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Nahm Transform and Moduli Spaesof C PN -Models on the Torus

M. Aguado, M. AsoreyDepartamento de F��sia Te�oria. Faultad de CieniasUniversidad de Zaragoza. 50009 Zaragoza. SpainandA. WipfTheoretish Physikalishes Institut, Universit�at Jena.Fr�obelstieg 1, D-07743 Jena, GermanyAbstratThere is a Nahm transform for two-dimensional gauge �elds whih establishes a one-to-one orrespondene between the orbit spae of U(N) gauge �elds with topologial hargek de�ned on a torus and that of U(k) gauge �elds with harge N on the dual torus. Themain result of this paper is to show that a similar duality transform annot exist for CPNinstantons. This fat establishes a signi�ative di�erene between 4-D gauge theories andCPN models. The result follows from the global analysis of the moduli spae of instantonsbased on a omplete and expliit parametrization of all self-dual solutions on the two-dimensional torus. The boundary of the spae of regular instantons is shown to oinidewith the spae of singular instantons. This identi�ation provides a new approah toanalyzing the role of overlapping instantons in the infrared setor of CPN sigma models.



1. IntrodutionTwo-dimensional sigma models have long been used as a testing ground for a varietyof ideas in non-perturbative Quantum Field Theory, espeially beause of some remarkablesimilarities with non-Abelian gauge theories in 3+1 dimensions [1℄ (for a review emphasizingthis onnetion, see [2℄).They are sale invariant at the lassial level and asymptotially free at the quan-tum level, some possess topologial winding numbers, instantons, a hiral anomaly whenoupled to fermions and generate a dynamial mass by non-perturbative e�ets at zerotemperature and a thermal mass � g2T at �nite temperature. In this respet the O(3)nonlinear �-model with ationS = 18g2 Z d2x (��~n � ��~n); ~n 2(x) = 1; (1:1)has been very extensively studied, speially by its numerous interesting appliations toondensed matter: (anti) ferromagnetism, Hall e�et, Kondo e�et, et (see Ref. [3℄ for areview stressing this point of view). The model has also been used to analyze the sphaleronindued fermion-number violation at high temperature [4℄. By setting ~n = 	y~�	 with anormalized 	 2 C 2 , the ation (1.1) an be rewritten in the equivalent formS = 12g2 Z d2x ��D�	��2 ; with j	(x)j = 1 and A� = �i	y��	: (1:2)It is invariant under gauge transformations 	 ! ei�(x)	 and hene 	(x) may be viewedas an element in CP1 .There are two natural generalizations of the O(3) � CP1 model: O(N > 3) modelswith ation (1.1) but with ~n 2 SN�1 and CPNmodels with ation (1.2), but with 	 2 CPNinstead of CP1 [5℄ [6℄. In ontrast to the O(N) models they possess instanton solutionsfor all N; and a � term an be added to the ation so that their topologial properties anbe explored [7℄. These models are expandable in 1=N and have been solved in the largeN limit [8℄. The role of instantons and related sphalerons [9℄ is ruial for physial e�etsat � 6= 0 [10℄. In this paper we shall mainly be interested in the struture of spaes ofinstantons and hene shall only onsider the CPN extensions of the O(3)-model.In partiular we shall fous on the searh of a variant of the Nahm transform for2-dimensional models. In 4-dimensions this remarkable duality transformation relates dif-ferent instanton moduli spaes of gauge theories formulated on the four-torus [11℄. Moreexpliitly, it transforms a harge k self-dual (instanton) SU(N) gauge potential A on T4into a harge N self-dual U(k) potential Â on the dual torus T̂ 4 as follows:(Â�)ij(u) = �i ZT4 d4x  uyi (x ) ��u� uj (x ); (1:3)1



f uj ; j = 1 : : : ; kg being k orthonormal zero-modes of the Dira operator with shiftedpotential A� + 2�u�1, where the onstant piee u parametrizes the dual torus. Thistransformation being involutive means that the moduli spae MNk of SU(N) instantonswith harge k is equivalent to MkN that of SU(k) instantons with harge N .Our searh for a orresponding Nahm transform for CPNmodels on the two-torus wasmotivated by the observation that the omplex dimension of the moduli spae for hargek instantons in CPN is dim MNk = k(N + 1); k > 1; (1:4)exhibiting a duality that may be onjetured to hold at the level of moduli spaes, MNk �Mk�1N+1. This onjeture was further prompted by the fat that there are no harge 1instantons on the 2-torus for any value of N [12℄[13℄, a property shared with gauge theorieson the 4-torus [14℄ [15℄. Similarly as for gauge theories this would be a onsequene ofsuh a duality, sine there is no CP0 instanton. If this duality exists the dynamis of theCPN models should simplify in setors with large k, as it happens for large N .The aim of the paper is to analyze the existene or not of a generalized Nahm transformfor these sigma models. Hene we shall only analyze the instantons on a torus, the onlyRiemann surfae whose dual (Jaobian) is also a torus. This kind of ompati�ation ofspae time orresponds to the hoie of periodi boundary onditions whih are appropriatefor the study of �nite temperature e�ets [4℄.The spae time ompati�ation also presents some tehnial advantages. The ationof an instanton does not depend on the parameters of moduli spae. This then leads tozero-modes of the utuation operator in the instanton bakground. One expets that foreah parameter in moduli spae there is one assoiated zero-mode or that the number ofzero-modes is not smaller than the dimension of the moduli spae. This expetation is notful�lled for the sigma models on R2 : if one varies some moduli parameter of the instantonone �nds non-normalizable zero-modes [16℄. In a ompat spae this an never happen,thus in our ase both methods of ounting the dimension of moduli spaes of instantonsare equivalent.Sine CPN spaes admit a K�ahler struture, 2-dimensional CPN -models an be ex-tended toM=2 supersymmetri theories. More general purely bosoni or supersymmetrinonlinear sigma models with K�ahler target spaes have been studied on topologially triv-ial spae-times by several authors, see [17℄. All these models admit regular instantonsolutions, the topologial harge of whih appears as lower BPS-bound on the ation.In addition to the regular instanton solutions these models possess singular ones.Although they are usually ignored, it has been pointed out reently that these singular2



on�gurations may be of relevane for some topologial �eld theories [18℄. In partiu-lar, their ontribution to the renormalization group ow of supersymmetri theories andorrelation funtions of topologial invariants seems to be ruial.We shall analyze singular instantons as boundary on�gurations of moduli spaes ofregular instantons. In partiular, we shall disuss if they an appear as limit ase of stronglyoverlapping regular instantons as it happens for 4-dimensional Yang-Mills instantons [19℄.This paper is organized as follows: In the next setion we briey reall the basifeatures of lassial 2-dimensional CPN -models and their instanton solutions. Setion3 ontains a detailed analysis of zero-modes of the assoiated Weyl operator on the 2-dimensional torus. In the following setion we study the zero-modes for the shifted gaugepotential and expliitly onstrut the Nahm transform for two-dimensional gauge �elds. Inpartiular, we show how this transformation maps U(1) gauge �elds with harge k over a 2-dimensional torus into U(k) gauge �elds with harge 1 over the dual torus. Setion 5 dealswith the global struture of CPN moduli spaes of instantons on T2. A general method fortheir onstrution is proposed. It is based on properties of the �ber bundles assoiated withthe U(1) onnetion, and yields a omplete desription of the moduli spaes MNk : Somesimple examples are worked out expliitly. The relevant topologial properties of thesespaes are investigated in setion 6. The main result is that no invertible Nahm transformfor regular instantons an exist sine the orresponding moduli spaes are topologiallydistint. In setion 7 we investigate the role of singular instantons as limiting ases ofstrongly overlapping regular instantons. A summary of our results and onlusions areontained in setion 8.2. Instantons in CPN modelsThe lassial CPN model in 2 Eulidean spae-time dimensions is de�ned by the ationS = N2g2 Z d2x ��D�	��2 ; D�	 = ��� � iA��	; (2:1)where 	(x) = (	a(x)); a = 0; : : : ; N is a (N+1)-omponent omplex �eld with values inCPN+1 . We onsider 	(x) to be normalizedj	(x)j2 = NXa=0 j	a(x)j2 = 1 (2:2)and on�gurations di�ering by a phase fator are identi�ed,	(x) � ei�(x)	(x): (2:3)3



The ation inludes a ovariant derivative D� = �� � iA� with respet to the ompositeU(1) gauge �eld de�ned in terms of the sigma �eld byA�(x) := �i	y��	: (2:4)With this gauge �eld the symmetry (2.3) an be restated as a usual U(1) gauge invariane.Indeed, the ation (2.1) is invariant under the phase transformation (2.3) of 	(x) if at thesame time the omposite �eld A� transforms as a true U(1) onnetion,A� ! A� + ���(x); (2:5)as it follows from its very de�nition. Atually, one may view 	 and A� in (2.1) as inde-pendent �elds. The algebrai equations of motion for the gauge potential are then just(2.4).A topologial harge (instanton number) an be de�nedk = 12� Z d2xF12 = 12�i Z d2x "����	y��	 = 18�i Z d2x "��D�	yD�	: (2:6)This harge takes integer values for smooth on�gurations with �nite ation, and thus thespae of on�gurations splits into disonneted instanton setors.Appliation of the Cauhy-Shwartz inequality to D�	; i"��D�	 yieldsS � N�g2 jkj; (2:7)The minimal ation is reahed by solutions of the �rst order equationsD�	(x) = �i"��D�	(x): (2:8)Antiselfdual solutions orrespond to instantons (�sign and k > 0), and selfdual solutionsto anti-instantons (+sign and k < 0).In omplex oordinates z = x1+ix2 the (anti)selfdual equations (2.8) an be writtenas follows D�z	 = (��z � iA�z)	 = 0 instantonsDz	 = (�z � iAz)	 = 0 anti� instantons; (2:9)where the omplex omponents of the gauge �eld are Az = 12 (A1�iA2); A�z = 12(A1+iA2):This provides the �rst haraterization of the solutions as holomorphi solutions withrespet to the holomorphi bundle struture indued by the gauge �eld A.In summary, up to some ommon normalization fator the omponents of instanton�eld solutions are holomorphi setions of a line bundle over spae-time. In the plane there4



is an in�nite dimensional spae of solutions, but only the onstants have a �nite ationand k = 0. In the torus T2 the di�erent holomorphi strutures are parametrized for �xedk by the points of the dual torus T̂ 2 and the spae of instantons has a �nite dimension[12℄[13℄.The topologial harge of suh a solution is the sum of multipliities of the zeros of anynon-trivial omponent of 	: From now on we onentrate on instanton solutions (k > 0).The anti-instanton ase is analogous.3. CPN -models on the torus and Fermioni zero-modesWe may view the torus as R2 modulo a two-dimensional lattie � generated by twovetors e1 and e2. For simpliity we will restrit to orthonormal vetors e� and use dimen-sionless oordinates. In the setor with instanton number k we shall hoose as transitionfuntions U� relating the �elds at x and x+ e�,	a(x+ e�) = U�(x)	a(x) ; A(x+ e�) = A(x)� iUy�(x)dU�(x); (3:1)the gauge transformations U1 = ei�kx2 and U2 = e�i�kx1 : (3:2)This means that A is de�ned on a non-trivial line bundle Ek(T 2;C ). In two dimensionsany gauge �eld A indues a holomorphi bundle struture on Ek (in four dimensions thisonly holds for self-dual gauge �elds). Hene there is a loal omplex gauge transformationh suh that A�z = ih ��z h�1 and D�z = ��z + h ��z h�1; (3:3)whih trivializes the onnetion A (see e.g. Ref. [20℄).Next we onstrut and disuss the zero-modes of the Dira operator on the 2-dimensional Eulidean torus. By the index theorem the number of right-handed minusthe number of left-handed zero-modes of the Dira equation,/DA = 0depends only on the �rst Chern lass of the gauge �eld. Sine there are only zero-modes ofone hirality the total number of suh modes in the fundamental representation is k. Sinethey have de�nite hirality they are ompletely determined by one non-trivial omponentin the Weyl basis, i.e. by one ordinary omplex funtion  whih we will identify with thespinor �eld  itself. 5



Hene, in omplex oordinates a zero-mode solves the Weyl equation(��z � iA�z) = 0; k > 0 (3:4)and must satisfy the same boundary ondition (3.1) as the omponents of 	. Thus thefermioni zero-modes ful�ll the same di�erential equation and boundary onditions as theomponents of the sigma �eld 	.After trivializing the onnetion as in (3.3) the Weyl equation beomes a holomorphiondition, D�z  = 0() ��z � = 0; where  = h�:However, as pointed out earlier, if k 6= 0 the transformation h annot be globally de�nedand this shows up in the the hange of boundary onditions between  and �,�(z + 1) = eU1(z)�(z) ; �(z + i) = eU2(z)�(z);where eU�(z) = h�1(x+ e�)U�(x)h(x)is holomorphi. The holomorphi harater of the eU� also reets the fat that any holo-morphi setion � de�nes the holomorphi struture of the bundle Ek assoiated to thegauge �eld A.Now we onsider the partiular gauge potentialAI1 = ��kx2; AI2 = �kx1; or AI�z = i2�kz; (3:5)whih gives rise to a onstant �eld strength F01 = 2�k and instanton number k. Theomplex gauge transformation trivializing AI readsh = e��kz�z=2 (3:6)and the � satisfy the holomorphi boundary onditions with transition funtionseU1 = e(1+2z)�k=2 and eU2 = e(1�2iz)�k=2: (3:7)The zero-modes an be onveniently expressed in terms of Jaobi's theta funtions# � ab � (�) = 1Xn=�1 ei��(n+a)2e2�i(n+a)b= �(i�) e2�iabq a22 � 124 Yn>0 �1 + qn+a� 12 e2�ib��1 + qn�a� 12 e�2�ib�; (3:8)6



where we have set q = e 2�i� . These holomorphi and quasi-periodi funtions have thefollowing shift properties# �a+m+ n�b � (�) = e2�in(a+b=�+n=2�) # � ab � (�) (3:9)and possess �rst order zeros at the points�a+ b 2 fm+ 12 + �(n+ 12 ); m; n 2 Zg: (3:10)In terms of these �-funtions a basis of linearly independent zero-modes reads `(x) = (2k) 14h(x)�`(z); �`(z) = e�kz2=2# � z+ k̀0 � (ik) (3:11)and  ` has k zeros at the following points on the torus:x1 = 
 12 � k̀� ; x2p = 
 1k (12 + p)�; p = 1; 2; : : : ; k; (3:12)where hai denotes the unique element in the lattie fa+Zg lying in [0; 1). The basis f `gis orthonormal, ( `;  `0) = ZT2  �̀ `0 = Æ``0 :Let x`p 2 T2; p = 1; : : : k; be the k zeros of  `. Then their sum is independent of ` and isgiven by kXp=1x`p = 
k2� e modulo �; where e = e1 + e2: (3:13)That (for �xed k) the sum of the zeros is the same for all  ` (modulo the lattie de�ning thetorus), follows from the fat that all holomorphi setions �l(z) satisfy the same boundaryonditions. This statement holds true for any hoie of a zero-mode basis.Under a translation by 1=k in either of the two diretions on the torus the spae ofzero-modes is left invariant. This is expeted on general grounds and is needed for theNahm transform. More expliitly, let  denote the k-dimensional olumn vetor withentries ( 1; : : : ;  k). Then the transformations read (x+ 1k e1) = ei�x2S1 (x) and  (x+ 1k e2) = e�i�x1S2 (x); (3:14)with unitary k � k matriesS1 = 0BB� 0 1. . . . . .0 11 0 01CCA and S2 = 0BB�� 0 00 �2 0.. .0 0 �k1CCA ; � = e�2�i=k; (3:15)7



satisfying Sk1 = Sk2 = 1 and S1S2 = �S2S1: (3:16)These shift identities are onsistent with the position of the zeros of  ` given in (3.12).Note that  may be viewed as a zero mode of the U(k) potential AI1 on the smaller toruswith irumferenes 1=k and with instanton number 1. The last relation in (3.16) justguarantees that ei�x2S1 and e�i�x1S2in (3.14) are onsistent U(k) transition funtions on the smaller torus, that is, they satisfythe oyle onditions with periods 1=k.We ould as well have taken an alternative set of orthonormal zero modes,e (x) = S (x); SyS = 1: (3:17)For example using the zero-modese `(x) = (2k) 14 e��kz (�z+z)=2# � iz+ k̀0 � (ik) (3:18)instead of the ones in (3.11) amounts to exhanging x1 and x2 in the formulae above. Withrespet to the new basis one again �nds the shift identity (3.14) with the replaementsS� �! S S� S�1:The algebrai relations (3.16) remain intat and hene are independent of the hoie ofbasis.4. Nahm transform of gauge �elds on 2-dimensional torus T2Let A be an arbitrary two-dimensional U(N) gauge �eld with topologial harge1(A) = ZT2 trF12(A)de�ned on a torus T2. Its Nahm transform is de�ned in terms of the zero-modes of theWeyl operator for a shifted vetor potentialAu� = AI� + 2�u�1 (4:1)whih has the same topologial harge. By the index theorem the dimension of the spaeof zero-modes of /DAu is k. Let f uj ; j = 1; 2; � � �kg be an orthonormal basis of zero-modes.8



The Nahm transform assigns to the U(N) gauge potential A a U(k) potential Â on thedual torus T̂ 2 with topologial harge N as follows:(Â�)ij(u) = �i ZT2 d2x  uyi (x ) ��u� uj (x ); (4:2)Note that this onstrution does not require any speial onstraint on the original gauge�eld A as it does in four dimensions where A must be selfdual. This is beause any2-dimensional gauge �eld de�nes a holomorphi struture in the orresponding bundle,whereas in four dimensions this is true only for self-dual gauge �elds.Sigma model �elds are assoiated to Abelian gauge �elds. But the Nahm transformdoes not preserve the Abelian harater as we shall see below. This already is the �rstindiation that it might be problemati to extend the Nahm transform to sigma models.To analyze this problem let us now apply the Nahm onstrution to the Abelian �eld (3.5).An orthonormal basis of the zero-modes of the Dira equation for a shifted vetorpotential Au� = AI� + 2�u� or Au�z = i2�kz + �w; w = u1 + iu2; (4:3)an be onstruted from the solutions with u = 0 by shifting the arguments [21℄ ù(x) = ei�(u;x)  `�x+ 1k " u�; " = � 0 1�1 0� : (4:4)For later purposes it is useful to disuss some properties of these zero-modes:The k zeros of these modes are related to those of the  ` by the shift in (4.4),x1p 2 
 12 � 1k (`+ u2)� and x2p 2 
 1k (12 + u1 + p)�; p = 1; : : : ; k: (4:5)Hene two di�erent modes share no ommon zero unless u 2Z2.From (4.4) and (3.14) one sees at one that the vetor  u transforms in the same wayas  when either x1 or x2 is translated by 1=k, u(x+ 1k e1) = ei�x2S1 u(x) and  u(x+ 1k e2) = e�i�x1S2 u(x); (4:6)where the matries S� have been introdued in (3.15) .The k-dimensional subspae spanned by the zero modes is also left invariant by thefollowing simultaneous rotations of x and u:(x; u) �! ("nx; "nu); n 2 f0; 1; 2; 3g: (4:7)This an be seen by heking that the transformed states satisfy the same di�erentialequation and boundary ondition as the original ones. These rotations are represented by9



unitary k � k matries on the subspae spanned by the zero-modes. They are a remnantof the rotation symmetry on the torus for onstant �eld strength.In addition, the idempotent transformation(x; u) �! (x0; u0) = ( 1k "u;�k"x) (4:8)is projetively represented on the eigenmodes u0(x0) = e�2�i(x;u) u(x): (4:9)Under simultaneous translations of x and u the zero modes are invariant, up to aphase  u+��x) = ei�(�;x+ 1k "x) u�x+ 1k "��: (4:10)Later in this paper this shift identity will be rather important.Finally note, that for u 6= 0 the holomorphi gauge transformation (3.6) does nottrivialize the gauge �eld Au anymore. The modi�ed trivializing transformation readshu(x) = e��2 (kz�z+ 1kw �w�2i �zw); w = u1 + iu2:It not only transforms the unitary basis (4.4) into a z-holomorphi basis but also into anw-holomorphi basis, ù = (2k) 14 hu(x)�ẁ(z); �ẁ = �`(z � ikw); (4:11)where the �` have been introdued in (3.11). This is the essential feature of the Nahmtransform. It follows that the Nahm transformed gauge �eld Â = (Â``0), de�ned by theMukai-Nahm onstrution,(Â �w)``0 def= � i� ù; � �w  ù0� = �i� ù;  ù0�(hu)�1� �w hu = i�2kw Æmodk``0 (4:12)is a reduible U(k) gauge �eld with onstant �eld strength on the dual torus. The dualtorus is given by T̂ 2 = R2= �̂; (4:13)where with our hoie for the shift in (4.1) the dual lattie �̂ is generated by the twoorthonormal vetors ê� = e�. In real notation the potential Â takes the simple formÂ1 = Âw + Â �w = ��k u21 ; Â2 = i(Â �w � Âw) = �k u11:10



The transformed gauge potential is only apparently Abelian. The non-Abelian har-ater of this U(k) bundle an be seen from the peuliar boundary onditions of the holo-morphi strutures indued by Â. The orresponding transition funtions whih relate uand u+ e� on the dual torus, u+e1(x) = Û1 u(x) ;  u+e2(x) = Û2 u(x) (4:14)are determined by the shift identity (4.10) and the transformation properties (4.6) asfollows, Û1 = e2�ix1+ ik�u2Ŝ1 and Û2 = e2�ix2� ik�u1Ŝ2; (4:15)where Ŝ1 = S�12 and Ŝ2 = S1:Reall that the non-Abelian elements Ŝ� generate a �nite non-Abelian subgroup of U(k)Ŝk� = 1; Ŝ1Ŝ2 = e�i 2�=k Ŝ2Ŝ1: (4:16)The last relation guarantees that for any �xed x the  u are setions of a U(k)-bundle overthe dual torus T̂ 2 with oordinates u:Û2(u+e1) Û1(u) = Û1(u+e2) Û2(u): (4:17)The �rst Chern lass of this bundle follows from the fat that the (non-Abelian) Nahmtransformed gauge potential Â is just k times any of its diagonal elements, heneZT2 trF (Âu) = 2� =) 1(Âu) = k̂ = 1:It an be shown that the Nahm transform of Â is A, i.e. the Nahm transformation is invo-lutive. It is a partiular ase of the more general Mukai transform de�ned for holomorphisheaves (whih do not neessarily de�ne holomorphi bundle strutures)[14℄[22℄1.1 see also [23℄ for a view loser to physial appliations11



5. Instantons in T2Let us onsider an instanton �eld 	 on the torus with harge k, that is, a solution of(2.9) subjet to the boundary onditions (3.1) . The assoiated U(1) gauge potential A is aonnetion de�ned in a line bundle Ek with �rst Chern lass 1(Ek) = k. The holomorphistruture assoiated to A in Ek is globally equivalent to one of the Au desribed in the pre-vious setion. This means that there is a global (periodi) omplex gauge transformationg: T 2 ! C nf0g suh thatA�z = g �Au�z + i ��z�g�1 and D�z = g (��z � iAu�z ) g�1: (5:1)Therefore, up to U(1) gauge transformations the N+1 omponents of 	 an be expressedin terms of the k independent solutions  ù of the zero mode equation (4.4) as follows,	 = 1p uyAyA u A u; where A = 0BBB� a 10 a 20 � � � a k0a 11 a 21 � � � a k1� � � � � �� � � � � �a 1N a 2N � � � a kN
1CCCA : (5:2)Hene, any instanton solution is haraterized by a point u in the dual torus T̂ 2 and a(N+1)�k matrix A subjet to ertain onstraints given below. This haraterizationprovides a onstrutive method to desribe the moduli spae of instantons with harge k.The projetive nature of the sigma �elds 	 implies that matries di�ering by a non-vanishing multipliative fator must be onsidered as equivalent,A � �A; � 6= 0; (5:3)beause they give rise to the same instanton �eld. Furthermore, in order to satisfy thesigmamodel ondition 	y(x)	(x)=1 theA u should never vanish ( u 2C k never vanishessine the  ù have no ommon zeros) and this imposes a onstraint on A. Finally, beauseof the boundary onditions (4.14) we have the identi�ations(u;A) � T̂�(u;A) = �u+e� ; AÛ�1� �; (5:4)sine the two pairs give rise to the same 	 2 CPN and hene must be identi�ed. There isno further identi�ation sine a shift u ! u + � with � =2Z2 annot be ompensated bya (neessarily) unitary matrix. This would not be ompatible with  u being a setion ofthe U(k)-bundle over the dual torus with harge 1.12



In order to understand the remaining onstraint on the A matries let us onsider asimple example. It is the basi instanton of harge k of the CPk�1 model de�ned by thebasis (4.4) of zero-mode setions of Ek,	u� = 1p uy u  u: (5:5)In the (A; u) parametrization this solution orresponds to 	u� = (u;1k). Notie that in thisase the onstraint is satis�ed beause setions of the basis (4.4) do not have a ommonzero [24℄.It is not hard to �nd suÆient onditions on A for 	 to be normalizable. Clearly, thedenominator in (5.2) � uyAyA u�1=2is never zero if det(AyA) 6= 0. Sine the rank of the k � k matrix AyA is less or equalthat min(k, N+1), this an only be ful�lled for k � N+1. Hene in this ase the maximalrank ondition is suÆient, i.e.kernA : C k ! C N+1o = 0 if k � N + 1: (5:6)However, even in that ase this ondition is not neessary. The fat that 	(x) has to be anon-null vetor for any point x requires that the matrix A be viewed as a projetive mapCPk�1 ! CPN from rays of CPk�1 into rays of CPN . This just means that the kernel ofA must not lie in the image of  u(x) for any x on the torus, that isrange( u) \ ker(A) = ;: (5:7)Otherwise A u will have zero norm at some point and will not be a true sigma model �eld.Notie the ompatibility of this onstraint with the identi�ations (5.4). This onludesthe haraterization of instanton solution and provides an expliit proedure for a globaldesription of the moduli spae.Before disussing the subtleties related to (5.7) in the general ase we onsider somesimple examples of moduli spaes MNk . First of all is lear thatMN0 = CPN and MN1 = ; for N > 0:In the �rst ase beause 	u = 0 for u 6= 0 and 	0 is an arbitrary onstant vetor in CPN .The seond ase follows from the fat that for k = 1 there is only one zero mode  u whihhas exatly one zero on T2. Then all N+1 omponents of 	 would vanish at this pointand hene it ould not be normalized. 13



A simple non-trivial ase where the moduli spae an ompletely be onstruted isM12, that is, the harge 2 setor of the CP1 model. Sine the range of the basi instanton	u� ompletely overs CP1 the onstraint (5:7) if ful�lled if and only if the matrix A isregular. In this ase the suÆient ondition (5.6) is also a neessary one. Sine A mapsinto CP1 we may impose detA=1 and identify A with �A. It follows that the equivalenelasses of matries are to be regarded as elements of SL(2,C )/Z2 =PSL(2,C ).Beause of the identi�ations (5.4) the moduliM12 is just a non-trivial bundle over thedual torus (with oordinates u) with �ber PSL(2,C ). The bundle struture is determinedby the oset de�ned by the lift of the ation of the disrete translation group Z�Z on thebundle Ĉ � PSL(2,C ), given by [13℄:Z� Z = f(T̂ n11 ; T̂ n22 ); n1; n2 2 Zg; (5:8)where T̂1 and T̂2 are the basi generators de�ned in (5.4). The �nal result is thatM12 = Ĉ � PSL(2,C )Z � Z : (5:9)In the general ase the onstrution of the moduli spae is more involved sine the solutionsof the onstraint (5.7) are not so expliit. But one we have identi�ed the embedding ofthe spae-time torus T 2 into CPk�1 given by the basi instanton 	u� , the set of allowedmatries an be parametrized as follows: The basi instanton solution 	u� de�nes a map T 2! C k . Consider all linear subspaes Vn of C k of dimension n<k having empty intersetionwith range(	u� ). The spae of matries A whih de�ne regular instantons for a �xed u anbe identi�ed with the pairs (Vn;B) de�ned by the subspaes Vn and the non-degeneratelinear maps B mapping the orthogonal omplement V ?n of Vn into the target spae C N+1 .This means that the moduli spae of instantons an be identi�ed with a bundle overthe dual torus with �ber isomorphi to the produt V �PL0(k�n;N+1) of the set V of Vnsubspaes and the set PL0(k�n;N+1) of non-degenerate projetive maps from CPk�n�1into CPN . The bundle is de�ned by modding out the trivial bundle V�PL0(k�n;N+1)� Ĉby the lift of the disrete translation group Z�Z given by (5.4).To illustrate how the onstrution works let us onsider a simple non-trivial asein some detail: M23. In this ase we have a dense subset M23(0) whih is given by thebundle over the dual torus with �ber PSL(3,C )=SL(3,C )/Z3, the equivalene lasses of 3�3matries with det A = 1. The omplex dimension of the sub-manifold, dim M23(0) = 9,equals that of the total spae M23. However there is another sub-bundle inM23 with lower14



dimension. The �bers of this sub-bundle M23(1) are the lasses of 3�3 matries with one-dimensional kernel V1 whih does not interset the image of the map  u� : T2 !C 3 . Theomplex dimension of this subbundle is six. The total spae is the union of the two strata,M23 =M23(0) [M23(1): (5:10)the seond being the boundary of the �rst one. Notie that the subset of the seondstratum M23(1) assoiated to a �xed kernel an be identi�ed with M13:6. Global properties of the moduli of instantonsThe omplex dimensions of the moduli spaes aredimMNk = (N+1) kas follows at one from our matrix representation of the CPN -�elds. Note that this numberis invariant under the interhange of the instanton number k and the number N+1 of sigma�eld omponents.In the ase k � N+1 there is a natural strati�ation of the moduli spaes,MNk = k�2[n=k�N�1 MNk(n) ; (6:1)aording to the dimension n = dimkerA, but this does not mean that the moduli spaeis not a smooth manifold. From the matrix parametrization it is obvious that MNk issmooth, although it might seem hidden by the strati�ation (6.1) introdued in Ref. [25℄.Moreover, MNk is a K�ahler manifold [17℄ and the assoiated Riemannian struture playsan important role in aurate semilassial expansions of CPN models [13℄. The matrixparametrization permits to analyze the global features of these geometri strutures, inpartiular, the inompleteness of the Riemannian metri, but we shall only fous into theanalysis of the global topologial struture of these moduli spaes. Below we summarizesome of the relevant results.MNk is non-empty and onneted for any k > 1 and N > 1, i.e. �0(MNk ) = 0.MN0 =C PN , and M1k = ; for k > 1. The simplest non-trivial moduli spae is M12, andbeause of the identi�ation (5.9) we have�1(M12) = Z2 � Z � Z: (6:2)The next ase MN2 has also a non-trivial bundle struture over the dual torus. Its �berEu is the projetive set PL(2; N + 1) of equivalene lasses (N+1) � 2 matries A with15



detAAy 6= 0, whih an be identi�ed with the subset of the projetive spae CP2(N+1)�1de�ned by exluding rays of the form (�1~a; �2~a) 2 C N+1�C N+1. This �ber Eu =PL(2; N)is homeomorphi to CPN � C N+1. The bundle struture is de�ned by the oset de�nedby the lift of the ation of the translation group Z�Z to the bundle Ĉ �PL(2; N) given by(5.8) . Thus, �1(MN2 ) = Z2 � Z � Z: (6:3)A more omplex moduli spae is M1k. In this ase the �ber Eu is identi�ed with the(projetive) set PL(k; 2) of 2�k matries A with maximal rank 2 whose kernel has anempty intersetion with 	u� (x) for any x on the torus. In terms of the nodes of theorresponding CP1 �eld, the �ber Eu an be seen as homeomorphi to the set of k pairs(ai; bi) 2 T2 � T2 (for i = 1; 2; � � � ; k), satisfying the following onstraintskXi=1 ai 2 
u+ k2 e�; kXi=1 bi 2 
u+ k2 e� and ai 6= bj 8i; j: (6:4)That means that the sum of the zeros are the same (modulo �) for both omponents ofthe CP1 �eld sine they ful�ll idential boundary onditions. The spae of nodes of anyof the two omponents of 	 is homeomorphi to CPk�1 (see appendix). The spae Z ofzeros of the two omponents of 	 satisfying the onstraint of having no ommon nodes isa bundle over CPk�1 with �ber CPk�1 � C, whereC = �fai; big 2 T2 � T2�� i = 1; 2; : : : ; k; with ai = bj for some i; j	:The �rst homotopy group of Z is �1(Z) = F2 � Zk�3;where F2 is the free group with 2 generators, i.e. the �rst homotopy group of a bouquetof two irles S1 _ S1. This follows from the following haraterization of C: The seondomponent 	2 of the sigma �eld 	 must be a holomorphi setion of the line bundleEk without ommon zeros with the �rst omponent 	1. Let a1; a2; : : : ; ak be the zerosof 	1. There is only one onstraint (6.4) on the position of these zeros. It is alwayspossible to hoose a di�erent point b in T2 suh that b 6= ai for any i = 1; 2; : : : ; k: It isobvious that the points a1; : : : ; ak�1; b will never satisfy the onstraint (6.4). Then, thespae of vetors Ĉ whose rays are in C is given by all vetors in the subspaes 	(a1) =0;	(a2) = 0; : : : ;	(ak) = 0. The spae of all holomorphi setions of Ek is parametrizedby the oordinates (�1; �2 � � ��k) de�ned by �1 =	(a1); : : : ; �k�1 =	(ak�1); �k =	(b).In this parametrization Ĉ is made out of the �rst k� 1 oordinate hyperplanes �i = 0 ; i =16



1; : : : ; k�1 and the extra hyperplane 	(ak) = 0. Then, CPk�1 � C an be identi�ed withC�C k�3� �C �� , where C �� denotes the omplex plane C without two points 0; 1. From thisonstrution it is obvious that �1(CPk�1 � C) = F2 � Zk�3. Then, the �rst homotopygroup of onstrained 2 � k matries PL(k; 2) has a non-trivial non-Abelian homotopygroup �1(PL(k; 2)) = F 2 � Zk�3 � Z2. This implies that the �rst homotopy group of themoduli spae M1k is �1(M1k) = F2 � Zk�1 � Z2: (6:5)These topologial properties of moduli spaes of instantons (6.3) and (6.5) are very di�er-ent whih will be in ontradition with the existene of any kind of Nahm transform forCPN sigma models. This turns out to be the major physial onsequene of the results ofthis setion.The fat that the spae of unit harge instantons is empty is reminisent of a similarproperty of the orbit spae of Yang-Mills �elds with harge one instantons on the torus T4[14℄[15℄. In that ase, it appears as a onsequene of the existene of Nahm transform andthe fat that there are no U(1) instantons. This analogy suggests that perhaps the sameproperty for CPN instantons an be derived from a similar duality transform. In addition,the dimensions of MNk and Mk�1N+1 are the same.A �rst indiation that the Nahm transform might not exist for the CPN models arisesfrom the fat that the transform Âz of the Abelian potential Az assoiated with 	 is non-Abelian and thus annot be assoiated to a CPN �eld on the dual torus. One diret wayof heking whether suh a duality exists is to ompare topologial properties of MNk andMk�1N+1.Now, the topologial strutures of MN2 and M1N+1 given by (6.3) and (6.5) are verydi�erent for N>1. This already allows us to exlude the existene of an invertible Nahmtransform, at least in these ases. The same topologial non-equivalene holds for moregeneral moduli spaes, whih exludes the existene of a generi duality transformation.The only ase where these topologial arguments fail to exlude the existene of a (gener-alized) Nahm transform is the selfdual moduli spaesMNN+1 beause of the trivial identitybetween both moduli spaes.7. Compati�ation of moduli spaes and singular instantons.The moduli spaes of instantons analyzed in the previous setions have natural om-pati�ations obtained by adding the boundaries onsisting of the matries A whih donot satisfy the onstraint (5.7). These on�gurations orrespond to �elds whih do haveommon zeros in all its omponents. Properly speaking these are not CPN �elds beause17



at these ommon points they do not de�ne maps T2 ! CPN . These points an also beseen as singular points when one introdues the normalization fator to have a unit normrepresentation of the �eld 	. These singular points an be interpreted as enters of singularinstantons. It is envisable to onsider the existene of ommon zeros as an e�etive hargeredution indued by the appearane of singular instantons. This observation providesadditional information about the struture of the boundary of MNk in MNk .The resulting moduli spae MNk is ompat and has a bundle struture over thedual torus with ompat �ber CPk(N+1)�1 . This ompati�ed moduli spae is strati�edaording to the number of ommon zeros of the di�erent omponents of the �eld [18℄. Thegeneri dense stratum ontains all regular instantons. The other strata onsist of singularinstantons. The degree of singularity is parametrized by the number of ommon zeros.This is reminisent of a similar phenomenon ourring in Yang-Mills theory [19℄.A single singular instanton an be viewed as a regular one with one topologial hargeless and with a pointwise singularity at a point x0. In fat, we an generate singularinstantons by adding suh singularities to all regular instantons of lower harges, whihgives a omplete haraterization of the subspae of singular instantons. Let 	 be a(pointwise normalized) C PN instanton on�guration of harge k: One an obtain a singularinstanton e	 of harge k+1 by simply multiplying eah omponent of 	 by the phase of atheta funtion arrying unit harge:e	 = #1(z � z0ji)j#1(z � z0ji)j	: (7:1)Observe that this phase has a singular point at the zero of the theta funtion, z = z0: Theorresponding holomorphi line bundle struture is shifted to u+ z0.The assoiated gauge potential splits into the previous, harge k piee and a newontribution oming from the singular phase:eA�z = �ie	y��z e	 = A�z + a�z; (7:2)where a�z = �ie�i arg #1(z�z0ji)��z ei arg #1(z�z0ji) = i2 ��z#1(z � z0ji)#1(z � z0ji) : (7:3)The additional ontribution to the topologial harge density is singular14�"��f��(x) = � 2i� �za�z(x) = 14�r2 ln#1(z � z0ji) = Æ(2)(x� x0); (7:4)orresponding to a unit point harge at x0. Thus the total topologial density is14�"�� eF��(x) = 14�"��F��(x) + Æ(2)(x� x0): (7:5)18



The same singular behavior appears in the new distribution of the energy density and thisniely illustrates the e�et of inluding singular instantons.Although the physial interest of singular on�gurations is not yet understood, �eldon�gurations in the viinity of singular instantons appear in the regular spae. To furtherlarify the struture near singular instantons we shall onsider some interesting ases.A regular instanton in the bulk of M13 an be built by hoosing the parameters ofthe matrix A in suh a way that the two omponents of the CP1 �eld have well separatednodal points (e.g. the instanton on�guration shown in �g.1.)
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Figure1. Energy density distribution of a CP1 regular instanton u = 0; A = � 2p2 2 00:9 0 0� withharge k = 3 inM13We an approah the boundary of the moduli of regular instantons by hoosing pa-rameters of A in suh a way that the nodal points of the two omponents of 	 are verylose to eah other. We are near a singular instanton and �nd peaks in the energy den-sity loated on the nodal points showing the strong loalization of energy and topologialharge on singular instantons. 19
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Figure 2. Energy density distribution of a CP1 regular instanton u = 0; A = � 2p2 2 00 0:1 �i�with harge k = 3 lose to one singular instanton inM13.In the limit ase we obtain a harge 3 instanton with one singular instanton and tworegular ones. The piture is quite similar to Fig.2 with two lumps in the topologial density,orresponding to two interating instantons of harge 2 and �nite size, and one singularinstanton whih is not shown in the numerial simulation.Another way of approahing the boundary of the moduli spae is by hoosing one ofthe omponents of 	 very small. In this ase we approah a ompletely singular instantonwith k singularities and one null omponent.Now, the identi�ation of single instantons in a multi-instanton on�guration is notalways lear. In fat, there are strongly overlapping on�gurations where it is hard toidentify the onstituent instantons. In Fig. 3 the on�guration seems to ontain fourlumps whereas its total harge is k = 2.
20
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Figure 3. Energy density distribution of a CP1 regular instanton u = 0; A = � 1 00 1� withharge k = 2 inM12Moreover, the interation between instantons an be very involved and we an �nddensities with the shape of a volano as in Fig. 4 whih seems to desribe a ring ofinstantons whereas its total topologial harge is k = 2.
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0.5Figure 4. Energy density distribution of a CP1 strongly interating regular instanton u = 0; A =� 0:42� 0:72i 0:27� 0:47i�0:49� 0:85i �0:10� 0:18i� with harge k = 2 inM12Strongly interating instantons dominate in dense gas regimes whereas isolated in-stantons are more relevant for dilute gas phases. In general it is very di�ult to identifythe number of instatons of a single on�guration in dense regimes. This diÆulty inreases21



in numerial simulations where the leading on�gurations are not exat selfdual solutionsand are made of instantons and anti-instantons.In any ase, singular instantons appear as a limiting ase of small size instantons.In partiular, they are responsible for the geodesi inompleteness of the moduli spae ofregular instantons [13℄. Suh on�gurations beome of physial interest in supersymmetriCPN theories where they are important to loalize topologial Green funtions in theorresponding topologial �eld theory [18℄.We lose with some more general remarks about the possible role of singular instan-tons: The semilassial expansion in a dilute gas of instantons has a di�erent behaviordepending on the number of omponents of the sigma model. For N > 1 the expansionis dominated by large instantons and we annot trust this approximation to desribe thedeep infrared behavior of the theory [26℄. In partiular, their relevane for the on�nementmehanism is unlear. On the other hand, for the CP1 model the expansion is dominatedby instantons of small sizes beause of the di�erent � funtion [26℄. In the extreme ase,singular instantons arry the leading e�ets and this is self-onsistent with the dilute gasapproximation. However, an ultraviolet regularization is in any ase neessary. In lattieregularization the size of small instantons is bounded below by the lattie spaing and as aonsequene the saling properties of the topologial suseptibility are hanged. This leadsto diÆulties when one approahes the ontinuum limit [26℄[27℄. The above disussion in-diates that a ontinuum approah is feasible. Although similar e�ets are expeted toour, they might be less severe and lead to the stabilization of the ultraviolet atastropheseen in the lattie approah.In some sense the appearane of singular instantons is a dual e�et of the existene ofreduible instantons. A CPN instanton is reduible when it an be onsidered as living ina lower dimensional CPN�1 projetive subspae of CPN . Reduible instantons belong tothe strata ofMNk assoiated with matries A with rank lower than N . In the ompati�edmoduli spaeMNk there are two lasses of strata, one orresponding to reduible instantonsand the other to singular instantons. In one ase there is a harge redution and in theother a dimension redution. The role of the two kinds of strata are interhanged whenwe ompare the dual ases MNk and Mk�1N+1. If we exlude both types of instantons weare left with the modular spae of generi regular instantons. The global struture of thespae of generi regular instantons in Mk�1k is muh simpler. It is always a bundle withthe dual torus as basis and as typial �ber the group PSL(k;C ), twisted by the boundaryonditions (5.4). 22



8. ConlusionsThe global struture of the moduli spae of instantons in the CPN model on a torushas a more expliit desription than for Yang-Mills theory. However, this by no meansimplies that its geometrial and topologial properties are simpler. In fat, in the aseof gauge theories there exists a Nahm transform establishing a one-to-one orrespondenebetween two a priori very di�erent moduli spaes of instantons,MNk andMk�1N+1. We haveshown that suh a map annot exist for the CPN sigma models.We have identi�ed the boundary of the spae of regular instantons with the spae ofsingular instantons. This identi�ation of singular instantons as boundary on�gurationsof the spae of regular instantons provides a new approah to the analysis of the physialrole of overlapping instantons in a dense gas and in topologial �eld theories. The role ofinstantons in the on�nement mehanism seems to be very di�erent in the CP1 model andhigher N models. The dominane of small or large instantons indiates a ritial transitionor rossover between these two regimes. The behavior of the theory in the presene of a �term is also very muh dependent on the regime and size of leading instanton ontributions.In partiular, the CP1 model shows a seond order phase transition at � = � whereas inhigher N models it is not yet known whether a similar transition exists or not. It isvery plausible that the instantons will play a role in the presene or absene of suh atransition. If that ase the global struture of MNk analyzed in this paper is expeted tohave interesting physial e�ets.Aknowledgements.We thank Ugo Bruzzo, Mario Esario, Antonio Gonz�alez-Arroyo and Pierre van Baalfor disussions. A. Wipf thanks the University of Zaragoza and the MPI in Munih, wherepart of the work has been done, for hospitality. M. Aguado is supported by a fellowshipof MEC (Programa FPU). M. Aguado and M. Asorey are partially supported by MCyTunder grant FPA2000-1252. This work was arried out in the framework of a DAAD-MCyTgrant.
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Appendix. Nodal struture of holomorphi setionsHere we establish the onnetion between two di�erent geometri haraterizations ofthe spae of holomorphi setions of a omplex line bundle whih have been used in thepaper. First, it is lear that this spae is linear. On the other hand the holomorphi setionsare haraterized up to a onstant by its zeros (divisors). From the relation between thetwo approahes it follows that the spae of zeros of non-trivial holomorphi setions has aprojetive spae struture. Let us disuss in detail how this projetive struture emerges.Indeed, the spae of holomorphi setions of a omplex line bundle on the torus withChern lass k is a linear spae isomorphi to C k : Let us onsider the basis introdued in(4.11), �ẁ(z) = �`(z � ikw); �`(z) = e�kz2=2# � z+ k̀0 � (ik); (.1)for the holomorphi struture de�ned by w = u1+ iu2 in Ek(T 2;C ). With this hoie forthe basis any holomorphi setion in Ek is given by the expansion oeÆients ` in (z) = kX̀=1 ` �ẁ(z); (.2)The nodes of �ẁ(z) are simple zeros and de�ne the following lattiezm;n = ikw � k̀ + �m+ 12�+ �n+ 12� ik ; m; n 2 Z: (.3)Hene, there are k suh zeros in the fundamental domain and the setion belongs indeedto the bundle of harge k: The boundary onditions�ẁ(z + 1) = e�k(z+1=2�iw=k)�ẁ(z) and �ẁ(z + i) = e�i�k(z+i=2�iw=k)�ẁ(z) (.4)have been derived in the main body of the paper. They depend on w 2 T̂ 2 whih has beenintrodued to shift the gauge potential.To disuss the topology of the CPN �elds it is advantageous to use an alternativeparametrization of the setions for whih the nodal struture is expliit (but linearity isnot). It is given by the produt representation�(z) = kYi=1 e�2 f(z�ai)2+(1�i)zg�1�z�aij i�; #1(zji) =Xn (�)ne��(n+z� 12 )2 : (.5)Eah #1(z � aiji) has zeros at the points of the lattie ai + �, i.e. only a simple zerowithin the fundamental domain. Coalesene of some of these zeros is allowed. � ful�llsthe boundary onditions�(z + 1) = e�k(z+1)��a+i�k=2 �(z) ; �(z + i) = e�i�k(z+i) + i�a�i�k=2 �(z); (.6)25



where a =P ai. They must oinide with those in (.4) in order to have a parametrizationof the same spae. This gives rise to the following onstraint on the ai in (.5)kXi=1 ai = iw + k2 (1 + i): (.7)It is easy to see that this sum is idential to that obtained for the nodes in (.3).Sine quasiperiodi meromorphi funtions on the torus are determined, up to a mul-tipliative onstant, by the boundary onditions and the position and degeneray of theirzeros, one should be able to write all setions (.5) in the form (.1) by mapping the nodalon�guration into the set of omplex oeÆients `:Assume then, for a given on�guration fa1; : : : ; akg of nondegenerate zeros (the de-generate ase will be disussed below) that�(z) = kX̀=1 ` �ẁ(z): (.8)Then, the k onditions �(ai) = 0 imply the following homogeneous set of equations forthe oeÆients `; X̀Bi` ` = 0; where Bi` = �`(ai): (.9)The equivalene of both parametrisations implies that the matrix B = (Bi`) has rankk�1 or that its kernel is one-dimensional. Hene the linear system (.9) determines theoeÆients `, up to an overall fator. The overall onstant may be �xed by mathing thevalues of the setions in both parametrisations at a non-nodal point. In ases where somezero is degenerate one proeeds in an anologous way. A node a with multipliity r yieldsr onditions �(a) = �0(a) = : : : = �(r)(a) = 0, and the orresponding rows in B onsistof derivatives of �ẁ(z) at a.Hene, any setion has the produt representation (z) = � kYi=1 e�2 f(z�ai)2+(1�i)zg �1�z�aij i� (.10)The parameter spae for non-trivial holomorphi setions onsists of a nonzero omplexonstant � and k points on T2 subjet to the onstraintX ai = i! + k2 (1 + i) mod �: (.11)As an example onsider k = 2 and take w = 0. Then the onstraint on the two nodes readsa1 + a2 = 1 + i: (.12)An unambiguous parametrization of the positions of the zeros ful�lling this onstraint isahieved by piking the node a1 in the region 0 < Re a1 < 12 , together with the segmentsRe a1 = 0; 0 � Im a1 � 12 and Re a1 = 12 ; 0 � Im a1 � 12 . The following �gure shows theremaining identi�ations one needs to make:26



a1

a2

1/2 1Figure 4. The domain R for a1 with the neessary identi�ations.This region with identi�ations is homeomorphi to a two-sphere S2. The parameter � in(.10) ontributes a positive onstant j�j and a phase arg �. This phase takes values in the�ber of a prinipal U(1) bundle over S2; and to identify it, we need to ompute the �rstChern lass 1(P ) = 14�i I�R (d ln � d ln �) = 12�i I�R d ln ; (.13)where R is the region de�ned above. Sineln = ln�+ ln#1(z � a1ji) + ln#1(z � a2ji) + Polynom(z); (.14)only the theta funtion assoiated with the unique zero a1 2 R is relevant for the ontourintegral in (.13). Moreover, from the in�nite produt expansion for thetas, only a sinefator ontributes:1(P ) = 12�i I�R d ln#1(z � aji) = 12�i I�R d ln sin[�(z � a)℄ = 1; (.15)yielding unit Chern lass by the residue theorem. Then the U(1) �bration on S2 is theHopf bundle S3:The topologially nontrivial spae R4 n f0g is the union of all 3-spheres with radiij�j 2R+ . The null setion  (z) = 0 belonging to a singular instanton ompletes it to theontratible spae R4 � C 2 :This onstrution generalizes to arbitrary k, sine the spae of k points on the toruswith �xed sum is topologially equivalent to C P k�1 : The phase arg � de�nes the sphereS2k�1 as a prinipal U(1) bundle over this projetive spae. The spae of setions R2k �C k is onstruted as before with the null setion and all S2k�1 with positive radii. Charge2 is a partiular ase sine C P 1 � S2: 27


