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I. INTRODUCTIONFor a losed system of two non-relativisti point masses interating via a entral fore theangular momentum L of the relative motion is onserved and the motion is always in theplane perpendiular to L. If the fore is derived from the Newton or Coulomb potential,there is an additional onserved quantity: the Laplae-Runge-Lenz1 vetor [1℄. For thehydrogen atom this vetor has the formC = 1mp� L� e2r r ; L = r� p ;where m denotes the redued mass of the proton-eletron system. The Laplae-Runge-Lenzvetor is perpendiular to L and hene is a vetor in the plane of the orbit. It points in thediretion of the semi-major axis.Quantum mehanially, one de�nes the hermitian Laplae-Runge-Lenz vetorC = 12m(p� L� L� p)� e2r r : (1)By exploiting the existene of this onserved vetor operator, Pauli alulated the spe-trum of the hydrogen atom by purely algebrai means [3, 4℄. He notied that the angularmomentum L together with the vetorK =r�m2H C ;whih is well-de�ned and hermitian on bound states with negative energies, generate ahidden SO(4) symmetry algebra,[La; Lb℄ = i~�abL ; [La; Kb℄ = i~�abK ; [Ka; Kb℄ = i~�abL ;and that the Hamiltonian an be expressed in terms of K2+L2, one of the two seond-orderCasimir operators of this algebra, as followsH = �me42 1K2 + L2 + ~2 : (2)One further observes that the other Casimir operator K � L vanishes and arrives at thebound state energies by purely group theoretial methods. The existene of the onserved1 A more suitable name for this onstant of motion would be Hermann-Bernoulli-Laplae vetor, see [2℄.2



vetor K also explains the aidental degeneray of the hydrogen spetrum. Only muhlater the sattering amplitude of the hydrogen atom has been alulated with the help ofthe Laplae-Runge-Lenz vetor [5℄.In this paper we shall generalize these results in two diretions: �rst to the hydrogen atomin arbitrary dimensions2 [6℄ and seond to the orresponding supersymmetri extensions.In the following setion we prove that the Shr�odinger Hamiltonian in d dimensions with1=r potential admits a generalization of the Laplae-Runge-Lenz vetor. Together with thegenerators of the rotation group SO(d) this vetor generates the dynamial symmetry groupSO(d+1). This hidden symmetry allows then for a purely algebrai solution of the hydrogenatom in arbitrary dimensions, very muh as in three dimensions.In setion III we summarize the extensions of d-dimensional Shr�odinger Hamiltonians tomodels withN = 2 supersymmetry. The orresponding Hamiltonians may be written as 2d�2d-dimensional matrix Shr�odinger operators. For a partiular hoie of the superpotentialwe obtain the supersymmetri extension of the hydrogen atom. For instane in d = 3 (andin a suitable basis) we �nd the HamiltonianH = �p2 + �2�18 � 2�r 0BBBBB� 1 M1 M2 �1
1CCCCCA ;with 3� 3 matries M1 ab = x̂ax̂b ; M2 ab = Æab � (�)a+bx̂ax̂b :In setion IV we onstrut the supersymmetri extensions of the angular momentum and theLaplae-Runge-Lenz vetor. Similarly as for the purely bosoni system, together they form adynamial SO(d+1) symmetry algebra. This symmetry is exploited in the following setionto obtain the disrete eigenvalues and their degeneraies. In setion VI we haraterize allbound state wave funtions. In the last setion we illustrate our general results by analyzingin detail the supersymmetri hydrogen atoms in two, three and four dimensions.The appendies ontain the neessary group theoretial tools needed in the main body ofthe paper.2 When speaking of the d�dimensional hydrogen atom, we always mean the 1=r-potential, although thispotential permits the appliation of Gauss' law in three dimensions only.3



II. THE COULOMB PROBLEM AND ITS SYMMETRIES IN d DIMENSIONSWe generalize the Coulomb problem to arbitrary dimensions by keeping the 1=r-potential,although this potential solves the Poisson equation in three dimensions only. With thisassumption the hydrogen atom in d dimensions is governed by the Shr�odinger equationH = �� ~22m4� e2r � = E : (3)It is onvenient to measure distanes in units of the Compton wavelength � = ~=m. Withrespet to these dimensionless oordinates equation (3) takes the simpler formH = E ; H = p2 � �r ; pa = 1i �a ; a = 1; : : : ; d ; (4)where � is twie the �ne struture onstant � and the dimensionless energy E is measuredin units of m2=2. The entral fore is attrative for positive �.The hermitian generators Lab = xapb � xbpa of the rotation group in d dimensions satisfythe familiar so(d) ommutation relations[Lab; Ld℄ = i(ÆaLbd + ÆbdLa � ÆadLb � ÆbLad) ; (5)where indies run from 1 to d. It is not very diÆult to guess the generalization of theLaplae-Runge-Lenz vetor (1) in d dimensions [6℄,Ca = Labpb + pbLab � �xar : (6)Indeed, these operators ommute with the Hamiltonian (4). They form a SO(d)-vetor,[Lab; C℄ = i(ÆaCb � ÆbCa) ;and the ommutator of Ca and Cb is proportional to the angular momentum:[Ca; Cb℄ = �4iLabH : (7)Now we may proeed as we did in three dimensions and de�ne on the negative energy (E < 0)subspae of the Hilbert spae H = L2(Rd) the hermitian operatorsKa = 1p�4H Ca ; with [Ka; Kb℄ = iLab : (8)4



The operators fLab; Kag form a losed symmetry algebra of dimension (d + 1)d=2. Moreexpliitly, they an be ombined to form generators LAB of the orthogonal group3 SO(d+1)LAB = 0� Lab Ka�Kb 0 1A ; (9)whih implies that the LAB obey the ommutation relations (5) with indies running from1 to d+ 1. We an verify a relation similar to (2) by solvingCaCa = �4KaKaH = �2 + (2LabLab + (d� 1)2)H (10)for H. We obtain the HamiltonianH = p2 � �r = � �2(d� 1)2 + 4 C(2) (11)in terms of the seond-order Casimir operator of the dynamial symmetry group SO(d+1),C(2) = 12LABLAB = 12LabLab +KaKa :This is the generalization of (2) we have been looking for. It remains to haraterize thoseirreduible representations of SO(d+ 1) whih are realized in the Hilbert spae L2(Rd). Inthree dimensions the allowed representations are �xed by the ondition K � L = 0 on theseond Casimir operator of SO(4). We expet n�1 onditions on the n Casimir operatorsof the dynamial symmetry group SO(2n+1) in d = 2n dimensions and n onditions on then+1 Casimir operators of SO(2n+2) in d = 2n+1 dimensions. In the following we treat theeven- and odd-dimensional ases separately.Even-dimensional spaes: An irreduible representation is uniquely haraterized byits highest weight state. By de�nition, this state is annihilated by all raising operatorsbelonging to the simple roots. To haraterize these states one onveniently hooses omplexoordinates z1; : : : ; zn in R2n suh that the raising operators of the dynamial symmetrygroup with generators JAB in (9) have the simple form (f. appendix A)Ei = 1i (zi�i+1 � �zi+1 ��i) ; i = 1; : : : ; n� 1 ; (12)En = 1p2(Cd�1 + iCd) = �2zn�+ (2r�r + d� 1)��n � �znr : (13)3 For sattering states (E > 0) a similar rede�nition leads to generators of the Lorentz group SO(d; 1).Here we are interested in bound states and will not further disuss this possibility.5



In the formula for En we atually should have used the operators Kd�1 and Kd in (8), sinethey appear as omponents of JAB. But sine we are only interested in highest weight stateswhih are annihilated by En we may take the operators Cd�1 and Cd instead. Also notethat all simple roots of SO(d) are positive roots of SO(d+1) so that all highest weightstates of SO(d+1) are automatially highest weight states of SO(d) � SO(d+1). Now itis not diÆult to see that a regular wave funtion whih is annihilated by all simple raisingoperators of SO(d), that is by the n�1 operators in (12) and by the operator zn�1 ��n�zn ��n�1(see appendix A1), must have the form (f. (A10))	 = f(r)z1̀ :It is a highest weight state of SO(d+ 1), if in addition it is annihilated by En in (13):En	 = ��(d� 1 + 2`) ddr log f + �� znr 	 = 0 : (14)Hene the highest weight state reads	 = e�`r z1̀ ; ` = �d� 1 + 2` : (15)The onstant � must be positive for bound states to exist. 	 is of ourse an eigenfuntionof all n Cartan generators Hi = zi�i� �zi ��i of SO(2n+1) with eigenvalues (`; 0; : : : ; 0). Thatshows that only the symmetri multiplets of the dynamial symmetry group appear4. From(A9) we take the values of the seond-order Casimir operator for symmetri multipletsC(2) = `(`+ d� 1) ; ` = 0; 1; 2; : : : (16)and their dimensionsdimV` = �`+ d` �� �`+ d� 2`� 2 � : (17)The dimV` states of the symmetri representation are obtained by ating repeatedly withthe lowering operatorsEyi<n = 1i (zi+1�i � �zi ��i+1) and Eyn = �2�zn�+ �n(2r�r � 1)� ��znron the state (15). This way one obtains all bound H-eigenstates with the same energy.4 This orresponds to the extension of Fok's method to d dimensions, f. [4, 7, 8℄.6



Odd-dimensional spaes: For d = 2n+1 the rank of the dynamial symmetry groupSO(d + 1) exeeds the rank of the rotation group SO(d) by one. We ombine the �rst 2noordinates to n omplex ones and take oordinates z1; : : : ; zn; xd in Rd, see appendix A2.As Cartan generators we hooseHi = zi�i � �zi ��i ; i = 1; : : : ; n and Hn+1 = Cd : (18)The raising operators are the n� 1 operators Ei in (12) supplemented byEn = 1i (zn�xd � xd ��zn) and En+1 = 1p2(Cd�2 + iCd�1) :The last raising operator En+1 oinides with En in (13). A regular wave funtion is anni-hilated by the �rst n raising operators only if it has the form 	 = f(r)z1̀. The requirementthat it is annihilated by the last raising operator En+1 again leads to equation (14) andhene to the solution 	 in (15). To determine the multiplets with this highest weight statewe need to alulate the highest weight vetor, that is the value of the Cartan generatorson 	. Clearly, H1	 = `	 and Hi	 = 0 for i = 2; : : : ; n :The last Cartan generator in (18) has the expliit formHn+1 = �2xd4+ (2r�r + d� 1)�xd � �xdrand we �nd Hn+1	 = ��(d� 1 + 2`) ddr log f + �� xdr 	 = 0 ;after using f = e�`r. Hene, on any highest weight state the operators H2; : : : ; Hn+1 vanishand again we �nd the ompletely symmetri representations of the dynamial symmetrygroup SO(d+ 1). The eigenvalues of the seond-order Casimir operator and the dimensionof the representations are given by the same formulae (16,17) as for the hydrogen atom ineven dimensions.Sine � is twie the �ne struture onstant � = e2=~ and E is measured in units of m2=2the formula (11) yields the well-known [9℄ bound state energies in three dimensionsE` = � �21 + `(`+ 2)m22 = �me42~2 1n2 � En ; n = 1 + ` = 1; 2; : : : :7



The degeneray of En is the dimension n2 of the orresponding symmetri representation ofSO(4). All n2 states with the same energy En are gotten by ating with the two loweringoperators on the highest weight state	(x) = e�nr(x1 + ix2)` ; n = �n :In d dimensions the orresponding formulae readE` = �me42~2 �`+ d� 12 ��2 ; 	(x) = e�`r(x1 + ix2)` ; ` = �`+ (d� 1)=2and E` has degeneray dim V` in (17).The appearane of the aidental degeneray { phrased in the language of representationtheory { orresponds to the following branhing rule: the ompletely symmetri representa-tions of the dynamial symmetry group SO(d+1) branhes into those ompletely symmetrirepresentations of the rotation group SO(d) with equal or shorter Young diagrams,1 2 � � ` �����SO(d+1) �! �1� � � : : : � 1 2 � � ` � �����SO(d) ; (19)all of them possessing the same energy. The energy, its degeneray and the bound statewave funtions are uniquely �xed by the representation of the dynamial symmetry group.Every ompletely symmetri representation of SO(d + 1) appears one and only one andorresponds to the multiplet with energy E`. The angular momentum ontent of this mul-tiplet is determined by the branhing rule (19). In three dimensions this expresses just thewell-known fat that for eah value of En=`+1 the orbital angular momentum an vary from0 to n� 1 = `.III. N = 2 SUPERSYMMETRIC QUANTUM MECHANICSWe wish to further generalize our results to the supersymmetri hydrogen atom in d dimen-sions. For that purpose we need a supersymmetri extension of d-dimensional Shr�odingeroperators and in partiular of the operator in (4). Suh supersymmetri Hamiltonians anbe written as H = fQ;Qyg = Hy with Q2 = Qy 2 = 0 ; (20)where the superharge Q and its adjoint Qy antiommute with a self-adjoint idempotent8



operator �. The subspae on whih � = 1 is alled the bosoni setor and its omplementthe fermioni setor. Hene, Q transforms bosons into fermions and vie versa. From (20)one sees at one that the superharge ommutes with the supersymmetri Hamiltonian,[Q;H℄ = 0 ;i.e. generates a supersymmetry of the system. The simplest models exhibiting the struture(20) are 2 � 2-dimensional matrix Shr�odinger operators in one dimension. Suh modelswere �rst studied by Niolai and Witten [10{12℄.Supersymmetri Hamiltonians in higher dimensions have been introdued previously byseveral authors [13, 14℄. Here we briey present the onstrution used in this paper. Weintrodue a set of fermioni reation and annihilation operators,f a;  ybg = Æab ; f a;  bg = f ya;  ybg = 0 ; a; b = 1; : : : ; d (21)and the Fok spae with vauum j0i whih is annihilated by all operators  a. This spaesplits into sub-spaes,C = C0 � C1 � : : :� Cd ; dimCp = �dp� ; dimC = 2d ;labeled by their 'fermion number'N j Cp = p1 ; where N = dXa=1  ya a :As basis in Cp we may hooseja1 : : : api =  ya1 : : :  yap j0i ; a1 < a2 < : : : < ap : (22)Along with C the Hilbert spae of all square integrable wave funtions deomposes asH = H0 �H1 � : : :�Hd ; where N jHp = p1 : (23)An arbitrary wave funtion in Hp has the expansion	 = fa1:::ap(x)ja1 : : : api ; fa1:::ap totally antisymmetri. (24)An expliit realization of the reation and annihilation operators an be given in terms ofthe hermitian -matries in 2d Eulidean dimensions:  a = 12(a � id+a).9



The superharge and its adjoint5 are de�ned viaQ = e��Q0e� = iXa  a(�a + �a�) ; with Q0 = i a�a ;Qy = e�Qy0e�� = iXa  ya(�a � �a�) ; with Qy0 = i ya�a : (25)At this point the real superpotential �(x1; : : : ; xd) remains unspei�ed. From (21) it followsat one that the free superharge Q0 is nilpotent and sine Q and Q0 are related by asimilarity transformation the same holds true for Q. The superharge Q only ontainsannihilation operators and hene dereases the fermion number by one. Its adjoint Qyinreases it by one, [N;Q℄ = �Q and [N;Qy℄ = Qy :The supersymmetri Hamiltonian de�ned in (20) is a 2d�2d-dimensional matrix Shr�odingeroperator and takes the following form (f. also [13, 14℄)H = f � 4+ (r�;r�) +4�g12d � 2 dXa;b=1 ya �ab  b ; �ab = �2��xa�xb : (26)We use brakets to indiate ontration of indies as (A;B) = PaAaBa. Contrary to thesuperharge and its adjoint the supersymmetri Hamiltonian H ommutes with the numberoperator N and hene leaves eah subspae Hp in the deomposition (23) invariant,H : Hp �! Hp :On the subspae Hp the supersymmetri Hamiltonian is still a matrix Shr�odinger operator,HjHp = �41+ V (p) ; tr 1 = �dp� :Only in the extreme setors H0 and Hp do we get ordinary Shr�odinger operators ating onone-omponent wave funtions. With ya bj0i = 0 and  ya b j12 : : : di = Æabj12 : : : dithe orresponding potentials take the formV (0) = (r�;r�) +4� and V (d) = (r�;r�)�4� :5 The hermitian linear ombinations Q1 = Q + Qy and Q2 = i(Q � Qy) satisfy the standard N = 2supersymmetry algebra fQi; Qjg = 2HÆij . 10



More generally, for an arbitrary state 	 = fa1:::ap ja1 : : : api 2 Hp the Hamiltonian ats asfollows:ha1 : : : apjH	i = (�4+ V (0))fa1:::ap + 2 pXb;i=1(�)i�aib fba1:::�ai:::ap : (27)The nilpotent superharges give rise to the following Hodge-type deomposition of theHilbert spae, H = QH�QyH�KerH ; (28)where the �nite dimensional subspae KerH is spanned by the zero-modes of H. Indeed,on the orthogonal omplement of KerH we may invert H and writeH?0 = (QQy +QyQ)H�1H?0 = Q�QyH H?0 � +Qy�QHH?0 � ;whih proves (28). The superharge Q maps every energy-eigenstate in QyH \ Hp withpositive energy into an eigenstate in QH \ Hp�1 with the same energy. Its adjoint mapseigenstates in QH\Hp into those in QyH\Hp+1 with the same energy. With the exeptionof the zero-energy states there is an exat pairing between the eigenstates and energies inthe bosoni and in the fermioni setor as depited below.6EH0 -� QyQ H1 -� QyQ H2 Hd�2 Hd�1 Hd-�QyQ -�QyQ

nn

nn

QH QyH QH QyH QH QyH QH QyH QH QyHThe supersymmetri systems with superharges (25) admit a generalized Poinar�e dualityrelating Hd�p with Hp. This is seen as follows: instead of the vauum j0i 2 H0, whih isannihilated by all  a, we take k0i =  y1 � � � ydj0i 2 Hd, whih is annihilated by all  ya. As11



basis in Cd�p we hoose ka1 : : : api =  a1 � � � apk0i ;suh that an arbitrary wave funtion in Hd�p has the expansion	 = fa1:::apka1 : : : api; fa1:::ap totally antisymmetri. (29)The supersymmetri Hamiltonian ats on suh a state as follows,ha1 : : : apkH	i = (�4+ V (d))fa1:::ap � 2 pXb;i=1(�)i�aib fba1 :::�ai:::ap :A omparison with (27) yields the important duality relationH����Hp = H�����Hd�p ; (30)whih states, that the Hamiltonians in Hp and Hd�p are equivalent, up to a sign-hangeof the superpotential. Similarly on �nds, that the ation of Q on the state (22) in Hp isidential to the ation of Qy on the state (29) in Hd�p, up to a sign-hange of �.IV. THE SUPERSYMMETRIC HYDROGEN ATOM AND ITS SYMMETRIESFirst we onsider d-dimensional supersymmetri systems with spherially symmetri super-potentials and derive the onserved angular momentum Jab. The total angular momentumJab is the sum of two terms: the orbital part Lab and the internal part Sab whih transformsthe omponents of a wave funtion. For a superpotential �(r) the superharges simplify toQ = i a(�a + xaf) and Qy = i ya(�a � xaf) ; where f = �0r : (31)They should be salars with respet to the rotation group SO(d). However, sine �a isa vetor and  a a salar with respet to Lab, we need to supplement orbital rotations byinternal ones suh that  a beomes a vetor as well. One easily veri�es that[Sab;  ℄ = i(Æa b � Æb a) ; where Sab = 1i ( ya b �  yb a) ; (32)and that the hermitian Sab satisfy the same ommutation relations (5) as the orbital angularmomentum. It follows at one from (32) that the superharge (31) ommutes with the totalangular momenta 12



Jab = Lab + Sab ; (33)sine Q only ontains salar produts of vetors operators.Next we prove that there exists a supersymmetri generalization of the Laplae-Runge-Lenzvetor in d dimensions if the potential is � 1=r. For suh a potential the superharges (31)do ommute with the supersymmetri generalization of (6),Ca = Jabpb + pbJab + xaf(r)A (34)with a suitable operator A. One an show that f must be the funtion in (31) for Ca toommute with Q. This funtion, along with A are �xed as follows:First, for Ca to be a vetor, the operator A must be a salar under rotations indued bythe Jab. Seond, in the zero partile setor H0 the vetor Ca must oinide with Ca in (6).Third, A should ommute with the partile number operator sine the Jab do ommute.A general ansatz for A subjet to these three onditions readsA = �1� �N � SyS ; S = x̂a a ; x̂a = xar ; (35)with onstants �; � and  whih ought to be determined. Clearly, Ca is a vetor operator,suh that [Jab; C℄ = i(ÆaCb � ÆbCa)holds true. Let us now alulate the ommutators between the Ca and the superharge.They should vanish for a suitable hosen funtion f in (34). We obtain[Ca; Q℄ = 2ff b + f 0SxbgJab + �fxaQ0 + ifxaf(� + )rf + �rgS+ iff a + f 0Sxag (1� d� A) + ix̂af (d�N�1)S : (36)The terms ontaining derivatives arefxa(� � 2)Q0 + 2ir(f + rf 0)S�a + i(f � 2rf 0)Sxa�r :They anel if f = ��r or � = ��r and � = � = 2 (37)hold true. With this hoie all but the terms proportional to Sab in the �rst line on the right13



in (36) anel, and we remain with[Ca; Q℄ = i�r (�� d+ 1)( a � x̂aS)whih vanishes for � = d�1. Hene, the supersymmetri extension of the onserved Laplae-Runge-Lenz vetor readsCa = Jabpb + pbJab � �x̂aA with A = (d� 1)1� 2N + 2SyS ; (38)and this is the main result of this setion. The hoie � = ��r for the superpotential in(25) and (26) leads to the following supersymmetri extension of the Coulomb HamiltonianH = �4+ �2 � �Ar : (39)Restrited to the zero partile setor this is the Hamiltonian of the hydrogen atom6 andrestrited to the d partile setor it orresponds to the eletron-antiproton sattering system.The orresponding superharge and its adjoint take the simple formQ = Q0 � i�S and Qy = Qy0 + i�Sy ;where the free superharge has been de�ned in (25) and the operator S = x̂a a has alreadybeen used in (35).V. ALGEBRAIC DETERMINATION OF THE SPECTRUMWe proeed as we did in the purely bosoni ase and alulate the ommutator of two Ca:[Ca; Cb℄ = �4iJab ��4� �rA� (39)= �4iJab �H � �2� :Up to the shift in H and the replaement Lab ! Jab this is the same relation as (7). Thetotal angular momenta Jab and the vetor operatorKa = Cap4(�2 �H) (40)form a SO(d + 1) algebra on the subspae of bound states (E < �2). Finally we should6 We have to identify � = �(d� 1). The additional shift �2 makes the lowest eigenvalue of this operator tobe equal to zero. 14



alulate CaCa. If we an express this salar operator in terms of H and operators thatommute with H, similarly as we did in (10), then we may solve for H. However, one soonrealizes that this is impossible by only using the operators 1; N; JabJab and H. However, wean express CaCa in terms of 1; N; JabJab and the two operators QQy and QyQ as follows:CaCa = 4(�2 �H)KaKa = �2�2JabJab + �2JabJab + (d� 2N � 1)2�QQy+ �2JabJab + (d� 2N + 1)2�QyQ ; (41)and this relation is suÆient to obtain the spetrum of the supersymmetri hydrogen atom.Eah of the three subspaes in the deomposition (28) is left invariant by the Hamiltonianand we may onsider H on eah subspae separately. Sine Q2 = 0 we �nd HjQH = QQyand HjQyH = QyQ and an solve (41) for H in eah of these subspaesHjQH = QQy = �2 � (d� 2N � 1)2�2(d� 2N � 1)2 + 4C(2) ; (42)HjQyH = QyQ = �2 � (d� 2N + 1)2�2(d� 2N + 1)2 + 4C(2) ; (43)where C(2) is the seond-order Casimir of the dynamial symmetry group SO(d+1),C(2) = 12JABJAB = 12JabJab +KaKa :All zero modes of H are annihilated by both Q and Qy, and aording to (41) the seond-order Casimir must vanish on these modes, suh thatC(2)jKerH = 0 :We onlude that every normalizable zero mode 	 of H must transform trivially under thedynamial symmetry group, JAB	 = 0.To obtain the bound state energies we need to determine those irreduible representationsof the dynamial symmetry group whih are realized in H and the orresponding values ofthe seond-order Casimir operator. The degeneray of an energy level is then equal to thedimension of the orresponding representation.We use the abbreviation D}̀ to denote multiplets of the orthogonal groups orresponding toYoung tableaux of the form 1 � � `��} 15



sine in the following only those representations will appear. Let us assume, that eahomponent funtion fa1:::ap(x), entering the state 	 2 Hp in (24), is a harmoni polynomialof degree `, that isfa1:::ap(x) = Xb1;b2;:::;b` fa1:::apb1:::b`xb1xb2 � � �xb`with f symmetri in the b�indies and of zero trae in eah pair of them. Sine fa1:::apis ompletely antisymmetri in the a�indies, these objets transform aording to theompletely antisymmetri representationD 1} � 1��}of the rotation group SO(d) generated by the Sab. On the other hand, eah homogeneouspolynomial fa1:::ap(x) transforms aording to the ompletely symmetri representationsD1̀ � 1 � � `of the rotation group generated by the Lab. It follows, that the wave funtion 	 2 Hptransforms aording to the tensor-produt representationsD 1p 
D1̀ = Dp̀�1 �D `�1p �D `+1p �Dp̀+1 : (44)Reall, that p is the fermion number and ` the order of the homogeneous polynomials.For  2 H0 or  2 Hd the �rst fator on the left hand side in (44) beomes the trivialrepresentation and we only obtain the fully symmetri representations D1̀ on the right handside, in agreement with our earlier results in the purely bosoni ase. In the setors H1 andHd�1 the �rst representation on the right hand side of (44) is absent. For linear funtionswith ` = 1 the seond representation on the right is missing. Finally, when using the results(44), one should keep in mind that the representations with } and d�} of SO(d) areequivalent, D}̀ � Dd̀�} ; and that for even dimensions the representations Dd̀=2 are reduibleand ontain one selfdual and one anti-selfdual multiplet. All representations of the rotationgroup SO(d) appearing in the tensor produt (44) should group together into multiplets ofthe dynamial symmetry group SO(d+1). To ontinue we need the following rules for the16



branhing of SO(d+1)- into SO(d)-representations7,D}̀ ���SO(d+1)�! �D}̀ �D `�1} � : : :�D 1} � D}̀�1 �D `�1}�1 � : : :�D 1}�1	 ���SO(d) : (45)Now it is not diÆult to see, that in the setor Hp all polynomials up to order ` appear inthe branhing of only two SO(d+ 1)-multiplets up to two extreme representations,D}̀ �D}̀+1���SO(d+1)�! �D 1} 
 �1�D 11 � : : :�D1̀��D `+1} +D}̀�1	 ���SO(d) :Of ourse, for } = 1 the last representation of the rotation group is absent. There is onenotable exeption to these branhing rules for even d: in the middle setorHn=d=2 the orretbranhing rule readsDǹ �Dǹ���SO(d+1)�! �D 1n 
 �1�D 11 � : : :�D1̀��D `+1n �Dǹ �Dǹ�1	 ���SO(d) :We summarize our results: In odd dimensions d = 2n+1 the following representations ofSO(2n+2) ontaining bound states arise in the various setors of H for ` � 1:H0 -H1 H2 -Qy �Q HnHn�1D1̀ -� D1̀D2̀ � - D2̀D3̀ -� -� Dǹ�1Dǹ � - DǹIn all setors but H0 we have ` 2 N . In the subspaes H0 we have ` 2 N0 and ` = 0orresponds to the trivial representation. The setors Hp>n support no bound states (seebelow) and therefore it suÆes to onsider the setors with N � n.In even dimensions d = 2n the following representations of the dynamial symmetry groupSO(2n+1) arise for ` � 1:7 They an be obtained from [15℄ or by using the program LiE.
17



H0 H1 H2 -Qy �Q Hn�1 HnD1̀ -� D1̀D2̀ � - D2̀D3̀ -� -� Dǹ�1Dǹ � - Dǹ(�Dǹ)The values of the quadrati Casimir operator of SO(d+1) entering the formulae (42,43) forthe energies areC(2) �D}̀� = d(`+ }� 1) + `(`� 1)� }(}� 1) : (46)The dimensions of the representations D}̀ are given in the appendix. In odd dimensions oneuses the formula (A8) with 2n replaed by 2n = d+1 and in even dimensions the formula(A17) with d+1 = 2n+1. In additions one must set(`1; `2; : : : ; `n) = ( pz }| {`; 1; : : : ; 1; 0 : : : ; 0)in these formulae.Now we are ready to determine all eigenvalues of the supersymmetri Hamiltonian (39) withthe help of the results (42,43) and (46) as follows:In H0 only the symmetri representations D1̀ of SO(d+1) are realized. Sine in additionQjH0 = 0 we obtain the following eigenvalues for H in (42)H0 : E0 �D1̀� = �2 � � d� 1d� 1 + 2`�2 �2 ; ` 2 N0 :The index 0 at the energy E indiates the 0-partile setor. Sine the superharges ommutewith the dynamial symmetry group the multiplet D1̀ is paired with the same multiplet inH1. The eigenfuntions in H1 are obtained by ating with Qy on those in H0. Aording toour previous results (see the �gure above) there exists the additional multiplet D2̀ in H1.This is obtained by ating with Q on the same representation in the two-partile setor.Hene H = QQy on this seond multiplet and we obtainE1 �D1̀� = �2 � � d� 1d� 1 + 2`�2 �2 ; ` 2 N ;E1 �D2̀� = �2 � � d� 3d� 1 + 2`�2 �2 ; ` 2 N :18



Note that ` = 0 does not our in H1. In H0 the states with ` = 0 have vanishing energyand hene are annihilated by Qy.Now one ontinues with H2 and further on to H3 et. One only needs the formulaeEp(Dp̀ ) = QyQ���Hp �Dp̀� = �2 � �d+ 1� 2pd� 1 + 2`�2 �2 ; ` 2 N ;Ep(Dp̀+1) = QQy���Hp �Dp̀+1� = �2 � �d� 1� 2pd� 1 + 2`�2 �2 ; ` 2 N :We shall determine the orresponding eigenfuntions in the following setion.VI. EIGENSTATES OF THE SUPERSYMMETRIC HYDROGEN ATOMSo far we have not onsidered whih highest weight states of the dynamial symmetry groupare normalizable. Now we expliitly onstrut these states in all subspaes Hp � H. Inthe previous setion we have seen that for any ` � 1 there are one or two irreduiblerepresentations of SO(d+ 1), namelyDp̀ � �Hp \QyH� and Dp̀+1 � (Hp \QH) : (47)It suÆes to onstrut the highest weight states 	p(Dp̀+1) of the latter multiplets. Thehighest weight states 	p(Dp̀) of the �rst set of multiplets in (47) are then just their super-partners, 	p(Dp̀ ) = Qy	p�1(Dp̀ ) :Atually we only need to alulate the highest weight states 	p(Dp̀+1) for p < d=2 beauseof the duality relation (p; �) ! (d� p;��) ;whih follows from (30) and (37).Observe that for any normalizable H-eigenstate 	 2 QH the transformed state Qy	 isnormalizable, as an be seen from(Qy	; Qy	) = (	; QQy	) = (	; H	) = E(	;	) :Without alulating the highest weight states we an argue in whih setors bound statesannot exist. For that purpose we onsider the Hamiltonian (39). It is easy to see that the19



hermitian operator SyS, where S has been de�ned in (35), is an orthogonal projetor, andhene has eigenvalues 0 and 1. It follows at one that for p > d=2 the operator A in (38) isnegative and hene H > �2. We onlude that H has no bound states in the setors Hp>d=2.On the partiular setor Hn the operator A has both positive and negative eigenvalues. Weexpet that in this setor only one of the two representations (for eah `) of the dynamialsymmetry group ontains bound states. After these general onsiderations we proeed withomputing the highest weight states 	p(Dp̀+1) in the subspae Hp \QH. Again we proeeddi�erently in even- and odd-dimensional spaes.Even-dimensional spaes: We use the omplex oordinates z1; : : : ; zn in Rd=2n and thereation/annihilation operators �y1; : : : ; �yn; �1; : : : ; �n introdued in appendix A1, togetherwith the omplex onjugated objets. Sine the dynamial symmetry group is SO(2n+1), weshould take the Cartan operatorsHi and raising operators Ei from appendix (A 2). However,we must remember that the last row and last olumn of (JAB) ontain the omponents ofthe generalized Laplae-Runge-Lenz vetor. As a onsequene the last step operator En in(A16) is to be replaed byEn = 1p2(Kd�1 + iKd) � 1p2(Cd�1 + iCd)= �2zn�+ (2r�r + d� 1)��n � 2�yn(�i ��i + ��i�i) + 2(�yi�i + ��yi ��i) ��n � �znr A ; (48)Sine the simple roots of the rotational subgroup SO(d) are positive roots of the dynamialsymmetry group, a highest weight state of SO(d+1) is automatially a highest weight stateof SO(d), similar as in the purely bosoni ase. Sine the two groups share the same Cartangenerators the highest weight state 	p(Dp̀+1) of SO(d+1) must also be a highest weightstate of the multiplet Dp̀+1 of SO(d). From the branhing rule (45) and the tensor produts(44) it follows, that this highest weight state must be the state Ya(`; p+ 1) given in (A13).Hene we are lead to the ansatz	p(Dp̀+1) = f(r)Ya(`; p+ 1) :It remains to determine the radial funtion f(r) suh that 	p is annihilated by En. WithEn from (48) one �nds the following equation for the radial funtion f :(d� 1 + 2`)f 0 + �(d� 1� 2p)f = 0suh that the relevant highest weight states in the p-partile take the form20



	p(Dp̀+1) = exp (�`pr) Ya(`; p+ 1) with `p = d� 1� 2pd� 1 + 2` � : (49)As � is assumed positive, these are bound states for p < n.Odd-dimensional spaes: For odd dimensions d = 2n+1 the rank of the dynamialsymmetry group SO(2n+2) exeeds the rank of the rotation group SO(d) by one. Asin the purely bosoni ase we ombine the �rst 2n oordinates, reation and annihilationoperators to omplex ones (f. appendix A2). Sine the rank of the dynamial symmetrygroup is even, we should take the Cartan generators from appendix A1 with n replaed byn+ 1. Sine (JAB) ontains the Laplae-Runge-Lenz vetor the expliit realization of theseoperators di�ers from the one in this appendix. More preisely, the �rst n Cartan generatorsare those in (A4), but the last one Hn+1 is Kd � Cd (f. appendix B), whereCd = �2xd�+ (2r�r + d� 1)�d � 2 yd(�i ��i + ��i�i) + 2(�yi�i + ��yi ��i) d � �x̂dA : (50)The raising operators are the n� 1 operators Ei in (A6) plus the two operators8En = 1i (zn�xd � xd ��zn + �yn d �  yd ��n) and En+1 = 1p2(Cd�2 + iCd�1) : (51)The last operator oinides with En in (48). By using similar arguments as in even dimen-sions we are lead to the following ansatz	p(Dp̀+1) = f(r)Ya(`; p+ 1)for the highest weight state of Dp̀+1 � Hp. This funtion is annihilated by all Ei�n. Theondition En+1	p = 0 yields the same di�erential equation for the radial funtion f as beforeand we obtain	p(Dp̀+1) = exp (�`pr) Ya(`; p+ 1) with `p = d� 1� 2pd� 1 + 2` � : (52)For positive � these states are normalizable for all p < n. It is easy to see that the lastCartan generator � Cd annihilates this state and this shows that it has the orret weight.The remaining highest weight states: We have argued that the highest weight state	p+1(Dp̀+1) � Hp+1 is the superpartner of 	p(Dp̀+1) in (52). A simple alulation yields8 whih are independent ombinations of the last two raising operators, see appendix B.21



	p+1(Dp̀+1) = Qy	p(Dp̀+1)= i�(�� `p)SyYa(`; p+ 1) + (`+ p)Ys(`; p+ 1)� exp(�`pr) (53)for this state and shows that it is a linear ombination of the two highest weight states Ysand Ya of SO(d) given in formulae (A12,A13). These states lead to additional bound-statemultiplets in the setors Hp with p = 1; : : : ; n.VII. THE SUPERSYMMETRIC HYDROGEN ATOM IN DIMENSIONS � 4In this setion we apply the general results of the previous three setions to supersymmetrisystems in low dimensions. The two-dimensional ase mainly serves as illustration of themethod. It may be worth noting that suh systems admit a supersymmetri Laplae-Runge-Lenz vetor, ontrary to what has been laimed in the literature [16℄. The three-dimensionalquantum system is of ourse the most interesting extension of the ordinary hydrogen atom.We have inluded the four-dimensional supersymmetri system sine it already shows veryniely whih additional strutures arise when one goes beyond three dimensions.Two dimensions: The Hilbert spae of the supersymmetri hydrogen atom in two spaedimensions ontains three setors, H = H0 �H1 �H2 ;and an arbitrary wave funtion has the expansion (in the basis (22))	 = f0j0i+ (f1j1i+ f2j2i) + f12j12i � f = (f0; f1; f2; f12)T :The Hamiltonian (39) ats on the omponent funtions in f as followsf �! Hf with H = �4+ �2 + �r 0B��1 0 00 Æab � 2x̂ax̂b 00 0 11CAClearly, for � > 0 there are no bound states in the two-partile subspae, in aordane withour general result below eq. (47). Only the multipletsD `� 01 � H0 and D `> 01 � H1of the dynamial symmetry group SO(3) ontain normalizable states.22



We introdue the omplex oordinate z and the omplex reation/annihilation operator (seeappendix A1) in terms of whih the highest weight state (49) read	0(D1̀ ) = exp(�`0r)Ya(`; 1) = exp(�`0r) z`j0i ; `0 = �1 + 2` ;and its superpartner (53)	1(D1̀ ) = Qy	0(D1̀ ) = i�(��`0)SyYa(`; 1) + `Ys(`; 1)� exp(�`0r) : (54)The energy of the `+1 states in eah of the two orresponding SO(3)-multiplets isE` = �2 � 2̀0 :There is exatly one zero-energy ground state in the zero-partile setor and this state has` = 0. It is annihilated by the adjoint superharge Qy, as an be seen from (54). Thespetrum of the supersymmetri system is depited in the following �gure.H0 H1 H26E=�2
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Eigenvalues of H in d = 2 dimensions.Three dimensions: For this most relevant system, the Hilbert spae ontains four setors,H = H0 �H1 �H2 �H3 ;and a wave funtion has the expansion	 = f0j0i+ (f1j1i+ f2j2i+ f3j3i) + : : : :Sine here we are only interested in bound states it suÆes to onsider H on the subsetorsH0 and H1. The Hamiltonian in H0 belongs to the ordinary hydrogen atom,H(0) = �4 + �2 � 2�r ;23



and it ats on a state 	 2 H1 with omponent funtions hajHi = fa as follows,hajH	i = (�4+ �2)fa � 2�r x̂ax̂bfb :We take the oordinates (z; x3) and the reation operators (�y; ��y;  y3) (see appendix A2).The highest weight state in the multiplet D1̀ � H0 of the dynamial symmetry group SO(4)has the form 	0(D1̀ ) = exp(�`0r)Ya(`; 1) 2 H0 ; `0 = �1 + ` ;and this state is mapped into the partner state	1(D1̀ ) = Qy	0(D1̀ ) = i�(�� `0)SyYa(`; 1) + `Ys(`; 1)� exp(�`0r) :All states in the two orresponding SO(4)-multiplets share the same energyE` = �2 � 2̀0and both multiplets ontain (`+1)2 states. This is the well-known spetrum of the hydrogenatom. The normalizable zero-mode has ` = 0 and resides in the zero-partile setor. It isjust the ground state of the hydrogen atom.There are no further bound states, sine the other states are paired with wave funtions inH2 and thus annot be normalizable. The spetrum of the supersymmetri hydrogen atomin three dimensions is shown below.H0 H1 H2 H36E=�2
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Eigenvalues of H in d = 3 dimensions.Four dimensions: The Hilbert spae splits into �ve subsetors,H = H0 �H1 �H2 �H3 �H4 :24



In the zero-partile setor the Hamiltonian takes the form,H(0) = �4 + �2 � 3�r ;and in the one-partile setor it ats on a state 	 with haj	i = fa as follows:hajH	i = ��4+ �2 � �r� fa � 2�r x̂ax̂bfb :In H2 we are left with a 6� 6-matrix Shr�odinger operator: For a two-partile state 	 withomponent funtion habj	i = fab we obtainhabjH	i = ��4 + �2 + �r� fab � 2�r (x̂bfa � x̂afb)x̂ :We introdue omplex oordinates z1; z2 and reation operators �y1; �y2 as in appendix A1.For all ` 2 N we �nd the highest weight states	0(D1̀ ) = exp(�`0r) z1̀ j0i with `0 = 3�2`+ 3in the zero-partile setor, together with their superpartners in H1,	1(D1̀ ) = i�(�� `0)SyYa(`; 1) + `Ys(`; 1)� exp(�`0r) ;whih exists for ` > 0. All states in these two multiplets have the same energyE` = �2 � 2̀0 ;and the number of states in eah multiplet is (` + 1)(` + 2)(2` + 3)=6. Now there is anadditional representation D2̀ � H1 with highest weight state	1(D2̀ ) = exp(�`1r)Ya(`; 2)= exp(�`1r) (�y2z1 � �y1z2) z`�11 j0i ; `1 = �3 + 2` :The energy of this state is E` = �2 � 2̀1 ;and the multiplet ontains `(` + 3)(2` + 3)=4 members. Again there is a supersymmetripartner multiplet with the same energy and degeneray. The remaining highest weight stateof D3̀ ' D2̀ � H2 is paired to a state in H3 and therefore not normalizable. Thus we �ndthe spetrum as depited in the following �gure.25
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Eigenvalues of H in d = 4 dimensions.VIII. SUMMARY AND DISCUSSIONWe have sueeded in extending the elebrated results of Pauli, Fok, Bargmann and othersin two diretions: to higher dimensions and to the N = 2 supersymmetri extension of thehydrogen atom. First we onstruted a generalized angular momentum and an extendedLaplae-Runge-Lenz vetor whih ould be ombined to generators of the dynamial sym-metry group SO(d+1) in d dimensions. Then we related the quadrati Casimir operatorof this group to the partile number N , QQy and QQy. This way we alulated the boundstate spetrum of the supersymmetri hydrogen atom in arbitrary dimensions by algebraimeans. We have determined all bound-state multiplets of the dynamial symmetry groupand alulated the highest weight state in eah of them.Itzykson and Bander [8℄ distinguished between the in�nitesimal and the global method tosolve the Coulomb problem. The former is based on the Laplae-Runge-Lenz vetor and isthe method used in this paper. In the seond method one performs a stereographi projetionof the d-dimensional momentum spae to the unit sphere in d+1 dimensions whih in turnimplies a SO(d+1) symmetry group. It would be interesting to perform a similar globalonstrution for the supersymmetri systems introdued in this paper.We have not explained why every multiplet of the dynamial symmetry group appears fourtimes. Furthermore there is a new 'aidental' degeneray: in higher dimensions someeigenvalues of the Hamiltonian appear in many di�erent partile-number setors. It mayvery well be, that the algebrai strutures disussed in the present work have a more naturalsetting in the language of superalgebras. We have not investigated this question. Anontherinteresting question is whether the dynamial symmetries onsidered in this paper are related26



to fermioni Killing-Yano superharges [21℄. This problem needs further investigations.Finally, we see no obstale against extending our method to the sattering problem of thesupersymmetri hydrogen atom, for whih the dynamial symmetry group SO(1; d) is non-ompat.AknowledgmentsWe thank Falk Brukmann for his ollaboration at an early stage of this projet and ThomasStrobl and Jan-Willem van Holten for useful disussions. P.A.G. Pisani thanks people atthe TPI for their kind hospitality. A. Kirhberg and P.A.G. Pisani are supported by theStudienstiftung des Deutshen Volkes and CONICET, respetively. This projet has in partbeen supported by Foundai�on Antorhas and DAAD (grant 13887/1-87). Most group-theoretial alulations have been performed with the powerful pakage LiE [20℄.Appendix A: REPRESENTATIONS OF ROTATION GROUPSIn this appendix we ollet the group theoretial fats needed in the main body of thepaper (f. [15, 17{19℄ for a more detailed disussion of these issues). We shall onstrut therelevant irreduible representations of the total angular momentum operatorsJab = 1i �xa ��xb � xb ��xa�+ 1i � ya b �  yb a� ; a; b = 1; : : : ; dsatisfying the so(d) ommutation relations[Jab; Jd℄ = i(ÆaJbd + ÆbdJa � ÆadJb � ÆbJad)on wave funtions inHp = L2(Rd)� C (dp) with p = 0; : : : ; d :The fermioni operators  a have been introdued earlier in setion III. It is onvenient touse the Cartan-Weyl basis onsisting of generators Hi in the Cartan subalgebra and oneraising and one lowering operator E� and E�� for every positive root �,[Hi; E�℄ = �iE� and [E�; E��℄ = � �H with E�� = Ey� : (A1)Beause of their di�erent properties we do this separately for the groups Dn � SO(2n) andBn � SO(2n+1). 27



1. Total angular momentum for the SO(d = 2n) groupsTo proeed it is very onvenient to introdue omplex oordinates in R2n,zi = 1p2(x2i�1 + ix2i) ; �zi = 1p2(x2i�1 � ix2i) ;�i = 1p2(�x2i�1 � i�x2i) ; ��i = 1p2(�x2i�1 + i�x2i) ; i = 1; : : : n (A2)and similarly two sets of omplex reation- and annihilation operators�yi = 1p2( y2i�1 + i y2i) ; ��yi = 1p2( y2i�1 � i y2i) ;�i = 1p2( 2i�1 � i 2i) ; ��i = 1p2( 2i�1 + i 2i) ; i = 1; : : : n : (A3)The only non-vanishing antiommutators aref�i; �yjg = f��i; ��yjg = Æij :The generators in the Cartan subalgebra take the simple formHi = J2i�1;2i = zi�i � �zi ��i + �yi�i � ��yi ��i ; i = 1; : : : ; n (A4)and there are two types of raising operators:E� = 12(J2i�1;2j�1 + J2i;2j � iJ2i�1;2j + iJ2i;2j�1) with root � = ei � ej ;E� = 12(J2i�1;2j�1 � J2i;2j + iJ2i�1;2j + iJ2i;2j�1) with root � = ei + ej ;where i < j is assumed. In terms of the omplex oordinates/operators they readE� = 1i �zi�j � �zj ��i + �yi�j � ��yj ��i� with root � = ei � ej ;E� = 1i �zi ��j � zj ��i + �yi ��j � �yj ��i� with root � = ei + ej : (A5)The orresponding lowering operators are just the adjoint of the raising operators. Theoperators (Hi; E�; E��) satisfy the ommutation relations (A1) with orresponding positiveroots in (A5). The n simple roots are�i = ei � ei+1 ; 1 � i < n and �n = en�1 + enand the orresponding raising operators have the formEi = 1i �zi�i+1 � �zi+1 ��i + �yi�i+1 � ��yi+1 ��i� ; � = ei � ei+1; 1 � i < n (A6)28



En = 1i �zn�1 ��n � zn ��n�1 + �yn�1 ��n � �yn ��n�1� ; � = en�1 + en : (A7)With the help of the Weyl vetorÆ = 12X�>0 � = (n� 1)e1 + (n� 2)e2 + : : :+ en�1 ;where the sum extends over all positive roots in (A5), we may alulate the dimension ofan arbitrary faithful representation of SO(2n). Suh a representation is determined by itsYoung tableau ontaining at most n rows. The length `i of row i is bigger or equal to thatof row i+ 1. Hene, a Young tableau is given by n non-negative ordered integers`1 � `2 � : : : � `n�1 � `nand has the form p8><>: 1 2 � � � `11 2 � � `2: : : :1 � `p ; p � n :Rows with length 0 are not shown when one draws a Young-tableau. The orrespondingrepresentation D `1;:::;`n has the dimensiondim �D `1:::`n� = Y1�r<s�n `r + `s + 2n� r � s2n� r � s `r � `s + s� rs� r : (A8)For the seond-order Casimir invariant of these representations one obtains the formulaC(2)(D `1:::`n) =Xr `r(`r + 2n� 2r) :In partiular, for the ompletely symmetri representationsD `0:::0 � D1̀ � 1 2 � � `these formulae simplify toC(2)(D1̀ ) = `(`+ d� 2) and dim(D1̀ ) = �`+d�1` �� �`+d�3`�2 � : (A9)For the ompletely antisymmetri representationsD1;1;:::1 � D 1p � 1:p29



they simplify to C(2)(D 1p ) = p(d� p) and dim(D 1p ) = �dp� :Simultaneous eigenstates of all n generators Hi in the Cartan subalgebra have the formnYi=1 zmii �z �mii j~p ~p 0i ; j~p ~p 0i = �y p11 : : : �y pnn ��y p011 : : : ��y p0nn j0i ;where mi; �mi 2 N0 and pi; p0i 2 f0; 1g. The vauum j0i is annihilated by all partile loweringoperators  a or equivalently by all �i and ��i. The Hi-eigenvalues of these states are mi��mi+pi�p0i.Next we must onstrut the highest weight states whih are annihilated by all raising oper-ators. Every suh state determines an irreduible representation. The eigenvalues of Hi ona highest weight state is equal to the length `i of the Young tableau orresponding to theirreduible representation determined by this weight. The d + 2 spae-independent highestweight states are jpi = j~p ~p 0i with p1 � : : : � pn � p0n � : : : � p01and X(pi + p0i) = p ;There is an additional highest weight state in the p = n partile setor, that arises sine inthis setor we have selfdual and anti-selfdual on�gurations. It is given byp1 = : : : = pn�1 = p0n = 1 ; pn = p01 = : : : = p0n�1 = 0 :Clearly, the partile number p uniquely spei�es these state sine the pi; p0i's are ordered.These states de�ne the ompletely antisymmetri representationsD 1p for p � n and D 1p � D 12n�p for p � n :We used that a Young tableau, the �rst olumn of whih has length n � p � 2n, gives rise tothe same multiplet as the tableau with �rst olumn of length 2n�p � n. It the following oneshould replae Dp̀ by D2̀n�p if p exeeds n. Also note that D 10 � D 1d is the one-dimensionaltrivial representation.The highest weight states in the 0-partile setor arez1̀j0i (A10)and they give rise to the ompletely symmetri representations D1̀ spanned by the harmoni30



polynomials of order `. The relevant irreduible representation of SO(2n) in the p-partilesetor is gotten by tensoring the antisymmetri representation D 1p with a symmetri repre-sentation D1̀ . We useD 1p 
D1̀ = Dp̀�1 �D `�1p �D `+1p �Dp̀+1 (A11)or in the language of Young tableaux,1::p 
 1 2 � ` = p�18<: 1 2 � `:: � `�1z }| {1 � �::p � `+1z }| {1 2 � � �::p � 1 2 � `::::
9>>>=>>>; p+1 :Note that for p = 1 and/or ` = 1 there appear only three representations in this deomposi-tion. For p = 1 the �rst representation and for ` = 1 the seond representation on the righthand side in (A11) are absent. Also note that for p = n the �rst and last representationsare equivalent. The seond to last representation D `+1p on the right hand side has highestweight state Ys(`+ 1; p) = z1̀ jpi ; (A12)as it is the produt of the highest weight states of D 1p and D1̀ . To �nd the highest weightstate of the other representations we observe that the operatorsrS = xa a = zi�i + �zi ��i and rSy = xa ya = �zi�yi + zi ��yi ;whih have been introdued in (35), ommute with the total angular momentum and henemap highest weight states into highest weight states. Sine S dereases and Sy inreases thepartile number by one, we �nd the stateYa(`; p+ 1) = rSYs(`; p+1) = p+1Xi=1 (�)i+1zi�y1 : : : ��yi : : : �yp+1z`�11 j0i (A13)whih is highest weight state of the last representation Dp̀+1 in the deomposition (A11).The missing two highest weight states orrespond to those representations in the tensorprodut of a symmetri and an antisymmetri representation whih one obtains by takingthe trae over two suitable indies. This operation is equivalent to ating with Sy. ThusTs(`; p�1) = SyYs(`; p�1)31



is the highest weight state of Dp̀�1 in the deomposition (A11). For the remaining highestweight state we make the ansatzTa(`�1; p) = (SSy + �SyS)Ys(`�1; p) :As fS; Syg = 1 this state may have a omponent in the diretion of Ys(`�1; p). However,for the hoie � = �1 the highest weight stateTa(`�1; p) = [S; Sy℄Ys(`�1; p) ;is orthogonal to Ys(`�1; p).2. Total angular momentum for the SO(d = 2n+ 1) groupsThe rotation group SO(2n+1) has the same rank as its subgroup SO(2n) and hene we maystill use the Cartan generators (A4), that isHi = J2i�1;2i = zi�i � �zi ��i + �yi�i � ��yi ��i ; i = 1; : : : ; n : (A14)We use the omplex oordinates (A2) and the omplex reation- and annihilation operators(A3), supplemented by the last oordinate xd and the last reation and annihilation operator yd and  d. Clearly, the raising operators (A5) are still raising operators of so(2n+ 1) withthe same positive roots. But sinedim (SO(2n+1)) = dim(SO(2n)) + 2n and rank (SO(2n+ 1)) = rank (SO(2n))there are n positive roots missing. These areE� = 1p2 (J2i�1;d + iJ2i;d) = 1i �zi�xd � xd ��i + �yi d �  yd ��i� ; � = ei ;where 1 � i � n. The �rst n�1 simple roots are the same as in (A6), but the the last oneis replaed by en. Hene the raising operators orresponding to the simple roots readEi = 1i �zi�i+1 � �zi+1 ��i + �yi�i+1 � ��yi+1 ��i� ; � = ei � ei+1 ; 1 � i < n ; (A15)En = 1i �zn�xd � xd ��n + �yn d �  yd ��n� ; � = en : (A16)The Young tableaux are idential to those of SO(2n) and hene are haraterized by n or-dered non-negative integers `1; : : : ; `n. The dimensions of the orresponding representationsread 32



dim �D `1:::`n� = nYt=1 2`t + d� 2td� 2t Y1�r<s�n `r + `s + d� r � sd� r � s `r � `s + s� rs� r (A17)and the formula for the seond-order Casimir is the same as for the so(2n) algebra,C(2)(D `1:::`n) =Xr `r(`r + d� 2r) :Also the rules for tensor produts are idential to those of SO(2n).Sine the simple roots are di�erent, the highest weight states have a slightly di�erent form.The simultaneous eigenstates of the n generators in the Cartan subalgebra readf(xd)Yi zmii �z �mii j~p q ~p 0i ; j~p q ~p 0i = �y p11 : : : �y pnn  y qd ��y p011 : : : ��y p0nn j0i ;where mi; �mi 2 Z and pi; q; �pi 2 f0; 1g. The d+1 onstant highest weight states arejpi = j~p q ~p 0i with p1 � : : : � pn � q � p0n � : : : � p01 ;where p = P(pi+p0i) + q denotes the partile number. The highest weight of D `+1p in thedeomposition D 1p 
D1̀ = Dp̀�1 �D `�1p �D `+1p �Dp̀+1 (A18)is again determined by the highest weight stateYs(`+ 1; p) = zl1 jpi :As in even dimensions one may use the salar operatorsrS = xa a = zi�i + �zi ��i + xd d and rSy = xa ya = �zi�yi + zi ��yi + xd ydto obtain the highest weight statesYa(`; p+ 1) = rSYs(`; p+1) �! Dp̀+1 ;Ts(`; p�1) = SyYs(`; p�1) �! Dp̀�1 ;Ta(`�1; p) = [S; Sy℄Ys(`�1; p) �! D `�1p ;of the remaining irreduible representations in (A18).33



Appendix B: ROTATION GROUPS VS. DYNAMICAL SYMMETRY GROUPSIn the main body of the paper we have seen, that the total angular momentum Jab in (33)together with Ka in (40) ombine to generators of the dynamial symmetry group SO(d+1)JAB = 0� Jab Ka�Kb 0 1A :The rotational group with generators Jab disussed in the previous part of the appendix,must be embedded into the dynamial group,d = 2n : SO(2n) � SO(2n+ 1)d = 2n+1 : SO(2n+ 1) � SO(2n+ 2) :Even dimensions: The dynamial symmetry group has the same rank as the rotationgroup SO(2n) and we an repeat our onstrution in appendix A2, where we extendedSO(2n) to SO(2n+1). Of ourse we should take into aount that the omponents in thelast olumn and last row of (JAB) are the omponents of Ka. The Cartan generators arethose in (A14) and the �rst n�1 raising operators are given in (A15). But the last raisingoperator (A16) is of ourse replaed byEn = 1p2(Kd�1 + iKd) ;whih is proportional to 1p2(Cd�1 + iCd). The latter has been given in (48).Odd dimensions: The rank of the dynamial symmetry group SO(2n+2) exeeds the rankof the rotation group SO(2n+1) by one. The Cartan generators are given by the n operatorsHi in (A4), supplemented by Hn+1 = Kd � Cd, where the expliit realization of Cd is givenin (50). The raising operators are the n� 1 operators Ei in (A15) plus the two operatorsE� = 12(Jd�2;d +Kd�1 � iKd�2 + iJd�1;d) ; � = en � en+1 ;E 0� = 12(Jd�2;d �Kd�1 + iKd�2 + iJd�1;d) ; � = en + en+1 :Highest weight states are annihilated by these two raising operators and it is onvenient touse two (independent) ombinations of these operators, namely the operators1p2 (E� + E 0�) = En and ip2 (E� � E 0�) � 1p2(Cd�2 + iCd�1) = En+1 :34



Their expliit forms an be found in (48) and (51).
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