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Abstra
tThe four dimensional O(3) non-linear sigma model introdu
ed by Faddeev and Niemi,with a Skyrme-like higher order term to stabilise stati
 knot solutions 
lassi�ed by theHopf invariant, 
an be rewritten in terms of the 
omplex two-
omponent CP1 variables.A further rewriting of these variables in terms of SU(2) 
urvature free gauge �elds isperformed. This leads us to interpret SU(2) pure gauge va
uum 
on�gurations, in aparti
ular maximal abelian gauge, in terms of knots with the Hopf invariant equal tothe winding number of the gauge 
on�guration.
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1 Introdu
tionIn this Letter we address some simple results that involve rewriting the Faddeev-Niemimodel [1℄. This model has stable stati
 solutions that represent knots. Mu
h workhas been invested in interpreting this model as an e�e
tive low-energy representationof SU(2) gauge theory [2, 3, 4℄ and investigating the quality of this approximationby inverse Monte Carlo te
hniques [5℄. This interpretation in part is motivated by't Hooft's notion of abelian proje
tion [6℄.The model is de�ned in terms of a spa
e-time dependent ve
tor ~n(x) of �xed (here
hosen unit) length. To allow for non-trivial stati
 solutions a Skyrme-like higher-order term is added [7℄, through the introdu
tion of a 
omposite gauge �eld strengthF��(x) = 12~n(x) � (��~n(x) ^ ��~n(x)). Note that with ~n(x) a unit three-ve
tor, ��~n(x)is perpendi
ular to ~n(x), and ��~n(x) ^ ��~n(x) is proportional to ~n(x). The fa
tor ofproportionality is pre
isely 2F��(x). Thus, one also has F 2��(x) = 14(��~n(x)^ ��~n(x))2.The a
tion is given byS = Z d4x m2��~n(x) � ��~n(x)� 12e2F��(x)F ��(x): (1)By res
aling x with (em)�1, e2S be
omes independent of both e and m. With thisunderstood, we will now put e = m = 1. Finite energy requires ~n(~x) to approa
ha 
onstant ve
tor at spatial in�nity. In this way stati
 
on�gurations are 
lassi�edby the topologi
al maps from S3 into S2, 
hara
terised by the Hopf invariant. Thetwo-form F (~x) = ~n(~x) � (d~n(~x) ^ d~n(~x)) impli
itly de�nes an abelian gauge �eld one-form A(~x) through F (~x) = dA(~x), in terms of whi
h the Hopf invariant is given byQ = 14�2 R A(~x) ^ F (~x). Remarkably, the energy is bounded by a fra
tional power ofthis Hopf invariant [8, 9℄.E = Z d3x (�i~n(x))2 + 12F 2ij(x) � 
jQj3=4; (2)with 
 = 16�233=8 � 238. This gives a rough bound, whi
h 
an be improved on [10, 11℄2



(by roughly a fa
tor 2). Extensive numeri
al studies [12, 13℄ have gone up to Q = 8,with energies indeed following the fra
tional power of Q.2 The CP1 formulationWe �rst dis
uss the reformulation in terms of CP1 �elds, as well-known from twodimensions. The main advantage is that the abelian gauge �eld involved in de�ning theHopf invariant, no longer needs to be de�ned impli
itly. To be spe
i�
, one introdu
esa 
omplex two-
omponent �eld 	(x). The two degrees of freedom asso
iated to the n�eld are obtained by identifying any two 	's whi
h di�er by an overall nonvanishing
omplex s
ale fa
tor. This is a
hieved by 
onstraining 	 to have unit length, andintrodu
ing lo
al abelian gauge invarian
e, obvious from the following relation to then �eld: na(x) = 	y(x)�a	(x) (3)where �a are the Pauli-matri
es. The abelian gauge invarian
e of the CP1 model leadsto a 
omposite gauge �eld A�(x) = �i	y(x)��	(x); (4)and one veri�es by dire
t 
omputation that indeed F (x) = dA(x). Useful identities forthese 
omputations are the 
ompleteness relation ÆijÆkl+�aij�akl = 2ÆilÆjk and i"ab
� bij� 
kl =�akjÆil � �ailÆjk. For the a
tion we �nd the following resultS = Z d4x 4(D�	)y(x)D�	(x)� 12F��(x)F ��(x); (5)where D� = �� � iA�(x) is the 
ovariant derivative. Note that 	y(x)D�	(x) = 0 andthat the energy density 
an be written as a square, E = R d3x j(2Di +Bi(~x))	(~x)j2.
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3 The SU(2)=U(1) formulationThe next reformulation makes use of the fa
t that any two-
omponent 
omplex ve
torof unit length is in one to one relation to an SU(2) group element. Alternatively we
an write 	(x) = g(x)	0. For 
onvenien
e we 
hoose 	y0 = (1; 0), su
h thatna(x) = 12tr ��3gy(x)�ag(x)� : (6)As we will see, the winding number of g(~x) as a map from R3 to SU(2) is pre
isely theHopf invariant. This observation is in itself not new [12℄. But we will push it a littlefurther here.We introdu
e 
urrents Ja�(x) through J�(x) = i�aJa�(x) = gy(x)��g(x). A simple
al
ulation shows thatA�(x) = J3�(x) and ��	y(x)��	(x) = Ja�(x)J�a (x) (7)We 
an interpret the 
urrents just as well as 
omponents of an SU(2) gauge 
onne
tion,whi
h is pure gauge, G(x) = dJ(x) + J(x) ^ J(x) = 0, with J(x) � J�(x)dx�. Forlater use we also introdu
e Ja(x) � Ja�(x)dx�. In parti
ular in 
omponents, we haveG3��(x) = ��J3� (x)� ��J3�(x)� 2(J1�(x)J2� (x)� J1� (x)J2�(x)) = 0. It leads to the usefulidentityF (x) = dJ3(x) = 2J1(x)1 ^ J2(x) or F��(x) = 2(J1�(x)J2� (x)� J1� (x)J2�(x)): (8)With the help of this relation it is now also easy to show that the Hopf invariant isexa
tly equal to the winding number of the gauge fun
tion g(~x),14�2A(~x) ^ F (~x) = 12�2J3(~x) ^ J1(~x) ^ J2(~x) = 124�2 tr(gy(~x)dg(~x))3; (9)whi
h 
an of 
ourse also be related to the non-abelian Chern-Simons form,14�2A(~x) ^ F (~x) = � 18�2 tr�J(~x) ^ dJ(~x) + 23J(~x) ^ J(~x) ^ J(~x)� : (10)4



Finally we we note that(D�	)y(x)D�	(x) = ��	y(x)��	(x)�A�(x)A�(x) = J1�(x)J�1 (x)+J2�(x)J�2 (x); (11)whi
h makes the SU(2)=U(1) nature of the a
tion expli
it, sin
e both terms in Eq. (5)
an be written in terms of just J1�(x) and J2�(x). So the energy of a stati
 
on�gurationis given in terms of the "
harged" 
omponents of the non-abelian gauge �eld onlyE = Z d3x 4 �J1i (~x)J1i (~x) + J2i (~x)J2i (~x)�+ 2 �J1i (~x)J2j (~x)� J2j (~x)J1i (~x)�2 (12)The �rst term agrees exa
tly with the fun
tional that de�nes the maximal abeliangauge, by minimising along the gauge orbit, leaving the abelian subgroup generatedby �3 un�xed [6℄. This remains true for the full energy fun
tional, whi
h 
an thus justas well be interpreted as the gauge �xing fun
tional for a non-linear maximal abeliangauge. As the three parametrisations are mathemati
ally equivalent, we are entitled tointerpret the minima of the energy fun
tional in the se
tor with a given value of Q asgauge �xed pure gauge (i.e. 
urvature free, or 
at) 
onne
tions in a se
tor with gauge�eld winding number Q. Therefore, there is a gauge �xing in terms of whi
h the gaugeva
ua with di�erent winding number 
an be 
hara
terised by inequivalent knots.4 Con
lusionsIn the light of the attempts to relate the Faddeev-Niemi model to full non-abeliangauge theory, our result is a rather sobering one, even though it also involves an abelianproje
tion. Within the 
ontext of our interpretation, there seems not mu
h need toaddress the quantum 
u
tuations. It should, however, be noted that at the quantumlevel the three models are not equivalent, as the path integral measure depends on the
hosen representation. It is the measure that seems to 
ause some of the problems inrelating the Niemi-Faddeev model to the full SU(2) gauge theory.5



We hope this Letter provides inspiration for new ways of viewing the topologi
alnon-trivial nature of non-abelian gauge theories. The relation of pure gauge theoryva
ua to knots is also suggestive from the point of view of Chern-Simons theory andtopologi
al �eld theory. Instantons be
ome knot 
hanging operations, and one mayeven hope the present results 
an have some mathemati
al rami�
ations [14, 15℄. Wewill leave this to future studies.A
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