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Remarkable progress has been made towards solving the two dimensional quantumgravity [1,2℄ whih is indued by string theory in subritial dimensions. As observedby Polyakov [1℄ the indued gravity ation possesses a hidden hiral SL(2; R) Ka-Moody (KM) symmetry in the light-one gauge, and this symmetry opened up a newway of solving minimal models oupled to gravity [2℄. It is hoped that this KM sym-metry will also prove useful in understanding strings in subritial dimensions. Sinein the onformal gauge the indued gravity is desribed by Liouville theory, it is natu-ral to ask whether there is a `hidden' KM symmetry assoiated with Liouville theoryas well. In this paper we show there are atually two (a left- and a right-handed)hidden SL(2; R) symmetries assoiated with Liouville theory. In fat we demonstratethat the Liouville theory is nothing but the SL(2; R) Wess-Zumino-Novikov-Witten(WZNW) theory, redued in a onformally invariant manner. More generally, weshow that Toda �eld theories [3,4℄, whih are natural, ompletely integrable general-izations of the Liouville theory an also be obtained by reduing WZNW models ina onformally invariant way.One important advantage of regarding the Liouville theory as a redued WZNWsystem is that the on�gurations whih are singular in the Liouville variables buthave regular energy-momentum densities turn out to be regular in the orrespondingWZNW variables. For this reason it is hoped that the WZNW desription will openup a new way of attaking the hard problem of quantizing the Liouville theory [5-8℄,namely, by applying the symmetry redution to the quantized WZNW theory. Butin this paper we shall restrit ourselves to purely lassial onsiderations.The disovery of Polyakov [1℄ mentioned above is that in the light-one gaugewhere ds2 = d�+d�� + h(�+; ��)(d�+)2 (1)the indued gravity Lagrangian densityL = � k8� �12R��1R�M�p�g ; k = D � 266 (2)where R is the salar urvature and � is the two-dimensional wave operator, is loalin the variable f de�ned as h = �+f=��f , and is invariant with respet to the



SL(2; R) KM symmetry transformations~f(�+; ��) = f��+; a(�+)�� + b(�+)(�+)�� + d(�+)�: (3)In the left-right symmetri onformal gaugeds2 = e�(�+;��)d�+d��; p�g = e� (4)the indued two-dimensional gravitational Lagrangian density redues toL = � k8� �12�+�����Me�� (5)whih is the Liouville Lagrangian density (for the value of k given in (2)). We nowwish to show that (for any negative value of the parameter k) the Liouville Lagrangian(5) has a hidden two-sided SL(2; R) symmetry, whih it inherits from an underlyingSL(2; R) WZNW model.We start by realling some fats about the WZNW theory [9℄. First, the WZNWation for a group-valued �eld g is:S(g) = � k8� Z d2����Tr�(g�1��g)(g�1��g)	+ k12� ZB3 Tr�(g�1dg)3	 ; (6)where the Tr symbol denotes the ordinary matrix trae operation multiplied by aonstant to be �xed later and, as usual, B3 is a three-dimensional manifold whoseboundary is Minkowski spae-time*. Any Lie algebra element � gives rise to left- andright KM symmetries of (6) generated by the Noether urrentsJ(�) = �Tr�� � (�+g) � g�1	~J(�) = ��Tr�� � g�1 � (��g)	 where � = � k4� (7)and the WZNW �eld equation is equivalent to urrent onservation��J = 0 ; �+ ~J = 0: (8)* Our spae-time onventions are the following:�00 = ��11 = �01 = ��10 = 1; ��� = �0�� �1� = _�� �0.



We will make use of the Polyakov-Wiegmann identity [10℄ that expresses the WZNWation for the produt of three matries A,B,C as the sum of the respetive ationsfor A,B and C, modulo loal terms:S(ABC) = S(A) + S(B) + S(C)+ � Z d2� Tr�(A�1��A)(�+B)B�1+ (B�1��B)(�+C)C�1 + (A�1��A)B(�+C)C�1B�1	: (9)After this reapitulation we onsider the ase of SL(2; R). This group has theproperty that any group element g in a neighbourhood of the identity admits theGauss-deomposition g = ABC, whereA = � 1 x0 1� = exE+ ; C = � 1 0y 1� = eyE�B = � e 12� 00 e� 12�� = e 12�H : (10a)The neighbourhood in whih this parametrization is valid onsists of those groupelements for whih g22 > 0 and the whole group an be overed by four pathes ofthis type, that is an arbitrary group element g an be parametrized as:g = ABC! where ! = �1 or ! = �� 0 1�1 0� : (10b)(Note that for the adjoint group SL(2; R)=Z2 two pathes suÆe.) Substituting theparametrization (10) into (9) the ation takes the simple loal form [11℄:S(g) = S(x; y; �)= �2 Z d2� �12�+����+ 2(��x)(�+y)e��	: (11)The equations of motion, derived onveniently from (11), read as��(�+ye��) = �+(��xe��) = 0; (12a)�+���+ 2(��x)(�+y)e�� = 0: (12b)Working in the neighbourhood of the identity (! = 1), let us now onsider thefollowing speial solutions of (12a):�+y = �e� ��x = �e� ; (13)



where � and � are arbitrary onstants. Using (13), the equation (12b) redues to theLiouville equation �+���+Me� = 0 ; where M = 2�� : (14)Thus loally at least the Liouville system an be regarded as a redued WZNWtheory. This redution is a anonial one in the sense that the Poisson brakets ofthe Liouville phase spae variables � and �0� an be alulated either in the WZNWtheory or using the Liouville Lagrangian (5). Sine loally the urrents J(E+) and~J(E�) an be written asJ(E+) = � �+ye�� ~J(E�) = �� ��xe��; (15)the solutions (13) orrespond to imposing the onstraintsJ(E+) = �� ~J(E�) = ��� (16)whih are globally well-de�ned and therefore an be imposed on any of the pathesde�ned by (10b).An important question is how the onformal symmetry of the Liouville theoryappears in the WZNW ontext. The left- and right Virasoro algebras of the Liouvilletheory are given by the improved (traeless) energy-momentum tensor:T0� = (�2 )�12(���)2 +Me� � 2(���)0�: (17)Due to the improvement term (���)0, there is a lassial entre  = �6k in thisVirasoro algebra. We have to look for a Virasoro algebra in the WZNW modelwhih, upon imposing the onstraint (16), yields the Liouville Virasoro (17). It iseasy to see that the Sugawara Virasoro density L of the WZNW theoryL = (�2�k )�12J(H)2 + 2J(E+)J(E�)� (18)(and similarly for ~L) does not ommute with the onstraint (16). However, there isa whole family of Virasoro subalgebras in the semidiret produt formed by the KM



algebra and its assoiated Sugawara Virasoro algebra, namely, those generated bythe densities l = L+ a�J(�) + b�J 0(�); (19)(and similarly for ~l) where � 2 sl(2; R) and a� and b� are real numbers. Within thisfamily it is possible to �nd a Virasoro algebra that does weakly ommute with theonstraint. Indeed, by imposing the requirement that the Virasoro weakly ommuteswith (16), one is led to the solutionl = L� J 0(H) ~l = ~L+ ~J 0(H); (20)whih is unique up to terms whih are proportional to the onstraint (16) and do notontribute in Liouville theory. As a onsequene of the relationfJ(H; �); J(H; �0)g = k2� TrH2 Æ0(� � �0); (21)(20) has the same entre as (17), namely = �3k TrH2 = �6k: (22)Sine there is only one Virasoro symmetry in Liouville theory, T0+ and l are expetedto be the same funtionals of the Liouville phase spae data � and �0�. In loaloordinates the density l takes the forml = L� J(H)0 = �2�[ 12(�+�)2 + 2(�+x)(�+y)e��℄�[2�+�+ 4x(�+y)e��℄0	 (23)and this expression does indeed redue to T0+ on imposing the onstraint (16). Theterm (�+�)2 omes entirely from the Sugawara density L, while the improvementterm omes from J 0(H). On the other hand, the exponential interation potential in(17) arises as a ombination of two terms , one of them oming from L, the otherfrom J 0(H).One an use the WZNW �! Liouville redution to obtain the general solution ofthe Liouville equation from that of the WZNW model. As is well-known, the formeris given as e�(�+;��) = 2M F 0(�+) ~F 0(��)[1 + F (�+) ~F (��)℄2 ; (24)



where F and ~F are arbitrary funtions satisfying F 0 > 0, ~F 0 > 0 and the primemeans derivative taken with respet to the argument. The general WZNW solutionis desribed by the simpler formulag(�+; ��) = gL(�+) � gR(��) ; (25)where gL and gR are arbitrary group-valued funtions. Now, if one assumes that g,gL and gR are all Gauss-deomposable then trivial matrix multipliation yields (inan obvious notation) e�(�+;��) � e�L(�+)e�R(��)[1 + yL(�+)xR(��)℄2 : (26)On the other hand, the onstraints (16) in this ase redue toy0L(�+) = �e�L(�+) x0R(��) = �e�R(��) ; (27)and if these are imposed and one makes the identi�ationF = yL ; ~F = xR (28)then (26) redues to (24), as required. Conversely, if a Liouville solution e� is givenin terms of F and ~F as in (24) then one an build a family of orresponding loalWZNW solutions by reversing the above proedure. This family is parametrized bythe arbitrary funtions yR and xL whih desribe the gauge freedomg �! �A(xL) � g � C(yR) (29)of the onstraint (16). (The disrete freedom g �! �g disappears, of ourse, forthe adjoint group.)It is known [6℄ that the Liouville equation admits `singular' solutions with per-fetly regular energy-momentum density and that these on�gurations play an im-portant role in the quantized version of the theory. One of the main advantages of theWZNW desription of Liouville theory is that these on�gurations are representedby globally regular WZNW �elds. For example, the Liouville solutione� = 1os2 � where � = ��+ � ��� (30)



is apparently singular, but the orresponding Virasoro densities are not (they are sim-ply onstants). On the other hand, using the redution proedure, the on�guration(30) is obtained from the following solution of WZNW theory:g = � os� � sin�sin� os�� ; (31)whih is indeed perfetly regular.To see that this holds for any Liouville solution with regular Virasoro densities,let us onsider two independent real solutions 	1, 	2 of the Shr�odinger equationwith periodi potential V � �2T0+ (and similarly for ~V = �2T0�),	00(�) = 12V (�)	(�): (32)Normalizing the pair of solutions by the Wronskian ondition	02	1 �	01	2 = � ; (33)it is easy to see that the left moving SL(2; R) matrixgL = �	1=N �	2=N	2 	1 � where N = 	21 +	22 (34)satis�es the left-handed part of the onstraint (16). Moreover, sine 	1 and 	2are two independent solutions of the same Shr�odinger equation and thus an nevervanish simultanously, the matrix (34) is always regular. It is known that V is theShwarzian derivative of F and it follows from (32) and (33) that V is also theShwarzian derivative of the ratio 	2=	1. Therefore, using the SL(2; R)=Z2 freedomof the Shwarzian derivative, we an hoose 	1 and 	2 so that they reprodue F :F = 	2	1 : (35)Applying the analogous proedure to the right hand side as well one �nds that theLiouville solution e� is reovered ase� = �(gL � gR)22��2 = 1(	1 ~	1 +	2 ~	2)2 ; (36)



where the matrix gR is built out of ~	1 and ~	2 aording to the matrix transposeof the formula (34). To summarize, we have shown that it is indeed possible toonstrut a globally regular WZNW representation for any Liouville on�gurationwith regular Virasoro densities. From (36) one sees that the only singularities of theLiouville funtion e� our at the zeros of the matrix element g22 of the orrespondingWZNW solution, and from (10) one sees that these are only oordinate singularitiesassoiated with the pathing of SL(2; R) (or, more preisely, of SL(2; R)=Z2).The onnetion with Polyakov's light-one gauge theory mentioned earlier isobtained by making the WZNW �! Liouville redution in two steps. In the �rststep we impose only the right-moving part of the onstraint (16). Then the equationsof motion yield ��(e���+���) = 0 ; where � � ln( 1� ��x): (37)This equation an be derived from the e�etive LagrangianL = (� k16� ) (�+��x)(����x)(��x)2 ; (38)whih is the same as Polyakov's Lagrangian for the two-dimensional indued gravityin the light-one gauge (with k = D�266 ) if we identify x with Polyakov's variable fthrough the relation x(�+; f(�+; ��)) = �� : (39)The e�etive Lagrangian (38) is invariant under the residual left-moving SL(2; R)transformations~x(�+; ��) = a(�+)x(�+; ��) + b(�+)(�+)x(�+; ��) + d(�+) ; ad� b = 1; (40)whih, in terms of the variable f , are just Polyakov's left-moving SL(2; R) KM trans-formations. If we now break this residual symmetry by imposing the left-moving partof (16), then we reah the Liouville theory again, sine the E+ omponent of theSL(2; R) Noether urrent orresponding to the symmetry transformation (40) of theLagrangian (38) turns out to beJ(E+) = � �2� e���+��� : (41)



Let us now onsider the Liouville �! Toda generalization of the above results.Let G be any omplex simple Lie algebra, � the set of roots with respet to someCartan subalgebra H and � a set of simple roots. We �x a Cartan-Weyl basis,onsisting of root vetors E�, � 2 � and Cartan generators H� � [E�; E��℄, � 2 �,with respet to whih all the struture onstants of G are real numbers. The real spanof the Cartan-Weyl basis yields a partiular real form GR of G. (This `maximally non-ompat' real form of G is well-de�ned by the Cartan-Weyl basis up to isomorphismand for the lassial Lie algebras An, Cn, Bn and Dn is in fat provided by the realLie algebras sl(n+ 1; R), sp(2n;R) and so(p; q; R) for p� q = 1; 0, respetively.)A property that distinguishes GR from all the other real forms of G, and that willbe ruial for our purposes, is that it is the only real form for whih any onnetedLie-group GR with GR as its Lie-algebra admits a loal, unique, group-valued Gauss-deomposition similar to (10), g = ABC (42a)where A = expn X�2�+ x�E�o ; C = expn X�2�� y�E�o ;B = expn12 X�2���H�o : (42b)(Here �� denotes the set of positive (negative) roots, respetively.) This propertymakes the WZNW models based on the non-ompat groups GR the natural gen-eralizations of the SL(2; R) WZNW model and these are the models that we shallonsider.We need to reall the following results and onventions from the theory of Liealgebras [12℄:K�;� = �(H�) = 2� � �j�j2 �; � 2 �; j�longj2 = 2Tr (H� �H�) = 2j�j2K�;� = C�;�Tr (E� �E�) = 2j�j2 Æ�;�� ; �; � 2 �; Tr (E� �H�) = 0 ; (43)



whih are valid in any �nite dimensional representation of G where Tr is the usualmatrix trae multiplied by an appropriate onstant.Our main result is that the onstraintsJ(E�) = ��� ~J(E��) = ���� (� 2 �+); (44)where �� and �� are arbitrary nonzero real numbers for the l primitive roots � 2 �and zero for all other positive roots (whih are natural generalizations of the SL(2,R)onstraints (16)) redue the GR WZNW theory to the Toda theory, de�ned for anysimple Lie algebra by the LagrangianL = � k8��14C�;��+�� ���� � X�2�M� expf12K�;� ��g�: (45)Beause �� and �� are zero for all but the primitive roots the onstraints (44)may be written for g = ABC asA�1��A = B� X�2� j�j22 ��E��B�1 = X�2� j�j22 ��E� exp f12K�;���g(�+C)C�1 = B�1� X�2� j�j22 ��E���B = X�2� j�j22 ��E�� exp f12K�;���g : (46)Sine the matries A and C our in the WZNW equation of motion (8) only in theombinations shown in (46), they an be eliminated and the equation then redues toan equation for B (i.e. for the ��'s) alone. A little algebra shows that this equationis just the Toda equation�+���� + 12 j�j2M� expf12K�;���g = 0 ; where M� � j�j2����: (47)This shows that the onstraints (44) redue the GR WZNW theory to the Todatheory. As in the Liouville ase, the redution is anonial in the sense that thePoisson brakets of the Toda variables are preserved by the redution. (Note that, asfar as they are positive, the atual values of the onstants M� in (47) are irrelevantsine they an be rede�ned simply by shifting the �elds ��.)At this point it is worth mentioning that the general solution of the Toda �eldequation (47) an be immediately generated from that of the orresponding WZNW



model, (25). Applying the loal Gauss-deomposition (42) for g and also for gL andgR, g an be written asg(�+; ��) = A expf 12 X�2���H�gC= gL(�+)gR(��) = AL expf 12 X�2���LH�gCLAR expf 12 X�2���RH�gCR: (48)The problem of projeting out the the matrix elements e��(�+;��) of B an be elegantlysolved [3℄ by introduing the l normalized lowest weight states j ��i of the l (�nitedimensional) fundamental representations of G, so thatH� j ��i = �Æ�;� j ��i �; � 2 �: (49)Now, by alulating the matrix element h�� j g j ��i of (48) we obtaine� 12��(�+;��) = e� 12��L� 12��Rh�� j CLAR j ��i: (50)(50) is the general solution of the Toda �eld equations provided gL and gR satisfy theonstraints (44). Following [3℄ we hoose the set of funtions f��L(�+); ��R(��)g asour independent variables. Then the onstraints (44) an be solved for the matriesCL and AR in terms of these funtions. (Alternatively, one ould start with a set ofl matrix elements of CL and AR eah and try to solve the onstraints for ��L, ��R andthe remaining matrix elements of CL and AR.) To get the solution in the form givenin [3℄ * we have to introdue 12��L;R =X� G�� ln f�� (51)where f�� are arbitrary funtions and G�� is the inverse of the Cartan matrix. So�nally we �nd e� 12�� = 
�� j CL(�+)Q� (f+� )G�� AR(��)Q� (f�� )G�� j ���: (52)Note, in partiular, that e� 12�� always deomposes into a sum of produts of hiralfators.* Note that our ��'s di�er by a fator of 2 from those of ref. [3℄.



As in the SL(2; R) ase, there is a family of Virasoro generators in the WZNWmodel given by (19). The fat that the onstraints (44) redue the GR WZNW the-ories to the respetive Toda theories and that the latter are onformally invariantshows that although the onstraints break the KM symmetry ompletely, they pre-serve at least one member of the family (19). To see this, and to plae our resultsin a more abstrat ontext, we now show that our redution proedure is a �eldtheoretial realization of a general mehanism for breaking KM symmetries withoutbreaking the orresponding onformal symmetries. The analogues of the onstraints(44) for an abstrat GR KM algebra areJ(E�) = �� � 2 �+ ; (53)where �� 6= 0 for the primitive roots and �� = 0 for the other positive roots. If onenow looks for the normalizer N of the onstraints (53) in the semi-diret sum of theKM and its assoiated Sugawara Virasoro algebra one �nds that N is, in analogy to(20), generated by the Virasoro operatorsl = L� J 0(H) ; (54)where the element H of the Cartan subalgebra is determined by the ondition�(H) = 2 for all � 2 � : (55)The unique solution of (55) is given byH = 2Æ̂; (56)where Æ̂ is the sum of the l fundamental o-weights (or equivalently half the sum ofthe positive o-roots). Note that (55) ould not be satis�ed for any system of positiveroots larger than � and this is why �� must be zero for all non-primitive positiveroots. From these onsiderations it is lear that the redution whih was applied inthis paper to break the KM-symmetry of the WZNW model atually depends onlyon the algebrai struture of the KM algebra and ould be applied to any system



with a KM symmetry. The KM equation (21) holds in general, and hene, from (22)the lassial entre of the Virasoro (54) is = �12kjÆ̂j2: (57)Sine the Virasoro algebra of Toda theory is obtained by the above redution itsentre must be given by (57), and indeed (57) agrees with the Toda result of Gervaisand Bilal [4℄.
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