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Abstra
tThe Thirring model and various generalizations of it are analyzedin detail. The four-Fermi intera
tion modi�es the equation of state.Chemi
al potentials and twisted boundary 
onditions both result in
omplex fermioni
 determinants whi
h are analyzed. The non-minimal
oupling to gravity does deform the 
onformal algebra whi
h in par-ti
ular 
ontains the minimal models. We 
ompute the 
entral 
harges,
onformal weights and �nite size e�e
ts.For the gauged model we derive the partition fun
tions and the ex-pli
it expression for the 
hiral 
ondensate at �nite temperature and
urvature. The Bosonization in 
ompa
t 
urved spa
e-times is alsoinvestigated.<



1 Introdu
tionThe response of physi
al systems to a 
hange of external 
onditions is of eminentimportan
e in physi
s. In parti
ular the dependen
e of expe
tation values on tem-perature, the parti
le density, the spa
e region, the imposed boundary 
onditions orexternal �elds has been widely studied [1℄. Nevertheless, many properties of su
hsystems are poorly understood. The massless Thirring model [2℄, whi
h is among thesimplest intera
ting �eld theories, has already led to 
onsiderable 
onfusion about itsthermodynami
 properties in the literature [3, 4, 5℄. The reason is two-fold: Firstly,the 
omputation of the fermioni
 determinant in the presen
e of a 
hemi
al potentialand/or non-trivial boundary 
onditions is deli
ate, be
ause the eigenvalues of theDira
 operator are generi
ally 
omplex. In se
tion 3:1 we propose a regularizations
heme via analyti
 
ontinuation. We argue that the so-obtained determinant, whi
hdi�ers from previous results [4℄, leads to the 
orre
t equation of state.The se
ond 
ompli
ation originates in the infrared-se
tor. An elegant infrared regu-larization, whi
h is parti
ularly well suited for the study of thermodynami
 properties,is to quantize the model on a torus. Harmoni
 
ontributions to the 
urrent arise thennaturally and taking them into a

ount turns out to be 
ru
ial for a 
orre
t quanti-zation. In parti
ular the so-obtained results di�er from those gotten earlier [3℄ usingbosonization. This is explained in se
tion 3:2.On another front there has been mu
h e�ort to quantize self-intera
ting �eldtheories in a ba
kground gravitational �eld [6℄. For example, one is interested whethera bla
k hole still emits thermal radiation when self-intera
tion is in
luded. Due togeneral arguments by Gibbons and Perry [7℄ this question is intimately 
onne
ted withthe universality of the se
ond law of thermodynami
s. The Thirring model (in
ludingthe gauged version of it) is still solvable in 
urved spa
e-time and we 
an study itsproperties in a ba
kground gravitational �eld. This provides us in parti
ular with anelegant approa
h to the study of its 
onformal stru
ture: Correlation fun
tions with
urrent- and stress-tensor insertions, whi
h are gotten by fun
tional di�erentiationwith respe
t to the gauge- and gravitational �elds, 
ontain the ne
essary informationto 
hara
terize the underlying symmetry algebras. To familiarize the reader with ourapproa
h we �rst rederive the 
onformal stru
ture of the original Thirring model inse
tion 3:3. We then show how a non-minimal 
oupling to gravity leads in a naturalway to a modi�
ation of the 
onformal stru
ture. In parti
ular, very mu
h as for afree s
alar �eld the 
entral 
harge in the fermioni
 formulation of the Thirring modelis not unique. Furthermore, we �nd that the equivalen
e between �nite size s
alingand 
entral 
harge of the Virasoro algebra holds only for a parti
ular treatment of1



the zero-mode se
tor in whi
h a 
harge at in�nity is generated automati
ally. This
harge 
ombines in a non-trivial way with the Weyl-anomaly of the determinant ofthe 
u
tuation operators to re
on
ile the equivalen
e of the �nite size s
aling and the
entral 
harge. For 
ertain values of the non-minimal 
oupling we obtain minimalmodels from intera
ting fermions. This is the subje
t of se
tions 3.4 and 3.5.The gauged Thirring model, whi
h 
ontains the S
hwinger model (QED2) as aparti
ular limit, is no longer 
onformally invariant but has a mass gap: The 'photon'a
quires a mass m2
 = e2=(� + 12g22 ) via the S
hwinger me
hanism. It possesses anon-trivial va
uum stru
ture whi
h promotes it to an attra
tive toy model to mimi
the 
omplex va
uum stru
ture in 4-d gauge theories. From our experien
e with theS
hwinger model [8℄, whi
h is supposed to share 
ertain aspe
ts with one-
avour QCD[9℄, we expe
t that gauge �elds with winding numbers are responsible for the non-vanishing 
hiral 
ondensate and in parti
ular its temperature dependen
e. Con�gura-tions with windings, so 
alled instantons, exist only for �nite volumes and minimizethe Eu
lidean a
tion. They lead to 
hirality violating va
uum expe
tation values.For example, a non-zero 
hiral 
ondensate develops whi
h only for high temperatureand large 
urvature vanishes exponentially.Sin
e for parti
ular 
hoi
es of the 
oupling 
onstants the model redu
es to wellknown and well studied exa
tly soluble models there are many earlier works whi
h arerelated to ours. Some of them 
on
entrated more on the gauge se
tor and investigatedthe renormalization of the ele
tri
 
harge by the four-Fermi intera
tion [10℄ or thenon-trivial va
uum stru
ture in the S
hwinger model [8, 11℄. Others 
on
entrated onthe un-gauged 
onformal se
tor. Freedman and Pil
h 
al
ulated the partition fun
tionof the un-gauged Thirring model on arbitrary Riemann surfa
es [4℄. We do not agreewith their result and in parti
ular show that there is no holomorphi
 fa
torizationfor general fermioni
 boundary 
onditions. Also we deviate from Destri and deVega[5℄ whi
h investigated the un-gauged model on the 
ylinder with twisted boundary
onditions. We 
omment on these dis
repan
ies in se
tion 3:2.Se
tion 2 
ontains introdu
tory material and in parti
ular the 
lassi
al stru
ture ofthe model.Other papers are dealing with di�erent aspe
ts of 
ertain limiting 
ases of themodel 
onsidered here. In parti
ular in [3℄, the thermodynami
s of the Thirring modelhas been studied and the Hawking radiation has been derived in [12℄. The equivalen
eof the massive Thirring model and the Sine-Gordon model in 
urved spa
e has beenshown in [13℄. Partition fun
tions for s
alar �elds with twisted boundary 
onditionshave been 
omputed in [14℄ and more re
ently in [15℄.2



2 Classi
al TheoryThe gauged Thirring model in 
urved spa
e-time has the LagrangianLThir[A�; � ;  ℄ = � i
�r� � g24 j�j� � 14F��F �� , j� = � 
� ; (1)where the gamma-matri
es in 
urved spa
e-time are related to the ones in Minkowskispa
e-time as 
�=e�a
̂a, r�=��+ i!�� ieA� is the 
oordinate- and gauge 
ovariantderivative and F�� is the ele
tromagneti
 �eld strength. The gravitational �eld g��(or rather the 2-bein ea�, sin
e the theory 
ontains fermions) is treated as 
lassi
alba
kground �eld, whereas the 'photons' A� and fermions  will be quantized.The 
lassi
al theory is invariant under U(1) gauge- and axial transformations and
orrespondingly possesses 
onserved ve
tor and axial-ve
tor 
urrentsj� and j5�= � 
�
5 =���j�: (2)Here ���=p�g ��� denotes the totally antisymmetri
 tensor. In fa
t, the 
onservationlaws together with the relation (2) between the ve
tor- and axial 
urrents imply thatthe 
urrents are free �eldsr2j� = r2j5� = 0 ; (3)whi
h is the reason that a

ounts for the solubility of the model [16℄, even in thepresen
e of gauge- and gravitational �elds. Of 
ourse, for any gauge invariant regu-larization the axial 
urrent possesses an anomalous divergen
e in the quantized model.Thus the normal UA(1) Ward identities in the un-gauged Thirring model [10℄ be
omeanomalous when the fermions 
ouple to a gauge �eld.The solution of the equations of motion is most easily presented by introdu
ingauxiliary s
alar- and pseudo-s
alar �elds, in terms of whi
h the a
tion takes the formS = Z p�gh� 14F��F �� + i � 
�(r� � ig1���+ ig2� �� ���) i+g��(������+ ������)i: (4)Note that for later use we have allowed for di�erent 
ouplings of the fermioni
 
urrentsto the s
alar- and pseudo-s
alar auxiliary �elds � and �, respe
tively. The originalThirring model is re
overed for g1=g2=g, sin
e then3



L = �14F 2 + i � 
�r� + gj�B� + g��B�B�; B� = ���� � �� ��� (5)is 
lassi
ally and quantum-me
hani
ally equivalent to (1), after elimination of themultiplier �eld B�.By de
omposing the gauge �eld similarly as the B�-�eld asA� = ���� �����'; so that F01 = p�gr2'; (6)and 
hoosing isothermal 
oordinates for whi
h g�� = e2���� , the generalized Dira
operator readsD= = eiF�i
5G� 32� �= e�iF�i
5G+ 12�; whereF = g1�+ e � and G = g2�+ e ' : (7)Hen
e, if  0(x) solves the free Dira
 equation in 
at Minkowski spa
e time, then (x) � eiF+i
5G� 12� 0 (8)solves the Dira
 equation of the intera
ting theory on 
urved spa
e-time. The ve
tor
urrents are related asj� = � 
� = � 0
̂� 0e�2� � 1p�g j�0 :The same relation holds for the axial ve
tor 
urrent.Di�eomorphism invarian
e then leads 
ovariantly 
onserved energy-moment umtensor T �� � � 2pg ÆSÆg�� : (9)Applying the variational identities in Appendix A one obtains after a lengthy butstraightforward 
omputationT �� = 14g��F ��F�� � F ��F �� + i2[ � 
(�D�) � (D(� � )
�) ℄+2r��r��� g��r��r�� + (�$ �) (10)+12j� (g1r��� g2���r��) + (�$ �)4



+g2g��j����r��� 2g2j��� (�r�)� ;where we have introdu
ed the symmetrization A(�B�)= 12(A�B� + A�B�). The �rsttwo lines are just the energy momentum of the ele
tromagneti
 �eld, 
harged fermionsand free neutral (pseudo-) s
alars. The remaining terms re
e
t the intera
tion be-tween the fermioni
 and auxiliary �elds. On shell T �� is 
onserved as required bygeneral 
ovarian
e. Using the �eld equations for  and � its tra
e readsT �� = �12F ��F�� : (11)In parti
ular for A�=0 it vanishes, and the theory be
omes Weyl-invariant.Symple
ti
 stru
ture: In the presen
e of both fermions and bosons it is 
onvenientto exploit the graded Poisson stru
ture [17℄fA(x); B(y)g �XO Z dz1�A(x) �ÆÆO(z) �!Æ B(y)Æ�O(z) � A(x) �ÆÆ�O(z) �!Æ B(y)ÆO(z) ����x0=y0 :The sum is over all fundamental �elds O(x) in the theory . The sign is minus if oneor both of the �elds A and B are bosoni
 (even) and it is plus if both are fermioni
(odd) �elds. The momentum densities �O(x) 
onjugate to the O-�elds are given byfun
tional left-derivatives. A simple 
al
ulation yields the following momenta� = �i y; �� = g2j50 + 2�0� and �� = g1j0 + 2�0�:In the following se
tions we are lead to 
onsider the Eu
lidean version of themodel. Then one must repla
e the Lorentzian 
�; g�� and !� by their Eu
lidean
ounterparts. For example, with our 
onventions the relation (2) be
omesj5� = �i��� j�and the generalized Dira
 operator in Eu
lidean spa
e-time be
omesD= = e�2�efy �= ef ; where f = �iF + 
5G+ 12� (12)(see (7) for the de�nition of F and G), instead of (7). Also, to re
over the Eu
lideanThirring model as parti
ular limit of (4) we must set g22 =g21 =g2.5



3 Thermodynami
- and 
onformal propertiesIn this se
tion we analyze the quantum theory 
orresponding to the 
lassi
al a
tion(4) without gauge �elds, in 
at and 
urved spa
e-time. The gauged model is then
onsidered in the next se
tion. Here we 
al
ulate the partition fun
tion, ground stateenergy, equation of state and determine the 
onformal stru
ture of the un-gaugedmodel.To allow for a non-vanishing U(1)-
harge we 
ouple this 
onserved 
harge to a
hemi
al potential �. For the �nite temperature model the imaginary time must varyfrom zero to the inverse temperature � and the bosoni
 and fermioni
 �elds mustobey periodi
 and anti-periodi
 boundary 
onditions, respe
tively. We en
lose thesystem in a spatial box with length L to avoid infrared divergen
es.We shall determine the dependen
e of the partition fun
tion and 
orrelators onthe metri
. This provides us with an alternative approa
h to the 
onformal stru
tureand its relation to �nite size-e�e
ts. Also, it enables us to study the e�e
t of non-minimal 
oupling to gravity in se
tion 3:3. Hen
e we allow for an arbitrary metri
 or2-bein e�a with Eu
lidean signature. We 
an 
hoose (quasi) isothermal 
oordinatesand a Lorentz frame su
h thate�a = e� ê�a � e� � �0 �10 1 �g�� = e2� ĝ�� � e2� � j� j2 �1�1 1 � ; pg = e2��0; (13)where � = �1 + i�0 is the Tei
hmueller parameter and � the gravitational Liouville�eld. Spa
e-time is then a square of length L and has volume V = R L0 d2xpg. Weallow for the general twisted boundary 
onditions for the fermions (x0 + L; x1) = �e2�i(�0+�0
5) (x0; x1) (x0; x1 + L) = �e2�i(�1+�1
5) (x0; x1): (14)The parameters �i and �i represent ve
torial and 
hiral twists, respe
tively. We 
ouldallow for twisted boundary 
onditions for the (pseudo) s
alars as well [14, 15℄, e.g.�(x0+nL; x1+mL) = �(x1; x0) + 2�(m+n). However, to re
over the Thirring modelfor equal 
ouplings we must assume that these �elds are periodi
. For �=0, � = i�=Lin whi
h 
ase V = �L, and for �0 = �0 = 0 the partition fun
tion has the usualthermodynami
al interpretation. Its logarithm is proportional to the free energy at6



temperature T =1=�.3.1 Fermioni
 Generating Fun
tionalTwisted boundary 
onditions as in (14) require some 
are in the fermioni
 path in-tegral. The subtleties are not related to the unavoidable ultra-violet divergen
es butto the transition from Minkowski- to Eu
lidean spa
e-time. To see that more 
learlylet S� denote the spa
e of fermioni
 �elds in Minkowski spa
e-time with 
hirality �1.Sin
e both the 
ommutation relations and the a
tion do not 
onne
t S+ and S� we
an 
onsistently impose di�erent boundary 
onditions on S+ and S�. On the otherhand, in the Eu
lidean path-integral for the generating fun
tionalZF [�; ��℄ = Z D yD eR pg  yiD= +R pg (�� + y�); (15)the Dira
 operator D= = � 0 D�D+ 0 �ex
hanges the two 
hiral 
omponents of  , i.e. D= : S� ! S�. Thus, in 
ontrast tothe situation in Minkowski spa
e the two 
hiral se
tors are related in the a
tion. Of
ourse, the eigenvalue problem for iD= is then not well de�ned. This is the origin ofthe ambiguity in the de�nition of the determinant. It is related to the ambiguitiesone en
ounters when one quantizes 
hiral fermions [18℄. Here we reformulate thisproblem in su
h a way that the determinant with 
hiral twists (� 6=0) 
an be obtainedby analyti
 
ontinuation. The resulting determinants do not fa
torize into (anti-)holomorphi
 pie
es. In appendix B we give further arguments in favour of our resultby 
al
ulating the determinants in a di�erent way.Let us now study the generating fun
tional for fermions in an external gravita-tional and auxiliary �eld. For that we observe that on the torus we must add aharmoni
 pie
e to the auxiliary �elds to whi
h the fermioni
 
urrent 
ouples in (4).More pre
isely, in the Hodge-de
omposition of B� in (5) 
ontains a harmoni
 pie
e,B� = ���� � �� ���+ 2�L h� with r�h� = h[�;�℄ = 0: (16)More generally, allowing for arbitrary 
ouplings of the various terms in (16) to the7



fermioni
 
urrent, we are led to add a term2�L g0 Z pg h�j� + (2�L )2 Z pg h�h�to the a
tion (4). Note, that in isothermal 
oordinates, for whi
h the metri
 has theform (13), the harmoni
s h� are 
onstant. The 
onstant h� 
ouple to the harmoni
part of the 
urrent and are needed to re
over the Thirring model in the limit g20 =g21 =g22 . Also, we shall see that the harmoni
 degrees of freedom are essential to obtainthe 
orre
t thermodynami
 potential.Finally we introdu
e a 
hemi
al potential for the 
onserved U(1) 
harge. In theEu
lidean fun
tional approa
h this is equivalent to 
oupling the fermions to a 
onstantimaginary gauge potential A0 [19℄.As a 
onsequen
e of the above observations the s
aling formula (12) (re
all, thatF =g1� and G=g2� when the ele
tromagneti
 intera
tion is swit
hed o�) is modi�edto D= = e�2�efy D̂= ef ; where f = �ig1�+ 
5g2�+ 12�D̂= = 
���� + i!̂� � 2�iL [g0h� + ��℄� and �� = �i�0L2� � Æ�0: (17)This s
aling property will enable us to relate the fermioni
 determinants and Green'sfun
tions of D= and D̂= . The spin 
onne
tion !̂ in (17) vanishes for our 
hoi
e ofthe referen
e zweibein. The dependen
e of D̂= on the 
hemi
al potential � and the
onstant harmoni
 �eld h� 
annot be gotten by the anomaly equation [20℄. It must be
omputed by dire
t methods. For this we expand the fermioni
 �eld in a orthonormalbasis of the Hilbert spa
e (x) = Xn an n+(x) +Xn bn n�(x) y(x) = Xn �an�yn+(x) +Xn �bn�yn�(x); (18)where an; bn; �an;�bn are independent Grassmann variables. A basis is given by n�(x) = 1pV ei(p�n ;x) e�; where (p�n )i = 2�L (12 + �i � �i + ni); (19)and the e� are the eigenve
tors of 
5. Re
all that �i and �i represent the ve
torial- and8




hiral twists (14) respe
tively. The  n+ and  n� must obey the S+ and S� boundary
onditions, respe
tively. These boundary 
onditions �x the admissible momenta p�nin (19). Sin
e the Dira
 operator maps S� into S� the �n� must then obey the sameboundary 
onditions as the  n�. Thus �n�(x) is obtained from  n�(x) by ex
hangingp+n and p�n . It follows then thatiD̂=  n� = ��n�n� (20)with �+n = 2��0Lh��(12 + a1 + �1 + n1)� (12 + a0 + �0 + n0)i��n = 2��0Lh�(12 + a1 � �1 + n1)� (12 + a0 � �0 + n0)i: (21)Here we have introdu
ed a� � ���g0h����. To 
ontinue we re
ast the in�niteprodu
t for the determinant in the form1Yn �+n��n = Y~n2Z2 �2�L �2ĝ��(12 + 
� + n�)(12 + 
� + n�); (22)where ĝ�� is the inverse of the referen
e metri
 (13) and
� = a� + i�̂� ���; with (�̂� �) = � 1�0 � �1 �j� j21 ��1 � : (23)The logarithm of the produ
t (22) 
an in turn be written as the derivative at zeroargument of a generalized zeta fun
tion. Indeed one easily veri�es that for�(s) �Xn (�+n��n )�s (24)we have (formally)det(iD̂= ) � (Yn �+n��n )reg = exp[�� 0(s)℄js=0: (25)However �(s) is divergent for s � 1. These divergen
es 
an be regularized as follows:We 
ompute �(s) for s > 1 and subsequently de�ne its value for s < 1 by analyti
9




ontinuation.Assume for the moment that 
� is real or equivalently that there are no 
hiral twists�� and 
hemi
al potential �. Then �(s) has a well de�ned analyti
 
ontinuation tos<1 via a Poisson resummation [21℄. Indeed, writing �(s) as a Mellin transform�(s) = 1�(s)Xn 0 Z dt ts�1e�t�+n ��n ; (26)the generalized Poisson resummation formulaXZ exp[��h��(n� � a�)(n� � a�)℄ = phXZ exp[��h��n�n� � 2�in�a�℄; (27)applied to the integrand in (26) yields after integration over t�(s) = �(1� s)�(s) �2s�1pgXZ 0(g��n�n�) s�12 exp[�2�in�(
� + 12)℄: (28)The zero mode with n� = 0 is eliminated be
ause for s > 1 it does not 
ontribute.After this analyti
 
ontinuation �(s) and � 0(s) are now regular at s=0. More pre
isely�(0) = 0 and� 0(0) = ��1pgXZ 0(g��n�n�)� 12 exp[�2�in�
�℄= � log h 1j�(�)j2�h�
1
0 i(0; �) ��h�
1
0 i(0; �)i: (29)Here we made use of det[
(iD̂= )2℄=det[(iD̂= )2℄, whi
h follows from �(0)=0.For 
omplex 
� the Poisson resummation is not appli
able and � 0(0) 
annot be 
al-
ulated by dire
t means. To 
ir
umvent these diÆ
ulties we note that the in�nitesum (24) de�ning the �-fun
tion for s>1 is a mereomorphi
 fun
tion in 
. Thus wemay �rst 
ontinue to s<1 for real 
� and then 
ontinue the result to 
omplex values.Using the transformation properties of theta fun
tions the resulting determinant 
anbe written asdet(iD̂= ) = e2�(pĝĝ�������2i�1a0) 1j�(�)j2�h�a1 + �1a0 � �0 i(0; �) ��h��a1 � �1�a0 + �0 i(0; �): (30)This is the main result of this se
tion.10



It 
an be shown that this determinant is gauge invariant, i.e. invariant under �� !��+1, but not invariant under 
hiral transformations, �� ! ��+1, as expe
ted.Furthermore, it transforms 
ovariantly under modular transformations � ! � +1 and� ! �1=� . In other words, det iD̂= is invariant under modular transformations if atthe same time the boundary 
onditions are transformed a

ordingly. The exponentialprefa
tor is needed for modular 
ovarian
e and is not present in the literature [4℄. It
orrelates the two 
hiral se
tors and will have important 
onsequen
es. In AppendixB we 
on�rm (30) with operator methods.The last step in the 
al
ulation of the fermioni
 generating fun
tional is the in
lu-sion of the lo
al 
ontributions to the auxiliary- and metri
 �eld, i.e. the dependen
eof the determinant on �, � and �. For this we introdu
e the one-parameter family ofDira
 operators D= � = ĝ1=2g1=2� e�fyD̂= e�f : (31)We take the � -dependen
e of the metri
 as g� =e2��ĝ. With f as de�ned in (17), thisfamily interpolates between D̂= and D= . The determinant of the full Dira
 operator isthen obtained by integrating the 
orresponding anomaly equation [22℄:detiD= = det(iD̂= ) exp � SL24� + g222� Z qĝ�4̂��; (32)where SL = Z qĝ[R̂� � �4̂�℄ (33)is the Liouville a
tion. In deriving this result we assumed that R pg� = 0. This
onstraint on the zero-mode of � (and similarly of �) will be dis
ussed below. A
tually,for our referen
e metri
 the Ri

i s
alar R̂ vanishes and the Liouville a
tion simpli�esto � R pĝ�4̂�. However, the above formulae hold for arbitrary referen
e metri
sand arbitrary Riemannian surfa
es. Furthermore, as expe
ted for a gauge-invariantregularization, the fun
tion � and thus the longitudinal part of B� does not appearin the determinant.To 
omplete the 
al
ulation of the generating fun
tional we need to know thefermioni
 Green-fun
tions S. Using the s
aling property of the Dira
 operator, eq.11



(31), it is easy to see that in an arbitrary ba
kground �eld S is related to Ŝ byS(x; y) = e�f(x) Ŝ(x; y) e�fy(y):Together with the relation (32) and the expli
it form (29,30) for det iD̂= this yieldsthe fermioni
 generating fun
tionalZF [�; ��℄ = 1j�(�)j2�h�
1
0 i(0; �) ��h��
1�
0 i(0; �)e� R ��(x)S(x;y)�(y) � exp � 124�SL + g222� Z pg�4�℄�: (34)By using the s
aling properties of the Ri

i-s
alar and Lapla
ian (see appendix A)the exponent 
an be written in a manifest di�eomorphism-invariant way as� 196� Z pgR 14R + g222� Z pg�4�:Here we used that on the torus R integrates to zero. On the sphere or higher genussurfa
es the last formula is modi�ed.The Integration over the auxiliary �elds then leads to the full generating fun
tionalof the Thirring model. It 
ontains all information about the thermodynami
- and
onformal properties. This is the subje
t of the next two se
tions.3.2 Thermodynami
s of the Thirring ModelIn this 
hapter we derive the grand 
anoni
al potential, equation of state and groundstate energy for the Thirring model. For this we need to 
ompute the partitionfun
tion Z = Z d2hD�D� ZF [�=��=0℄ e�SB ; (35)where ZF is the fermioni
 generating fun
tional (34) and SB the bosoni
 a
tionSB = (2�)2qĝĝ��h�h� � Z pg��4�+ �4��: (36)As it stands the partition fun
tion is still ill-de�ned unless we 
onstrain the zero-modes arti�
ially introdu
ed in the Hodge de
omposition of B� in (16). The 
hoi
e12



of the 
onstraints is restri
ted by the symmetries of the system. In parti
ular transla-tion invarian
e (or rotation invarian
e on the sphere) and 
ovarian
e under modulartransformations of the torus are symmetries whi
h me may want to preserve by thezero-mode 
onstraint. The 
onstraint measureZ dh0dh1D�D�Æ(��)Æ(��) � � � � Z dh0dh1DÆ�DÆ� � � � ; �� � 1V Z pg� (37)(and similarly for ��) satis�es these requirements (The normalization by the volumein the de�nition of �� is needed su
h that the 
onstraints and hen
e the partitionfun
tion are both dimensionless). For example, one �nds the dimensionless partitionfun
tion N0 � Z D� Æ(��) e(�;4�) = pVdet0 12 (�4) (38)for free bosons, where the prime indi
ates the omission of the zero-eigenvalue.Integration over the harmoni
s: There is no restri
tion on the harmoni
 partsof the auxiliary �elds and the Gaussian integral yields1Z�1 d2h�h�
1
0 i��h��
1�
0 i exp[�(2�)2qĝĝ��h�h�℄ = �h uw i(�)4�q1 + g20=2� ; (39)where �h uw i(�) = Xn2Z2 ei�(n+u)�(n+u)+2�i(n+u)wis the theta fun
tion with 
hara
teristi
su = �� 11� (�1 + i� �1 ��) and w = � 1�1� (�0 + i� �0 �� � �0) (40)and 
ovarian
e� = � � 00 ��� �+ i �g20 �02� + g20 � g20 �4� � g20�4� � g20 g20 � : (41)13



Integration over � and �: The integral over �, subje
t to the Æ-
onstraint in (37),merely 
ontributes one inverse square-root of the primed determinant of �24 to thepartition fun
tion and so does the integration over �. In fa
t, to obtain the partitionfun
tion of the Thirring model we divide Z by the 
orresponding partition fun
tionsN0 of the free bosons, eq. (38). Using (39) and (34) we obtainZN0 = 1j�(�)j2vuut2� + g222� + g20 �h uw i(�) e(1=24�+g23)SL; (42)where we have also used the s
aling formula for the primed determinant of 4 [20, 23℄log det0(�a4)det0(�4) = log a � �(0) = log a � [ 14� Z a1 � p℄; (43)with p being the number of zero modes of the operator. On the torus R a1=0 and we�nd det0(� a4) = 1a det0(�4);whi
h produ
es the extra fa
tor p2� + g2. In the Thirring model limit g2 = g0 andthe square-root in (42) disappears.Zero-temperature limit: To investigate the thermodynami
s of the model weassume spa
e-time to be 
at and that � = i�=L. Then
 = � 1� log ZN0is the grand 
anoni
al potential. First we analyze the low temperature limit of 
. For�=0 this yields the ground state energy. We observe that for � = i�=L the 
ovarian
ematrix � in (41) simpli�es toi�� = ���L hId + g204� 12� + g20 � g20 �4� � g20�4� � g20 g20 � i (44)and has eigenvalues 14



�1 = ���L 2� + g202� and �2 = ���L 2�2� + g20 (45)with 
orresponding eigenve
torsv1 = (�1; 1) and v2 = (1; 1): (46)Also, the �̂ tensor (see 23) and �0 (see 17) in (40) simplify to� �� = � 0 �=L�L=� 0 � and �0 = �i �2��:For � ! 1 the saddle point approximation to the Gaussian sum (39) de�ning thetheta-fun
tion be
omes exa
t and therefore using thatlog j�(�)j2 �! ���6L for � !1we �nd 
(� !1) = � �6L � 4�2� + g20 �L(�1 + �L2� )2+ �2L minn2Z2 h2� + g202� fn2 � n1 � 4�2� + g20 (�1 + �L2� )g2+ 2�2� + g20 fn1 + n2 � 2�1g2i (47)
for the zero-temperature grand potential of the un-gauged model. Here the 
hemi
alpotential and 
hiral twist enter only through the 
ombination �1+�L=2�. Let us nowdis
uss the potential in the various limiting 
ases.i) No 
hiral twist, �1=0, and vanishing 
hemi
al potential: Then 
(� !1) 
oin
ides with the ground state energy. The minimum in (47) is attained forn1=n2=[12+�1℄ and we �ndE0(L; �1; �1=0) = � �6L + 2�L 2�2� + g20 (�1 � [12 + �1℄)2: (48)Only for anti-periodi
 boundary 
onditions, that is for �1=0, does this Casimir energy15




oin
ide with the 
orresponding result for free fermions. For g20�4� the Casimir for
eis always attra
tive whereas for g20 <4� it 
an be attra
tive or repulsive, depending onthe value of �1. The result (48) is in agreement with the literature [5℄. For example, it
oin
ides with De Vega's and Destri's result if we make the identi�
ation !DD=2��1and 1=�DD=1 + g20=2� in formula (42) of that paper.ii) Small twists and 
hemi
al potential: For small �1 and � the minimumis assumed for ni=0 and the potential simpli�es to
(� !1) = � �6L + 2�L 2�2� + g20 �21 (49)and does not depend on the 
hemi
al potential. For vanishing g0 the minimum of(47) is attained forn1 = [12 + �1 � �1 � �L2� ℄ and n2 = [12 + �1 + �1 + �L2� ℄;where [x℄ denotes the biggest integer whi
h is smaller or equal to x. This then leadsto the following zero temperature potential
 = � �6L � 2�L (�1 + �L2� )2+ �Ln�1 � �1 � �L2� � [12 + �1 � �1 � �L2� ℄g2+ �Ln�1 + �1 + �L2� � [12 + �1 + �1 + �L2� ℄g2: (50)For � = �1 = 0 this redu
es to the Casimir energy for free fermions with left-rightsymmetri
 twists and agrees with the results in [24℄.Note, however, that for �1 6=0 we disagree with [5℄. The di�eren
e is due to the se
ondterm on the right in (47). Let us give two arguments in favour of our result: Thedis
repan
y arises from the prefa
tor appearing in the fermioni
 determinant (30). Asdis
ussed earlier this prefa
tor implies the breakdown of holomorphi
 fa
torization,a property whi
h has been presupposed in [5℄. One 
an show that our results 
anbe reprodu
ed by starting with massive fermions and taking the limit m ! 0 (seeappendix B).The se
ond argument goes as follows: Suppose that �1=�1=0. Then (50) simpli�esto 16




(� !1) = � �6L � 2�L ��L2� �2 + 2�L ��L2� � [12 + �L2� ℄�2: (51)For massless fermions the Fermi energy is just � and at T =0 all ele
tron states withenergies less then � and all positron states with energies less then �� are �lled. Theother states are empty. Sin
e d
=d� is the expe
tation value of the ele
tri
 
hargein the presen
e of � we 
on
lude that it must jump if � 
rosses an eigenvalue of the�rst quantized Dira
 Hamiltonian h. For vanishing twists the eigenvalues of h arejust En=(n� 12)�=L. From (51) one sees by inspe
tion that the ele
tri
 
hargehQi = d
d� = 2[12 + �L2� ℄ = 2n for En � � < En+1indeed jumps at these values of �. Further observe, that in the thermodynami
 limitL!1 the density 
L ! � 2�2� + g20 �22� ;redu
es for g0=0 to the standard result for free ele
trons.Equation of state: We wish to derive the equation of state for �nite T in thein�nite volume limit L ! 1. This may be a
hieved by inter
hanging the rolesplayed by L and �. More pre
isely, using that�h uw i(�) = qdet(i��1) e2�iw�u �h�wu i(i��1)we �nd in analogy with the low temperature limit, that for L ! 1 the pressure isgiven by �p = limL!1 1L log ZN0 = �6� + 2�� 2� + g202� �20� �2� minn2Z2 h2� + g202� fn1 + n2 + 2�0g2+ 2�2� + g20 fn2 � n1 + 2�0 + 2i��2� g2i:17



Here the minimum of the real part has to be taken. Again the minimization arisesfrom the saddle point approximation to the theta fun
tion whi
h be
omes exa
t whenL!1. For small twists the minimum is assumed for ni=0 and then�p = �6� � 2�� 2�2� + g20 (�0 + i��2� )2be
omes independent on the 
hiral twist �0. As we have inter
hanged the roles ofthe temporal and spatial twists this is 
onsistent with the earlier result that for smalltwists 
 is independent of �1. In parti
ular, for �0=0, we �nd the following equationof state p(�; �; �0=0) = �6�2 + �22� 2�2� + g20 : (52)This result is 
onsistent with the renormalization of the ele
tri
 
harge whi
h is 
on-jugate to the 
hemi
al potential. It shows that the thermodynami
s of the Thirringmodel is not just that of free fermions as has been 
laimed in [3℄. Indeed, the zeropoint pressure is multiplied by a fa
tor 2�=(2� + g20 ). This modi�
ation arises fromthe 
oupling of the 
urrent to the harmoni
 �elds. It is missed if only the lo
alpart of the auxiliary �eld is 
onsidered, whi
h is the 
ase if one quantizes the modelin Minkowski spa
e and then repla
es the k0-integral in the Green fun
tions by theMatsubara sum. This remark should also be taken seriously in four dimensions! Fur-thermore, we see that the 'pressure' p is real only for �0=0, whi
h is 
onsistent withthe �nite temperature boundary 
onditions1.3.3 Conformal stru
tureIn the �rst part of this se
tion we derive the Ka
-Moody and Virasoro algebras ofthe model (4) without gauge-intera
tion and prepare the ground for an extension,
ontaining in parti
ular the minimal models, in the se
ond part.Re
all (11) that for A� = 0 the theory redu
es to a 
onformal �eld theory on 
atMinkowski spa
e-time. To 
ontinue it is 
onvenient to introdu
e adapted light 
one
oordinates x� = x0 � x1 and the 
hiral 
omponents of the Dira
 spinor  � =12(1� 
5) . Then after substituting the 
lassi
al equations of motion1This 
an also be observed in the Hamiltonian formalism [25℄.18



T�� = �12(� +�� + � ��� + +) + 2(���)2 + 2(���)2+i��(g1�+ g2�)� + + (53)depends only on x� and is therefore the 
hiral Noether 
urrent. Evaluating thePoisson bra
ket of the symmetry generator Tf = R dx�f(x�)T�� with the di�erent�elds yields the 
lassi
al stru
tureÆf� = f��� ; Æf� = f���Æf + = f�� + + 12 +��f ; Æf y+ = (Æf +)yÆfj� = f��j� + j���f ; ÆfT�� = f��T�� + 2T����f: (54)
Short Distan
e Expansions: Let us now determine the quantum 
orre
tions tothese 
lassi
al results. These are 
omputed within the Eu
lidean fun
tional approa
hfrom the short-distan
e expansions of the relevant n� point fun
tions. We need notpostulate Ka
-Moody and Virasoro algebras in advan
e as has been done in [10, 26℄.These stru
tures are derive here. When 
omparing the 
lassi
al with the quantumresults one should keep in mind that the roles of  y0 and  y1 are inter
hanged whenone swit
hes from Minkowski to Eu
lidean spa
e-time. In 
oordinates adapted to theholomorphi
 stru
ture of the torusx = i��x0 + ix1; so that �x = 12�0 (�x0 � ��x1);the Dira
 operator and the 
orresponding Greens fun
tion take the formi�= = 2i� 0 �x��x 0 � and S(x�; y�) = 12�i � 0 1=�1=�� 0 �+O(1);where � = x�y, and the 
hiral 
omponents of the energy momentum tensor and
urrent are given byTxx = �02i(�T 00 + T 01) = �02i dĝ��d�� T �� and jx = 12i(�j0 � j1):From the 
onformal Ward identities 19



nXi=1 hO(x1) � � � ÆO(xi) � � �O(xn)i = 1i I dzhO(x1) � � �O(xn)Tzzi (55)we obtain the 
entral 
harges and 
onformal weights dire
tly from the 
orrelationfun
tions. However, be
ause on the 
at torus the expe
tation value of Txx is 
onstant,we need to 
ompute at least the 3-point fun
tion to read o� the 
onformal weights.As in the 
lassi
al theory (see (9)) the symmetri
 energy momentum tensor measuresthe 
hange of the e�e
tive a
tion � = logZ under arbitrary variations of the metri
.On the torus there are two independent 
ontributions. One being due to variations ofthe modular parameter � and its 
onjugate �� whi
h depend impli
itly on the metri
.The other is due to the variations of terms whi
h depend expli
itly on the metri
.Sin
e the 
hiral 
omponent Txx is gotten by 
ontra
ting T �� with dĝ��=d�� it followsthat hTxxi = i�0qg(x�)� 1L2 ���� + dĝ��d�� ÆÆg��(x�)� �[g; �; �� ℄ � Æx�[g; �; �� ℄:When doing metri
 variations it is always understood that we take the 
at spa
e-time limit afterwards. The �� variation is 
onstant and may be dis
arded in theshort distan
e expansion. Thus to analyze the algebrai
 stru
ture we 
an work onany Riemann surfa
e. This is not true for the �nite size e�e
ts, whi
h are globalproperties. This aspe
t will be analyzed in se
tion 3:4:For example, taking three metri
 variations of the 
urvature dependent part of logZwith Z from (42) we �nd the following short distan
e expansions for the three point
orrelation fun
tionhTuu Tvv Tzzi � � 1(2�)3 1(u� v)2(u� z)2(v � z)2 :Substituting this result into the Ward identity (55) we obtain the 
entral 
harge andthe 
onformal weight of the energy momentum tensor
 = 1 and hTxx = 2 : (56)Note that the the 
entral 
harge as well as the 
onformal weight are independent ofthe 
ouplings g1 and g2.The 
onformal weights of the fundamental �elds are obtained by 
omputing the20



fermioni
 two point fun
tion with stress tensor insertionh 0(x)  y1(y) Tzzi = 1Z Æz�Zh 0(x)  y1(y)i�:Sin
e Z � exp[F (R2)℄, its metri
 variation vanishes after the 
at spa
e-time limithas been taken. The variation of Sij 
an be found in appendix A. This yieldsh 0 = h y1 = 12 + 116�g21 � 116� 2�g222� + g22�h 0 = �h y1 = 116�g21 � 116� 2�g222� + g22 : (57)Thus we have reprodu
ed the 
lassi
al results supplemented by additional g1 and g2dependent quantum 
orre
tions. In the Thirring model limit g2=g1=g, these termsadd up to give the known anomalous dimension appearing in the Thirring model [26℄.Furthermore, from (57) we may derive a 
ondition on the 
ouplings g1; g2 if we insiston unitarity, i.e. on h � 0. We �ndg21 � 2�g222� + g22 : (58)In parti
ular for g1 � p2� the 
onformal weights are positive for any real g2.Next we determine the Ka
-Moody algebra of the U(1) 
urrents. To derive the 
orre-lation fun
tions with 
urrent insertions we 
ouple the fermions to an external ve
tor�eld, that is 
onsider the 'gauged' model without Maxwell term. For example,< j�(x�) j�(y�) > = 1e2qg(x�)g(y�) Æ2�[g; A℄ÆA�(x�)ÆA�(y�) jA=0:The e�e
tive a
tion with external ve
tor �eld is then obtained by shifting the auxiliary�elds in (17) as g2�! g2�+ e' , g1�! g1�+ e�; (59)where A� = � �� ��' + ��� and we have negle
ted the harmoni
 
ontribution to theexternal ve
tor �eld, be
ause it does not 
ontribute to the short distan
e expansion.The resulting e�e
tive a
tion does not depend on � due to gauge-invarian
e. To relate21



the variation w.r.t. A� to that w.r.t. ' we use��� = � �� AT� ; where AT� = A� �r� 14r�A�is the transverse part of A�. We obtain the following short distan
e expansionhjx jyi � � 12� 12� + g22 1(x� y)2 :We read o� the value k of the 
entral extension in the U(1)-Ka
-Moody algebrak = 2�2� + g22 : (60)The pre
ise g2-dependen
e of k (whi
h 
an of 
ourse be res
aled to unity by anappropriate rede�nition of the 
urrent) is related to a �nite renormalization of theele
tri
 
harge in the gauged Thirring-model whi
h we will dis
uss in se
tion 4.Finally, from hjx jy Tzzi � � 14�2 12� + g22 1(x� z)2(y � z)2we obtain hj = 1.To see how the left and right Ka
 Moody 
urrents a
t on the fermioni
 �elds wenoti
e that after the integration over the auxiliary �elds the A-dependen
e of thefermioni
 Green fun
tion fa
torizes ash 0(x) y1(y)iA = e 12m
 R '4' � e�eg(x) h 0(x) y1(y)iA=0 e�egy(y);where g(x) = �i�(x)+
5�'(x), � = 2�=(2�+g22 ) andm
 is the indu
ed 'photon'-mass(see(86)). Variation w.r.t. the A� �eld yields, after some algebrai
 manipulations,the U(1) 
hargesq 0 = 12(1 + 2�2� + g22 ) and �q 0 = 12(1� 2�2� + g22 ): (61)We have used the 
onvention where the ele
tri
 
harge q+�q is unity. In the Thirringmodel limit we 
an 
ompare (61) with the results obtained in [26℄. For that we needto res
ale the 
urrents su
h that the 
entral extension (60) of the Ka
-Moody algebrabe
omes unity jz ! q1 + g22=2� jz . It is then easy to see that we agree with Furlanet al. [26℄ if we make the identi�
ation �gFu=g22=4�q1 + g22=2�.22



Non-Minimal Coupling: In se
tion 3:1 we have analyzed the fermioni
 determi-nant in the presen
e of twisted boundary 
onditions. One may ask what happens ifwe introdu
e a lo
al twist instead, that is (x)!  (x) ;  (x)y !  (x)ye��(x); (62)whi
h should be interpreted as a modi�
ation of the 
harge neutrality 
ondition. The
omputation of the fermioni
 determinant in the presen
e of su
h twists is similar tothat for a Weyl res
aling of the ba
kground metri
 (31-32). Integrating the 
orre-sponding anomaly equation we �ndlog det(iD= �)det(iD= 0) / � Z R�+O((��)2): (63)We will 
ome ba
k to the relation between the above determinant and 
harges atin�nity at the end of this se
tion. For the moment we use the analogy merely as amotivation to study the extension of the Thirring model obtained by 
oupling the�-�eld non-minimally to the ba
kground geometry. That is we 
onsider the model(4) again without gauge-intera
tion but with an extra 
ouplingg3 Z R�:Then T�� in (53) is modi�ed,T�� �! �T�� = T�� + 3g3�2��:The 
orresponding modi�
ation of the 
lassi
al 
onformal transformations (54) gen-erated by the modi�ed generator �Tf = R dx�f(x�) �T�� are�Æf� = Æf� ; �Æf� = Æf�� g32 ��f�Æf + = Æf + � i2g1g3 +��f ; �Æf y+ = Æf y+ + i2g1g3 y+��f: (64)Whereas � and  + remain primary �elds, � does not. This is in fa
t needed for
onsisten
y. Indeed, sin
e  is not a s
alar under 
onformal transformations generatedby �Tf , the term � R  yD= in the a
tion is only 
onformally invariant if � transformsinhomogeneously like a spin 
onne
tion.It may be surprising that the new symmetry transformations depend on the 
ou-pling 
onstant g3 whi
h is not present in the 
at spa
e time Lagrangian. However,23



the same happens for example in 4 dimensions, if one 
ouples a s
alar �eld 
onfor-mally, that is non-minimally, to gravity. Although the Lagrangian for the minimallyand 
onformally 
oupled parti
les are the same on Minkowski spa
e-time, their en-ergy momentum tensors are not. The same happens for the 
onformally invariantnon abelian Toda theories whi
h admit several energy momentum tensors and hen
eseveral 
onformal stru
tures [27℄.The 
urrent still transforms as a primary with weight 1, but the energy momentumtensor a
quires a 
lassi
al 
entral 
harge�Æf �T�� = f�� �T�� + 2 �T����f � g23�3�f: (65)The 
orresponding 
ommutators in the quantized theory with non-minimal 
ouplingto gravity are 
al
ulated as explained for the minimally-
oupled model. One �ndsthat the quantum 
orre
tions to (64) are identi
al to those of the minimally 
oupledmodel and thus are g3 6= 0-independent.To summarize, we have obtained the following Virasoro � Ka
-Moody stru
ture:Central 
harge: 
 = 1 + 24g23� and hTxx = 2 (66)Ka
-Moody level and 
harges:k = 2�2� + g22 ; hj = 1q 0 = 12(1 + 2�2� + g22 ) ; �q 0 = 12(1� 2�2� + g22 )Conformal weights:h 0 = 12 + 116�g21 � 116� 2�g222� + g22 � ig1g32 = (h y1)y�h 0 = 116�g21 � 116� 2�g222� + g22 � ig1g32 = (�h y1)y: (67)Here some 
omment about unitarity is in order. It 
an be shown that with respe
tto the standard s
alar produ
t [28℄ re
e
tion-positivity holds for any real g3 [29℄.However with respe
t to this inner produ
t the Virasoro generators are not selfadjoint.Choosing an alternative s
alar produ
t [14℄ for whi
h they are selfadjoint, positivity24



does not hold in general for g3 6= 0. We give a more detailed dis
ussion about unitarysubspa
es in se
tion 3:5.3.4 Finite size e�e
tsWhen quantizing a 
onformal �eld theory on a spa
e-time with �nite volume one in-trodu
es a length s
ale. The presen
e of this length s
ale in turn breaks the 
onformalinvarian
e and gives rise to �nite size e�e
ts. It has been 
onje
tured [30℄ that the�nite size e�e
ts on a Riemann surfa
e are proportional to the 
entral 
harge. Forexample, when one stret
hes spa
e time, x� ! ax�, then the 
hange of the e�e
tivea
tion is proportional to 
:�ax � �x = � 
6 log a � �; (68)where � is the Euler number of the Eu
lidean spa
e time. In [31℄ this 
onje
ture hasbeen proven for a wide 
lass of 
onformal �eld theories on spa
es with boundaries.The only important assumption has been that the regularization respe
ts general
ovarian
e. In this subse
tion we shall see that the equivalen
e does hold only for aparti
ular zero-mode treatment, whi
h di�ers from (37).The only global 
onformal transformations on the torus are translations whi
h donot give rise to �nite size e�e
ts. Also, the Euler number vanishes and a

ordingto (68) the �nite size e�e
ts are insensitive to the value of 
. For that reason wequantize the un-gauged model (4) on the sphere where the global 
onformal group isthe Moebius group.An e�e
tive method to 
ompute �nite size e�e
ts has been developed in [31℄. Itis based on the following observation: Any 
onformal transformation z ! w(z) is a
omposition of a di�eomorphism (de�ned by the same w) and a 
ompensating Weyltransformation g�� ! e2�g�� withe2� = dw(z)dz d �w(�z)d�z ; z = x0 + ix1:Therefore, 
hoosing a di�eomorphism invariant regularization one has0 = Æ�Diff = Æ�Conf � Æ�Weyl:The 
hange of the e�e
tive a
tion under Weyl res
aling isÆ�Weyl = � log R D(��) det(iD= g) exp(�SB[g℄)R D(��) det(iD= ĝ) exp(�SB[ĝ℄) ;25



where SB is the bosoni
 a
tion (36). Sin
e on the sphere there are no harmoni
 ve
tor�elds the term � h2 in SB is not present. Imposing the 
onditions (37) we obtainÆ�Weyl = log V̂V � SL24� + g234 Z R 14(R� 8�V ) + log det04det0 4̂ : (69)To evaluate (69) one introdu
es the 1-parametri
 family of Lapla
ians4� = e�2��4̂interpolating between 4̂ and 4. Integrating the 
orresponding anomaly equation[20℄ we end up withÆ� = g234 Z pgR 14�R� 8�V �� 324� Z qĝR̂� + 324� Z qĝ�4̂�: (70)Consider now a dilatation w(z)=az. Then, the 
onformal angle is 
onstant, �=log a,and (R � 8�=V ) = 0. Then the �rst term in (70) vanishes and the �nite size e�e
tdoes not depend on g23 . It is given byÆ� = � 324� log a Z qĝR̂ = � log aand does not agree with (68) sin
e 
 in (66) depends on g3. On other Riemanniansurfa
es one would �nd the same result. Note that the �nite size s
aling 
omes fromthe middle term � log a R pĝR̂ in (70) whi
h is topologi
al in nature, while the short-distan
e behaviour of the energy-momentum 
orrelators is 
ontrolled by the remainingtwo terms in (70) whi
h are insensitive to the topology. In that sense �nite size s
alingand the 
entral 
harge are 
omplementary. There is a way to mat
h the two resultsby adding the term �g234 Z pgR4Rto the e�e
tive a
tion. With this new e�e
tive a
tion the short distan
e expansionof the energy-momentum 
orrelators does not depend on g3 any more and the 
or-responding 
entral 
harge equals that obtained from the �nite size s
aling. Howeversu
h a term would 
orrespond to a non-lo
al 
ounter term to be added to the regu-larized a
tion. 26



3.5 Charge neutrality and unitary subspa
esIn this subse
tion we show how the equivalen
e between the 
entral 
harge and �nitesize s
aling 
an be restored, provided the partition fun
tion is repla
ed by an averageover un-normalized expe
tation values of 
harges at in�nity. In fa
t it turns out thatthe g3 R R�-term, ie. the non-minimal 
oupling to gravity, itself 
an be given theinterpretation of a 
harge at in�nity if the zero-mode 
onstraints (37) is repla
ed bya non-translation invariant sum over 
harges at in�nity.The hint 
omes from inspe
ting the fermioni
 weights (67), whi
h shows that (x) and  g3(x) � e�8�g3�(x) (x) have the same 
onformal weights. We 
an therefore
onsistently put a 
harge at in�nity with a 
orresponding modi�
ation of the 
hargeneutrality 
ondition. The non-vanishing two-point fun
tion is now h g3(x)y (x)i. It's
oin
iden
e limit jg3 is again a primary �eld with 
onformal weight hj=1.On the other hand, in
luding a 
harge at in�nity into the de�nition of the partitionfun
tion we haveZg3 = 1N0 Z DÆ�DÆ� ZF [�=��=0℄ e�SB : e8�g3�(�0) := Z0 exp[16�2g23G0(�0; �0)℄ (re
all that DÆ� = Æ(��)D�): (71)To 
ontinue we need to determine the 
oin
iden
e limit of the s
alar Greens fun
tionG0(x; y), i.e. to regularize the 
omposite operator exp(��) appearing in (71). Thenormal ordering pres
ription: e��(x) := e��(x)he��(x)i : (72)works well on the whole plane [32, 33℄. On 
urved spa
e we must be more 
arefulwhen renormalizing this operator. The required wave fun
tion renormalization is notunique but it is very mu
h restri
ted by the following requirements: First we take asreferen
e system (the denominator in (72)) one with a minimal number of dynami
aldegrees of freedom sin
e we do not want to loose information by our regularization.Se
ond, the renormalized operator should have a well-de�ned in�nite volume limit.Finally, the regularization should respe
t general 
ovarian
e. These requirementsthen for
e us to take as referen
e system the in�nite plane with metri
 g�� . The 
atmetri
 Æ�� is not permitted sin
e it leads to a ill-de�ned expression for hexp(��)i.With this 
hoi
e the normal ordering in (72) is equivalent to repla
ing the masslessGreen fun
tion in (71) by 27



Greg0 (x; y) := G0(x; y) + 14� log [�2s2(x; y)℄: (73)Here s(x; y) denotes the geodesi
 distan
e between x and y. The o

urren
e of thearbitrary mass s
ale � 
omes from the ambiguities in the required ultra-violet regu-larization. On the 2-sphere with 
onstant Ri

i s
alar R we haveGreg0 (x; x)=� 14� [log[ R8�2 ℄ + 1℄:The expe
tation value h: e8�g3�(�0) :i then transforms under a 
onstant res
aling z !az as h: e8�g3�(�0) :i ! h: e8�g3�(�0) :i exp[8�g23 log(a)℄; (74)and therefore gives an extra 
ontributionÆ�g3 = �24�g236 log(a)�;to the �nite size s
aling of the e�e
tive a
tion. Adding this 
ontribution to (70) abovewe see that this is pre
isely the pie
e needed to restore equivalen
e with the 
entral
harge for any real or imaginary g3.More generally we 
an de�ne the fun
tional integral as an average over all possible
harges at in�nity: assume g3 imaginary. The (un-normalized) expe
tation values arethen given byD nYi=1O�i(xi)E � 1Z Z DÆ�D�h 1p2� Z d k : eik�(�0) : i nYi=1O�i(xi) e�SB : (75)Here �i denotes the U(1)-
harge of the operator Oi. In parti
ular the partitionfun
tion on S2 isZ = 1N0 Z DÆ�d�0D�0h 1p2� Z d k : eik�(�0) : i : e�8�g3�(�0) : e�SB [�0℄;where �0 is the zero mode and �0 the ex
ited modes of �(x). The middle term in theabove integrand is the zero-mode part of SB. The zero-mode integration yields a deltafun
tion Æ(k + i8�g3) and thus the g3 R R�-term itself a
quires the interpretation ofa 
harge at in�nity, due to the presen
e of the zero mode. The 'extra' 
harges eik�(�0)28



assure the 
harge neutrality of the partition fun
tion. For the general n-point fun
tion(75) the �0- integration yieldsÆ(k + 8�ig3 + nXi=1 �i);where the sum of the U(1)-
harges of the operators in (75) enters. In parti
ular, forneutral states, for whi
h (P�i + i8�g3 = 0), k must be zero and no extra 
harge atin�nity is present.Finally, using 1p2� Z d k eik�(�0) = Æ(�(�0));the averaging over all possible 
harges 
an also be written asD�Æ(�(�0)): (76)It is easy to verify that if the a
tion has translation invarian
e in the target spa
e,then the 
onstraints (76) and (37) are equivalent and the 
orrelation fun
tions do notdepend on the 
hosen base-point �0. However, in the present 
ase (76) 
learly breakstranslation invarian
e (or rotation invarian
e on S2) and the zero-modes 
onstraintsare inequivalent. Although we have assumed an imaginary g3, our results apply forany g3. For parti
ular values we re
over the (unitary) minimal models, provideds
reening 
harges [34℄ are in
luded for the n-point fun
tion with n > 2. In parti
ularfor g3 = 1=p48� and g1=g2=0 we obtain the Ising model with h =h y= 12 .4 Gauged Thirring-like ModelsIn this se
tion we extend the model by gauging the global U(1)-symmetry. Contraryto what one might think, many aspe
ts of the gauged model are a
tually simpleras 
ompared to the ungauged model. In parti
ular the thermodynami
al propertiesare independent of external 
onditions like 
hemi
al potentials and twisted boundary
onditions. The reason is that the model is 
losely related to the S
hwinger model, forwhi
h the spe
trum 
onsist solely of a neutral, massive parti
le. On the other hand,the gauge intera
tion 
ompli
ates the analysis, be
ause the U(1)- bundle over thetorus allows for gauge �eld 
on�gurations with winding number, so 
alled instantons.These, in turn, imply fermioni
 zero-modes whi
h trigger a 
hiral symmetry breaking29



and therefore a non-vanishing 
ondensate. This is the subje
t of the se
ond partof this se
tion. In the �rst part we dis
uss the partition fun
tion to whi
h onlytopologi
ally trivial 
on�gurations 
ontribute.To see how the fermioni
 generating fun
tional (34) is modi�ed, we de
ompose ageneral gauge potential on a torus asA� = AI� + 2�L t� + ���� �����'; (77)where the last 3 terms 
orrespond (as for the auxiliary �eld B�) to the Hodge de-
omposition of the single valued part of A in a given topologi
al se
tor, that is theharmoni
-, exa
t- and 
o-exa
t pie
es. The role of the toron �elds t� has re
ently beenemphasized within the 
anoni
al approa
h [35℄. In the Hamiltonian formulation theyare quantum me
hani
al degrees of freedom whi
h are needed for an understandingof the infrared se
tor in gauge theories. Also, in [36℄ it has been argued that the ZN -phases of hot pure Yang-Mills theories [37℄ should 
orrespond to the same physi
alstate if the toron �elds are taken into a

ount. The �rst term in (77) is an instantonpotential whi
h gives rise to a non-vanishing quantized 
ux. As noted above 
on�gu-rations with non-vanishing 
ux do not 
ontribute to the partition fun
tion due to theasso
iated fermioni
 zero modes. We 
an therefore assume AI� = 0 for the moment.The fermioni
 generating fun
tional is obtained from (30) by simply shiftingg0h� ! et� + g0h�=H� , g1�! e� + g1�=F and g2�! g2�+ e'=G;whi
h leads toZF [�; ��℄ = e2�(pĝĝ�������2i�1a0) 1j�(�)j2�h�a1 + �1a0 � �0 i(0; �) ��h��a1 � �1�a0 + �0 i(0; �)e� R ��(x)S(x;y)�(y) � exp � 124�SL + 12� Z pgG4G℄�; (78)with a�=�� �H� � ��.To 
ompute the partition fun
tion we must swit
h o� the sour
es � and �� in (78)so that Z0 = J Z d2td2hD'D�D� ZF [0; 0℄ e�SB ; (79)where now 30



SB = (2�)2qĝĝ��h�h�+ Z pg�12'42'� �4�� �4�� g3R��: (80)Note that we have kept the non-minimal 
oupling of the �-�eld to gravity as inse
tion 3:3. Sin
e SB and the fermioni
 determinants are both gauge invariant andthus independent of the pure gauge mode � in (77), it is natural to 
hange variablesfrom A� to ('; �; t�). This transformation is one to one, providedZ pg' = Z pg� = 0 and et� 2 [0; 1℄: (81)In 
ontrast to the auxiliary harmoni
 �elds h� in (16), the toron �elds et� and et�+n�with integer n� are to be identi�ed, due to gauge invarian
e [8℄. The measures arerelated asDA� = JXk dt0dt1D'D�; where J = (2�)2det0(�4): (82)In expe
tation values of gauge invariant and thus �-independent operators the �-integration 
an
els against the normalization. This simply expresses the fa
t that inQED the ghosts de
ouple in the Lorentz gauge.As we shall see shortly it is advantageous to integrate �rst over the toron �elds. Byusing the series representation of the theta fun
tions one 
omputes1Z0 d2(et)�h�
1
0 i(0; �) ��h�
1
0 i(0; �) = 1p2�0 : (83)Sin
e the result appears always together with the �-fun
tion fa
tor in (34) it is 
on-venient to introdu
e � := 1p2�0 1j�(�)j2in the following expressions. The result (83) does not depend on the h-�eld and hen
ethe h-integration in (79) be
omes Gaussian and yields a fa
tor 1=4� so that
31



Z0 = �� det0(�4) eSL=24� Z DÆ('��) e 12� R pgG4G�SB[h=0℄; (84)where we inserted the expli
it expression (82) for the Ja
obian. Now we see why wedid well integrating over the toron �elds �rst. It has washed out the dependen
e onthe boundary 
onditions and 
hemi
al potential in (83).The integral over �, subje
t to the 
ondition in (37), de
ouples 
ompletely apart fromthe non-minimal 
oupling to gravity whi
h modi�es the Liouville fa
tor and yieldsone inverse square-root of the determinant of �24 in (84). ThusZ0 = ��q2V det0(�4) e(g23+1=24�)SL� Z DÆ('�) e 12� R pgG4G�SB[h=�=0℄; (85)where we have used (43). The �-integration in 
ontrast, leads to a �nite renormaliza-tion of the dynami
ally generated 'photon' massZ0 = 2p��eVm
 e(g23+1=24�)SL Z D'e� 12 R pg'(42�m2
4)';where m2
 = e2� 2�2� + g22 (86)plays the same role as the �0-mass in QCD [41℄. The determinant obtained from the'� integration fa
torizes asdet0(42 �m2
4) = det0(�4) � det0(�4+m2
):This fa
torization property is not obvious sin
e all determinants must be regulated.But it holds for 
ommuting operators and in the zeta-fun
tion s
heme. Then thepartition fun
tion simpli�es toZ0 = 2p��eVm
 �det0(�4)det0(�4+m2
)�� 12 exp �(g23 + 124� )SL�:We 
an go further by using the s
aling formula for the determinant of 4 [20℄ and theknown result for the determinant of 4̂ [21℄ whi
h together yielddet0 12 (�4) = �0Lj�(�)j2s V̂V exp �� 124�SL�: (87)32



Thus we obtain the following partition fun
tion for the general model (4) on 
urvedspa
es:Z0 = p2�V em
 1�0j�(�)j4 1det0 12 (�4+m2
) exp �( 112� + g23 )SL�: (88)Again we have fa
tored out the partition fun
tion N0 for free auxiliary �elds. Theformula (88) shows expli
itly that in the topologi
ally trivial se
tor the theory isequivalent to a theory of free massless and massive bosons with mass m
, even in
urved spa
e-time [13℄.The appearan
e of m
 in (86) should be interpreted as renormalization of the ele
tri

harge indu
ed by the intera
tion of the auxiliary �elds with the fermions. Aftersumming over all fermion-loops this leads to an e�e
tive 
oupling between the photonsand the �-�eld and in turn to a modi�ed e�e
tive mass for the photons in (86). In thelimit g2 ! 0 this mass tends to the well-known S
hwinger model result, m
 ! e=p�[38℄.We have already mentioned that the 
hemi
al potential 
oupled to the ele
tri

harge has 
ompletely disappeared from the partition fun
tion. This does not 
omeas a surprise sin
e the only parti
le in the gauged Thirring model is a neutral boson.This has no 
harge whi
h may 
ouple to the 
hemi
al potential. Also, if the partitionfun
tion depended on � then the expe
tation value of the 
harge would not vanish, in
ontradi
tion to the integrated Gauss law. The result (88) provides therefore anothertest for our result (30) for the fermioni
 determinants with 
hemi
al potential.The �nal result is also independent of the 
hiral and non-
hiral twists. The normaltwists have been wiped out by the toron integration. In fa
t the 
hiral twists areequivalent to a 
hemi
al potential and therefore the above remarks 
on
erning the
hemi
al potential apply here as well. Did we assume holomorphi
 fa
torization forthe fermioni
 determinant [5℄ then the partition fun
tion would depend on the 
hiraltwists.We 
on
lude this subse
tion by giving the expli
it formula for the partition fun
tionon the 
at torus. The zeta-fun
tion regularized massive determinant is expressed bydet0(�4̂+m2
) 12 = 1m
 e� 12 �0(0);where 33



� 0(0) = Xn 6=0 1�L V̂ m
q(n; n)K1(m
Lq(n; n))� V̂ m2
4� ; (89)and (n; n) = ĝijninj is the inner produ
t taken with the referen
e metri
, and thesum is over all (ni) 2 Z2 with the origin ex
luded. For g�� = Æ�� , in whi
h 
ase thepartition fun
tion has the usual thermodynami
al interpretation, the result redu
esto one derived previously by Ambjorn and Wolfram [39℄. In addition, if L approa
hesin�nity we re
over a result in [19℄. The free energy for �1 = 0 and on 
at spa
esimpli�es then to F = � 1� logZ = 12� � 0(0):with � 0(0) from (89) and the parti
ular 
hoi
e for the parameters.4.1 Bosonization of the gauged Thirring modelWe pointed out in se
tion 2 that for g1=g2=g the 
lassi
al theory (4) redu
es to thegauged Thirring model. The same is true for the quantized theory on the torus if inaddition we set g0 = g. More pre
isely, the Hubbard-Stratonovi
h transform [40℄ ofthe Thirring model is just the derivative 
oupling model (4) with identi
al 
ouplings.In the pro
ess of showing that we shall arrive at the Bosonization formulae for thegauged Thirring model on the 
urved torus. We shall see that only the non-harmoni
part of the fermion 
urrent 
an naively be bosonized and that for this part the rulesof the un-gauged model on 
at spa
e time [32℄ need just be 
ovariantized.For that we 
al
ulate the partition fun
tion (79) in a di�erent order. First weintegrate over the auxiliary �elds. To understand the role of � and � we introdu
esour
es for them. Thus we study the generating fun
tional for the 
orrelators of theauxiliary �elds Z[�; �℄ = Z D(��h A�)e�S+R pg[��+��℄:Here S = �i Z pg yD= + SB[g3=0℄is the a
tion of the full theory. D= is the Dira
 operator in (17) with all 
ouplingsset equal and SB the bosoni
 a
tion (80). Sin
e � and � integrate to zero (see (37))34



we may assume the same property to hold for the sour
es. The integration over theauxiliary �elds is Gaussian and yieldsZ = N0Z D( A�) e�ST expZ pgh�14 (� 14� + � 14�) + g2(� 14j�;� + � 14j�5;�)i; (90)where ST = �14 Z pg�F��F �� � i yD= � g24 j�j�� (91)is the a
tion of the gauged Thirring model on 
urved spa
e-time andN0 = V2�det0(�4) (92)
omes from the integration over the auxiliary �elds.Let us �rst 
onsider the partition fun
tion, that is set the sour
es to zero. Comparing(90) with (86) and using (87) we easily �ndZ D( t)e�ST = s12 + g24� e� 14 R F��F�� Z D
 Æ(�
) e�S
 ; (93)where �
 is the mean �eld (see (37)) and we used (82) and (43). The a
tion for theneutral s
alar �eld 
 is found to beS
 = 12 Z pg��
��
 � iep� 1q1 + g2=2� Z pg
4':Sin
e (93) holds for any ' (and thus for the non-harmoni
 part of any A�, be
ause ofgauge-invarian
e) we read o� the following bosonization rules:j 0� �! ip� 1q1 + g2=2������
j 0�5 �! � ip� 1q1 + g2=2���
; (94)where prime denotes the non-harmoni
 part of the 
urrents. Thus, only the non-harmoni
 parts of the 
urrents 
an be bosonized in terms of a single valued s
alar35



�eld. To bosonize their harmoni
 parts one would have to allow for a s
alar �eld 
with winding numbers. On the in�nite plane the harmoni
 part is not present andwe may leave out the primes in (94). If we further assume spa
e time to be 
at were
over the well-known bosonization rules in [32℄. What we have shown then, is thatfor the gauged model on 
urved spa
e time the bosonization rules are just the 
atones properly 
ovariantized and with the omission of the zero-modes.Sin
e (93) holds for any gauge �eld the 
urrent 
orrelators in the Thirring modelare 
orre
tly reprodu
ed by the bosonization rules (94). To see that more 
learly we
al
ulate the two-point fun
tions of the auxiliary �elds in the Thirring model (90-92). For that we di�erentiate (90) (' is treated as external �eld) with respe
t to thesour
es and �ndh�(x)�(y)i = 12G0(x; y) + g24 Z hG0(x; u)j�;�(u)G0(y; v)j�;�(v)iTh�(x)�(y)i = 12G0(x; y) + g24 Z hG0(x; u)j�5;�(u)G0(y; v)j�5;�(v)iT ; (95)where G0 is the free massless Green-fun
tion in 
urved spa
e-time and the integrationsare over the variables u and v with the invariant measure on the 
urved torus. Hereh: : :iT are va
uum expe
tation values in the Thirring model (91). Alternatively we 
an
al
ulate these expe
tation values from (84) and (85), where the fermioni
 integrationhas been performed and �ndh�(x)�(y)i = 12G0(x; y)h�(x)�(y)i = �m2
2e2 G0(x; y) + m2
2 �1� �m2
e2 �'(x)'(y):Comparing this with the result (95) we see at on
e thatZ hG0(x; u)j�;�(u)G0(y; v)j�;�(v)iT = 0 (96)Z hG0(x; u)j�5;�(u)G0(y; v)j�5;�(v)iT = m2
e2 �m2
'(x)'(y)�G0(x; y)�:These 
orrelators express the gauge invarian
e and the axial anomaly hj�5;�i=�m
4'in the gauged Thirring model. They 
an be 
orre
tly reprodu
ed with the bosoniza-tion rules (94). They are not reprodu
ed with the ones derived for the un-gaugedmodel [32℄. 36



4.2 Chiral 
ondensateThe 
hiral 
ondensate is an order parameter for the 
hiral symmetry breaking. How-ever, on the torus its expe
tation value, whose temperature- and 
urvature depen-den
e we will here 
ompute would vanish if topologi
ally non-trivial gauge �eld 
on-�gurations were absent. There is a useful 
lassi�
ation of the gauge 
on�gurations
orresponding to the number of fermioni
 zero modes they give rise to. If we letk = n+ � n�, where n� 
ounts the number of zero-modes with positive/negative
hirality, then we havek = 12� Z d2x 
5a1(D= 2; x) = 14� Z pgd2x ���F�� � 12��; (97)whi
h establishes a relation between the number of fermioni
 zero modes (or, morepre
isely the number of zero modes with positive 
hirality minus the number of thosewith negative 
hirality) and the �rst Chern 
hara
ter of the bundle. Also from (97)one immediately 
on
ludes that the 
ux must be quantized in integer multiples of 2�.This is really a 
onsequen
e of the single valuedness of the fermioni
 wave fun
tion(
o
y
le 
ondition).Re
alling the de
omposition (77) of the gauge �eld we now 
on
entrate on the�rst term AI� whi
h is the instanton potential giving rise to a non-vanishing quantized
ux �. Sin
e 2-dimensional gauge theories are not s
ale or Weyl invariant, as 4-dimensional ones are, the instantons on a 
onformally 
at spa
e-time are not identi
alto the 
at ones [42, 43℄. As representative in the k-instanton se
tor we 
hoose the, upto gauge transformations, unique absolute minimum of the Maxwell a
tion in a giventopologi
al se
tor. It has �eld strength eEI = pg�=V . The 
orresponding potential
an be 
hosen aseAI� = eÂI� � � � �� ���; where eÂI = �pĝ̂V �(x1; 0) (98)is the instanton potential on the 
at torus with the same 
ux but �eld strengthpĝ�=V̂ . The fun
tion � is then determined (up to a 
onstant) bypg�V �qĝ �̂V = pg4�: (99)The solution of this equation is given by37



�(x) = � 1̂V ( 14e�2�)(x) = 1̂V Z d2yqg(y)G0(x; y) e�2�(y); (100)where G0(x; y) = hxj 1�4jyi = X�n>0 �n(x)�y(y)�n (101)is the Green-fun
tion for �4. In deriving (100) we have used that 14(�=V )=0 whi
hfollows from the spe
tral resolution (101) for the Green fun
tion in whi
h the 
onstantzero mode �0=1=pV of 4 is missing.Our 
hoi
e for the instanton potential (98) 
orresponds to a parti
ular trivializa-tions of the U(1)-bundle over the torus [8℄. In other words, the gauge potentials andfermion �elds at (x0; x1) and (x0; x1+L) are ne
essarily related by a nontrivial gaugetransformation with winding numbersA�(x0; x1 + L)� A�(x0; x1) = ���(x) (x0; x1 + L) = �eie�(x) e2�i(�1+�1
5)  (x0; x1): (102)For the 
hoi
e (98) we �nd e�(x) = ��L x0:Note that A is still periodi
 in x0 with period L and  still obeys the �rst boundary
ondition in (14). To 
al
ulate the fermioni
 zero modes we use the square of theDira
 operatorD= 2 = �D�D+ 00 D+D� � = 1pgD�pgg��D� � 14R+ e2���F��
5 (103)In a pure instanton and harmoni
 ba
kground (' = � = 0) on the 
at torus (103)simpli�es to �D̂= 2 = �ĝ��D̂�D̂� � �̂V 
5: (104)In other words, D̂= 2 is the same in the left- and right-handed se
tors, up to the 
onstant38



2�=V̂ . Furthermore this operator 
ommutes with the time translations whi
h leadsto the following ansatz for the zero-modes~�p = e2�i
px0=L e2�iH1x1=L �p(x1) e+; 
p = 12 + p;where we have assumed k > 0. The 
hoi
e of 
p is di
tated by the time-like boundary
onditions in (14). Inserting this ansatz into the zero mode equation D̂= 2 ~�p = 0 yields(j� j2 d2dy2 � �2L4 y2 � 2i�1 �L2 y ddy � i� �L2 )�p = 0;where y = x1 + Lk (
p �H0):This is just the di�erential equation for the ground state of a generalized harmoni
os
illator to whi
h it redu
es for � = i�0. The solution is given by�p = exp h� �2i��L2fx1 + Lk (
p �H0)g2i:These fun
tions do not obey the boundary 
ondition (102), but the 
orre
t eigenmodes
an be 
onstru
ted as superpositions of them. For that we observe that~�p(x0; x1+L) = e�i�x0=� e2i�H1 ~�p+k(x0; x1)so that the sums ̂p0 = (2k�0) 14qj� jV̂ e��20k�0 e2�i(H0��0� 12 )�1 Xn2Z e�2i�(n+p=k)( 12�H1) ~�p+nk e+; (105)where p= 1; : : : ; k, obey the boundary 
onditions and thus are the k required zero-modes. Indeed, sin
e (iD̂= )2 in non-negative there are no zero modes with negative
hirality be
ause of (104). With (97) we 
on
lude then that there are exa
tly k zeromodes with positive 
hirality. Modes with di�erent p in (105) are orthogonal to ea
hother and the overall fa
tor normalized them to one, so that the system (105) formsan orthonormal basis of the zero-mode subspa
e. For k < 0 the zero-modes are thesame if one repla
es e+ by e�.To 
ompute the fermioni
 determinant in a given topologi
al se
tor we again introdu
ethe one-parameter family of Dira
 operators39



D= � = ĝ1=2g1=2� e�fy D̂= e�f ; D̂= = 
̂���� + i!̂� � ieÂI� � 2�iL [H� + ��℄�; (106)whi
h interpolates between D̂= and D= , similarly as in (31). But nowf = �iF + 
5(G+ ��) + 12�;with F and G from (7), 
ontains an instanton 
ontribution. Also note that D̂= 
ontainsthe instanton part ÂI�. To 
ompute it's determinant we observe that the simple form(104) of �D̂= 2 allows one to re
onstru
t its spe
trum 
ompletely [20, 8℄:�̂2n = � 0 degenera
y = k2n�=V̂ degenera
y = 2k:The 
orresponding determinant is [20, 8℄det0(iD̂= ) = ��V̂� ��=4�: (107)To relate the determinants of D̂= to that of D= we again integrate the anomalyequation, whi
h now readsd log det0D= �d� = Z d2xpg��f(x)+f y(x)� d log g�2d� �fa1(x;D= 2� )4� � P0(x;D= 2� )g; (108)where, due to the fermioni
 zero-modes, the proje
tor onto the zero-mode-subspa
e,P0(x;D= 2� ) =Xpr  (�)p0 (x)N�1pr (�) (�(�)r )y(x) , Npr(�) = (�(�)p0 ;  (�)r0 ) (109)appeared. For the deformed operator D= 2� the �rst Seeley-deWitt 
oeÆ
ient isa�1 = � 112R� + 
5�4�G+ 1pg� h(1� �)qĝ �̂V + �pg �V i
5: (110)Integrating w.r.t. � [20℄ one ends up with the following formula for the determinantin arbitrary ba
kground gravitational and gauge �elds:40



det0iD= = det N N̂ det0(iD̂= ) exp � SL24� + 12� Z qĝG4̂G�� exp �2kV Z pgG+ �22�V̂ Z qĝ��: (111)In deriving this result we used that R pg�=0.Now we are ready to 
ompute the 
hiral 
ondensate h yP+ i. Observing thatthe fermioni
 Green's fun
tion anti-
ommutes with 
5 one sees at on
e that only
on�guration supporting one fermioni
 zero-mode with positive 
hirality 
ontributeto the 
hiral 
ondensateh yP+ i = � JZ0 Æ2Æ�+(x)Æ��+(x) Z D(: : :)ZF [0; 0℄ e�SB ;where �+=P+�. Earlier we have seen that these are the gauge �elds with 
ux �=2�or instanton number k=1. Thus the 
ondensate be
omesh yP+ i = � JZ0s V̂2 Z D(:) y0(x) 0(x) exp(:) e�SB [k=1℄; (112)where exp(: : :) stands for the exponentials in (111). First we integrate over the toron�eld t. The t-dependen
e enters only through the zero mode and more spe
i�
ally  ̂0in (105) with p=1. Using the series representation for the theta fun
tions one �ndsZ d2t  ̂y0(x) ̂0(x) = 1̂V : (113)Note that the result does not depend on the 
hemi
al potential similarly as in our
al
ulation of the partition fun
tion. To 
ontinue we observe that the term R pgGin exp(: : :) vanishes be
ause of our 
onditions (81) and (37) on the �elds ' and �.Furthermore SB[k = 1℄ = SB[k = 0℄ + 2�2e2V . The remaining fun
tional integrals areperformed similarly as those leading to the partition fun
tion and we end up with thefollowing formula for the 
ondensateh yP+ i = s�0̂V j�(�)j2e�2�2=e2V+2�=V̂ R pĝ�De�2(g�+e')(x)��(x)E�': (114)
41



The expe
tation value is evaluated withSeff = Z pgh12'(42 � e2� 4)'� e2�m2
 �4�� eg2� �4'i:A formal 
al
ulation of the resulting Gaussian integrals yieldsh yP+ i = s�0̂V j�(�)j2e�2�2=e2V+2�=V̂ R pĝ� e��(x)�2��(x)� exp [2�2m4
e2 K(x; x)℄ exp [ 2�g222� + g22 G0(x; x)℄; (115)where K(x; y) = hxj 142 �m2
4jyi = 1m2
 (G0(x; y)�Gm
 (x; y)) (116)and Gm; G0 are the massive and massless Green-fun
tions. Here we en
ounter ultra-violet divergen
es sin
e G0(x; y) is logarithmi
ally divergent when x tends to y. Toextra
t a �nite answer we need to renormalize the operator exp(��) as explained inse
tion 3:5. This wave fun
tion renormalization is equivalent to the renormalizationof the fermion �eld in the Thirring model and thus is very mu
h expe
ted [32, 33℄.The 
at Green's fun
tion on the torusĜ0(x; y) = � 14� j 1�(�)�h 12 + �0L12 + �1L i(0; �)j2 = � 14� j 1�(�)ei��(�0=L)2�1(��0 + �1L ; �)j2;where �=x� y, possesses the logarithmi
 short distan
e singularityĜ0(x; y) = � 14� log ĝ������V̂ � 14� log (4�2�0j�(�)j4) +O(�): (117)Furthermore G0(x; y) � Ĝ0(x; y) + 2�(x)� 1̂V Z qĝ�+O(�):With the pres
ription explained in se
tion 3:5 we �nd that on the 
at torus Ĝreg0 hasnow the �nite 
oin
iden
e limit 42



Ĝreg0 (x; x) = � 14� log �4�2�0j�(�)j4�2V̂ �: (118)To determine the 
hiral 
ondensate we also need to determineK(x; y) on the diagonal.In a �rst step we shall obtain it for the 
at torus. Its �-dependen
e is then determinedin a se
ond step. For �=0 and � = i�0 the Green fun
tion K̂ has been 
omputed in[8℄. The generalization to arbitrary � is found to bem2
K̂(x; x) = � 12m
L�0 
oth (��0aj� j2 ) + 1m2
V̂+ 12��� log j�(�1� )j2 + F (L; �)�H(L; �)�; (119)where we introdu
ed the dimensionless 
onstant a = Lm
 j� j=2� and the fun
tionsF (L; �) = Xn>0 h 1n � 1pn2 + a2 iH(L; �) = Xn>0 1pn2 + a2 h 1e�2�iz+(n) � 1 + 1e2�iz�(n) � 1i: (120)We used the abbreviationsz� = 1j� j2 (n�1 � i�0pn2 + a2): (121)Substituting (119) and (118) into (115) with � = 0 we obtain the following exa
tformula for the 
hiral 
ondensate on the torus with 
at metri
 ĝ��:h yP+ iĝ = 1Lj� j �m
Lj� j2� � g222�+g22 exp ��2m
e2L�0 
oth Lm
�02j� j �� exp h�m2
e2 �F (L; �)�H(L; �)�i; (122)where we used that on the 
at torus �=0 and V = V̂ . Furthermore, we identi�ed �with the natural mass s
ale m
 of the theory.To extra
t the �nite temperature behaviour of the 
hiral 
ondensate we take � =i�=L where �=1=T is the inverse temperature. In the thermodynami
 limit L!1.43



Then 
oth(: : :) ! 1, H ! 0 and the expression for the 
hiral 
ondensate simpli�esto h yP+ i� = �T� m
2�T � g222�+g22 exp h� �2m
e2 T + 2�2� + g22 F i: (123)Using F (�)! 
 + log a2 + 12a for a!1;where 
=0:57721 : : : is the Euler number, we obtain the zero temperature limith yP+ i = �m
4� 2g22=(2�+g22) exp � 2�2� + g22 
� for T ! 0: (124)For temperatures large 
ompared to the indu
ed photon mass F vanishes. Thus weobtain the high temperature behaviourh yP+ iT = �T� m
2�T � g222�+g22 exp �� �2m
e2 T� for T !1 (125)It is instru
tive to dis
uss the various limiting 
ases. For all gi=0, i.e. the S
hwingermodel limit, the exa
t result (123) simpli�es toh yP+ iT = �T e� �m
 T+F (�) �! ��m
4� e
 T ! 0�T e��T=m
 T !1, (126)where now m2
 = e2=� is the indu
ed photon mass in the S
hwinger model. Thisformula for the temperature dependen
e of the 
hiral 
ondensate in QED2 agreeswith the earlier results in [8℄.Next we wish to investigate how the self intera
tion of the fermions a�e
t thebreaking. For large 
oupling g2 and �xed temperature the exponent in (123) vanishesso that h yP+ iT � 1q2� + g22 for T �xed; g2 !1:Hen
e, for very large 
urrent-
urrent 
oupling the 
hiral 
ondensate vanishes. Orin other words, the ele
tromagneti
 intera
tion whi
h is responsible for the 
hiral
ondensate, is shielded by the pseudo s
alar-fermion intera
tion.44



For intermediate temperature and 
oupling g2 we must retreat to numeri
al evalua-tions of the sums de�ning the 
hiral 
ondensate in (123). The numeri
al results aredepi
ted in Fig. 1How does the gravitational �eld a�e
t the 
hiral 
ondensate? To answer thisquestion we need to know the massive Green's fun
tion, entering in (116), for non-trivial gravitational �elds (for simpli
ity we assume T = 0). Let us �rst 
onsider aspa
e with 
onstant negative 
urvature. Then Gm
 has been 
omputed expli
itly in[44℄. Here we only need its short distan
e expansion, given byGm
 (x; y) = � 14�f2
 + log (�s2R8 ) +  (12 + �) +  (12 � �) +O(s2)g; (127)where �2= 14 + 2m2
R and  (z) is the Digamma fun
tion. Substituting (127) into (116)we end up with the exa
t formula for the 
hiral 
ondensate for 
onstant 
urvatureh yP+ iR = h yP+ iR=0 � exp h �2e2m2
f log (�R2m2
 ) +  (12+�) +  (12��)gi: (128)The asymptoti
 expansions for large-and small 
urvature are easily worked out in-serting the 
orresponding expansions for the Digamma fun
tion [45℄. We �ndh yP+ iR = h yP+ iR=0 � exp h �12e2Ri for jRje2 � 1 (129)andh yP+ iR = h yP+ iR=0 � ( R2m2
 ) �2�+g22 exp h �4e2R� �m2
4e2 
i for jRje2 � 1:(130)Hen
e the 
hiral 
ondensate de
ays exponentially for large 
urvature analogous to thehigh temperature behaviour. However, the pseudo-s
alars do not suppress the e�e
tof the 
urvature in 
ontrast to (125). Comparing the exponentials in (130) to (125)we may de�ne the 
urvature indu
ed e�e
tive temperature asTeff = �R4�m
 : (131)In passing we note that if we 
ompare the prefa
tors, rather than the exponentials,we would write Teff = (�R) 124�p2 : (132)45



The latter identi�
ation a
tually 
oin
ides (up to fa
tor of 2) with the Hawkingtemperature of free s
alars in de Sitter spa
e [6℄. The 
orre
t identi�
ation involvesthe (dynami
al) mass of the gauge �eld and is therefore not universal. From thisobservation we learn that the temperature asso
iated with 
urvature depends on thematter 
ontent. Note �nally that the non-minimal 
oupling (g3) has no e�e
t onthe 
hiral 
ondensate. In Fig. 2 we have plotted the 
hiral 
ondensate for arbitrary
onstant values of the 
urvature.For gravitational ba
kgrounds with non-
onstant 
urvature we have to refer toperturbative methods for the 
al
ulation of the massive Green's fun
tion. Againwe only need the short distan
e expansion of Gm
 . For geodesi
 distan
es s small
ompared to m�1
 the massive Green's fun
tion may be approximated by the Seeley-DeWitt expansion [46℄Gm(x; y) � 14i 1Xj=0 aj(x; y)(� ��m2 )j H(2)0 (ms); (133)where H(2)0 is the Hankel fun
tion of the se
ond kind and order zero. In parti
ularH(2)0 (z)! 2i� [ log z2 + 
℄ for z ! 0:Inserting (133) into (116) we end up with the following expansion for the 
hiral
ondensate in an arbitrary ba
kgroundh yP+ iR = h yP+ iR=0 � exp h� �2 (m
e )2 1X1 aj(x)(j � 1)!m2j i; (134)where we have used that a0(x)=1. The �rst order 
ontribution involves a1(x)=�16Rand reprodu
es the asymptoti
 behaviour (129). Higher order 
ontributions must betaken into a

ount to un
over the e�e
t of variable 
urvature. For this one has tosubstitute is the 
orresponding Seeley DeWitt 
oeÆ
ients aj into (134). These havebeen 
omputed up to j=5 [47℄.5 Con
lusionsIn this paper we have elaborated on various features of the Thirring model as well assome of its extensions. In parti
ular we found the dependen
e of the partition fun
tionon the 
hemi
al potential and the non-trivial boundary 
onditions for the fermions46



on the torus. For that a 
areful analysis of fermioni
 determinants has been 
ru
ial.We have found that the familiar 
hiral anomaly of the UV-regularized two pointfun
tion is also seen in the IR-se
tor as a breakdown of holomorphi
 fa
torization.This fa
t, whi
h has not been properly taken into a

ount previously, together withthe presen
e of harmoni
 
ontributions to the 
urrent, leads to a modi�
ation of theequation of state due to the 
urrent-
urrent intera
tion. We believe that our results
ould also be obtained in the bosonized theory, provided the usual bosonization rulesare modi�ed to in
lude s
alar �elds with winding numbers, i.e. s
alar �elds withvalues in a 
ompa
ti�ed target spa
e.Furthermore, we have deformed the 
onformal stru
ture by allowing for di�erent 
ou-plings in the transversal- and the longitudinal parts of the 
urrent-
urrent intera
tion.This does not 
hange the Virasoro- and Ka
-Moody algebra, but modi�es the 
on-formal weights of the primaries and in parti
ular of the fermioni
 �elds. Not allvalues of the 
oupling 
onstants belong to physi
al theories, sin
e positivity of thes
alar produ
t imposes 
ertain restri
tions on them. Our approa
h allows also fora non-minimal 
oupling of the longitudinal se
tor to gravity. While su
h a 
ouplingmay seem to be ad-ho
 we gave some arguments that it might arise naturally whenquantizing fermions in presen
e of a a ba
kground 
harge. We �nd that the 
entral
harge of the Virasoro algebra is sensitive to the non-minimal 
oupling. In parti
ular
 < 1 o

urs for 
ertain values of the 
oupling 
onstant. However, we have not beenable to derive 
onstraints on this extra 
oupling without referring to the result byFriedan, Qiu and Shenker. We believe that an independent derivation of their resultwithin a fermioni
 model would be most wel
ome. We have also established that the
entral 
harge 
ontrols the �nite size e�e
ts only for a parti
ular treatment of thezero-modes of the auxiliary �elds whi
h is equivalent to an average over 
harges atin�nity.Finally we have 
onsidered the gauged Thirring model in 
urved spa
e-time. We �ndthat the partition fun
tion is independent of ve
torial as well as 
hiral twists and the
hemi
al potential. This result, whi
h te
hni
ally is due to the harmoni
 
ontributionsto the gauge-�elds, is in fa
t expe
ted as a 
onsequen
e of Gauss's law. Furthermore,using the (probably not so obvious) fa
torization property of the zeta-fun
tion reg-ularized determinants of 
ommuting operators we �nd that the partition fun
tion
an be expressed 
ompletely in terms of a single massive s
alar �eld. The gaugedThirring model shows a 
hiral symmetry breaking whi
h originates in the existen
e offermioni
 zero-modes and thus in 
on�gurations with winding number (instantons).We have obtained expli
it expressions for these instantons as well as the expe
tationvalue of the 
hiral 
ondensate as a fun
tion of temperature and 
urvature. The 
on-47



densate is exponentially suppressed for high temperatures and/or big 
urvature whi
his interpreted as an almost restoration of the 
hiral symmetry under these extreme
onditions. Although temperature and 
urvature have qualitatively the same e�e
tthey 
annot be identi�ed. In parti
ular the identi�
ation with the Hawking temper-ature for free s
alar �elds in de Sitter spa
e does not hold in the present situation. Itfollows from general arguments that the 
hiral symmetry 
an not be restored for any�nite temperature or 
urvature so an exponential suppression is most we 
an expe
t.In fa
t, it has been argued earlier, that the axial U(1)-symmetry in 4 dimensionalQCD also shows an almost restoration as a fun
tion of the temperature [49℄. Ourresults on the 
urvature dependen
e 
ould motivate a 
orresponding investigation inQCD. Finally we note that the 
hiral 
ondensate is linearly suppressed for large
urrent-
urrent 
ouplings.A
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ussions.A Conventions and Variational FormulaeOur 
onventions for the metri
 and 
urvature agree with those of Birrell and Davies[6℄. We use the 
hiral representation 
̂0M = �1; 
̂1M = i�2 for 
at spa
e with Lorentziansignature and 
̂0E = �1; 
̂1E = ��2 in Eu
lidean spa
e. Furthermore 
̂5=
5 = �3.In what follows we derive some variational formulae used in the text. Here D� denotesthe spa
e-time and Lorentz 
ovariant derivative.Using the de�nition of the Christo�el symbols it is straightforward to show thatÆg�� = Æe a� e�a + e a� Æe�a ; Æpg = 12pgg��Æg��Æ
� = �
�e�aÆe a� ; Æ� �� = 12(���Æg�� � � �� g��Æg��)Æ���� = 12g��(D�Æg�� +D�Æg�� �D�Æg��): (135)For some formulae related to the variation of the tetrad let us refer to [48℄48



Æe�a = 12e�aÆg�� � t ba e�b ; Æe a� = 12e�aÆg�� � tabe b� ;where tab = 12(e�aÆe�b � e�bÆe a� ): (136)In addition we haveÆ!�ab = D�tab � ��ab ;��ab = 12e�ae�b(D�Æg�� �D�Æg��): (137)When performing the variation of 
urvature dependent expressions we have used theidentities g��ÆR�� = !�;� ; where !� = g��Æ���� � g��Æ����and R pg !�A� = R pgfg��r�A� �r�A�gÆg�� : (138)Depending on the topology of spa
e-time, the referen
e 
urvature R̂ may be di�erentfrom zero. In this 
ase it is not possible to express the 
onformal angle � in terms ofthe 
urvature s
alar. Nevertheless, to perform variations of �-dependent expressions,the identity Æ(pgR) = �2Æ(pg4�) (139)proves to be useful.Taking the variations of the equationspg2G(x; y) = �Æ(x� y) and pg iD=S(x; y) = Æ(x� y) (140)for the s
alar and fermioni
 Greens fun
tions we may derive (up to 
onta
t terms)the following variational formulaeÆG = Z (� 12g��g�� + g��g��)��G(x; u) ��G(u; y)pgÆg��ÆS = i4 Z �2S(x; u)
�D�S(u; y)�D�[S(x; u)
Æ� �Æ ���S(u; y)℄�pgÆg�� :Here all arguments and derivatives whi
h are not made expli
it in the integral referto the 
oordinate u over whi
h is integrated. Finally, we need the following formulafor the variation of the inverse Lapla
ian49



Æ  14f! = 14  Æf � Æ(4) 14f!� 12V Z pgg��Æg�� 14f; (141)where V is the volume of spa
e-time and f an arbitrary fun
tion. To prove thisidentity we note that for f 2 (Kern4)? we have4 14f = f:Varying this equation yields4(Æ 14f) = Æf � (Æ4) 14fwhi
h may be inverted to giveÆ  14f! = 14  Æf � Æ(4) 14f!+ 1V Z pgÆ  14f! : (142)Varying the identity 1V Z pg 14f = 0allows to repla
e the last term of (142) to obtain the required result (141).B Canoni
al Approa
h to the Partition Fun
tionIn this appendix we 
ompute the partition fun
tion for massive Dira
 fermions in the
anoni
al formalism. In the limit m! 0 we 
on�rm the result (30) for the fermioni
determinant with 
hemi
al potential in 
hapter 3. For massive fermions one 
annot
onsistently impose 
hirally twisted boundary 
onditions. However, from the expli
iteigenvalues (21) one sees at on
e that the 
hiral twist �1 and the 
hemi
al potentialare equivalent. One 
an easily verify that this equivalen
e holds also for masslessfermions in the 
anoni
al approa
h and that �1 � �L=2�. Let us therefore 
omputethe partition fun
tion Z(�) = Tr[e��:(H��Q):℄ (143)for massive Dira
 fermions with 
hemi
al potential � on a 
ylinder with (non 
hiral)twisted boundary 
onditions 50



 (x+ L; t) = �e�2i��1 (x; t): (144)For massive parti
les it is more 
onvenient to use the Dira
 representation
0 = �3 
1 = �i�2; 
5 = 
0
1 = ��1: (145)The Dira
 �eld is expanded in terms of the eigenmodes of the �rst quantized Hamil-tonian h = � m i�xi�x �m� (146)as 	(x; t) =Xn  n;+bn +Xn  n;�dyn; (147)where the  n;+ and  n;� are the positive and negative energy modes, n;+ = e�i!nt�i�nx
n;  n;� = ei!nt�i�nx
1
n;
n = (2!n(!n +m)L)� 12 �!n +m�n � : (148)The momenta �n and frequen
ies !n are determined by the boundary 
ondition (144)to be �n = 2�L (n� 12 � �1) and !n = qm2 + �2n: (149)After normal ordering the 'positron' operators with respe
t to the Fo
k va
uum de-�ned by H we �nd(H � �Q) =Xn (!n � �)bynbn +Xn (!n + �)dyndn �Xn (!n + �); (150)where the last 
-number term represents the in�nite va
uum 
ontribution whi
h mustbe regularized. To do that we employ the zeta fun
tion regularization. That is wede�ne the zeta-fun
tion for s>1 by the sum�(s) =Xn (!n + �)�s;51



whi
h in turn de�nes an analyti
 fun
tion on the whole 
omplex s-plane up to a simplepole at s=1. The analyti
 
ontinuation is 
onstru
ted by a Poisson resummationXn (!n + �)�s = Ls2�Xn F (n); (151)where F (�) = e2�i�( 12��1) Z dy ei�y[q ~m2 + y2 + ~�℄�s (152)and ~m=Lm, ~�=L�. Taking the Mellin transform of (152) we �ndF (�) = e2�i�( 12��1) 1�(s) Z dy ei�y Z dt ts�1e�tp ~m2+y2�t~�= � 2�(s)e2�i�( 12��1) Z dt ts�1e�t~� ddtK0(~�q�2 + t2) (153)= 2 ~m�(s)e2�i�( 12��1) Z dt tse�t~�K1(~�p�2 + t2)p�2 + t2 :F diverges at �=0 sin
e the Kelvin fun
tion K1(z) � 1=z for small z. It follows thatthe n= 0 term in (151) diverges. This divergen
e is regularized by subtra
ting theground state energy of the in�nite volume system. Indeed, be
ause of the exponentialde
ay of the Bessel fun
tion for large arguments, only the n=0 term 
ontributes forin�nite volume. So we �nd for the regularized sumXn (!n + �)�s = ~mLs�(s)� Xn 6=0Z dt e2�in( 12��1)tse�t~�K1( ~mpn2 + t2)pn2 + t2 : (154)Now we perform the limit m ! 0. Only the most singular term in the expansion ofthe Bessel fun
tion 
ontributes, hen
eXn (!n + �)�s = Ls�(s)� Xn 6=0 Z dt e2�in( 12��1)tse�t~� 1(n2 + t2)= sLs� Xn 6=0 e2�in( 12��1)q~�ns� 12S�s� 12 ; 12 (~�n); (155)where Sa;b(z) is the Lommel fun
tion [50℄. In parti
ular for s=�1 this fun
tion isS = 1=z so that �nally 52



Xn (!n + �)reg = � 1�L Xn 6=0 (�)nn2 e�2�in�1 = �6L � 2�L (�1 � [�1+12℄)2: (156)Inserting this into (150) then yields the regularized expression: H � �Q :=Xn (!n��)bynbn +Xn (!n+�)byndn � �6L + 2�L ��1 � [�1+12℄�2: (157)For small � the normal ordering is �-independent so thath0j : H � �Q : j0i = � �6L + 2�L ��1 � [�1 + 12℄�2 = h0j : H : j0i (158)is independent of � and 
oin
ides with the Casimir energy [24℄.Let us now 
ompute the partition fun
tion. Using (158) we easily �ndZ(�) = tr [e��:(H��Q):℄ = q[�21� 112 ℄= 1Yn>[ 12+�1℄(1 + q(n� 12��1)e��) 1Yn>�[ 12+�1℄(1 + q(n� 12+�1)e��) �1Yn>[ 12��1℄(1 + q(n� 12+�1)e���) 1Yn>�[ 12��1℄(1 + q(n� 12��1)e���)= 1j�(�)j2�h��1i� �2� i(0; �) ��h ��1�i� �2� i(0; �); (159)where we have used the produ
t representation of the theta fun
tions in the lastidentity and that q = e2�i� = e�2��=L. A non-vanishing 
hiral twist �1 
an now bein
luded by shifting the 
hemi
al potential. Thus we have 
on�rmed the formula (30)in the text.Note that for � 6= 0 the zero-temperature limit of the grand potential is not equalto the va
uum expe
tation value of :H � �Q : . For � 6= 0 all states up to the �-dependent Fermi energy are �lled. For example, for !1 < � < !2 in the limit � !1,
 redu
es to the expe
tation value of : H � �Q : in the one-ele
tron state.
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