing the techniques
developed to deal with such theories within the FRG are
the main motivations for the present work. We will study
the nonlinear O(N)-models in a background field expan-
sion [17, 18] and compute the effective action in a trunca-
tion that includes all terms of fourth order in the deriva-
tives (see also [19] for some related computation). We will
derive the flow in arbitrary dimensions and then focus on
the interesting case d = 3. We will employ a manifestly
covariant background field method and improve the for-
malism used in [18] by taking care of the specific scaling
of the fluctuation fields in a fully non-perturbative way.

The three dimensional linear sigma model has been ex-
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amined in the FRG framework for a truncation that con-
tains all operators up to the fourth order in the deriva-
tive expansion [20]. The results in [20] confirm the ex-
istence of a second order phase transition correspond-
ing to a fixed point of the RG flow, and show that the
fourth order truncation provides a significant improve-
ment over the second order (local potential) approxima-
tion, in terms of precision with which the critical expo-
nents and the anomalous dimension are computed, as
compared to other methods. In our computations of the
nonlinear model, the inclusion of fourth order operators
also improves the sensitivity to the critical properties in
comparison to the second order truncation studied in [17],
such that the critical exponent of the correlation length at
the nontrivial fixed point qualitatively agrees with the ex-
pectation for the O(N) universality class. However, one
particular operator of fourth order destabilizes the sys-
tem and no fixed point can be found for the full fourth or-
der truncation. Whether this represents a physical prop-
erty of the nonlinear model is a delicate question, since
it would imply a departure of the critical behavior of the
nonlinear model from that of the linear one. It is not yet
possible to give a conclusive answer to this issue, but we
will argue that the nontrivial fixed point may reappear,
once higher order operators are taken into account.

Another important motivation of this article is to pro-
vide explicit results for a direct comparison between the
FRG approach and the widely used ab-initio lattice ap-
proach to field theories. An accompanying analysis of
the renormalization group flow of various nonlinear O(N)
models on the lattice by means of the Monte Carlo Renor-
malization Group (MCRG) method will be presented
elsewhere [21]. It will be interesting to see how these two
non-perturbative methods complement each other with
respect to the FP structure and critical properties.

This article is structured in the following way: Sec-
tion II is devoted to a covariant description of the O(N)
models with curved target spaces and the development
of the background field expansion. In section III we will
recall the FRG approach and show how to implement
the background field method. Our truncation of the ef-
fective action is discussed in section IV and the running
of the remaining couplings is derived. Section V presents
an analysis of the renormalization flow and the critical
properties of the model. The conclusions are contained
in section VI.

II. GEOMETRY OF THE MODEL

A field of the O(N) nonlinear sigma model is a map ϕ :
Σ → SN−1 from spacetime Σ to the unit-sphere in RN .
In the present work we will choose for Σ the Euclidean
space Rd. It is convenient to regard the components ϕa

as coordinates on the target space SN−1. The field space
of all these maps is denoted by M≡ {ϕ : Rd → SN−1}.

The target space is the homogeneous space SN−1 =
O(N)/O(N − 1) with O(N) as its isometry group. It is

equipped with a unique Riemannian metric hab that is
O(N)-invariant. The microscopic action for the model is

S[ϕ] =
1

2
ζ

∫
ddx hab(ϕ)∂µϕ

a∂µϕb , (1)

where ζ is a coupling constant. Since the fields ϕa have
the status of coordinates, it is natural to regard them as
dimensionless, such that ζ has mass-dimension [ζ] = d−2.

The action is invariant under arbitrary reparametriza-
tions ϕ → ϕ′(ϕ) of the fields, provided that the metric
hab transforms as a symmetric 2-tensor. In addition the
model admits the O(N) isometries on the sphere as sym-
metries. These isometries are generated by vector fields
Ka
i (ϕ) which satisfy a generalized angular momentum

algebra,

[Ki,Kj ] = −fij`K` , (2)

where fij` are the structure constants of the Lie alge-
bra of the rotation group. The infinitesimal symmetries
generated by the Ki are nonlinear

ϕa → ϕa + εiKa
i (ϕ). (3)

From the invariant metric hab on the sphere one ob-
tains the unique Levi-Civita connection Γa

b
c and the cor-

responding Riemann tensor Rabcd = hachbd − hadhbc,
Ricci tensor Rab = (N − 2)hab and scalar curvature
R = (N − 1)(N − 2).

The Levi-Civita connection on the sphere is used to
construct O(N)-covariant derivatives of the pull-backs of
tensors on the sphere. For example, given a pull-back of
a vector on the sphere, its covariant derivative is

∇µva ≡ ∂µva + ∂µϕ
bΓb

a
cv
c . (4)

The pull-back covariant derivative ∇ will be used exten-
sively throughout this work. Note that ∂µϕ

a transform as
vectors, while the coordinates ϕa are scalars. We also de-
fine the square of the covariant derivative � ≡ δµν∇µ∇ν
and its Laplacian ∆ = −�.

In order to construct expansions of invariant function-
als like (1) such that the nonlinear symmetries (3) are
maintained, we will employ a covariant background field
expansion. We therefore promote the metric hab(ϕ) on
the sphere to a metric hab(ϕ) on field spaceM where triv-
ial spacetime indices have been suppressed for brevity. In
a similar manner, the Levi-Civita connection, the curva-
ture tensors and the Laplacian can be promoted to M
as well [22]. It is emphasized that the expansion variable
ought to possess well-defined transformation properties
both in the background field ϕa and in the field φa. It
would for instance be a particularly hard task to con-
struct O(N) covariant functionals in terms of the differ-
ence φa−ϕa of two points in field space, as it transforms
neither like a scalar, nor like a vector under isometries.

For φ being in a sufficiently small neighborhood of ϕ,
there exists a unique geodesic inM connecting ϕ and φ.
We then construct the “exponential map”

φa = Expϕξ
a = φa(ϕ, ξ) . (5)
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Here ξ is an implicitly defined vector that belongs to the
tangent space of M at ϕ. Also, ξ is a bi-tensor, in the
sense that it has definite transformation properties under
both ϕa and φa transformations and for this reason we
shall write it often as ξa = ξa(ϕ, φ). It transforms as a
vector under the O(N) transformations of ϕa and as a
scalar under those of φa. By construction, the norm of
ξ equals the distance between ϕ and φ in M [23]. The
definite transformation properties make ξ a candidate to
parametrize any expansion of functionals like (1) around
a background ϕ. The correspondence is invertible, there-
fore in (5) we introduced the notation φa = φa(ϕ, ξ) to
be used when φa is understood as a function of ξa. One
always has to keep in mind that the relation between ξa

and φa is nonlinear.
This background field expansion can easily be applied

to any functional F [φ],

F [φ] = F [φ(ϕ, ξ)] = F [ϕ, ξ] , (6)

where by abuse of notation we indicated with the same
symbol the functional when it is a function of the single
field φ, or of the couple {ϕ, ξ}. Even though it may not
be evident from the way the r.h.s. of (6) is written, a
functional like F [φ] will never be a genuine function of
two fields, but rather a function of the single combina-
tion φa(ϕ, ξ), and thus is called “single-field” functional.
There may be, however, functionals of ϕ and ξ indepen-
dently, and those are called “bi-field” functionals. As an
example, we define the “cutoff-action”

∆Sk[ϕ, ξ] =
1

2

∫
ddx ξaRkab(ϕ)ξb , (7)

where Rkab(ϕ) is some symmetric 2-tensor operator con-
structed with ϕa. The cutoff action will play an impor-
tant role in the next section, where we will also specify
its properties. The functional (7) is still invariant under
transformations of the background field ϕa as well as the
field φa; however, for general Rkab(ϕ), there is no evident
way to recast it as a functional of the single field φa [24].

We now construct an expansion of functionals like (6),
viewed as functions of the pair {ϕ, ξ}, in powers of ξ.
This can be achieved in a fully covariant way by intro-
ducing the affine parameter λ ∈ [0, 1] that parametrizes
the unique geodesic connecting ϕ and φ [23, 25]. Let ϕλ
be this geodesic with ϕ0 = ϕ and ϕ1 = φ. Let us also
define the tangent vector to the geodesic ξλ = dϕλ/dλ at
the generic point ϕλ. We have that (5) is equivalent to

dξaλ
dλ

= −Γb
a
c(ϕλ) ξbλξ

c
λ , (8)

ξa0 = ξa . (9)

We can rewrite the differential equation satisfied by the
tangent vectors by introducing the derivative along the
geodesic ∇λ ≡ ξaλ∇a to find that ∇λξaλ = 0. By con-
struction ∇λhab = 0. Another important property is the
relation to the pull-back connection

∇λ∂µϕaλ = ∇µξaλ . (10)

The commutator of the pull-back of the covariant deriva-
tive ∇λ with ∇µ can be computed on the pull-back of a
general tangent vector va

[∇λ,∇µ]va = Rcd
a
b(ϕλ)ξc∂µϕ

d
λv
b , (11)

and is extensively needed in the covariant expansion. Let
us now use the covariant derivative along the geodesic to
perform the expansion of (6). Viewing a general func-
tional F [φ] as limit λ→ 1 of F [ϕλ] we expand the latter
in powers of λ around λ = 0. One can show that

F [φ] =
∑
n≥0

1

n!

dn

dλn
F [ϕλ]|λ=0 =

∑
n≥0

1

n!
∇nλ F [ϕλ]|λ=0 ,

(12)
where we used the fact that F [φ] is a scalar function of
φ. The r.h.s. yields an expansion in powers of ξa of the
form

F [φ] =
∑
n≥0

Fn(a1,...,an)[ϕ]ξa1 . . . ξan . (13)

As an example we give the first few terms of the expan-
sion of the microscopic action (1),

S[φ] = S[ϕ] + ζ

∫
ddx hab∂µϕ

a∇µξb

+
ζ

2

∫
ddx

(
∇µξa∇µξa +Rabcd∂µϕ

b∂µϕcξaξd
)

+ O(ξ3) . (14)

III. FUNCTIONAL RG

We define the scale-dependent average effective action
of the nonlinear O(N) sigma model [17, 18] by the func-
tional integral

e−Γk[ϕ,ξ̄] =

∫
Dξ µ[ϕ] e

−S[φ]+
δΓk
δξ̄a

[ϕ,ξ̄](ξ̄a−ξa)

× e−∆Sk[ϕ,ξ̄−ξ] , (15)

with density of the covariant measure µ[ϕ] = Deth(ϕ)1/2.
Averages are defined through the path integral on the
r.h.s. of (15), i.e. ξ̄a ≡ 〈ξa〉. Using the relation
ξ̄a = ξa(ϕ, φ̄) one can obtain φ̄a that plays the role of
full average field of the model. The definition (15) differs
from the usual definitions of effective action only by the
presence of the functional ∆Sk defined in (7). This cutoff
action is chosen in such a way that the average effective
action Γk[ϕ, ξ̄] interpolates between the classical action
at the scale k =∞ and the full effective action at k = 0.
It is chosen to be quadratic in ξa with a ϕ-dependent ker-
nel Rkab that regularizes the infrared contributions of the
fluctuations ξ. This kernel will be called “cutoff kernel”
from now on. The reference scale k distinguishes between
infrared energy scales k′ . k and ultraviolet ones k′ & k
and the cutoff action leads to a scale dependent effective
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action in the following way: The propagation of infrared
modes in the path integral (15) is suppressed, such that
only the ultraviolet modes are integrated out and we are
left with a scale-dependent average effective action Γk
for the remaining infrared modes. In order to provide for
an interpolation between the classical and the effective
action, the cutoff-kernel has to fulfill the two conditions
limk→0Rkab[ϕ] = 0 and limk→∞Rkab[ϕ] =∞.

Due to the presence of the cutoff term, Γk[ϕ, ξ̄] is gen-
uinely a bi-field functional [24, 26],

Γ̂k[ϕ, φ̄] = Γk[ϕ, ξ̄(ϕ, φ̄)] . (16)

This observation is important in order to understand that
the only way to construct a single field effective action is
to set ϕ = φ̄ or equivalently ξ̄ = 0 and consider

Γ̄k[φ̄] = Γ̂k[φ̄, φ̄] = Γk[φ̄, 0] . (17)

The limit k → 0 of Γ̄k[φ̄] coincides with the well known
effective action introduced by deWitt [27].

The very useful feature of the definition (15) is that
Γk[ϕ, ξ̄] satisfies a functional renormalization group equa-
tion [12]

k∂kΓk[ϕ, ξ̄] =
1

2
Tr

(
k∂kRk[ϕ]

Γ
(0,2)
k [ϕ, ξ̄] +Rk[ϕ])

)
. (18)

The functional differential equation (18) is equivalent to
the definition (15) once an initial condition ΓΛ[ϕ, ξ̄] for
some big UV-scale Λ is specified, which accounts for the
renormalization prescription and the inclusion of counter
terms.

Having an equation like (18) at our disposal, it is possi-
ble to investigate properties of the quantum field theory
under consideration, without having to explicitly com-
pute the path integral (15). In particular we can inves-
tigate whether or not the theory admits a second order
phase transition for some value of its coupling constants.
It is well known that, from a renormalization group per-
spective, the critical behavior is dictated by a the fixed
points of the renormalization group flow.

IV. HIGHER DERIVATIVE MODEL AND BETA
FUNCTIONS

It has been stressed in the previous section that the
flow equation (18) is non-perturbative in nature such that
we can explore nontrivial features of the renormalization
group flow. For this purpose we must find an ansatz for
the scale-dependent effective action that includes all rele-
vant operators. We use a covariant expansion of the effec-
tive action in orders of derivatives and take into account
all possible operators containing up to four derivatives.
We furthermore consider the split

Γk[ϕ, ξ] = Γs
k[φ(ϕ, ξ)] + Γb

k[ϕ, ξ] , (19)

where we dropped the overline on the arguments ξ and
φ for notational simplicity. Some comments are in or-
der: We have already stressed that due to the presence
of the cutoff action in the definition (15) the functional
Γk[ϕ, ξ] depends on the two fields {ϕ, ξ} separately, and
not only on the combination φ(ϕ, ξ). In the split (19) we
collected the contribution that can actually be written
as functional of the “full” field φ into Γs

k[φ(ϕ, ξ)], and
parametrized the rest as Γb

k[ϕ, ξ], with Γb
k[ϕ, 0] = 0 [24].

As an ansatz for Γs
k[φ(ϕ, ξ)], we use the most general

local action up to fourth order in the derivatives [18, 28]

Γs
k[φ] =

1

2

∫
ddx

(
ζkhab∂µφ

a∂µφb + αkhab�φ
a�φb

+Tabcd(φ)∂µφ
a∂µφb∂νφ

c∂νφd
)
. (20)

The isometries of the model are respected only if the
tensor Tabcd is invariant. In the simple case of the O(N)-
model, there exists a unique (up to normalization) in-
variant 2-tensor hab and all higher rank invariant ten-
sors are constructed from hab. According to the sym-
metries Tabcd = T((ab)(cd)) that can be deduced trivially
from (20), we see that the most general parametrization
of Tabcd reads

Tabcd = L1,kha(chd)b + L2,khabhcd . (21)

Using this parametrization in (20), we realize that a total
of four couplings has been introduced {ζk, αk, L1,k, L2,k}.
They parametrize the set of operators that we include in
our truncation and encode the explicit k-dependence of
Γs
k.
Now we need a consistent ansatz for Γb

k[ϕ, ξ]. It is im-
portant to dress the 2-point function of the field ξa cor-
rectly, because it is the second derivative w.r.t. ξ which
determines the flow (18). We choose

Γb
k[ϕ, ξ] = Γs

k[φ(ϕ,Z
1/2
k ξ)]− Γs

k[φ(ϕ, ξ)]

+Zk
m2
k

2

∫
ddx habξ

aξb . (22)

This choice includes a mass term for the fluctuation fields
as well as a nontrivial wave function renormalization of
these fields ξa → Z

1/2
k ξa, which takes into account the

possibility that the fields ϕa and ξa may have a different
scaling behavior. In a first step beyond the covariant gra-
dient expansion we assume that the wave function renor-
malization only depends on the scale k. Later we shall
see that the wave function renormalization enters the flow
solely via the anomalous dimension ηk = −k∂kZk/Zk of
the fluctuation field. Contrary to Zk the square mass m2

k
enters the flow equation directly. It is the most direct
manifestation of the fact that Γk[ϕ, ξ] is a function of
the two variables separately. While one could add many
other covariant operators to Γbk, we first want to inves-
tigate the effects of these simple structures. Besides the
different expansion (30) of the flow equation, the ansatz
for Γb

k[ϕ, ξ] represents the main conceptual departure of
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our computation from the one in [18], where the approxi-
mation Zk = 1 and m2

k = 0 was employed. It will become
clear in the following that the fields ϕα and ξα possess
rather different wavefunction renormalizations, therefore

making the inclusion of the relative factor Z
1/2
k a neces-

sary ingredient for a consistent truncation.

Now we can plug the ansatz (19) into the flow equa-
tion (18). Projecting the r.h.s. of the flow equation onto
the same operators that appear in the ansatz for Γk it
is possible to determine the non-perturbative beta func-
tions of the model. In order to proceed we must specify
the cutoff kernel appearing in (7). We want it to be a
function of ϕ solely through the Laplacian and it should
otherwise be proportional to the metric hab

Rkab[ϕ] = ZkhabRk[∆] . (23)

The cutoff is specified through the non-negative “profile
function” Rk[z] which can be regarded as a momentum-
dependent mass. The choice (23) ensures that we are
coarse-graining the theory relative to the modes of the
covariant Laplacian ∆. In order to serve as a good cutoff
the function Rk[z] has to be monotonic in the variable z
and such that Rk[z] ' 0 for z & k2. The wave function
renormalization of the ξa field has been used in (23) as an
overall parametrization. It is convenient to compute the
scale derivative of (23) already at this stage. We obtain

k∂kRkab[ϕ] = Zkhab (k∂kRk[∆]− ηRk[∆]) . (24)

For the sake of convenience we will compute the beta
functions of the two sets of couplings {ζk, αk, L1,k, L2,k}
and {Zk,m2

k} in two separate steps. We begin the com-
putation of the flow of Γs

k[φ(ϕ, ξ)] by considering the limit
ξ → 0 of (18). The result is a flow equation of the form

k∂kΓs
k[ϕ] =

1

2
Tr

(
k∂kRk[ϕ]

Γ
(0,2)
k [ϕ, 0] +Rk[ϕ]

)

=
1

2
Tr {Gkaa (k∂kRk[∆]− ηRk[∆])} ,(25)

where the dependence on Zk enters via the modified prop-

agator Gk
ab which is the inverse of (Z−1

k Γ
(0,2)
k [ϕ, 0] +

Rk[∆])ab. It shows how the fluctuations ξ drive the flow
of the couplings {ζk, αk, L1,k, L2,k}. The modified prop-
agator is computed from (19) using (20,22) and reads

Gk = (Pk[∆] + Σ)
−1

(26)

Pk[∆] = αk∆2 + ζk∆ +m2I +Rk[∆] (27)

Σ = Bµν∇µ∇ν + Cµ∇µ +D , (28)

where indices in the tangent space to O(N) have been
suppressed for brevity. The matrices Bµν , Cµ and D are
endomorphisms in the tangent space. In the following we

will need the explicit form of two of them:

Bµνab = 2δµν(αkRacbd − Tabcd)∂ρϕc∂ρϕd

−4Tacbd∂
µϕc∂νϕd

Dab = −ζkRacbd∂ρϕc∂ρϕd − αkRacbd�ϕc�ϕd

+(αkRacdeRbfg
e + 2Re(ab)fT

e
gcd)

× ∂ρϕc∂ρϕd∂σϕf∂σϕg . (29)

Each term in Bµν and D consists of at least two deriva-
tives of the field ϕa. This implies that a Taylor expan-
sion of (26) in Σ is possible, because in our truncation
ansatz we are interested only in terms up to fourth order
in derivatives [29]. The tensor Cµ contains three deriva-
tives of ϕa and thus can be ignored in our truncation.
Thus the expansion reads

Gk=P−1
k −P

−1
k ΣP−1

k +P−1
k ΣP−1

k ΣP−1
k +O(∂6) . (30)

Inserting this expansion into (25) and using the cyclicity
of the trace we obtain

k∂kΓs
k[ϕ] =

1

2
Tr f1[∆]− 1

2
Tr Σf2[∆]

+
1

2
Tr Σ2f3[∆] +O(∂6) , (31)

where we defined the functions

fl[z] ≡
k∂kRk[z]− ηRk[z]

Pk[z]l
. (32)

In (31) we also used the fact that we can commute Σ and
Pk[∆] in the third term in the expansion, because their
commutator leads to terms of order O(∂6).

The traces appearing in (31) are computed using off-
diagonal heat kernel methods [30]. To outline the general
procedure briefly we consider the traces

Tr (∇µ1
. . .∇µrf [∆]) (33)

which transform as tensors under isometries. We are in-
terested in the particular cases 0 ≤ r ≤ 4 and f [∆] =
fl[∆] for some l = 1, 2, 3. Introducing the inverse Laplace
transform L−1[f ](s) of f [z], we rewrite (33) as∫ ∞

0

dsL−1[f ](s) Tr (∇µ1
. . .∇µre−s∆) . (34)

The expansion of the trace Tr (∇µ1
. . .∇µre−s∆) is ob-

tained from the off-diagonal heat kernel expansion (the
case r = 0 yields the trace of the heat kernel itself).
This expansion is an asymptotic small-s expansion that
corresponds, for dimensional and covariance reasons, to
an expansion in powers of the curvature and covariant
derivative. Thus we have

Tr (∇µ1
. . .∇µre−s∆) =

∞∑
n=0

Bµ1...µr,n

(4πs)d/2
s

2n−[r]
2 , (35)

where [r] = r if r is even and [r] = r− 1 if r is odd. The
coefficients Bµ1...µr,n contain a number of powers of the
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derivatives of the field that increases with n, thus only
a finite number of them is needed to compute the traces
with O(∂4) accuracy [30]. The final step in evaluating
(33) is the s-integration. We define

Qn,l =
1

(4π)d/2

∫ ∞
0

ds s−nL−1[fl](s) , (36)

which we will denote as “Q-functionals” that can be
rewritten (for positive n) as Mellin transforms of fl(z)

Qn,l =
1

(4π)d/2Γ[n]

∫ ∞
0

dz zn−1fl[z]. (37)

In the heat kernel expansion, the Q-functionals play a
similar role that is played by the regularized Feynman
diagrams in perturbation theory. With the help of the
heat kernel method we now expand the right hand side
in the flow equation (31) and obtain

k∂kΓs
k[ϕ] =

1

2
tr

∫
ddx
{ 1

12
Q d

2−2,1 [∇µ,∇ν ]
2

+
1

2
Q d

2 +1,2B
µ
µ −

1

2
Q d

2 ,2
Bµν [∇µ,∇ν ]

+
1

2
Q d

2 +2,3

(
B(µν)Bµν +

1

2
(Bµµ)2

)
(38)

−Q d
2 ,2
D −Q d

2 +1,3B
µ
µD +Q d

2 ,3
D2
}

whereby the tensor fields B and D are given in (29). The
beta functions for {ζk, αk, L1,k, L2,k} are defined as their
log-k-derivatives and are denoted by {βζ , βα, βL1

, βL2
}.

We extract them by evaluating both sides of the flow
equation at ξ = 0. With (20) the left hand side reads

k∂kΓs
k[ϕ] =

1

2

∫
ddx

(
βζ∂µϕ

a∂µϕa + βα�ϕ
a�ϕa

+βL1
(∂µϕ

a∂µϕb)2 + βL2
(∂µϕ

a∂µϕa)2
)
, (39)

and a comparison with the right hand side in (38) yields
the beta functions

βζ = ζk(N − 2)Q d
2 ,2

+ (N − 2)dαkQ d
2 +1,2

+ L1,k(N + d)Q d
2 +1,2 − L2,k((N − 1)d+ 2)Q d

2 +1,2

βα = (N − 2)Q d
2 ,2
αk . (40)

The remaining beta functions βL1
and βL2

are quite long
and given in the appendix (A1). It suffices to know that
βL1

, βL2
are quadratic polynomials of L1 and L2 and

that the coefficients of these polynomials depend nontriv-
ially on both the parameters N and d, and on the other
two couplings. The combined limit {d = 4, ζk = 0, η =
0,m2

k = 0} of {βL1
, βL2
} is known to yield a universal

result which can be compared with the results of chiral
perturbation theory in the case S3 ' SU(2) [18, 31]. We
checked that we can reproduce the perturbative results
in this limit. The results of [18] are recovered fully in the
limit d = 4 and for general SN−1, if a chiral perturbative
expansion is performed to 1-loop.

Let us finally outline the computation of the flow of Zk
and m2

k. The simplest setting to perform this is a vertex
expansion of the flow (18) in powers of the field ξa. We
first notice that for a constant background field ϕac the
ansatz for the effective action (19) reduces to

Γk[ϕc, ξ] =
Zk
2

∫
ddx
{
ζkhab∇µξa∇µξb + αkhab�ξ

a�ξb

+m2
khabξ

aξb +
1

3
ζkZkRabcdξ

aξd∇µξc∇µξb

+
4

3
αkZkRabcdξ

a∇µξb∇µξd�ξc

+
1

3
αkZkRabcdξ

a�ξb�ξcξd (41)

+ ZkTabcd∇µξa∇µξb∇νξc∇νξd
}

+O(ξ6) .

In this particular limit the pull-back connection (4) be-
comes trivial: ∇µ = ∂µ and � = ∂2. This observa-
tion is particularly useful, since we can now easily per-
form the computations in momentum space. We define
ξa(x) =

∫
ddq eıqxξaq and obtain from (41) the 2-point

function for incoming momentum pµ:

Γ
(0,2)
k [ϕc, 0]p,−p = Zk(αkp

4 + ζkp
2 +m2

k) . (42)

We also compute its scale derivative

k∂kΓ
(0,2)
k [ϕc, 0]p,−p = Zk

(
(βα − ηαk)p4 (43)

+ (βζ − ηζk)p2 + (βm2 − ηm2
k)
)
.

On the other hand, the quantity k∂kΓ
(0,2)
k [ϕc, 0]p,−p can

be computed from (18) by applying two functional deriva-
tives w.r.t. ξa, taking the limit ϕa = ϕac = const. and
transforming to momentum space. After these manipu-
lations, the flow equation (18) reduces to

k∂kΓ
(0,2)
k [ϕc, 0]p,−p (44)

= − 1

2Zk
Trf2(q2)Γ

(0,4)
k [ϕc, 0]p,−p,q,−q .

The momentum space 4-point vertex function Γ
(0,4)
k [ϕc, 0]

is obtained from (41) and has to be traced over two of
its four indices, while the 3-point function vanishes for
ϕa = const. therefore playing no role in our computation.
The trace that appears in (44) consists of an internal
trace on the tangent space of the model, that involves two
of the four indices of the 4-vertex, and a momentum space
integral

∫
ddq/(2π)d. The final result is a long expression

that depends solely on p2. Comparing the power pn with
n = 0, 2, 4 of (44) with those of (43) and dividing both
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sides by Zk, we can determine the coefficients

βα − ηαk =
1

3
(N − 2)αkQ d

2 ,2

βζ − ηζk =
1

3
(N − 2)ζkQ d

2 ,2
−
(

(dN − d+ 2)L2,k

+ (N + d)L1,k − (N − 2)dαk

)
Q d

2 +1,2

βm2 − ηm2
k =

1

12
(N − 2)d(d+ 2)αkQ d

2 +2,2

+
1

6
(N − 2)dζkQ d

2 +1,2 . (45)

As anticipated, there is no explicit dependence on Zk,
because it is a redundant parameter.

One interesting feature of the method arises at this
point: Using (40), we can solve the system of equations
(45) in terms of the two unknown quantities {η, βm2}.
For a solution to exist, one equation of (45) must be
redundant and it is a nontrivial check of our computation,
at this stage, that this actually holds true. The final
result for the anomalous scaling reads

η =
2

3
(N − 2)Q d

2 ,2
. (46)

V. O(N) PHASE DIAGRAM

We will now analyze in more detail the structure of
the β-functions and the resulting phase diagram. For
this purpose we focus on three spacetime dimensions as
a particularly interesting case which has been intensively
studied [1, 15, 16]. Concerning the two dimensional case,
we just want to mention that our computation repro-
duces the well-known statement that the theory has no
nontrivial fixed point, but rather is asymptotically free
[32].

In order to evaluate the Q-functionals and hence the
explicit running of the couplings in three dimensions, we
have to choose a specific regulator (23) that fulfills the re-
quirements described in section III. We decided to choose
a modified “optimized cutoff” [33]:

Rk[z] =
(
ζk(k2 − z) + αk(k4 − z2)

)
Θ(k2 − z) (47)

Note that the k-subscript of the couplings will be sup-
pressed in the following. This choice of regulator enables
us to calculate the Q-functionals explicitly,

Qn,l =
k2n+2

(4π)d/2 Γ(n)

( (2n+ 2− η + ∂t)ζ

n(n+ 1)(ζk2 + αk4 +m2)l

+
2k2(2n+ 4− η + ∂t)α

n(n+ 2)(ζk2 + αk4 +m2)l

)
, (48)

but it renders the system of differential equations rather
involved, since the derivatives ∂tα ≡ k∂kα = βα and
∂tζ = βζ also appear on the r.h.s. of the flow equation.

0.00 0.02 0.04 0.06 0.08

-0.010

-0.005

0.000

0.005

0.010

Ζ

Α

FIG. 1: The flow of the couplings for the truncation with two
couplings α and ζ for N = 3. The arrows point toward the
ultraviolet. The removed region lies beyond an unphysical
singularity which is introduced by the choice of the cutoff.

We note that the Q-functionals (48) possess a threshold-
like structure due to the presence of the mass m2. Fur-
ther, they are linear in the anomalous scaling η and in
the beta functions.

Under the condition (48), the systems (40) and (45)
contain the beta functions of the theory in an implicit
form. In order to determine their explicit form it is
necessary to solve together the two systems in terms of
the quantities {βζ , βα, βL1

, βL2
, η, βm2}. Fortunately, the

joint system is linear in these quantities, because the Q-
functionals are. As a final step we rewrite the result in
terms of the dimensionless couplings ζ̃ = k2−dζ, α̃ =
k4−dα, L̃1 = k4−dL1, L̃2 = k4−dL2 and m̃2 = k−dm2.
and obtain the beta functions {βζ̃ , βα̃, βL̃1

, βL̃2
, βm̃2},

which are involved rational functions and hence not given
here explicitly.

Now we are ready to study the phase diagrams and
the critical properties that arise from these flow equa-
tions. We will proceed in a systematic way, by including
more and more operators in our truncation. The simplest
truncation that only contains the coupling ζ was already
studied in [17]. Their work points to the existence of a
nontrivial fixed point in dimensions larger than two and
hence to the possibility of non-perturbative renormaliz-
ability.

We want to add the coupling α and the related
fourth-order operator. The corresponding renormaliza-
tion group flow is depicted in Figure 1 (for the case
N = 3) and confirms the nontrivial fixed point found
in the simpler truncation. The critical couplings are
ζ̃∗ = 16(N − 2)/(45π2) and α̃∗ = 0. Note that the ar-
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rows of the flow point into the direction of increasing k,
i.e. towards the ultraviolet. It is interesting to note that
the coupling α belongs to an IR-irrelevant operator and
vanishes at the fixed point. In fact, already the simple
structure of βα that is obtained from (40) reveals that α
has to vanish for every possible fixed point, as the flow
of the dimensionless coupling α̃ reads in d = 3:

βα̃ = α̃+ (N − 2) Q 3
2 ,2

α̃ (49)

Since Q 3
2 ,2

is strictly positive for any reasonable regula-

tor, the only possible fixed point value is α̃ = 0. This
statement remains true when we include the couplings
L1, L2. There is also a fixed point for λ = 1/α = 0, but
this is a trivial one whose critical exponents are equal
the canonical mass dimensions of the operators. It is
the three-dimensional analogue of the fixed point in four
dimensions which is discussed in [18].

The result α̃∗ = 0 agrees with an alternative computa-
tion of the effective action of the nonlinear O(N)-model
up to fourth order, which is presented in [13], and in
which a term ∝ ∂2φ∂2φ is not generated, either. How-
ever, it is very likely that an extension of the truncation
to the sixth order in derivatives and an inclusion of oper-
ators like e.g. �φa�φa∂µφb∂µφb will affect the running
of α and shift the position of the fixed point. This discus-
sion will be relevant when we compare our results with
the renormalization flows obtained by the Monte Carlo
Renormalization Group (MCRG), that will be studied in
an upcoming work [21]. At this point we just mention
the important fact that both non-perturbative methods
agree on the structure of the flow diagram, as it is de-
picted in Figure 1, and hence on the existence of the
nontrivial fixed point and on the number of relevant di-
rections at this fixed point. But they differ in the position
of the fixed point, which has a positive α̃∗ in case of the
MCRG. This is in fact not surprising, since the position of
the fixed point is not universal and because in the lattice
calculations the higher order operators affect the flow,
even though the applied RG procedure keeps track only
of a truncated operator space, cf. [21] for more details.

Since α is not generated in this truncation, the system
of two couplings effectively reduces to the one-parameter
truncation that was investigated in detail in [17]. While

the critical value ζ̃∗ = 16(N − 2)/(45π2) depends lin-
early on N , the critical exponent d

dζ̃
βζ̃ |ζ̃∗ is independent

of N : it is −16/15 for all N . In this sense our computa-
tion is reminiscent of the one-loop large-N calculations
[14], apart from the small deviation of our critical expo-
nent from the large-N value −1. It is interesting to note
that the running of ζ in the one-parameter truncation
of the nonlinear model agrees exactly with the running
that can be derived by means of the FRG if one regards
the nonlinear model as the limit of a linear model with
infinitely steep potential [17]. However, while already a
simple truncation of the linear model reproduces reason-
able results for the N -dependent critical exponents of the
O(N)-universality class, this N -dependence is apparently
suppressed by taking the limit.

Let us briefly recall what is known about the critical
properties of the nonlinear O(N) model in three dimen-
sions: The second order phase transition of the model is
described by the nontrivial fixed point and its IR-relevant
direction. The scaling of the critical coupling is directly
related to the scaling of the correlation length:

ν = − 1

Θ∗
, (50)

where Θ∗ denotes the eigenvalue of the stability matrix
evaluated at the fixed point, which corresponds to the rel-
evant direction. The critical properties of linear and non-
linear O(N) models are intensively studied, see [1, 14–16],
and it is generally believed that both theories belong to
the same universality class. While there are Monte Carlo
simulations of the nonlinear model which manifestly im-
plement the nonlinearity of the target space and confirm
this equivalence [15], the analytic calculations rely either
on an explicit breaking of the symmetry and/or on an
embedding of the target space in a linear space. An im-
portant motivation for the analytic approach presented
here is to implement the isometries of the target space in
every step of the calculation.

In order to become sensitive to the N -dependence
of the critical exponent ν, we must include higher or-
der operators in our manifestly covariant flow equation.
This agrees with the finding of [17] that the derived β-
functions of sigma models with different symmetric target
spaces coincide in a simple truncation. They differ only
if one takes higher order operators into account, whose
number and structure depends strongly on the specific
type of model.

Hence we increase the truncation and include the op-
erator L1(hab∂µφ

a∂νφ
b)2. The resulting flow of the cou-

plings ζ̃ and L̃1 of the O(3) model is depicted in Figure
2, where we have set the irrelevant coupling α̃ to α̃∗ = 0.
It contains the nontrivial fixed point which was already
discovered in the leading order truncation and which has
only one relevant direction. The fixed point exists for all
N , and while the critical value of L̃1 is almost indepen-
dent of N and close to −0.013, the fixed point value ζ̃∗

is an involved expression in N which for N = 3 attains
the values 0.059. It increases with N such that it ap-
proaches a linear function with a slope of roughly 0.036
for large N . Similarly as for the leading order truncation
the flow diagram has qualitatively the same structure as
the diagram obtained by the MCRG [21]. The operator
corresponding to L1 is irrelevant in both approaches and
its critical value L̃∗1 is small in comparison to ζ̃∗.

Actually there are additional fixed points in the trun-
cation with coupling ζ, α and L1, some with negative ζ̃∗

and one with quite large values of L̃∗1 and ζ̃∗. These
could be artifacts of our choice (47) of the cutoff func-
tions which may develop singularities for negative cou-
plings. We could not relate the additional fixed points to
known critical properties of sigma models and their phys-
ical relevance remains unclear. We will therefore focus on
the fixed point depicted in Figures 1 and 2.
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FIG. 2: The flow of the couplings ζ̃ and L̃1 towards the UV
for N = 3. We have set α̃ = α̃∗ = 0. The fixed point with
one irrelevant direction is at ζ̃∗ = 0.059 and L̃∗1 = −0.013.

As anticipated, the inclusion of fourth order operators
renders the exponent ν sensitive to the dimension of the
target space. The N -dependence of the exponent is de-
picted in Figure 3, while the numerical values are given in
Table I. The values in the third row denoted by “full sys-

4 6 8 10
N

0.5

0.6

0.7

0.8

0.9

1.0
Ν

adiabatic approx.

full system

literature

with Z=1

FIG. 3: The critical exponent ν as function of N , computed in
the truncation {ζ, α, L1}. Depicted are the results of various
approximations in comparison with average values from the
literature.

tem” refer to calculations with the truncation {ζ, α, L1},
in which the anomalous scaling η of the fluctuation fields
ξ is taken into account. If one sets Z ≡ 1, one obtains the
values in the second row of Table I. If in addition one ne-
glects the k-derivative of the couplings in k∂kRk on the
right hand side of the flow equation, that amounts to an
adiabatic approximation, then we obtain the values in the

first row of Table I. At the fixed point the k-derivative
of the couplings vanish such that the approximation with
Z = 1 and the cruder adiabatic approximation yield the
same fixed point couplings. Since ν(N) is a rather in-

N 3 4 6 8 10 20
adiabatic approx. 0.824 0.924 0.969 0.981 0.987 0.995

with Z = 1 0.654 0.756 0.802 0.815 0.820 0.828
full system 0.704 0.833 0.895 0.912 0.920 0.931
literature 0.710 0.747 0.790 0.830 0.863 0.934

TABLE I: The critical exponent ν for various values of N
and different approximations. The last row contains the best-
known values from the literature.

volved and long expression, we tabulated only some se-
lected values in the rows of Table I. For a comparison
we added the last row which contains the values taken
from the vast literature about the critical properties of
the O(N) universality class. For N = 3 and N = 4
the values are taken from the review [1], which contains
the results of many independent computations of which
we took the non-biased mean values. For N > 5 we
took the mean values of the results in [16, 34, 35], which
have been obtained by a high-temperature expansion, a
strong-coupling expansion and six-loop RG expansion in-
cluding a Pade-Borel resummation. The corresponding
values deviate from each other by less than two percent.

The three truncations of the flow equation presented in
this work yield a critical exponent ν whose N -dependence
roughly agrees with the results in the literature. The
values obtained in the adiabatic approximation deviate
considerably from the references values for small N , but
show the correct large-N asymptotic. If one takes the
running of the couplings in k∂kRk into account, the re-
sults for small N improve significantly, especially if one
neglects the wave function renormalization. In this case,
however, ν(N) approaches for large N the value 5/6 in-
stead of the correct value 1. If in addition one includes
the wave function renormalization, one obtains a criti-
cal exponent ν(N) which is closer to the reference value
than the adiabatic result and whose asymptotic behavior
is better behaved as in the approximation with Z = 1.
The deviation from the best-known value is maximal for
N = 5, where it is 14%, and the asymptotic value is 15/16
instead of 1. This is in fact the value we found in the re-
duced truncation with just one coupling and agreement
originates from limN→∞(L̃∗1/ζ̃

∗) = 0.
It is not clear to what extent the inclusion of the wave

function renormalization improves the situation: on one
hand a running Z improves the asymptotic of ν(N) for
large N and on the other hand Z = 1 yields more accu-
rate results for small N . We included the wave function
renormalization mainly for conceptual reasons since the
background and fluctuation fields are treated differently
in the FRG formalism and hence may possess different
renormalization properties. This is taken into account by
admitting a running of Z.

So far we did not consider the last contribution to the
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functional Γbk[ϕ, ξ] in (22) containing the mass parameter
m2
k. We included it in order to examine if terms that

go beyond the ansatz of a “single-field functional” can
improve the accuracy of the results. If we consider a
truncation with couplings {ζ, α, L1,m

2} we find the same
fixed point as before with slightly modified critical values
and a positive mass parameter. However, the results for
the critical exponent get worse rather than better and
are close to the values of the adiabatic approximation.
This is a surprising finding and certainly requires a better
understanding. For this purpose, the effects of higher-
order terms in Γbk[ϕ, ξ] ought to be studied.

Let us finally include the remaining operator with four
derivatives L2(hab∂µφ

a∂µφb)2. Although it is of the
same order as the operators with couplings L1 and α,
it changes the flow such that there is no nontrivial fixed
point for the system with couplings {ζ, α, L1, L2}. This
statement holds true for all possible modifications of the
flow, i.e. in the adiabatic approximation, in the approxi-
mation with Z = 1 and even if we include a mass param-
eter. In fact, already in the cruder truncation {ζ, α, L2}
there is no nontrivial fixed point and it seems as if the
renormalization of the coupling L2 is not well-balanced.

The destabilization of the flow induced by the L2-term
does not seem to depend on a specific choice of regu-
lator. For example, we used the alternative regulator
Rk[z] = kd+2/z and confirmed the existence of nontriv-
ial fixed points as well as the N -dependence of ν in the
truncation {ζ, α, L1}, but the fixed point still disappears
if one includes L2. It was pointed out in [36] that there
are concerns about the application of an optimized cutoff
like (47) in the study of the linear sigma model beyond
the local potential approximation. This motivates us to
briefly discuss our system using a smooth cutoff like the
exponential one

Rk[z] = AZk
z

ez/k2 − 1
, (51)

where A is an external parameter that can be tuned fol-
lowing the so-called “principle of minimum sensitivity”
[20]. For a generic choice of A it is possible to evaluate nu-
merically the Q-functionals (37) and therefore determine
the beta functions of the theory with arbitrary precision.
Using the exponential cutoff, we studied the complete
system of beta functions at N = 3, 4, 5, 10, 100, 1000, in-
cluding L2, in the parameter range A ∈ (0, 10], but could
not stabilize the nontrivial fixed point. Resorting to the
approximation L2 = 0, a nontrivial FP with one attrac-
tive direction appears as a function of the two parame-
ters. The numerical results for the scaling exponent ν of
the correlation length are in qualitative agreement with
the optimized cutoff results for every value bigger than
A ' 0.18, that we analyzed in the parameter space with
accuracy ∆A = 0.01. Since ν is computed as a numeri-
cal function of A in the form ν(A), one could apply the
principle of minimum sensitivity, i.e. finding the best
value for A as a local minimum A? of ν(A). However,
the result seems to indicate that such a minimum does

not exists, since the function ν(A) appears to be (slowly)
monotonically increasing to our accuracy.

One may wonder why the operator corresponding to
L2 destabilizes the renormalization group flow. In the
computation of the full effective action, the renormaliza-
tion of an operator of a given order is always affected
by operators of higher order. These contributions are
lost in a truncation in which the higher order operators
are neglected. In the present case the beta functions
of L1 and L2 are quadratic functions, see (A1) in the
appendix, and the coefficients of the polynomials must
be fine-tuned such that both beta functions vanish. We
checked that the beta function of L2, when evaluated at
the fixed point for the subsystem consisting of all other
couplings, is nearly zero. Thus we expect that the inclu-
sion of higher order terms will slightly modify the flow in
a way that one recovers the fixed point and the informa-
tion about the phase transition of the O(N) model, that
we already detected in the truncation {ζ, α, L1}.

However, there could be more subtle explanations why
the flow of the operator (hab∂µφ

a∂µφb)2 does not lead to
a stable fixed point. We only want to mention two possi-
bilities: There were arguments brought forward recently
[37] that the regularization procedure of the functional
renormalization group given by the introduction of ∆Sk
may naturally require a corresponding modification of
the path integral measure, which in turn provides an ad-
ditional term to the flow equation of the average effective
action. While this term yields only a renormalization
of the vacuum energy in theories with linearly realized
symmetries, it can affect the renormalization of nontriv-
ial operators in theories whose path integral measure is
field-dependent.

The second possibility is that, in order to find a sta-
ble fixed point for the full system, one has to enlarge the
truncation as dictated by hidden symmetries involving
the background and the fluctuation fields. To this day
the background field method is the most effective way to
deal with nontrivial field-space geometries in the frame-
work of the FRG. Nevertheless, further studies maybe
needed to understand better which truncations in terms
of background and fluctuation fields ought to be chosen
in order to maintain the full reparametrization invariance
of the theory. An ansatz that is based on the so-called
Nielsen identities was presented recently in the context
of gravity [26] and it could be interesting to apply this
approach to the nonlinear sigma model.

VI. CONCLUSION

In this article we applied the functional renormaliza-
tion technique based on a scale dependent effective ac-
tion to investigate the renormalization group flow of the
nonlinear O(N)-model. The flow is formulated in a mani-
festly reparametrization invariant way, so that the results
do neither depend on any specific choice of coordinates
on the target sphere, nor on an implicit embedding of the
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nonlinear model into the linear one. Since the symme-
tries of the theory are realized nonlinearly, we adopted a
geometric formulation where a background (base-point)
dependence is introduced in order to maintain the co-
variance of the model. The background field is used to
construct a quadratic infrared cutoff term for the fluctua-
tions, whose purpose is to allow us to effectively integrate
out the ultraviolet modes while simultaneously respect-
ing the symmetries of the model. The main achievement
is the construction of a scale-dependent effective action,
that is O(N) invariant for both the transformations of
the background and the quantum field. The consistency
of our formalism was underlined by the appearance of
nontrivial relations between the renormalization flow of
background and fluctuation operators.

The model has been studied using a truncation ansatz
that includes all possible covariant operators up to fourth
order in the derivatives. The beta functions of the theory
are identified with the derivatives of the couplings w.r.t.
the logarithm of the RG scale. They provide important
informations about the phase diagram of the model and
we concentrated our discussion in particular on the fixed
points of the renormalization flow, because they are as-
sociated to second order phase transitions. The scaling
of the correlation length is a universal property and is
directly related to the critical exponent corresponding to
the relevant direction. Our explicit calculations focused
on three dimensions, in which the critical exponents of
the model are well-studied and provide a rich literature
that can serve as a reference for comparison.

Our investigation did not immediately point to the ex-
istence of such universal behavior, because we did not
find a suitable fixed point for the full fourth order sys-
tem. However, we discovered that in the restricted sub-
space of couplings, where one of the higher derivative
couplings is set to zero (L2 = 0), a fixed point for all
N emerges. It exhibits one relevant direction, which is
already present in an one-parameter truncation, and it is
such that the inclusion of further couplings (L1 and α)
only adds irrelevant directions. The critical value of the
coupling α is identically zero in a fourth-order expansion.
However, the one-parameter truncation is not sensitive to
the N -dependence of the critical exponent ν, which re-
quires higher-order operators. The results we obtain for
ν in the truncation {ζ, α, L1} agree qualitatively with the
pre-existing literature, but show some numerical differ-
ence that is likely due to the limited truncation ansatz.
We tested the presence of this fixed point against var-
ious approximations and choices of the coarse-graining
scheme, to find that it is a very stable result.

The renormalization properties of the nonlinear O(N)
model have also been studied by means of the Monte

Carlo Renormalization Group and will be presented in
detail elsewhere [21], where a discretized version of the
action (20) is considered as lattice action. The quanti-
tative comparison of the results of FRG and MCRG is
a delicate topic that has to be addressed with care. In
fact, one must bear in mind that our truncation ansatz
(20) is not a bare action [38]. The nature of the “mass”
regularization of FRG, as opposed to that of the lattice
which is mass-independent, is expected to produce a non-
trivial relation between the renormalized couplings of the
two methods [39]. However, we do expect the phase dia-
grams of FRG and MCRG to share the same qualitative
properties (namely the existence of a fixed point with
one UV-attractive direction). The MCRG flows that are
computed for the fourth-order expansion of the model are
(apart from the coupling L2) in good qualitative agree-
ment with the results presented here [21].

As mentioned, a nontrivial fixed point appears in our
calculations only if one coupling, L2, is neglected. We
strongly believe that this is not a pathology of the com-
putation, but rather it is due to the limited truncation
considered and the quadratic structure of the computed
beta functions. However, we also admit the possibility
that the operator corresponding to the coupling L2 may
have a special role in the nature of this phase transition.
Therefore further investigations are required in order to
obtain a deeper understanding.
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Appendix A: Beta functions of L1 and L2

In this appendix we give the explicit form of the beta
functions of the couplings L1 and L2. These have been
omitted from the main text because of their size. To-
gether with (40) they complete the system of beta func-
tions of the couplings of (20). We computed:
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βL1 =[(2N − 5)L1 + 2L2 − α]Q d
2 ,2

+
[
(2(N + 4) + 4d+ d2)L2

1 + 8L2
2 + 4(d+ 2)L2α+ d(d+ 2)α2

+ 2L1(2(d+ 6)L2 + (d2 + 3d+ 2)α)
]
Q d

2 +2,3 + 2[(d+ 1)L1 + 2L2 + dα]ζQ d
2 +1,3 + ζ2Q d

2 ,3
+

1

6
Q d

2−2,1 ,

βL2 =
[
(d2(N − 1) + 2d(N + 1) + 12)L2

2 + (N + 2d+ 6)L2
1 − 2(d+ 2)(2 + d(N − 2))L2α

+ 2(d2 + 2d+ 4 +N(d+ 2))L1L2 − 2(d+ 2)(N − 1 + d)αL1 + d(d+ 2)(N − 3)α2
]
Q d

2 +2,3

− 2[L2((N − 2)d+ 2) + L1(N − 1 + d)− (N − 3)dα]ζQ d
2 +1,3 + [L1 + 2(N − 3)L2 − (N − 3)α]Q d

2 ,2

+ (N − 3)ζ2Q d
2 ,3
− 1

6Q d
2−2,1 . (A1)
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