
FSU TPI 02/02
Algebrai
 Solution of the Supersymmetri
 Hydrogen Atomin d DimensionsA. Kir
hberg�, J.D. L�ange�, P.A.G. Pisaniy and A. Wipf��Theoretis
h-Physikalis
hes Institut,Friedri
h S
hiller Universit�at Jena,Fr�obelstieg 1, 07743 Jena, GermanyyIFLP, Departamento de F��si
a de Cien
ias Exa
tas,UNLP C.C. 67, 1900 La Plata, ArgentinaAbstra
tIn this paper the N = 2 supersymmetri
 extension of the S
hr�odinger Hamiltonian with 1=r-potential in arbitrary spa
e-dimensions is 
onstru
ted. The supersymmetri
 hydrogen atom admitsa 
onserved Lapla
e-Runge-Lenz ve
tor whi
h extends the rotational symmetry SO(d) to a hiddenSO(d+1) symmetry. This symmetry of the system is used to determine the dis
rete eigenvalueswith their degenera
ies and the 
orresponding bound state wave fun
tions.PACS numbers: 02.20.-a, 03.65.Fd, 11.30.PbKeywords: Lapla
e-Runge-Lenz ve
tor, supersymmetri
 quantum me
hani
s, dynami
al symmetry, hydro-gen atom

� A.Kir
hberg�tpi.uni-jena.de, J.D.Laenge�tpi.uni-jena.de, A.Wipf�tpi.uni-jena.dey Pisani�obelix.fisi
a.unlp.edu.ar 1



I. INTRODUCTIONFor a 
losed system of two non-relativisti
 point masses intera
ting via a 
entral for
e theangular momentum L of the relative motion is 
onserved and the motion is always in theplane perpendi
ular to L. If the for
e is derived from the Newton or Coulomb potential,there is an additional 
onserved quantity: the Lapla
e-Runge-Lenz1 ve
tor [1℄. For thehydrogen atom this ve
tor has the formC = 1mp� L� e2r r ; L = r� p ;where m denotes the redu
ed mass of the proton-ele
tron system. The Lapla
e-Runge-Lenzve
tor is perpendi
ular to L and hen
e is a ve
tor in the plane of the orbit. It points in thedire
tion of the semi-major axis.Quantum me
hani
ally, one de�nes the hermitian Lapla
e-Runge-Lenz ve
torC = 12m(p� L� L� p)� e2r r : (1)By exploiting the existen
e of this 
onserved ve
tor operator, Pauli 
al
ulated the spe
-trum of the hydrogen atom by purely algebrai
 means [3, 4℄. He noti
ed that the angularmomentum L together with the ve
torK =r�m2H C ;whi
h is well-de�ned and hermitian on bound states with negative energies, generate ahidden SO(4) symmetry algebra,[La; Lb℄ = i~�ab
L
 ; [La; Kb℄ = i~�ab
K
 ; [Ka; Kb℄ = i~�ab
L
 ;and that the Hamiltonian 
an be expressed in terms of K2+L2, one of the two se
ond-orderCasimir operators of this algebra, as followsH = �me42 1K2 + L2 + ~2 : (2)One further observes that the other Casimir operator K � L vanishes and arrives at thebound state energies by purely group theoreti
al methods. The existen
e of the 
onserved1 A more suitable name for this 
onstant of motion would be Hermann-Bernoulli-Lapla
e ve
tor, see [2℄.2



ve
tor K also explains the a

idental degenera
y of the hydrogen spe
trum. Only mu
hlater the s
attering amplitude of the hydrogen atom has been 
al
ulated with the help ofthe Lapla
e-Runge-Lenz ve
tor [5℄.In this paper we shall generalize these results in two dire
tions: �rst to the hydrogen atomin arbitrary dimensions2 [6℄ and se
ond to the 
orresponding supersymmetri
 extensions.In the following se
tion we prove that the S
hr�odinger Hamiltonian in d dimensions with1=r potential admits a generalization of the Lapla
e-Runge-Lenz ve
tor. Together with thegenerators of the rotation group SO(d) this ve
tor generates the dynami
al symmetry groupSO(d+1). This hidden symmetry allows then for a purely algebrai
 solution of the hydrogenatom in arbitrary dimensions, very mu
h as in three dimensions.In se
tion III we summarize the extensions of d-dimensional S
hr�odinger Hamiltonians tomodels withN = 2 supersymmetry. The 
orresponding Hamiltonians may be written as 2d�2d-dimensional matrix S
hr�odinger operators. For a parti
ular 
hoi
e of the superpotentialwe obtain the supersymmetri
 extension of the hydrogen atom. For instan
e in d = 3 (andin a suitable basis) we �nd the HamiltonianH = �p2 + �2�18 � 2�r 0BBBBB� 1 M1 M2 �1
1CCCCCA ;with 3� 3 matri
es M1 ab = x̂ax̂b ; M2 ab = Æab � (�)a+bx̂ax̂b :In se
tion IV we 
onstru
t the supersymmetri
 extensions of the angular momentum and theLapla
e-Runge-Lenz ve
tor. Similarly as for the purely bosoni
 system, together they form adynami
al SO(d+1) symmetry algebra. This symmetry is exploited in the following se
tionto obtain the dis
rete eigenvalues and their degenera
ies. In se
tion VI we 
hara
terize allbound state wave fun
tions. In the last se
tion we illustrate our general results by analyzingin detail the supersymmetri
 hydrogen atoms in two, three and four dimensions.The appendi
es 
ontain the ne
essary group theoreti
al tools needed in the main body ofthe paper.2 When speaking of the d�dimensional hydrogen atom, we always mean the 1=r-potential, although thispotential permits the appli
ation of Gauss' law in three dimensions only.3



II. THE COULOMB PROBLEM AND ITS SYMMETRIES IN d DIMENSIONSWe generalize the Coulomb problem to arbitrary dimensions by keeping the 1=r-potential,although this potential solves the Poisson equation in three dimensions only. With thisassumption the hydrogen atom in d dimensions is governed by the S
hr�odinger equationH = �� ~22m4� e2r � = E : (3)It is 
onvenient to measure distan
es in units of the Compton wavelength �
 = ~=m
. Withrespe
t to these dimensionless 
oordinates equation (3) takes the simpler formH = E ; H = p2 � �r ; pa = 1i �a ; a = 1; : : : ; d ; (4)where � is twi
e the �ne stru
ture 
onstant � and the dimensionless energy E is measuredin units of m
2=2. The 
entral for
e is attra
tive for positive �.The hermitian generators Lab = xapb � xbpa of the rotation group in d dimensions satisfythe familiar so(d) 
ommutation relations[Lab; L
d℄ = i(Æa
Lbd + ÆbdLa
 � ÆadLb
 � Æb
Lad) ; (5)where indi
es run from 1 to d. It is not very diÆ
ult to guess the generalization of theLapla
e-Runge-Lenz ve
tor (1) in d dimensions [6℄,Ca = Labpb + pbLab � �xar : (6)Indeed, these operators 
ommute with the Hamiltonian (4). They form a SO(d)-ve
tor,[Lab; C
℄ = i(Æa
Cb � Æb
Ca) ;and the 
ommutator of Ca and Cb is proportional to the angular momentum:[Ca; Cb℄ = �4iLabH : (7)Now we may pro
eed as we did in three dimensions and de�ne on the negative energy (E < 0)subspa
e of the Hilbert spa
e H = L2(Rd) the hermitian operatorsKa = 1p�4H Ca ; with [Ka; Kb℄ = iLab : (8)4



The operators fLab; Kag form a 
losed symmetry algebra of dimension (d + 1)d=2. Moreexpli
itly, they 
an be 
ombined to form generators LAB of the orthogonal group3 SO(d+1)LAB = 0� Lab Ka�Kb 0 1A ; (9)whi
h implies that the LAB obey the 
ommutation relations (5) with indi
es running from1 to d+ 1. We 
an verify a relation similar to (2) by solvingCaCa = �4KaKaH = �2 + (2LabLab + (d� 1)2)H (10)for H. We obtain the HamiltonianH = p2 � �r = � �2(d� 1)2 + 4 C(2) (11)in terms of the se
ond-order Casimir operator of the dynami
al symmetry group SO(d+1),C(2) = 12LABLAB = 12LabLab +KaKa :This is the generalization of (2) we have been looking for. It remains to 
hara
terize thoseirredu
ible representations of SO(d+ 1) whi
h are realized in the Hilbert spa
e L2(Rd). Inthree dimensions the allowed representations are �xed by the 
ondition K � L = 0 on these
ond Casimir operator of SO(4). We expe
t n�1 
onditions on the n Casimir operatorsof the dynami
al symmetry group SO(2n+1) in d = 2n dimensions and n 
onditions on then+1 Casimir operators of SO(2n+2) in d = 2n+1 dimensions. In the following we treat theeven- and odd-dimensional 
ases separately.Even-dimensional spa
es: An irredu
ible representation is uniquely 
hara
terized byits highest weight state. By de�nition, this state is annihilated by all raising operatorsbelonging to the simple roots. To 
hara
terize these states one 
onveniently 
hooses 
omplex
oordinates z1; : : : ; zn in R2n su
h that the raising operators of the dynami
al symmetrygroup with generators JAB in (9) have the simple form (
f. appendix A)Ei = 1i (zi�i+1 � �zi+1 ��i) ; i = 1; : : : ; n� 1 ; (12)En = 1p2(Cd�1 + iCd) = �2zn�+ (2r�r + d� 1)��n � �znr : (13)3 For s
attering states (E > 0) a similar rede�nition leads to generators of the Lorentz group SO(d; 1).Here we are interested in bound states and will not further dis
uss this possibility.5



In the formula for En we a
tually should have used the operators Kd�1 and Kd in (8), sin
ethey appear as 
omponents of JAB. But sin
e we are only interested in highest weight stateswhi
h are annihilated by En we may take the operators Cd�1 and Cd instead. Also notethat all simple roots of SO(d) are positive roots of SO(d+1) so that all highest weightstates of SO(d+1) are automati
ally highest weight states of SO(d) � SO(d+1). Now itis not diÆ
ult to see that a regular wave fun
tion whi
h is annihilated by all simple raisingoperators of SO(d), that is by the n�1 operators in (12) and by the operator zn�1 ��n�zn ��n�1(see appendix A1), must have the form (
f. (A10))	 = f(r)z1̀ :It is a highest weight state of SO(d+ 1), if in addition it is annihilated by En in (13):En	 = ��(d� 1 + 2`) ddr log f + �� znr 	 = 0 : (14)Hen
e the highest weight state reads	 = e�
`r z1̀ ; 
` = �d� 1 + 2` : (15)The 
onstant � must be positive for bound states to exist. 	 is of 
ourse an eigenfun
tionof all n Cartan generators Hi = zi�i� �zi ��i of SO(2n+1) with eigenvalues (`; 0; : : : ; 0). Thatshows that only the symmetri
 multiplets of the dynami
al symmetry group appear4. From(A9) we take the values of the se
ond-order Casimir operator for symmetri
 multipletsC(2) = `(`+ d� 1) ; ` = 0; 1; 2; : : : (16)and their dimensionsdimV` = �`+ d` �� �`+ d� 2`� 2 � : (17)The dimV` states of the symmetri
 representation are obtained by a
ting repeatedly withthe lowering operatorsEyi<n = 1i (zi+1�i � �zi ��i+1) and Eyn = �2�zn�+ �n(2r�r � 1)� ��znron the state (15). This way one obtains all bound H-eigenstates with the same energy.4 This 
orresponds to the extension of Fo
k's method to d dimensions, 
f. [4, 7, 8℄.6



Odd-dimensional spa
es: For d = 2n+1 the rank of the dynami
al symmetry groupSO(d + 1) ex
eeds the rank of the rotation group SO(d) by one. We 
ombine the �rst 2n
oordinates to n 
omplex ones and take 
oordinates z1; : : : ; zn; xd in Rd, see appendix A2.As Cartan generators we 
hooseHi = zi�i � �zi ��i ; i = 1; : : : ; n and Hn+1 = Cd : (18)The raising operators are the n� 1 operators Ei in (12) supplemented byEn = 1i (zn�xd � xd ��zn) and En+1 = 1p2(Cd�2 + iCd�1) :The last raising operator En+1 
oin
ides with En in (13). A regular wave fun
tion is anni-hilated by the �rst n raising operators only if it has the form 	 = f(r)z1̀. The requirementthat it is annihilated by the last raising operator En+1 again leads to equation (14) andhen
e to the solution 	 in (15). To determine the multiplets with this highest weight statewe need to 
al
ulate the highest weight ve
tor, that is the value of the Cartan generatorson 	. Clearly, H1	 = `	 and Hi	 = 0 for i = 2; : : : ; n :The last Cartan generator in (18) has the expli
it formHn+1 = �2xd4+ (2r�r + d� 1)�xd � �xdrand we �nd Hn+1	 = ��(d� 1 + 2`) ddr log f + �� xdr 	 = 0 ;after using f = e�
`r. Hen
e, on any highest weight state the operators H2; : : : ; Hn+1 vanishand again we �nd the 
ompletely symmetri
 representations of the dynami
al symmetrygroup SO(d+ 1). The eigenvalues of the se
ond-order Casimir operator and the dimensionof the representations are given by the same formulae (16,17) as for the hydrogen atom ineven dimensions.Sin
e � is twi
e the �ne stru
ture 
onstant � = e2=~
 and E is measured in units of m
2=2the formula (11) yields the well-known [9℄ bound state energies in three dimensionsE` = � �21 + `(`+ 2)m
22 = �me42~2 1n2 � En ; n = 1 + ` = 1; 2; : : : :7



The degenera
y of En is the dimension n2 of the 
orresponding symmetri
 representation ofSO(4). All n2 states with the same energy En are gotten by a
ting with the two loweringoperators on the highest weight state	(x) = e�
nr(x1 + ix2)` ; 
n = �n :In d dimensions the 
orresponding formulae readE` = �me42~2 �`+ d� 12 ��2 ; 	(x) = e�
`r(x1 + ix2)` ; 
` = �`+ (d� 1)=2and E` has degenera
y dim V` in (17).The appearan
e of the a

idental degenera
y { phrased in the language of representationtheory { 
orresponds to the following bran
hing rule: the 
ompletely symmetri
 representa-tions of the dynami
al symmetry group SO(d+1) bran
hes into those 
ompletely symmetri
representations of the rotation group SO(d) with equal or shorter Young diagrams,1 2 � � ` �����SO(d+1) �! �1� � � : : : � 1 2 � � ` � �����SO(d) ; (19)all of them possessing the same energy. The energy, its degenera
y and the bound statewave fun
tions are uniquely �xed by the representation of the dynami
al symmetry group.Every 
ompletely symmetri
 representation of SO(d + 1) appears on
e and only on
e and
orresponds to the multiplet with energy E`. The angular momentum 
ontent of this mul-tiplet is determined by the bran
hing rule (19). In three dimensions this expresses just thewell-known fa
t that for ea
h value of En=`+1 the orbital angular momentum 
an vary from0 to n� 1 = `.III. N = 2 SUPERSYMMETRIC QUANTUM MECHANICSWe wish to further generalize our results to the supersymmetri
 hydrogen atom in d dimen-sions. For that purpose we need a supersymmetri
 extension of d-dimensional S
hr�odingeroperators and in parti
ular of the operator in (4). Su
h supersymmetri
 Hamiltonians 
anbe written as H = fQ;Qyg = Hy with Q2 = Qy 2 = 0 ; (20)where the super
harge Q and its adjoint Qy anti
ommute with a self-adjoint idempotent8



operator �. The subspa
e on whi
h � = 1 is 
alled the bosoni
 se
tor and its 
omplementthe fermioni
 se
tor. Hen
e, Q transforms bosons into fermions and vi
e versa. From (20)one sees at on
e that the super
harge 
ommutes with the supersymmetri
 Hamiltonian,[Q;H℄ = 0 ;i.e. generates a supersymmetry of the system. The simplest models exhibiting the stru
ture(20) are 2 � 2-dimensional matrix S
hr�odinger operators in one dimension. Su
h modelswere �rst studied by Ni
olai and Witten [10{12℄.Supersymmetri
 Hamiltonians in higher dimensions have been introdu
ed previously byseveral authors [13, 14℄. Here we brie
y present the 
onstru
tion used in this paper. Weintrodu
e a set of fermioni
 
reation and annihilation operators,f a;  ybg = Æab ; f a;  bg = f ya;  ybg = 0 ; a; b = 1; : : : ; d (21)and the Fo
k spa
e with va
uum j0i whi
h is annihilated by all operators  a. This spa
esplits into sub-spa
es,C = C0 � C1 � : : :� Cd ; dimCp = �dp� ; dimC = 2d ;labeled by their 'fermion number'N j Cp = p1 ; where N = dXa=1  ya a :As basis in Cp we may 
hooseja1 : : : api =  ya1 : : :  yap j0i ; a1 < a2 < : : : < ap : (22)Along with C the Hilbert spa
e of all square integrable wave fun
tions de
omposes asH = H0 �H1 � : : :�Hd ; where N jHp = p1 : (23)An arbitrary wave fun
tion in Hp has the expansion	 = fa1:::ap(x)ja1 : : : api ; fa1:::ap totally antisymmetri
. (24)An expli
it realization of the 
reation and annihilation operators 
an be given in terms ofthe hermitian 
-matri
es in 2d Eu
lidean dimensions:  a = 12(
a � i
d+a).9



The super
harge and its adjoint5 are de�ned viaQ = e��Q0e� = iXa  a(�a + �a�) ; with Q0 = i a�a ;Qy = e�Qy0e�� = iXa  ya(�a � �a�) ; with Qy0 = i ya�a : (25)At this point the real superpotential �(x1; : : : ; xd) remains unspe
i�ed. From (21) it followsat on
e that the free super
harge Q0 is nilpotent and sin
e Q and Q0 are related by asimilarity transformation the same holds true for Q. The super
harge Q only 
ontainsannihilation operators and hen
e de
reases the fermion number by one. Its adjoint Qyin
reases it by one, [N;Q℄ = �Q and [N;Qy℄ = Qy :The supersymmetri
 Hamiltonian de�ned in (20) is a 2d�2d-dimensional matrix S
hr�odingeroperator and takes the following form (
f. also [13, 14℄)H = f � 4+ (r�;r�) +4�g12d � 2 dXa;b=1 ya �ab  b ; �ab = �2��xa�xb : (26)We use bra
kets to indi
ate 
ontra
tion of indi
es as (A;B) = PaAaBa. Contrary to thesuper
harge and its adjoint the supersymmetri
 Hamiltonian H 
ommutes with the numberoperator N and hen
e leaves ea
h subspa
e Hp in the de
omposition (23) invariant,H : Hp �! Hp :On the subspa
e Hp the supersymmetri
 Hamiltonian is still a matrix S
hr�odinger operator,HjHp = �41+ V (p) ; tr 1 = �dp� :Only in the extreme se
tors H0 and Hp do we get ordinary S
hr�odinger operators a
ting onone-
omponent wave fun
tions. With ya bj0i = 0 and  ya b j12 : : : di = Æabj12 : : : dithe 
orresponding potentials take the formV (0) = (r�;r�) +4� and V (d) = (r�;r�)�4� :5 The hermitian linear 
ombinations Q1 = Q + Qy and Q2 = i(Q � Qy) satisfy the standard N = 2supersymmetry algebra fQi; Qjg = 2HÆij . 10



More generally, for an arbitrary state 	 = fa1:::ap ja1 : : : api 2 Hp the Hamiltonian a
ts asfollows:ha1 : : : apjH	i = (�4+ V (0))fa1:::ap + 2 pXb;i=1(�)i�aib fba1:::�ai:::ap : (27)The nilpotent super
harges give rise to the following Hodge-type de
omposition of theHilbert spa
e, H = QH�QyH�KerH ; (28)where the �nite dimensional subspa
e KerH is spanned by the zero-modes of H. Indeed,on the orthogonal 
omplement of KerH we may invert H and writeH?0 = (QQy +QyQ)H�1H?0 = Q�QyH H?0 � +Qy�QHH?0 � ;whi
h proves (28). The super
harge Q maps every energy-eigenstate in QyH \ Hp withpositive energy into an eigenstate in QH \ Hp�1 with the same energy. Its adjoint mapseigenstates in QH\Hp into those in QyH\Hp+1 with the same energy. With the ex
eptionof the zero-energy states there is an exa
t pairing between the eigenstates and energies inthe bosoni
 and in the fermioni
 se
tor as depi
ted below.6EH0 -� QyQ H1 -� QyQ H2 Hd�2 Hd�1 Hd-�QyQ -�QyQ

nn

nn

QH QyH QH QyH QH QyH QH QyH QH QyHThe supersymmetri
 systems with super
harges (25) admit a generalized Poin
ar�e dualityrelating Hd�p with Hp. This is seen as follows: instead of the va
uum j0i 2 H0, whi
h isannihilated by all  a, we take k0i =  y1 � � � ydj0i 2 Hd, whi
h is annihilated by all  ya. As11



basis in Cd�p we 
hoose ka1 : : : api =  a1 � � � apk0i ;su
h that an arbitrary wave fun
tion in Hd�p has the expansion	 = fa1:::apka1 : : : api; fa1:::ap totally antisymmetri
. (29)The supersymmetri
 Hamiltonian a
ts on su
h a state as follows,ha1 : : : apkH	i = (�4+ V (d))fa1:::ap � 2 pXb;i=1(�)i�aib fba1 :::�ai:::ap :A 
omparison with (27) yields the important duality relationH����Hp = H�����Hd�p ; (30)whi
h states, that the Hamiltonians in Hp and Hd�p are equivalent, up to a sign-
hangeof the superpotential. Similarly on �nds, that the a
tion of Q on the state (22) in Hp isidenti
al to the a
tion of Qy on the state (29) in Hd�p, up to a sign-
hange of �.IV. THE SUPERSYMMETRIC HYDROGEN ATOM AND ITS SYMMETRIESFirst we 
onsider d-dimensional supersymmetri
 systems with spheri
ally symmetri
 super-potentials and derive the 
onserved angular momentum Jab. The total angular momentumJab is the sum of two terms: the orbital part Lab and the internal part Sab whi
h transformsthe 
omponents of a wave fun
tion. For a superpotential �(r) the super
harges simplify toQ = i a(�a + xaf) and Qy = i ya(�a � xaf) ; where f = �0r : (31)They should be s
alars with respe
t to the rotation group SO(d). However, sin
e �a isa ve
tor and  a a s
alar with respe
t to Lab, we need to supplement orbital rotations byinternal ones su
h that  a be
omes a ve
tor as well. One easily veri�es that[Sab;  
℄ = i(Æa
 b � Æb
 a) ; where Sab = 1i ( ya b �  yb a) ; (32)and that the hermitian Sab satisfy the same 
ommutation relations (5) as the orbital angularmomentum. It follows at on
e from (32) that the super
harge (31) 
ommutes with the totalangular momenta 12



Jab = Lab + Sab ; (33)sin
e Q only 
ontains s
alar produ
ts of ve
tors operators.Next we prove that there exists a supersymmetri
 generalization of the Lapla
e-Runge-Lenzve
tor in d dimensions if the potential is � 1=r. For su
h a potential the super
harges (31)do 
ommute with the supersymmetri
 generalization of (6),Ca = Jabpb + pbJab + xaf(r)A (34)with a suitable operator A. One 
an show that f must be the fun
tion in (31) for Ca to
ommute with Q. This fun
tion, along with A are �xed as follows:First, for Ca to be a ve
tor, the operator A must be a s
alar under rotations indu
ed bythe Jab. Se
ond, in the zero parti
le se
tor H0 the ve
tor Ca must 
oin
ide with Ca in (6).Third, A should 
ommute with the parti
le number operator sin
e the Jab do 
ommute.A general ansatz for A subje
t to these three 
onditions readsA = �1� �N � 
SyS ; S = x̂a a ; x̂a = xar ; (35)with 
onstants �; � and 
 whi
h ought to be determined. Clearly, Ca is a ve
tor operator,su
h that [Jab; C
℄ = i(Æa
Cb � Æb
Ca)holds true. Let us now 
al
ulate the 
ommutators between the Ca and the super
harge.They should vanish for a suitable 
hosen fun
tion f in (34). We obtain[Ca; Q℄ = 2ff b + f 0SxbgJab + �fxaQ0 + ifxaf(� + 
)rf + 
�rgS+ iff a + f 0Sxag (1� d� A) + i
x̂af (d�N�1)S : (36)The terms 
ontaining derivatives arefxa(� � 2)Q0 + 2ir(f + rf 0)S�a + i(
f � 2rf 0)Sxa�r :They 
an
el if f = ��r or � = ��r and � = �
 = 2 (37)hold true. With this 
hoi
e all but the terms proportional to Sab in the �rst line on the right13



in (36) 
an
el, and we remain with[Ca; Q℄ = i�r (�� d+ 1)( a � x̂aS)whi
h vanishes for � = d�1. Hen
e, the supersymmetri
 extension of the 
onserved Lapla
e-Runge-Lenz ve
tor readsCa = Jabpb + pbJab � �x̂aA with A = (d� 1)1� 2N + 2SyS ; (38)and this is the main result of this se
tion. The 
hoi
e � = ��r for the superpotential in(25) and (26) leads to the following supersymmetri
 extension of the Coulomb HamiltonianH = �4+ �2 � �Ar : (39)Restri
ted to the zero parti
le se
tor this is the Hamiltonian of the hydrogen atom6 andrestri
ted to the d parti
le se
tor it 
orresponds to the ele
tron-antiproton s
attering system.The 
orresponding super
harge and its adjoint take the simple formQ = Q0 � i�S and Qy = Qy0 + i�Sy ;where the free super
harge has been de�ned in (25) and the operator S = x̂a a has alreadybeen used in (35).V. ALGEBRAIC DETERMINATION OF THE SPECTRUMWe pro
eed as we did in the purely bosoni
 
ase and 
al
ulate the 
ommutator of two Ca:[Ca; Cb℄ = �4iJab ��4� �rA� (39)= �4iJab �H � �2� :Up to the shift in H and the repla
ement Lab ! Jab this is the same relation as (7). Thetotal angular momenta Jab and the ve
tor operatorKa = Cap4(�2 �H) (40)form a SO(d + 1) algebra on the subspa
e of bound states (E < �2). Finally we should6 We have to identify � = �(d� 1). The additional shift �2 makes the lowest eigenvalue of this operator tobe equal to zero. 14




al
ulate CaCa. If we 
an express this s
alar operator in terms of H and operators that
ommute with H, similarly as we did in (10), then we may solve for H. However, one soonrealizes that this is impossible by only using the operators 1; N; JabJab and H. However, we
an express CaCa in terms of 1; N; JabJab and the two operators QQy and QyQ as follows:CaCa = 4(�2 �H)KaKa = �2�2JabJab + �2JabJab + (d� 2N � 1)2�QQy+ �2JabJab + (d� 2N + 1)2�QyQ ; (41)and this relation is suÆ
ient to obtain the spe
trum of the supersymmetri
 hydrogen atom.Ea
h of the three subspa
es in the de
omposition (28) is left invariant by the Hamiltonianand we may 
onsider H on ea
h subspa
e separately. Sin
e Q2 = 0 we �nd HjQH = QQyand HjQyH = QyQ and 
an solve (41) for H in ea
h of these subspa
esHjQH = QQy = �2 � (d� 2N � 1)2�2(d� 2N � 1)2 + 4C(2) ; (42)HjQyH = QyQ = �2 � (d� 2N + 1)2�2(d� 2N + 1)2 + 4C(2) ; (43)where C(2) is the se
ond-order Casimir of the dynami
al symmetry group SO(d+1),C(2) = 12JABJAB = 12JabJab +KaKa :All zero modes of H are annihilated by both Q and Qy, and a

ording to (41) the se
ond-order Casimir must vanish on these modes, su
h thatC(2)jKerH = 0 :We 
on
lude that every normalizable zero mode 	 of H must transform trivially under thedynami
al symmetry group, JAB	 = 0.To obtain the bound state energies we need to determine those irredu
ible representationsof the dynami
al symmetry group whi
h are realized in H and the 
orresponding values ofthe se
ond-order Casimir operator. The degenera
y of an energy level is then equal to thedimension of the 
orresponding representation.We use the abbreviation D}̀ to denote multiplets of the orthogonal groups 
orresponding toYoung tableaux of the form 1 � � `��} 15



sin
e in the following only those representations will appear. Let us assume, that ea
h
omponent fun
tion fa1:::ap(x), entering the state 	 2 Hp in (24), is a harmoni
 polynomialof degree `, that isfa1:::ap(x) = Xb1;b2;:::;b` fa1:::apb1:::b`xb1xb2 � � �xb`with f symmetri
 in the b�indi
es and of zero tra
e in ea
h pair of them. Sin
e fa1:::apis 
ompletely antisymmetri
 in the a�indi
es, these obje
ts transform a

ording to the
ompletely antisymmetri
 representationD 1} � 1��}of the rotation group SO(d) generated by the Sab. On the other hand, ea
h homogeneouspolynomial fa1:::ap(x) transforms a

ording to the 
ompletely symmetri
 representationsD1̀ � 1 � � `of the rotation group generated by the Lab. It follows, that the wave fun
tion 	 2 Hptransforms a

ording to the tensor-produ
t representationsD 1p 
D1̀ = Dp̀�1 �D `�1p �D `+1p �Dp̀+1 : (44)Re
all, that p is the fermion number and ` the order of the homogeneous polynomials.For  2 H0 or  2 Hd the �rst fa
tor on the left hand side in (44) be
omes the trivialrepresentation and we only obtain the fully symmetri
 representations D1̀ on the right handside, in agreement with our earlier results in the purely bosoni
 
ase. In the se
tors H1 andHd�1 the �rst representation on the right hand side of (44) is absent. For linear fun
tionswith ` = 1 the se
ond representation on the right is missing. Finally, when using the results(44), one should keep in mind that the representations with } and d�} of SO(d) areequivalent, D}̀ � Dd̀�} ; and that for even dimensions the representations Dd̀=2 are redu
ibleand 
ontain one selfdual and one anti-selfdual multiplet. All representations of the rotationgroup SO(d) appearing in the tensor produ
t (44) should group together into multiplets ofthe dynami
al symmetry group SO(d+1). To 
ontinue we need the following rules for the16



bran
hing of SO(d+1)- into SO(d)-representations7,D}̀ ���SO(d+1)�! �D}̀ �D `�1} � : : :�D 1} � D}̀�1 �D `�1}�1 � : : :�D 1}�1	 ���SO(d) : (45)Now it is not diÆ
ult to see, that in the se
tor Hp all polynomials up to order ` appear inthe bran
hing of only two SO(d+ 1)-multiplets up to two extreme representations,D}̀ �D}̀+1���SO(d+1)�! �D 1} 
 �1�D 11 � : : :�D1̀��D `+1} +D}̀�1	 ���SO(d) :Of 
ourse, for } = 1 the last representation of the rotation group is absent. There is onenotable ex
eption to these bran
hing rules for even d: in the middle se
torHn=d=2 the 
orre
tbran
hing rule readsDǹ �Dǹ���SO(d+1)�! �D 1n 
 �1�D 11 � : : :�D1̀��D `+1n �Dǹ �Dǹ�1	 ���SO(d) :We summarize our results: In odd dimensions d = 2n+1 the following representations ofSO(2n+2) 
ontaining bound states arise in the various se
tors of H for ` � 1:H0 -H1 H2 -Qy �Q HnHn�1D1̀ -� D1̀D2̀ � - D2̀D3̀ -� -� Dǹ�1Dǹ � - DǹIn all se
tors but H0 we have ` 2 N . In the subspa
es H0 we have ` 2 N0 and ` = 0
orresponds to the trivial representation. The se
tors Hp>n support no bound states (seebelow) and therefore it suÆ
es to 
onsider the se
tors with N � n.In even dimensions d = 2n the following representations of the dynami
al symmetry groupSO(2n+1) arise for ` � 1:7 They 
an be obtained from [15℄ or by using the program LiE.
17



H0 H1 H2 -Qy �Q Hn�1 HnD1̀ -� D1̀D2̀ � - D2̀D3̀ -� -� Dǹ�1Dǹ � - Dǹ(�Dǹ)The values of the quadrati
 Casimir operator of SO(d+1) entering the formulae (42,43) forthe energies areC(2) �D}̀� = d(`+ }� 1) + `(`� 1)� }(}� 1) : (46)The dimensions of the representations D}̀ are given in the appendix. In odd dimensions oneuses the formula (A8) with 2n repla
ed by 2n = d+1 and in even dimensions the formula(A17) with d+1 = 2n+1. In additions one must set(`1; `2; : : : ; `n) = ( pz }| {`; 1; : : : ; 1; 0 : : : ; 0)in these formulae.Now we are ready to determine all eigenvalues of the supersymmetri
 Hamiltonian (39) withthe help of the results (42,43) and (46) as follows:In H0 only the symmetri
 representations D1̀ of SO(d+1) are realized. Sin
e in additionQjH0 = 0 we obtain the following eigenvalues for H in (42)H0 : E0 �D1̀� = �2 � � d� 1d� 1 + 2`�2 �2 ; ` 2 N0 :The index 0 at the energy E indi
ates the 0-parti
le se
tor. Sin
e the super
harges 
ommutewith the dynami
al symmetry group the multiplet D1̀ is paired with the same multiplet inH1. The eigenfun
tions in H1 are obtained by a
ting with Qy on those in H0. A

ording toour previous results (see the �gure above) there exists the additional multiplet D2̀ in H1.This is obtained by a
ting with Q on the same representation in the two-parti
le se
tor.Hen
e H = QQy on this se
ond multiplet and we obtainE1 �D1̀� = �2 � � d� 1d� 1 + 2`�2 �2 ; ` 2 N ;E1 �D2̀� = �2 � � d� 3d� 1 + 2`�2 �2 ; ` 2 N :18



Note that ` = 0 does not o

ur in H1. In H0 the states with ` = 0 have vanishing energyand hen
e are annihilated by Qy.Now one 
ontinues with H2 and further on to H3 et
. One only needs the formulaeEp(Dp̀ ) = QyQ���Hp �Dp̀� = �2 � �d+ 1� 2pd� 1 + 2`�2 �2 ; ` 2 N ;Ep(Dp̀+1) = QQy���Hp �Dp̀+1� = �2 � �d� 1� 2pd� 1 + 2`�2 �2 ; ` 2 N :We shall determine the 
orresponding eigenfun
tions in the following se
tion.VI. EIGENSTATES OF THE SUPERSYMMETRIC HYDROGEN ATOMSo far we have not 
onsidered whi
h highest weight states of the dynami
al symmetry groupare normalizable. Now we expli
itly 
onstru
t these states in all subspa
es Hp � H. Inthe previous se
tion we have seen that for any ` � 1 there are one or two irredu
iblerepresentations of SO(d+ 1), namelyDp̀ � �Hp \QyH� and Dp̀+1 � (Hp \QH) : (47)It suÆ
es to 
onstru
t the highest weight states 	p(Dp̀+1) of the latter multiplets. Thehighest weight states 	p(Dp̀) of the �rst set of multiplets in (47) are then just their super-partners, 	p(Dp̀ ) = Qy	p�1(Dp̀ ) :A
tually we only need to 
al
ulate the highest weight states 	p(Dp̀+1) for p < d=2 be
auseof the duality relation (p; �) ! (d� p;��) ;whi
h follows from (30) and (37).Observe that for any normalizable H-eigenstate 	 2 QH the transformed state Qy	 isnormalizable, as 
an be seen from(Qy	; Qy	) = (	; QQy	) = (	; H	) = E(	;	) :Without 
al
ulating the highest weight states we 
an argue in whi
h se
tors bound states
annot exist. For that purpose we 
onsider the Hamiltonian (39). It is easy to see that the19



hermitian operator SyS, where S has been de�ned in (35), is an orthogonal proje
tor, andhen
e has eigenvalues 0 and 1. It follows at on
e that for p > d=2 the operator A in (38) isnegative and hen
e H > �2. We 
on
lude that H has no bound states in the se
tors Hp>d=2.On the parti
ular se
tor Hn the operator A has both positive and negative eigenvalues. Weexpe
t that in this se
tor only one of the two representations (for ea
h `) of the dynami
alsymmetry group 
ontains bound states. After these general 
onsiderations we pro
eed with
omputing the highest weight states 	p(Dp̀+1) in the subspa
e Hp \QH. Again we pro
eeddi�erently in even- and odd-dimensional spa
es.Even-dimensional spa
es: We use the 
omplex 
oordinates z1; : : : ; zn in Rd=2n and the
reation/annihilation operators �y1; : : : ; �yn; �1; : : : ; �n introdu
ed in appendix A1, togetherwith the 
omplex 
onjugated obje
ts. Sin
e the dynami
al symmetry group is SO(2n+1), weshould take the Cartan operatorsHi and raising operators Ei from appendix (A 2). However,we must remember that the last row and last 
olumn of (JAB) 
ontain the 
omponents ofthe generalized Lapla
e-Runge-Lenz ve
tor. As a 
onsequen
e the last step operator En in(A16) is to be repla
ed byEn = 1p2(Kd�1 + iKd) � 1p2(Cd�1 + iCd)= �2zn�+ (2r�r + d� 1)��n � 2�yn(�i ��i + ��i�i) + 2(�yi�i + ��yi ��i) ��n � �znr A ; (48)Sin
e the simple roots of the rotational subgroup SO(d) are positive roots of the dynami
alsymmetry group, a highest weight state of SO(d+1) is automati
ally a highest weight stateof SO(d), similar as in the purely bosoni
 
ase. Sin
e the two groups share the same Cartangenerators the highest weight state 	p(Dp̀+1) of SO(d+1) must also be a highest weightstate of the multiplet Dp̀+1 of SO(d). From the bran
hing rule (45) and the tensor produ
ts(44) it follows, that this highest weight state must be the state Ya(`; p+ 1) given in (A13).Hen
e we are lead to the ansatz	p(Dp̀+1) = f(r)Ya(`; p+ 1) :It remains to determine the radial fun
tion f(r) su
h that 	p is annihilated by En. WithEn from (48) one �nds the following equation for the radial fun
tion f :(d� 1 + 2`)f 0 + �(d� 1� 2p)f = 0su
h that the relevant highest weight states in the p-parti
le take the form20



	p(Dp̀+1) = exp (�
`pr) Ya(`; p+ 1) with 
`p = d� 1� 2pd� 1 + 2` � : (49)As � is assumed positive, these are bound states for p < n.Odd-dimensional spa
es: For odd dimensions d = 2n+1 the rank of the dynami
alsymmetry group SO(2n+2) ex
eeds the rank of the rotation group SO(d) by one. Asin the purely bosoni
 
ase we 
ombine the �rst 2n 
oordinates, 
reation and annihilationoperators to 
omplex ones (
f. appendix A2). Sin
e the rank of the dynami
al symmetrygroup is even, we should take the Cartan generators from appendix A1 with n repla
ed byn+ 1. Sin
e (JAB) 
ontains the Lapla
e-Runge-Lenz ve
tor the expli
it realization of theseoperators di�ers from the one in this appendix. More pre
isely, the �rst n Cartan generatorsare those in (A4), but the last one Hn+1 is Kd � Cd (
f. appendix B), whereCd = �2xd�+ (2r�r + d� 1)�d � 2 yd(�i ��i + ��i�i) + 2(�yi�i + ��yi ��i) d � �x̂dA : (50)The raising operators are the n� 1 operators Ei in (A6) plus the two operators8En = 1i (zn�xd � xd ��zn + �yn d �  yd ��n) and En+1 = 1p2(Cd�2 + iCd�1) : (51)The last operator 
oin
ides with En in (48). By using similar arguments as in even dimen-sions we are lead to the following ansatz	p(Dp̀+1) = f(r)Ya(`; p+ 1)for the highest weight state of Dp̀+1 � Hp. This fun
tion is annihilated by all Ei�n. The
ondition En+1	p = 0 yields the same di�erential equation for the radial fun
tion f as beforeand we obtain	p(Dp̀+1) = exp (�
`pr) Ya(`; p+ 1) with 
`p = d� 1� 2pd� 1 + 2` � : (52)For positive � these states are normalizable for all p < n. It is easy to see that the lastCartan generator � Cd annihilates this state and this shows that it has the 
orre
t weight.The remaining highest weight states: We have argued that the highest weight state	p+1(Dp̀+1) � Hp+1 is the superpartner of 	p(Dp̀+1) in (52). A simple 
al
ulation yields8 whi
h are independent 
ombinations of the last two raising operators, see appendix B.21



	p+1(Dp̀+1) = Qy	p(Dp̀+1)= i�(�� 
`p)SyYa(`; p+ 1) + (`+ p)Ys(`; p+ 1)� exp(�
`pr) (53)for this state and shows that it is a linear 
ombination of the two highest weight states Ysand Ya of SO(d) given in formulae (A12,A13). These states lead to additional bound-statemultiplets in the se
tors Hp with p = 1; : : : ; n.VII. THE SUPERSYMMETRIC HYDROGEN ATOM IN DIMENSIONS � 4In this se
tion we apply the general results of the previous three se
tions to supersymmetri
systems in low dimensions. The two-dimensional 
ase mainly serves as illustration of themethod. It may be worth noting that su
h systems admit a supersymmetri
 Lapla
e-Runge-Lenz ve
tor, 
ontrary to what has been 
laimed in the literature [16℄. The three-dimensionalquantum system is of 
ourse the most interesting extension of the ordinary hydrogen atom.We have in
luded the four-dimensional supersymmetri
 system sin
e it already shows veryni
ely whi
h additional stru
tures arise when one goes beyond three dimensions.Two dimensions: The Hilbert spa
e of the supersymmetri
 hydrogen atom in two spa
edimensions 
ontains three se
tors, H = H0 �H1 �H2 ;and an arbitrary wave fun
tion has the expansion (in the basis (22))	 = f0j0i+ (f1j1i+ f2j2i) + f12j12i � f = (f0; f1; f2; f12)T :The Hamiltonian (39) a
ts on the 
omponent fun
tions in f as followsf �! Hf with H = �4+ �2 + �r 0B��1 0 00 Æab � 2x̂ax̂b 00 0 11CAClearly, for � > 0 there are no bound states in the two-parti
le subspa
e, in a

ordan
e withour general result below eq. (47). Only the multipletsD `� 01 � H0 and D `> 01 � H1of the dynami
al symmetry group SO(3) 
ontain normalizable states.22



We introdu
e the 
omplex 
oordinate z and the 
omplex 
reation/annihilation operator (seeappendix A1) in terms of whi
h the highest weight state (49) read	0(D1̀ ) = exp(�
`0r)Ya(`; 1) = exp(�
`0r) z`j0i ; 
`0 = �1 + 2` ;and its superpartner (53)	1(D1̀ ) = Qy	0(D1̀ ) = i�(��
`0)SyYa(`; 1) + `Ys(`; 1)� exp(�
`0r) : (54)The energy of the `+1 states in ea
h of the two 
orresponding SO(3)-multiplets isE` = �2 � 
2̀0 :There is exa
tly one zero-energy ground state in the zero-parti
le se
tor and this state has` = 0. It is annihilated by the adjoint super
harge Qy, as 
an be seen from (54). Thespe
trum of the supersymmetri
 system is depi
ted in the following �gure.H0 H1 H26E=�2
089
1

Eigenvalues of H in d = 2 dimensions.Three dimensions: For this most relevant system, the Hilbert spa
e 
ontains four se
tors,H = H0 �H1 �H2 �H3 ;and a wave fun
tion has the expansion	 = f0j0i+ (f1j1i+ f2j2i+ f3j3i) + : : : :Sin
e here we are only interested in bound states it suÆ
es to 
onsider H on the subse
torsH0 and H1. The Hamiltonian in H0 belongs to the ordinary hydrogen atom,H(0) = �4 + �2 � 2�r ;23



and it a
ts on a state 	 2 H1 with 
omponent fun
tions hajHi = fa as follows,hajH	i = (�4+ �2)fa � 2�r x̂ax̂bfb :We take the 
oordinates (z; x3) and the 
reation operators (�y; ��y;  y3) (see appendix A2).The highest weight state in the multiplet D1̀ � H0 of the dynami
al symmetry group SO(4)has the form 	0(D1̀ ) = exp(�
`0r)Ya(`; 1) 2 H0 ; 
`0 = �1 + ` ;and this state is mapped into the partner state	1(D1̀ ) = Qy	0(D1̀ ) = i�(�� 
`0)SyYa(`; 1) + `Ys(`; 1)� exp(�
`0r) :All states in the two 
orresponding SO(4)-multiplets share the same energyE` = �2 � 
2̀0and both multiplets 
ontain (`+1)2 states. This is the well-known spe
trum of the hydrogenatom. The normalizable zero-mode has ` = 0 and resides in the zero-parti
le se
tor. It isjust the ground state of the hydrogen atom.There are no further bound states, sin
e the other states are paired with wave fun
tions inH2 and thus 
annot be normalizable. The spe
trum of the supersymmetri
 hydrogen atomin three dimensions is shown below.H0 H1 H2 H36E=�2
340
1

Eigenvalues of H in d = 3 dimensions.Four dimensions: The Hilbert spa
e splits into �ve subse
tors,H = H0 �H1 �H2 �H3 �H4 :24



In the zero-parti
le se
tor the Hamiltonian takes the form,H(0) = �4 + �2 � 3�r ;and in the one-parti
le se
tor it a
ts on a state 	 with haj	i = fa as follows:hajH	i = ��4+ �2 � �r� fa � 2�r x̂ax̂bfb :In H2 we are left with a 6� 6-matrix S
hr�odinger operator: For a two-parti
le state 	 with
omponent fun
tion habj	i = fab we obtainhabjH	i = ��4 + �2 + �r� fab � 2�r (x̂bfa
 � x̂afb
)x̂
 :We introdu
e 
omplex 
oordinates z1; z2 and 
reation operators �y1; �y2 as in appendix A1.For all ` 2 N we �nd the highest weight states	0(D1̀ ) = exp(�
`0r) z1̀ j0i with 
`0 = 3�2`+ 3in the zero-parti
le se
tor, together with their superpartners in H1,	1(D1̀ ) = i�(�� 
`0)SyYa(`; 1) + `Ys(`; 1)� exp(�
`0r) ;whi
h exists for ` > 0. All states in these two multiplets have the same energyE` = �2 � 
2̀0 ;and the number of states in ea
h multiplet is (` + 1)(` + 2)(2` + 3)=6. Now there is anadditional representation D2̀ � H1 with highest weight state	1(D2̀ ) = exp(�
`1r)Ya(`; 2)= exp(�
`1r) (�y2z1 � �y1z2) z`�11 j0i ; 
`1 = �3 + 2` :The energy of this state is E` = �2 � 
2̀1 ;and the multiplet 
ontains `(` + 3)(2` + 3)=4 members. Again there is a supersymmetri
partner multiplet with the same energy and degenera
y. The remaining highest weight stateof D3̀ ' D2̀ � H2 is paired to a state in H3 and therefore not normalizable. Thus we �ndthe spe
trum as depi
ted in the following �gure.25



H0 H1 H2 H3 H46E=�2
16250
1

Eigenvalues of H in d = 4 dimensions.VIII. SUMMARY AND DISCUSSIONWe have su

eeded in extending the 
elebrated results of Pauli, Fo
k, Bargmann and othersin two dire
tions: to higher dimensions and to the N = 2 supersymmetri
 extension of thehydrogen atom. First we 
onstru
ted a generalized angular momentum and an extendedLapla
e-Runge-Lenz ve
tor whi
h 
ould be 
ombined to generators of the dynami
al sym-metry group SO(d+1) in d dimensions. Then we related the quadrati
 Casimir operatorof this group to the parti
le number N , QQy and QQy. This way we 
al
ulated the boundstate spe
trum of the supersymmetri
 hydrogen atom in arbitrary dimensions by algebrai
means. We have determined all bound-state multiplets of the dynami
al symmetry groupand 
al
ulated the highest weight state in ea
h of them.Itzykson and Bander [8℄ distinguished between the in�nitesimal and the global method tosolve the Coulomb problem. The former is based on the Lapla
e-Runge-Lenz ve
tor and isthe method used in this paper. In the se
ond method one performs a stereographi
 proje
tionof the d-dimensional momentum spa
e to the unit sphere in d+1 dimensions whi
h in turnimplies a SO(d+1) symmetry group. It would be interesting to perform a similar global
onstru
tion for the supersymmetri
 systems introdu
ed in this paper.We have not explained why every multiplet of the dynami
al symmetry group appears fourtimes. Furthermore there is a new 'a

idental' degenera
y: in higher dimensions someeigenvalues of the Hamiltonian appear in many di�erent parti
le-number se
tors. It mayvery well be, that the algebrai
 stru
tures dis
ussed in the present work have a more naturalsetting in the language of superalgebras. We have not investigated this question. Anontherinteresting question is whether the dynami
al symmetries 
onsidered in this paper are related26



to fermioni
 Killing-Yano super
harges [21℄. This problem needs further investigations.Finally, we see no obsta
le against extending our method to the s
attering problem of thesupersymmetri
 hydrogen atom, for whi
h the dynami
al symmetry group SO(1; d) is non-
ompa
t.A
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kage LiE [20℄.Appendix A: REPRESENTATIONS OF ROTATION GROUPSIn this appendix we 
olle
t the group theoreti
al fa
ts needed in the main body of thepaper (
f. [15, 17{19℄ for a more detailed dis
ussion of these issues). We shall 
onstru
t therelevant irredu
ible representations of the total angular momentum operatorsJab = 1i �xa ��xb � xb ��xa�+ 1i � ya b �  yb a� ; a; b = 1; : : : ; dsatisfying the so(d) 
ommutation relations[Jab; J
d℄ = i(Æa
Jbd + ÆbdJa
 � ÆadJb
 � Æb
Jad)on wave fun
tions inHp = L2(Rd)� C (dp) with p = 0; : : : ; d :The fermioni
 operators  a have been introdu
ed earlier in se
tion III. It is 
onvenient touse the Cartan-Weyl basis 
onsisting of generators Hi in the Cartan subalgebra and oneraising and one lowering operator E� and E�� for every positive root �,[Hi; E�℄ = �iE� and [E�; E��℄ = � �H with E�� = Ey� : (A1)Be
ause of their di�erent properties we do this separately for the groups Dn � SO(2n) andBn � SO(2n+1). 27



1. Total angular momentum for the SO(d = 2n) groupsTo pro
eed it is very 
onvenient to introdu
e 
omplex 
oordinates in R2n,zi = 1p2(x2i�1 + ix2i) ; �zi = 1p2(x2i�1 � ix2i) ;�i = 1p2(�x2i�1 � i�x2i) ; ��i = 1p2(�x2i�1 + i�x2i) ; i = 1; : : : n (A2)and similarly two sets of 
omplex 
reation- and annihilation operators�yi = 1p2( y2i�1 + i y2i) ; ��yi = 1p2( y2i�1 � i y2i) ;�i = 1p2( 2i�1 � i 2i) ; ��i = 1p2( 2i�1 + i 2i) ; i = 1; : : : n : (A3)The only non-vanishing anti
ommutators aref�i; �yjg = f��i; ��yjg = Æij :The generators in the Cartan subalgebra take the simple formHi = J2i�1;2i = zi�i � �zi ��i + �yi�i � ��yi ��i ; i = 1; : : : ; n (A4)and there are two types of raising operators:E� = 12(J2i�1;2j�1 + J2i;2j � iJ2i�1;2j + iJ2i;2j�1) with root � = ei � ej ;E� = 12(J2i�1;2j�1 � J2i;2j + iJ2i�1;2j + iJ2i;2j�1) with root � = ei + ej ;where i < j is assumed. In terms of the 
omplex 
oordinates/operators they readE� = 1i �zi�j � �zj ��i + �yi�j � ��yj ��i� with root � = ei � ej ;E� = 1i �zi ��j � zj ��i + �yi ��j � �yj ��i� with root � = ei + ej : (A5)The 
orresponding lowering operators are just the adjoint of the raising operators. Theoperators (Hi; E�; E��) satisfy the 
ommutation relations (A1) with 
orresponding positiveroots in (A5). The n simple roots are�i = ei � ei+1 ; 1 � i < n and �n = en�1 + enand the 
orresponding raising operators have the formEi = 1i �zi�i+1 � �zi+1 ��i + �yi�i+1 � ��yi+1 ��i� ; � = ei � ei+1; 1 � i < n (A6)28



En = 1i �zn�1 ��n � zn ��n�1 + �yn�1 ��n � �yn ��n�1� ; � = en�1 + en : (A7)With the help of the Weyl ve
torÆ = 12X�>0 � = (n� 1)e1 + (n� 2)e2 + : : :+ en�1 ;where the sum extends over all positive roots in (A5), we may 
al
ulate the dimension ofan arbitrary faithful representation of SO(2n). Su
h a representation is determined by itsYoung tableau 
ontaining at most n rows. The length `i of row i is bigger or equal to thatof row i+ 1. Hen
e, a Young tableau is given by n non-negative ordered integers`1 � `2 � : : : � `n�1 � `nand has the form p8><>: 1 2 � � � `11 2 � � `2: : : :1 � `p ; p � n :Rows with length 0 are not shown when one draws a Young-tableau. The 
orrespondingrepresentation D `1;:::;`n has the dimensiondim �D `1:::`n� = Y1�r<s�n `r + `s + 2n� r � s2n� r � s `r � `s + s� rs� r : (A8)For the se
ond-order Casimir invariant of these representations one obtains the formulaC(2)(D `1:::`n) =Xr `r(`r + 2n� 2r) :In parti
ular, for the 
ompletely symmetri
 representationsD `0:::0 � D1̀ � 1 2 � � `these formulae simplify toC(2)(D1̀ ) = `(`+ d� 2) and dim(D1̀ ) = �`+d�1` �� �`+d�3`�2 � : (A9)For the 
ompletely antisymmetri
 representationsD1;1;:::1 � D 1p � 1:p29



they simplify to C(2)(D 1p ) = p(d� p) and dim(D 1p ) = �dp� :Simultaneous eigenstates of all n generators Hi in the Cartan subalgebra have the formnYi=1 zmii �z �mii j~p ~p 0i ; j~p ~p 0i = �y p11 : : : �y pnn ��y p011 : : : ��y p0nn j0i ;where mi; �mi 2 N0 and pi; p0i 2 f0; 1g. The va
uum j0i is annihilated by all parti
le loweringoperators  a or equivalently by all �i and ��i. The Hi-eigenvalues of these states are mi��mi+pi�p0i.Next we must 
onstru
t the highest weight states whi
h are annihilated by all raising oper-ators. Every su
h state determines an irredu
ible representation. The eigenvalues of Hi ona highest weight state is equal to the length `i of the Young tableau 
orresponding to theirredu
ible representation determined by this weight. The d + 2 spa
e-independent highestweight states are jpi = j~p ~p 0i with p1 � : : : � pn � p0n � : : : � p01and X(pi + p0i) = p ;There is an additional highest weight state in the p = n parti
le se
tor, that arises sin
e inthis se
tor we have selfdual and anti-selfdual 
on�gurations. It is given byp1 = : : : = pn�1 = p0n = 1 ; pn = p01 = : : : = p0n�1 = 0 :Clearly, the parti
le number p uniquely spe
i�es these state sin
e the pi; p0i's are ordered.These states de�ne the 
ompletely antisymmetri
 representationsD 1p for p � n and D 1p � D 12n�p for p � n :We used that a Young tableau, the �rst 
olumn of whi
h has length n � p � 2n, gives rise tothe same multiplet as the tableau with �rst 
olumn of length 2n�p � n. It the following oneshould repla
e Dp̀ by D2̀n�p if p ex
eeds n. Also note that D 10 � D 1d is the one-dimensionaltrivial representation.The highest weight states in the 0-parti
le se
tor arez1̀j0i (A10)and they give rise to the 
ompletely symmetri
 representations D1̀ spanned by the harmoni
30



polynomials of order `. The relevant irredu
ible representation of SO(2n) in the p-parti
lese
tor is gotten by tensoring the antisymmetri
 representation D 1p with a symmetri
 repre-sentation D1̀ . We useD 1p 
D1̀ = Dp̀�1 �D `�1p �D `+1p �Dp̀+1 (A11)or in the language of Young tableaux,1::p 
 1 2 � ` = p�18<: 1 2 � `:: � `�1z }| {1 � �::p � `+1z }| {1 2 � � �::p � 1 2 � `::::
9>>>=>>>; p+1 :Note that for p = 1 and/or ` = 1 there appear only three representations in this de
omposi-tion. For p = 1 the �rst representation and for ` = 1 the se
ond representation on the righthand side in (A11) are absent. Also note that for p = n the �rst and last representationsare equivalent. The se
ond to last representation D `+1p on the right hand side has highestweight state Ys(`+ 1; p) = z1̀ jpi ; (A12)as it is the produ
t of the highest weight states of D 1p and D1̀ . To �nd the highest weightstate of the other representations we observe that the operatorsrS = xa a = zi�i + �zi ��i and rSy = xa ya = �zi�yi + zi ��yi ;whi
h have been introdu
ed in (35), 
ommute with the total angular momentum and hen
emap highest weight states into highest weight states. Sin
e S de
reases and Sy in
reases theparti
le number by one, we �nd the stateYa(`; p+ 1) = rSYs(`; p+1) = p+1Xi=1 (�)i+1zi�y1 : : : ��yi : : : �yp+1z`�11 j0i (A13)whi
h is highest weight state of the last representation Dp̀+1 in the de
omposition (A11).The missing two highest weight states 
orrespond to those representations in the tensorprodu
t of a symmetri
 and an antisymmetri
 representation whi
h one obtains by takingthe tra
e over two suitable indi
es. This operation is equivalent to a
ting with Sy. ThusTs(`; p�1) = SyYs(`; p�1)31



is the highest weight state of Dp̀�1 in the de
omposition (A11). For the remaining highestweight state we make the ansatzTa(`�1; p) = (SSy + �SyS)Ys(`�1; p) :As fS; Syg = 1 this state may have a 
omponent in the dire
tion of Ys(`�1; p). However,for the 
hoi
e � = �1 the highest weight stateTa(`�1; p) = [S; Sy℄Ys(`�1; p) ;is orthogonal to Ys(`�1; p).2. Total angular momentum for the SO(d = 2n+ 1) groupsThe rotation group SO(2n+1) has the same rank as its subgroup SO(2n) and hen
e we maystill use the Cartan generators (A4), that isHi = J2i�1;2i = zi�i � �zi ��i + �yi�i � ��yi ��i ; i = 1; : : : ; n : (A14)We use the 
omplex 
oordinates (A2) and the 
omplex 
reation- and annihilation operators(A3), supplemented by the last 
oordinate xd and the last 
reation and annihilation operator yd and  d. Clearly, the raising operators (A5) are still raising operators of so(2n+ 1) withthe same positive roots. But sin
edim (SO(2n+1)) = dim(SO(2n)) + 2n and rank (SO(2n+ 1)) = rank (SO(2n))there are n positive roots missing. These areE� = 1p2 (J2i�1;d + iJ2i;d) = 1i �zi�xd � xd ��i + �yi d �  yd ��i� ; � = ei ;where 1 � i � n. The �rst n�1 simple roots are the same as in (A6), but the the last oneis repla
ed by en. Hen
e the raising operators 
orresponding to the simple roots readEi = 1i �zi�i+1 � �zi+1 ��i + �yi�i+1 � ��yi+1 ��i� ; � = ei � ei+1 ; 1 � i < n ; (A15)En = 1i �zn�xd � xd ��n + �yn d �  yd ��n� ; � = en : (A16)The Young tableaux are identi
al to those of SO(2n) and hen
e are 
hara
terized by n or-dered non-negative integers `1; : : : ; `n. The dimensions of the 
orresponding representationsread 32



dim �D `1:::`n� = nYt=1 2`t + d� 2td� 2t Y1�r<s�n `r + `s + d� r � sd� r � s `r � `s + s� rs� r (A17)and the formula for the se
ond-order Casimir is the same as for the so(2n) algebra,C(2)(D `1:::`n) =Xr `r(`r + d� 2r) :Also the rules for tensor produ
ts are identi
al to those of SO(2n).Sin
e the simple roots are di�erent, the highest weight states have a slightly di�erent form.The simultaneous eigenstates of the n generators in the Cartan subalgebra readf(xd)Yi zmii �z �mii j~p q ~p 0i ; j~p q ~p 0i = �y p11 : : : �y pnn  y qd ��y p011 : : : ��y p0nn j0i ;where mi; �mi 2 Z and pi; q; �pi 2 f0; 1g. The d+1 
onstant highest weight states arejpi = j~p q ~p 0i with p1 � : : : � pn � q � p0n � : : : � p01 ;where p = P(pi+p0i) + q denotes the parti
le number. The highest weight of D `+1p in thede
omposition D 1p 
D1̀ = Dp̀�1 �D `�1p �D `+1p �Dp̀+1 (A18)is again determined by the highest weight stateYs(`+ 1; p) = zl1 jpi :As in even dimensions one may use the s
alar operatorsrS = xa a = zi�i + �zi ��i + xd d and rSy = xa ya = �zi�yi + zi ��yi + xd ydto obtain the highest weight statesYa(`; p+ 1) = rSYs(`; p+1) �! Dp̀+1 ;Ts(`; p�1) = SyYs(`; p�1) �! Dp̀�1 ;Ta(`�1; p) = [S; Sy℄Ys(`�1; p) �! D `�1p ;of the remaining irredu
ible representations in (A18).33



Appendix B: ROTATION GROUPS VS. DYNAMICAL SYMMETRY GROUPSIn the main body of the paper we have seen, that the total angular momentum Jab in (33)together with Ka in (40) 
ombine to generators of the dynami
al symmetry group SO(d+1)JAB = 0� Jab Ka�Kb 0 1A :The rotational group with generators Jab dis
ussed in the previous part of the appendix,must be embedded into the dynami
al group,d = 2n : SO(2n) � SO(2n+ 1)d = 2n+1 : SO(2n+ 1) � SO(2n+ 2) :Even dimensions: The dynami
al symmetry group has the same rank as the rotationgroup SO(2n) and we 
an repeat our 
onstru
tion in appendix A2, where we extendedSO(2n) to SO(2n+1). Of 
ourse we should take into a

ount that the 
omponents in thelast 
olumn and last row of (JAB) are the 
omponents of Ka. The Cartan generators arethose in (A14) and the �rst n�1 raising operators are given in (A15). But the last raisingoperator (A16) is of 
ourse repla
ed byEn = 1p2(Kd�1 + iKd) ;whi
h is proportional to 1p2(Cd�1 + iCd). The latter has been given in (48).Odd dimensions: The rank of the dynami
al symmetry group SO(2n+2) ex
eeds the rankof the rotation group SO(2n+1) by one. The Cartan generators are given by the n operatorsHi in (A4), supplemented by Hn+1 = Kd � Cd, where the expli
it realization of Cd is givenin (50). The raising operators are the n� 1 operators Ei in (A15) plus the two operatorsE� = 12(Jd�2;d +Kd�1 � iKd�2 + iJd�1;d) ; � = en � en+1 ;E 0� = 12(Jd�2;d �Kd�1 + iKd�2 + iJd�1;d) ; � = en + en+1 :Highest weight states are annihilated by these two raising operators and it is 
onvenient touse two (independent) 
ombinations of these operators, namely the operators1p2 (E� + E 0�) = En and ip2 (E� � E 0�) � 1p2(Cd�2 + iCd�1) = En+1 :34



Their expli
it forms 
an be found in (48) and (51).
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