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Abstract

The Thirring model and various generalizations of it are analyzed

in detail. The four-Fermi interaction modifies the equation of state.
Chemical potentials and twisted boundary conditions both result in
complex fermionic determinants which are analyzed. The non-minimal
coupling to gravity does deform the conformal algebra which in par-
ticular contains the minimal models. We compute the central charges,
conformal weights and finite size effects.
For the gauged model we derive the partition functions and the ex-
plicit expression for the chiral condensate at finite temperature and
curvature. The Bosonization in compact curved space-times is also
investigated.



1 Introduction

The response of physical systems to a change of external conditions is of eminent
importance in physics. In particular the dependence of expectation values on tem-
perature, the particle density, the space region, the imposed boundary conditions or
external fields has been widely studied [1]. Nevertheless, many properties of such
systems are poorly understood. The massless Thirring model [2], which is among the
simplest interacting field theories, has already led to considerable confusion about its
thermodynamic properties in the literature [3, 4, 5]. The reason is two-fold: Firstly,
the computation of the fermionic determinant in the presence of a chemical potential
and/or non-trivial boundary conditions is delicate, because the eigenvalues of the
Dirac operator are generically complex. In section 3.1 we propose a regularization
scheme via analytic continuation. We argue that the so-obtained determinant, which
differs from previous results [4], leads to the correct equation of state.

The second complication originates in the infrared-sector. An elegant infrared regu-
larization, which is particularly well suited for the study of thermodynamic properties,
is to quantize the model on a torus. Harmonic contributions to the current arise then
naturally and taking them into account turns out to be crucial for a correct quanti-
zation. In particular the so-obtained results differ from those gotten earlier [3] using
bosonization. This is explained in section 3.2.

On another front there has been much effort to quantize self-interacting field
theories in a background gravitational field [6]. For example, one is interested whether
a black hole still emits thermal radiation when self-interaction is included. Due to
general arguments by Gibbons and Perry [7] this question is intimately connected with
the universality of the second law of thermodynamics. The Thirring model (including
the gauged version of it) is still solvable in curved space-time and we can study its
properties in a background gravitational field. This provides us in particular with an
elegant approach to the study of its conformal structure: Correlation functions with
current- and stress-tensor insertions, which are gotten by functional differentiation
with respect to the gauge- and gravitational fields, contain the necessary information
to characterize the underlying symmetry algebras. To familiarize the reader with our
approach we first rederive the conformal structure of the original Thirring model in
section 3.3. We then show how a non-minimal coupling to gravity leads in a natural
way to a modification of the conformal structure. In particular, very much as for a
free scalar field the central charge in the fermionic formulation of the Thirring model
is not unique. Furthermore, we find that the equivalence between finite size scaling
and central charge of the Virasoro algebra holds only for a particular treatment of



the zero-mode sector in which a charge at infinity is generated automatically. This
charge combines in a non-trivial way with the Weyl-anomaly of the determinant of
the fluctuation operators to reconcile the equivalence of the finite size scaling and the
central charge. For certain values of the non-minimal coupling we obtain minimal
models from interacting fermions. This is the subject of sections 3.4 and 3.5.

The gauged Thirring model, which contains the Schwinger model (QE D) as a
particular limit, is no longer conformally invariant but has a mass gap: The "photon’
acquires a mass m2 = e?/(m + 3g¢2) via the Schwinger mechanism. It possesses a
non-trivial vacuum structure which promotes it to an attractive toy model to mimic
the complex vacuum structure in 4-d gauge theories. From our experience with the
Schwinger model [8], which is supposed to share certain aspects with one-flavour QC D
[9], we expect that gauge fields with winding numbers are responsible for the non-
vanishing chiral condensate and in particular its temperature dependence. Configura-
tions with windings, so called instantons, exist only for finite volumes and minimize
the FEuclidean action. They lead to chirality violating vacuum expectation values.
For example, a non-zero chiral condensate develops which only for high temperature
and large curvature vanishes exponentially.

Since for particular choices of the coupling constants the model reduces to well
known and well studied exactly soluble models there are many earlier works which are
related to ours. Some of them concentrated more on the gauge sector and investigated
the renormalization of the electric charge by the four-Fermi interaction [10] or the
non-trivial vacuum structure in the Schwinger model [8, 11]. Others concentrated on
the un-gauged conformal sector. Freedman and Pilch calculated the partition function
of the un-gauged Thirring model on arbitrary Riemann surfaces [4]. We do not agree
with their result and in particular show that there is no holomorphic factorization
for general fermionic boundary conditions. Also we deviate from Destri and deVega
[5] which investigated the un-gauged model on the cylinder with twisted boundary
conditions. We comment on these discrepancies in section 3.2.

Section 2 contains introductory material and in particular the classical structure of
the model.

Other papers are dealing with different aspects of certain limiting cases of the
model considered here. In particular in [3], the thermodynamics of the Thirring model
has been studied and the Hawking radiation has been derived in [12]. The equivalence
of the massive Thirring model and the Sine-Gordon model in curved space has been
shown in [13]. Partition functions for scalar fields with twisted boundary conditions
have been computed in [14] and more recently in [15].



2 Classical Theory

The gauged Thirring model in curved space-time has the Lagrangian
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Lol A, B0 = G, = L0 = LEWF™ L =G, (1)
where the gamma-matrices in curved space-time are related to the ones in Minkowski
space-time as Y =ehA*, V,=0,+ iw,— ieA, is the coordinate- and gauge covariant
derivative and F},, is the electromagnetic field strength. The gravitational field g,
(or rather the 2-bein e, since the theory contains fermions) is treated as classical
background field, whereas the 'photons’ A, and fermions 1 will be quantized.
The classical theory is invariant under U(1) gauge- and axial transformations and
correspondingly possesses conserved vector and axial-vector currents

j* and =ity =nt, ;. (2)

Here 1, =+/—g €., denotes the totally antisymmetric tensor. In fact, the conservation
laws together with the relation (2) between the vector- and axial currents imply that
the currents are free fields

Vit = VPt =0, (3)

which is the reason that accounts for the solubility of the model [16], even in the
presence of gauge- and gravitational fields. Of course, for any gauge invariant regu-
larization the axial current possesses an anomalous divergence in the quantized model.
Thus the normal Uy (1) Ward identities in the un-gauged Thirring model [10] become
anomalous when the fermions couple to a gauge field.

The solution of the equations of motion is most easily presented by introducing
auxiliary scalar- and pseudo-scalar fields, in terms of which the action takes the form

1 - : 921,
S = /\/__g[ - ZFWFW + Zlb'yﬂ(vu — 10,0\ + 92"y 8,,@5)1&]

(4)
+g" (0,00, 6 + D AD,N) |

Note that for later use we have allowed for different couplings of the fermionic currents

to the scalar- and pseudo-scalar auxiliary fields A and ¢, respectively. The original

Thirring model is recovered for g, =g, =g, since then



1 - . ) )
L= —ZF2 + iV uih + 9" By + ¢ BuBy, By = 0uA—1,"0,¢ (5)

is classically and quantum-mechanically equivalent to (1), after elimination of the
multiplier field B,,.
By decomposing the gauge field similarly as the B,-field as

A, =0, — 1, 0" p, so that  Fy = +/—¢VZo, (6)

and choosing isothermal coordinates for which g,, = €*’1,,, the generalized Dirac
operator reads

ST _3 T, 1
p _ ezF i5G 20@6 iF 175G+20, where

F = gld+ea and G=go+ep.

(7)
Hence, if ¢, () solves the free Dirac equation in flat Minkowski space time, then

W(z) = ez’F+i'y5Gf%U1/)0 (8)

solves the Dirac equation of the interacting theory on curved space-time. The vector
currents are related as

_ _ 1
3 = Py = hoitihe 7 = —ji.
The same relation holds for the axial vector current.

Diffeomorphism invariance then leads covariantly conserved energy-moment um
tensor
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Applying the variational identities in Appendix A one obtains after a lengthy but
straightforward computation

1 ) -
Tltll — ng}FapFap o FUVFG[L + %[7/)7(MDV)¢ . (D(“¢)7”)¢]
+2VHOV ) — gV Ve + (< A) (10)
1 N v vo
+-5" (glv A= g.n Va¢) + ([L > l/)
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+6:9" 1N VP b — 20,51 “V )

where we have introduced the symmetrization A”B") =1(A*B” + A”B"). The first
two lines are just the energy momentum of the electromagnetic field, charged fermions
and free neutral (pseudo-) scalars. The remaining terms reflect the interaction be-
tween the fermionic and auxiliary fields. On shell T# is conserved as required by
general covariance. Using the field equations for ¢ and A its trace reads

1 a
Th= —5FF,,. (11)

In particular for A, =0 it vanishes, and the theory becomes Weyl-invariant.

Symplectic structure: In the presence of both fermions and bosons it is convenient
to exploit the graded Poisson structure [17]

_ L (A@)T TB(y) _A@)S 3 B(y)
{A(@), Bly)} = %/ (56 5ra() T droz) 50(2) )

The sum is over all fundamental fields O(z) in the theory . The sign is minus if one
or both of the fields A and B are bosonic (even) and it is plus if both are fermionic
(odd) fields. The momentum densities 7o () conjugate to the O-fields are given by
functional left-derivatives. A simple calculation yields the following momenta

20=y0

Ty = —ipl,  Ts = gu75 + 2000 and  my = g,jo + 200\

In the following sections we are lead to consider the FEuclidean version of the
model. Then one must replace the Lorentzian +*,g,, and w, by their Euclidean
counterparts. For example, with our conventions the relation (2) becomes

j* = =it
and the generalized Dirac operator in Euclidean space-time becomes
90 ff f . 1
D= e*e @ e, where f:—2F+'y5G+§a (12)

(see (7) for the definition of F' and G), instead of (7). Also, to recover the Euclidean
Thirring model as particular limit of (4) we must set g2>=g?=g*.



3 Thermodynamic- and conformal properties

In this section we analyze the quantum theory corresponding to the classical action
(4) without gauge fields, in flat and curved space-time. The gauged model is then
considered in the next section. Here we calculate the partition function, ground state
energy, equation of state and determine the conformal structure of the un-gauged
model.

To allow for a non-vanishing U(1)-charge we couple this conserved charge to a
chemical potential p. For the finite temperature model the imaginary time must vary
from zero to the inverse temperature $ and the bosonic and fermionic fields must
obey periodic and anti-periodic boundary conditions, respectively. We enclose the
system in a spatial box with length L to avoid infrared divergences.

We shall determine the dependence of the partition function and correlators on
the metric. This provides us with an alternative approach to the conformal structure
and its relation to finite size-effects. Also, it enables us to study the effect of non-
minimal coupling to gravity in section 3.3. Hence we allow for an arbitrary metric or
2-bein e, with Euclidean signature. We can choose (quasi) isothermal coordinates
and a Lorentz frame such that

~ 0 T1
_ o — 0
€ua = € €uq =€ < 0 1 )

20 — 20 |7_|2 T1 20
gNV = ¢ gl“/ =€ 7_1 1 ) \/g =€ Tp,

(13)

where 7 =7 + i1y is the Teichmueller parameter and o the gravitational Liouville
field. Space-time is then a square of length L and has volume V = fOL d2x\/§. We
allow for the general twisted boundary conditions for the fermions

1/)(1;0 —i—L,xl) _ _627ri(oco+ﬂ075)1/)(x07x1)

) 14
w(xo,x1+L) _ —62m(al+ﬂw5)’¢(x0,331). ( )

The parameters «; and [3; represent vectorial and chiral twists, respectively. We could
allow for twisted boundary conditions for the (pseudo) scalars as well [14, 15], e.g.
P(x’+nL,xt+mL) = ¢(x!,2°) + 2w (m+n). However, to recover the Thirring model
for equal couplings we must assume that these fields are periodic. For 0 =0, 7=1i3/L
in which case V = L, and for ag = fy = 0 the partition function has the usual
thermodynamical interpretation. Its logarithm is proportional to the free energy at



temperature T'=1/0.

3.1 Fermionic Generating Functional

Twisted boundary conditions as in (14) require some care in the fermionic path in-
tegral. The subtleties are not related to the unavoidable ultra-violet divergences but
to the transition from Minkowski- to Euclidean space-time. To see that more clearly
let ST denote the space of fermionic fields in Minkowski space-time with chirality 41.
Since both the commutation relations and the action do not connect ST and S~ we
can consistently impose different boundary conditions on ST and S~. On the other
hand, in the Fuclidean path-integral for the generating functional

Zieln, 7] = / DDy ef Vavtipv[ va(motn) (15)

the Dirac operator
0 D_
p=(p, )

exchanges the two chiral components of ¢, i.e. [P : S* — ST. Thus, in contrast to
the situation in Minkowski space the two chiral sectors are related in the action. Of
course, the eigenvalue problem for i) is then not well defined. This is the origin of
the ambiguity in the definition of the determinant. It is related to the ambiguities
one encounters when one quantizes chiral fermions [18]. Here we reformulate this
problem in such a way that the determinant with chiral twists (3#0) can be obtained
by analytic continuation. The resulting determinants do not factorize into (anti-)
holomorphic pieces. In appendix B we give further arguments in favour of our result
by calculating the determinants in a different way.

Let us now study the generating functional for fermions in an external gravita-
tional and auxiliary field. For that we observe that on the torus we must add a

harmonic piece to the auxiliary fields to which the fermionic current couples in (4).
More precisely, in the Hodge-decomposition of B, in (5) contains a harmonic piece,

27 )
B, = aﬂ)\ — T]MV Lo + fh” with V”hu = h[u;y] = 0. (16)

More generally, allowing for arbitrary couplings of the various terms in (16) to the



fermionic current, we are led to add a term

—go/\/_huj 4 /fh Wt

to the action (4). Note, that in isothermal coordinates, for which the metric has the
form (13), the harmonics h,, are constant. The constant h, couple to the harmonic
part of the current and are needed to recover the Thirring model in the limit g2 =g =
g%. Also, we shall see that the harmonic degrees of freedom are essential to obtain
the correct thermodynamic potential.

Finally we introduce a chemical potential for the conserved U(1) charge. In the
Euclidean functional approach this is equivalent to coupling the fermions to a constant
imaginary gauge potential Aqy [19].

As a consequence of the above observations the scaling formula (12) (recall, that
F=g,\ and G=g,¢ when the electromagnetic interaction is switched off) is modified
to

N _ 1
D = e 27l pel, where [ =—=1g A+ 79,0+ 3¢
A (17)

p = * (au + 1w, — %[gohﬂ + ,uﬂ]) and p, = —i%u 80
This scaling property will enable us to relate the fermionic determinants and Green’s
functions of J) and I). The spin connection ¢ in (17) vanishes for our choice of
the reference zweibein. The dependence of ﬁ on the chemical potential ;1 and the
constant harmonic field s, cannot be gotten by the anomaly equation [20]. It must be
computed by direct methods. For this we expand the fermionic field in a orthonormal

basis of the Hilbert space

(@) = D anthus () + D] batn(2)

_ - (18)
77“(*%) = Z anXIer (ZL‘) + Z ansz (ZL‘)
where ay,, by, @n, b, are independent Grassmann variables. A basis is given by
1 2 1
Upa () = % ¢iPm ) ex, where (pf);= LW(2 + a; + B +ny), (19)

and the e, are the eigenvectors of v5. Recall that a; and 3; represent the vectorial- and
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chiral twists (14) respectively. The ¢,,; and t,,_ must obey the ST and S~ boundary
conditions, respectively. These boundary conditions fix the admissible momenta p
n (19). Since the Dirac operator maps ST into ST the y,+ must then obey the same
boundary conditions as the t,. Thus x,4 () is obtained from v,,4 (z) by exchanging
p; and p;, . It follows then that

P Yo = Nixnz (20)
with
2m 1 1
Moo= S FG Har+ Bt m) = (5 +ao + By + o)
ToL 2 2
2 1 1 1 (21)
A= —[7’(— +a—fr+n)—(z+a —Bo—i-ng)].
" ToL 2 2

Here we have introduced a, = a, —goh, —p,. To continue we recast the infinite
product for the determinant in the form

00 a 2m\2, .1 1
[N =TI () 9 + et ma)( + et ). (22)
n nez?

where " is the inverse of the reference metric (13) and

e . - L/ —|7?
w= ki B with (%) = (1 T (23)

To -7

The logarithm of the product (22) can in turn be written as the derivative at zero
argument of a generalized zeta function. Indeed one easily verifies that for

Cls) =2 (A~ (24)

n

we have (formally)
det (i) = ([T AAL),e, = exp[=¢(5)]]s=0- (25)

However ((s) is divergent for s < 1. These divergences can be regularized as follows:
We compute ((s) for s > 1 and subsequently define its value for s < 1 by analytic



continuation.

Assume for the moment that ¢, is real or equivalently that there are no chiral twists
f, and chemical potential p. Then ((s) has a well defined analytic continuation to
s<1 via a Poisson resummation [21]. Indeed, writing ((s) as a Mellin transform

1 ! +y—
dt tS—l _t)‘n )‘n
r s [ e (26)

the generalized Poisson resummation formula

((s) =

XZ: exp[—mh*"(n, —a,)(n, —a,)] = \/EXZ:eXp[—ﬂhWn“n” — 2minta,], (27)

applied to the integrand in (26) yields after integration over ¢

C(s) = %H“\/g zzjl(gwn“n”)52_1 exp|[—2min*(c, + %)] (28)

The zero mode with n, =0 is eliminated because for s > 1 it does not contribute.
After this analytic continuation ((s) and (’(s) are now regular at s=0. More precisely

¢(0) =0 and
¢'(0) = W’l\/ﬁzl(gwn“n”)’% exp[—2mintc,]
Z

(29)
} (0, 7')} :

“Jo,7 e[

Co

% [ cO
Here we made use of det[c(i]D)?]=det[(i]D)?], which follows from ¢(0)=0.
For complex ¢, the Poisson resummation is not applicable and ¢’(0) cannot be cal-
culated by direct means. To circumvent these difficulties we note that the infinite
sum (24) defining the (-function for s >1 is a mereomorphic function in c¢. Thus we
may first continue to s <1 for real ¢, and then continue the result to complex values.
Using the transformation properties of theta functions the resulting determinant can
be written as

) — o27(\/ 39" BuBr—2if1a0) 1 —a1 + [ ~r—a; — [
det(if)) = >V In(T)IQG[ b ](0,18] i [(0.7). (30

This is the main result of this section.

10



It can be shown that this determinant is gauge invariant, i.e. invariant under o, —
a,+1, but not invariant under chiral transformations, 8, — 3,41, as expected.
Furthermore, it transforms covariantly under modular transformations 7 — 7+ 1 and
7 — —1/7. In other words, deti]) is invariant under modular transformations if at
the same time the boundary conditions are transformed accordingly. The exponential
prefactor is needed for modular covariance and is not present in the literature [4]. It
correlates the two chiral sectors and will have important consequences. In Appendix
B we confirm (30) with operator methods.

The last step in the calculation of the fermionic generating functional is the inclu-
sion of the local contributions to the auxiliary- and metric field, i.e. the dependence
of the determinant on A, ¢ and o. For this we introduce the one-parameter family of
Dirac operators

1/2
g 7"r T
wT_gl/g f @6 f (31)

We take the 7-dependence of the metric as g-=¢€>7g. With f as defined in (17), this
family interpolates between I and ). The determinant of the full Dirac operator is
then obtained by integrating the corresponding anomaly equation [22]:

detip = det(i]D) exp 2 T 5s / \/7¢A¢ (32)

where

S = /\/5[7%0 — o0Ao] (33)

is the Liouville action. In deriving this result we assumed that [,/gA = 0. This
constraint on the zero-mode of A (and similarly of ¢) will be discussed below. Actually,
for our reference metric the Ricci scalar R vanishes and the Liouville action simplifies
to — [ \/ﬁaﬁa. However, the above formulae hold for arbitrary reference metrics
and arbitrary Riemannian surfaces. Furthermore, as expected for a gauge-invariant
regularization, the function A and thus the longitudinal part of B, does not appear
in the determinant.

To complete the calculation of the generating functional we need to know the
fermionic Green-functions S. Using the scaling property of the Dirac operator, eq.

11



(31), it is easy to see that in an arbitrary background field S is related to S by
S(x,y) = e S(z,y) e 0.

Together with the relation (32) and the explicit form (29,30) for det i) this yields
the fermionic generating functional

1 [—Cl

zetn) = ol e o o)

Co Co

[ (@) (@y)n(y) 1 i (34
— [ n(@)S(zy)n(y) 2
e exp (247rSL + QW/\/ﬁqﬁA(ﬁ])

By using the scaling properties of the Ricci-scalar and Laplacian (see appendix A)
the exponent can be written in a manifest diffeomorphism-invariant way as

1 1 9;
—%—W/ﬁRZRJF%/\/MAqS.

Here we used that on the torus R integrates to zero. On the sphere or higher genus
surfaces the last formula is modified.

The Integration over the auxiliary fields then leads to the full generating functional
of the Thirring model. It contains all information about the thermodynamic- and
conformal properties. This is the subject of the next two sections.

3.2 Thermodynamics of the Thirring Model

In this chapter we derive the grand canonical potential, equation of state and ground
state energy for the Thirring model. For this we need to compute the partition
function

2 = [ &#hDeDA Zpln==0] =5, (35)
where Zp is the fermionic generating functional (34) and Sp the bosonic action
Sy = (2m)2\/39™ hyh,, — / VI(ALA +6L0). (36)

As it stands the partition function is still ill-defined unless we constrain the zero-
modes artificially introduced in the Hodge decomposition of B, in (16). The choice

12



of the constraints is restricted by the symmetries of the system. In particular transla-
tion invariance (or rotation invariance on the sphere) and covariance under modular
transformations of the torus are symmetries which me may want to preserve by the
zero-mode constraint. The constraint measure

- - 1
/dhodth¢DA5(¢)5(A) = /dhodh1D6¢Da)\ T ¢ v / V9 (37)
(and similarly for A) satisfies these requirements (The normalization by the volume
in the definition of ¢ is needed such that the constraints and hence the partition
function are both dimensionless). For example, one finds the dimensionless partition
function

ST

No= [Dos(p)eord = VYV
0 / ¢ d(p)e det’s (—A)

(38)
for free bosons, where the prime indicates the omission of the zero-eigenvalue.

Integration over the harmonics: There is no restriction on the harmonic parts
of the auxiliary fields and the Gaussian integral yields

[ enol e~ o o))
Zo dzh@[ col]@[ 501} exp|—(2m)*\/99" by h] = am 1+ g2/2m (39)
where
@[u](A) => i (nHu)A(n+u)+2mi(ntu)w
w

nez?

is the theta function with characteristics
1 o 1 -y
u:—<1>(a1+m1 B,) and w:<_1>(ao+m0 By — o) (40)

and covariance

(T 0 .7Tg§To< g2 —47r—g§>
A_<0 —T>+227r—|—gg —47 — g2 g2 ' (41)
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Integration over A and ¢: The integral over A, subject to the d-constraint in (37),
merely contributes one inverse square-root of the primed determinant of —2A to the
partition function and so does the integration over ¢. In fact, to obtain the partition
function of the Thirring model we divide Z by the corresponding partition functions
Ny of the free bosons, eq. (38). Using (39) and (34) we obtain

Z 1 2+ g2 ru >
—_— = (—) A (1/247T+93)5L7
Mo = B\ g Ol W€ (42)

where we have also used the scaling formula for the primed determinant of A [20, 23]

det/(—al)

logm:loga-C(O):loga-[i/al—p], (43)

47

with p being the number of zero modes of the operator. On the torus [ a; =0 and we
find

det/( — al) = L det’(— 1),
a

which produces the extra factor \/2m 4+ g,. In the Thirring model limit ¢g, = g, and
the square-root in (42) disappears.

Zero-temperature limit: To investigate the thermodynamics of the model we
assume space-time to be flat and that 7=1i3/L. Then

1 VA
Q=——log—
BN
is the grand canonical potential. First we analyze the low temperature limit of 2. For
p=0 this yields the ground state energy. We observe that for 7=1i3/L the covariance
matrix A in (41) simplifies to

. s g 1 ( g? —4 — gz>
A=——|Id+ == 0 0
W L [ T + g2 \—41 — g2 g2 ] (44)

and has eigenvalues

14



7621 + g2 B 2w
Al = —— . d A=——
! L 27 o ? L 21+ g2 (45)
with corresponding eigenvectors
vy =(-1,1) and wvy = (1,1). (46)

Also, the 7} tensor (see 23) and pp (see 17) in (40) simplify to

, 0 L B
8 :<—L/[3 56) and po = —i_i.

For f — oo the saddle point approximation to the Gaussian sum (39) defining the
theta-function becomes exact and therefore using that

mf

log [n(7)]* — ~5L for f— o0
we find
s dr w uL o
QB — == —
e T marry A =
T . 2r+g? 47 77
+op min [ 5 na - m el Gl (47)
2r

+ ni +ne — 204 ¥

e ]

for the zero-temperature grand potential of the un-gauged model. Here the chemical
potential and chiral twist enter only through the combination 8;+uL/27. Let us now
discuss the potential in the various limiting cases.

i) No chiral twist, $; =0, and vanishing chemical potential: Then Q(5 —
o0) coincides with the ground state energy. The minimum in (47) is attained for
ny=ny= [%+a1] and we find

s 2r 2w 1 9

(1 =[5 + 1))

Eo(L, o, /1=0) S T ILmtg 5 (48)
0

Only for anti-periodic boundary conditions, that is for a; =0, does this Casimir energy

15



coincide with the corresponding result for free fermions. For g2 >4 the Casimir force
is always attractive whereas for g <4 it can be attractive or repulsive, depending on
the value of ;. The result (48) is in agreement with the literature [5]. For example, it
coincides with De Vega’s and Destri’s result if we make the identification w,, =27q;
and 1/8,,=1+ ¢2/2n in formula (42) of that paper.

ii) Small twists and chemical potential: For small $; and p the minimum
is assumed for n; =0 and the potential simplifies to

T . 2r 27 9
—— + — o)
6L Lor+g ] (49)

QB — o0) =

and does not depend on the chemical potential. For vanishing g, the minimum of
(47) is attained for
1 L 1 L
=[= Y R d =[= Lt
n [2 + a1 — b 27r] and 1y [2 + a1+ f1+ 27r]’
where [z] denotes the biggest integer which is smaller or equal to x. This then leads
to the following zero temperature potential

T 27 nl
Q= - ——— —
6z 1T )
s L 1 uL o
+ z{al—ﬁl—g—[§+a1—ﬂl—%]} (50)
T pwl 1 uL. .o
+ z{a1+61+§—[§+a1+51+%]}

For p= 1 = 0 this reduces to the Casimir energy for free fermions with left-right
symmetric twists and agrees with the results in [24].

Note, however, that for 3, #0 we disagree with [5]. The difference is due to the second
term on the right in (47). Let us give two arguments in favour of our result: The
discrepancy arises from the prefactor appearing in the fermionic determinant (30). As
discussed earlier this prefactor implies the breakdown of holomorphic factorization,
a property which has been presupposed in [5]. One can show that our results can
be reproduced by starting with massive fermions and taking the limit m — 0 (see
appendix B).

The second argument goes as follows: Suppose that 5, =a;=0. Then (50) simplifies
to
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s 2T ,uL)2 27r(/JJL 1 ,uL)z

o L 2 ' or (51)

For massless fermions the Fermi energy is just ;4 and at 7'=0 all electron states with
energies less then p and all positron states with energies less then —p are filled. The
other states are empty. Since dQ2/dp is the expectation value of the electric charge
in the presence of u we conclude that it must jump if pu crosses an eigenvalue of the
first quantized Dirac Hamiltonian h. For vanishing twists the eigenvalues of h are
just E,=(n — 3)m/L. From (51) one sees by inspection that the electric charge

s 1 ul

Q) = m =2[= |=2n for E,<pu<FE,

_|_ -
2 27
indeed jumps at these values of p. Further observe, that in the thermodynamic limit
L — oo the density

0 2 2

_>
L 27r+g2 27’

reduces for g,=0 to the standard result for free electrons.

Equation of state: We wish to derive the equation of state for finite 7" in the
infinite volume limit L. — oo. This may be achieved by interchanging the roles
played by L and . More precisely, using that

G[u](A) = y/det(iA1) p2miwu 9[—11)

u

| A=t

w

we find in analogy with the low temperature limit, that for L — oo the pressure is
given by

Z r  2m2r+4g?

= i —l — 2
bp LLH;oLOgNO 6B+B 21 &
T . [2m+
- %gellzg[ o g°{n1+n2+2ﬁo}2
2m Biy 2
+27r+ 2{n2—n1+2a0+222 ]
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Here the minimum of the real part has to be taken. Again the minimization arises
from the saddle point approximation to the theta function which becomes exact when
L — oo. For small twists the minimum is assumed for n; =0 and then

s 2 2w B
= — — — (v + 71—
=553 27r+gg( 0t igy)
becomes independent on the chiral twist £;. As we have interchanged the roles of
the temporal and spatial twists this is consistent with the earlier result that for small
twists (2 is independent of ;. In particular, for a, =0, we find the following equation
of state

T p? 2

“ o7 Tt gt

p(B, 1, g =0) (52)
This result is consistent with the renormalization of the electric charge which is con-
jugate to the chemical potential. It shows that the thermodynamics of the Thirring
model is not just that of free fermions as has been claimed in [3]. Indeed, the zero
point pressure is multiplied by a factor 27 /(21 + ¢2). This modification arises from
the coupling of the current to the harmonic fields. It is missed if only the local
part of the auxiliary field is considered, which is the case if one quantizes the model
in Minkowski space and then replaces the ky-integral in the Green functions by the
Matsubara sum. This remark should also be taken seriously in four dimensions! Fur-
thermore, we see that the ’pressure’ p is real only for a, =0, which is consistent with
the finite temperature boundary conditions!.

3.3 Conformal structure

In the first part of this section we derive the Kac-Moody and Virasoro algebras of
the model (4) without gauge-interaction and prepare the ground for an extension,
containing in particular the minimal models, in the second part.

Recall (11) that for A, = 0 the theory reduces to a conformal field theory on flat
Minkowski space-time. To continue it is convenient to introduce adapted light cone
coordinates ¥ = 2° £+ 2! and the chiral components of the Dirac spinor 1y =

(1 4+ v5)1p. Then after substituting the classical equations of motion

!This can also be observed in the Hamiltonian formalism [25].
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T = —%(%a_m—a_%¢+)+2(a_A)2+2(a_¢)2

(53)
+10_ (g A + g20) Ty P

depends only on x~ and is therefore the chiral Noether current. Evaluating the
Poisson bracket of the symmetry generator 7y = [dx~ f(x~)T__ with the different
fields yields the classical structure

Si6= 06 i A= O
Sprs = FOUs 4 S0s0-f 5 G = (6! (54)
S;j_=f0_j +j o f 3 6T _=foT _+2T 9 f.

Short Distance Expansions: Let us now determine the quantum corrections to
these classical results. These are computed within the Euclidean functional approach
from the short-distance expansions of the relevant n— point functions. We need not
postulate Kac-Moody and Virasoro algebras in advance as has been done in [10, 26].
These structures are derive here. When comparing the classical with the quantum
results one should keep in mind that the roles of ¢! and ! are interchanged when
one switches from Minkowski to Euclidean space-time. In coordinates adapted to the
holomorphic structure of the torus

1
x =172’ +ix', sothat 0, = — (0 — T0u),
27'0

the Dirac operator and the corresponding Greens function take the form

i :22'(8(1 %) and S(xﬂy%z%(l(/)g 1(/)€>+O(1),

where £ = x —y, and the chiral components of the energy momentum tensor and
current are given by

1
T and j, =

Ay
Tow = T_O.(TTOO + TOl) = E 9 Z

0 1
2 % dr (77" = 7")-

From the conformal Ward identities
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n

> (0()++80() -+ Olea)) = = § A=)+ Ol . (55)

=1

we obtain the central charges and conformal weights directly from the correlation
functions. However, because on the flat torus the expectation value of 7)., is constant,
we need to compute at least the 3-point function to read off the conformal weights.
As in the classical theory (see (9)) the symmetric energy momentum tensor measures
the change of the effective action ' = log Z under arbitrary variations of the metric.
On the torus there are two independent contributions. One being due to variations of
the modular parameter 7 and its conjugate 7 which depend implicitly on the metric.
The other is due to the variations of terms which depend explicitly on the metric.
Since the chiral component T}, is gotten by contracting T*” with dg,, /d7 it follows
that

L2071 ' dr 6gu,(z®)

iTg ( 1 0 dgwj 4]

Llg,7,7| =0,g, 7, 7]
o) ) Ilg, 7. 7] g, 7. 7]

When doing metric variations it is always understood that we take the flat space-
time limit afterwards. The 7 variation is constant and may be discarded in the
short distance expansion. Thus to analyze the algebraic structure we can work on
any Riemann surface. This is not true for the finite size effects, which are global
properties. This aspect will be analyzed in section 3.4.

For example, taking three metric variations of the curvature dependent part of log Z
with Z from (42) we find the following short distance expansions for the three point
correlation function

1 1

o Lo L) ™~ =038 (a0~ 02— 220 — 22

Substituting this result into the Ward identity (55) we obtain the central charge and
the conformal weight of the energy momentum tensor

c=1 and hg, = 2. (56)

Note that the the central charge as well as the conformal weight are independent of
the couplings g, and g,.
The conformal weights of the fundamental fields are obtained by computing the

20



fermionic two point function with stress tensor insertion

(1 (x) 1) Toe) = 20 (Z{0(a) 0 (0))).

Since Z ~ exp[F(R?)], its metric variation vanishes after the flat space-time limit
has been taken. The variation of S;; can be found in appendix A. This yields

1 1 1 2mg?
hey = hyi== 2 _ :
Yo T2 T6n? " Ton2n + g2
_ _ 1 1 2mg?
hpy = hyi=——g*— 2
vo o1 7 1607 16m2r + g2

(57)

Thus we have reproduced the classical results supplemented by additional g, and g,
dependent quantum corrections. In the Thirring model limit g, =g, =g, these terms
add up to give the known anomalous dimension appearing in the Thirring model [26].
Furthermore, from (57) we may derive a condition on the couplings g¢,, g, if we insist
on unitarity, i.e. on h > 0. We find

21 g?

2 2
In particular for g, > v/27 the conformal weights are positive for any real g,.

Next we determine the Kac-Moody algebra of the U(1) currents. To derive the corre-
lation functions with current insertions we couple the fermions to an external vector
field, that is consider the ’gauged’ model without Maxwell term. For example,

() 7 (B _ 1 6°Tg, A]
DR N e P RN ETEW O

The effective action with external vector field is then obtained by shifting the auxiliary
fields in (17) as

00— gpo+ep , GA— g +ea, (59)

where A, =1,"0,¢ + 0, and we have neglected the harmonic contribution to the
external vector field, because it does not contribute to the short distance expansion.
The resulting effective action does not depend on « due to gauge-invariance. To relate
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the variation w.r.t. A, to that w.r.t. ¢ we use

v 1 14
Oup =n,A,, where A =A,— V“ZV A,
is the transverse part of A,. We obtain the following short distance expansion

1 1 1
2m 21 + g2 (x —y)?

(Ja Jy) ~
We read off the value k of the central extension in the U(1)-Kac-Moody algebra

he 2T
21 + g2

(60)

The precise g,-dependence of k (which can of course be rescaled to unity by an
appropriate redefinition of the current) is related to a finite renormalization of the
electric charge in the gauged Thirring-model which we will discuss in section 4.
Finally, from

1 1 1

o Jy Loz) ~ ———;
o Jy Tez) A2 21 + g2 (x — 2)%(y — 2)?

we obtain h; = 1.

To see how the left and right Kac Moody currents act on the fermionic fields we
notice that after the integration over the auxiliary fields the A-dependence of the
fermionic Green function factorizes as

(o ()] (y)) 4 = e3™ S #29 e=e9@) (40 (1) ()} acy € 9D,

where g(z) = —ia(z)+7v58¢(2), B = 27 /(27+4¢2) and m., is the induced "photon’-mass
(see(86)). Variation w.r.t. the A— field yields, after some algebraic manipulations,
the U(1) charges

27 ) 4 @ 1 ( 27
an =—(1-
27 + g2 To =5 "o g2

)- (61)

1
Ay = 5(1 +

We have used the convention where the electric charge ¢+¢ is unity. In the Thirring
model limit we can compare (61) with the results obtained in [26]. For that we need
to rescale the currents such that the central extension (60) of the Kac-Moody algebra

becomes unity j, — /1 + ¢2/2m j, . It is then easy to see that we agree with Furlan
et al. [26] if we make the identification g, =g2/4m\/1 + g2/27.
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Non-Minimal Coupling: In section 3.1 we have analyzed the fermionic determi-
nant in the presence of twisted boundary conditions. One may ask what happens if
we introduce a local twist instead, that is

Y(z) = (x) 5 P(@)t = y(a)fe@ (62)

which should be interpreted as a modification of the charge neutrality condition. The
computation of the fermionic determinant in the presence of such twists is similar to
that for a Weyl rescaling of the background metric (31-32). Integrating the corre-
sponding anomaly equation we find

log jj;i”go xa [RA+0((0N) (63)

We will come back to the relation between the above determinant and charges at
infinity at the end of this section. For the moment we use the analogy merely as a
motivation to study the extension of the Thirring model obtained by coupling the
A-field non-minimally to the background geometry. That is we consider the model
(4) again without gauge-interaction but with an extra coupling

gs / RA.
Then 7__ in (53) is modified,
T~ T =T _ +3g,0°\

The corresponding modification of the classical conformal transformations (54) gen-
erated by the modified generator Ty = [dx~ f(x )T _ are

516 =60 , SpA =6\ — 923a_f
_ i , i (64)
Oftp = 0pthy — 591931/)-}-6—][ ) 5f1/)+ = 5fw+ + 591931/)+3—f-

Whereas ¢ and 1/, remain primary fields, A does not. This is in fact needed for
consistency. Indeed, since v is not a scalar under conformal transformations generated
by Tf, the term ~ [ 71 in the action is only conformally invariant if A transforms
inhomogeneously like a spin connection.

It may be surprising that the new symmetry transformations depend on the cou-
pling constant g, which is not present in the flat space time Lagrangian. However,
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the same happens for example in 4 dimensions, if one couples a scalar field confor-
mally, that is non-minimally, to gravity. Although the Lagrangian for the minimally
and conformally coupled particles are the same on Minkowski space-time, their en-
ergy momentum tensors are not. The same happens for the conformally invariant
non abelian Toda theories which admit several energy momentum tensors and hence
several conformal structures [27].

The current still transforms as a primary with weight 1, but the energy momentum
tensor acquires a classical central charge

61 =fo.T _+2T 0 f— g0 f. (65)

The corresponding commutators in the quantized theory with non-minimal coupling
to gravity are calculated as explained for the minimally-coupled model. One finds
that the quantum corrections to (64) are identical to those of the minimally coupled
model and thus are g, # 0-independent.

To summarize, we have obtained the following Virasoro x Kac-Moody structure:
Central charge:

c=1+24¢g?r and hp, = 2 (66)

Kac-Moody level and charges:

2
k= — : hj=1
2+ g;
1 27 1 27
= —(1 . 7, = —(1 —

Conformal weights:

—+

1 1 2mg? 1
912_ 922 _ glgS :(h T)
167 167 27 + g5 2 1
N 1 27rg§ 19,5 =\
— — = (h, )"
6% Terzmr g 2wl

1
o (67)
6

77’1/10 =

Here some comment about unitarity is in order. It can be shown that with respect
to the standard scalar product [28] reflection-positivity holds for any real g, [29].
However with respect to this inner product the Virasoro generators are not selfadjoint.
Choosing an alternative scalar product [14] for which they are selfadjoint, positivity
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does not hold in general for g; # 0. We give a more detailed discussion about unitary
subspaces in section 3.5.

3.4 Finite size effects

When quantizing a conformal field theory on a space-time with finite volume one in-
troduces a length scale. The presence of this length scale in turn breaks the conformal
invariance and gives rise to finite size effects. It has been conjectured [30] that the
finite size effects on a Riemann surface are proportional to the central charge. For
example, when one stretches space time, ¢ — ax®, then the change of the effective
action is proportional to c:

Lo — 'z = _gloga'X7 (68)
where y is the Euler number of the Euclidean space time. In [31] this conjecture has
been proven for a wide class of conformal field theories on spaces with boundaries.
The only important assumption has been that the regularization respects general
covariance. In this subsection we shall see that the equivalence does hold only for a
particular zero-mode treatment, which differs from (37).

The only global conformal transformations on the torus are translations which do
not give rise to finite size effects. Also, the Euler number vanishes and according
to (68) the finite size effects are insensitive to the value of ¢. For that reason we
quantize the un-gauged model (4) on the sphere where the global conformal group is
the Moebius group.

An effective method to compute finite size effects has been developed in [31]. It
is based on the following observation: Any conformal transformation z — w(z) is a
composition of a diffeomorphism (defined by the same w) and a compensating Weyl
transformation g,, — 62"gu,, with

= R Z = .TO + 7;3;'1.
Therefore, choosing a diffeomorphism invariant regularization one has
0=10piss = 0T cons — 0l wey-

The change of the effective action under Weyl rescaling is

g [ D) det(iPD,) exp(—Slg)
ID() det(i,) exp(—Sild])

O wey = —1
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where Sp is the bosonic action (36). Since on the sphere there are no harmonic vector
fields the term ~ h? in Sp is not present. Imposing the conditions (37) we obtain

det’ A
det’ A’

ST eyt = log v / R (R — —) log (69)

To evaluate (69) one introduces the 1-parametric family of Laplacians
A, = 6727'0'A

interpolating between A and A. Integrating the corresponding anomaly equation
[20] we end up with

(51":%32/\/5721 R—— ——/\/7Ra+ iﬂ/\/éaAa. (70)

Consider now a dilatation w(z) =az. Then, the conformal angle is constant, o =log a,
and (R — 87/V)=0. Then the first term in (70) vanishes and the finite size effect
does not depend on g2. It is given by

6F:—%loga/\[R——loga

and does not agree with (68) since ¢ in (66) depends on g;. On other Riemannian
surfaces one would find the same result. Note that the finite size scaling comes from
the middle term ~ loga [ /§R in (70) which is topological in nature, while the short-
distance behaviour of the energy-momentum correlators is controlled by the remaining
two terms in (70) which are insensitive to the topology. In that sense finite size scaling
and the central charge are complementary. There is a way to match the two results
by adding the term

—%32 / JIRAR

to the effective action. With this new effective action the short distance expansion
of the energy-momentum correlators does not depend on g, any more and the cor-
responding central charge equals that obtained from the finite size scaling. However
such a term would correspond to a non-local counter term to be added to the regu-
larized action.
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3.5 Charge neutrality and unitary subspaces

In this subsection we show how the equivalence between the central charge and finite
size scaling can be restored, provided the partition function is replaced by an average
over un-normalized expectation values of charges at infinity. In fact it turns out that
the g, [ RA-term, ie. the non-minimal coupling to gravity, itself can be given the
interpretation of a charge at infinity if the zero-mode constraints (37) is replaced by
a non-translation invariant sum over charges at infinity.

The hint comes from inspecting the fermionic weights (67), which shows that
P (x) and gy, (z) = e~5™93A@)q)(x) have the same conformal weights. We can therefore
consistently put a charge at infinity with a corresponding modification of the charge
neutrality condition. The non-vanishing two-point function is now (1, ()7 (z)). It’s
coincidence limit jg, is again a primary field with conformal weight h;=1.
On the other hand, including a charge at infinity into the definition of the partition
function we have

1
Zy = 5 / DsdDs\ Zpn=7j=0] 57 : 5T9M&) . -

= Zy exp[167°¢2Go(&o, &) (recall that Dsp = 6(p)D).

To continue we need to determine the coincidence limit of the scalar Greens function
Go(z,y), i.e. to regularize the composite operator exp(a\) appearing in (71). The
normal ordering prescription

ea)\(a:)

aX(z) .__
T <€Oé)\(d7)> ’ (72)

e
works well on the whole plane [32, 33]. On curved space we must be more careful
when renormalizing this operator. The required wave function renormalization is not
unique but it is very much restricted by the following requirements: First we take as
reference system (the denominator in (72)) one with a minimal number of dynamical
degrees of freedom since we do not want to loose information by our regularization.
Second, the renormalized operator should have a well-defined infinite volume limit.
Finally, the regularization should respect general covariance. These requirements
then force us to take as reference system the infinite plane with metric g,,. The flat
metric J,, is not permitted since it leads to a ill-defined expression for (exp(al)).
With this choice the normal ordering in (72) is equivalent to replacing the massless
Green function in (71) by
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1

Ggeg(xay) = GO(ny) + A

log [11?s*(x, y)]. (73)
Here s(z,y) denotes the geodesic distance between z and y. The occurrence of the
arbitrary mass scale p comes from the ambiguities in the required ultra-violet regu-
larization. On the 2-sphere with constant Ricci scalar R we have

L ogl - 411,

G a) =~ ol

The expectation value (: e37932(¢0) :) then transforms under a constant rescaling z —
az as

(: €8m9ME0) 1y (0 ¢8m92A0) 1) exp[87rg2 log(a)], (74)
and therefore gives an extra contribution

247 g?

3Ty, = ——L log(a)x

to the finite size scaling of the effective action. Adding this contribution to (70) above
we see that this is precisely the piece needed to restore equivalence with the central
charge for any real or imaginary g,.

More generally we can define the functional integral as an average over all possible
charges at infinity: assume g, imaginary. The (un-normalized) expectation values are
then given by

n

<H Oy, (xl)> = %/D(@D)\[\/%/d ko:efAo) } ﬁ Oy, (1) €757, (75)

=1 =1

Here «; denotes the U(1)-charge of the operator O;. In particular the partition
function on S? is

1 1 . ,
Z=— /D d\DN | —— /d ko et | gm8mesA&) o o= SBINT
N, sPdAo [ or }

where )\ is the zero mode and )" the excited modes of A\(x). The middle term in the
above integrand is the zero-mode part of Sg. The zero-mode integration yields a delta
function d(k + i87gs) and thus the g, [ RA-term itself acquires the interpretation of
a charge at infinity, due to the presence of the zero mode. The ’extra’ charges e*(€)
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assure the charge neutrality of the partition function. For the general n-point function
(75) the Ao- integration yields

§(k + 8mig, + Z o),

=1

where the sum of the U(1)-charges of the operators in (75) enters. In particular, for
neutral states, for which (3 a; + i87g; = 0), k£ must be zero and no extra charge at
infinity is present.

Finally, using

%Q—W [ak e = 5(x),

the averaging over all possible charges can also be written as

DAS(A(&))- (76)

It is easy to verify that if the action has translation invariance in the target space,
then the constraints (76) and (37) are equivalent and the correlation functions do not
depend on the chosen base-point &,. However, in the present case (76) clearly breaks
translation invariance (or rotation invariance on S?) and the zero-modes constraints
are inequivalent. Although we have assumed an imaginary g,, our results apply for
any g¢;. For particular values we recover the (unitary) minimal models, provided
screening charges [34] are included for the n-point function with n > 2. In particular
for g, = 1/\/@ and g, =g¢,=0 we obtain the Ising model with hy=hy: = %

4 Gauged Thirring-like Models

In this section we extend the model by gauging the global U(1)-symmetry. Contrary
to what one might think, many aspects of the gauged model are actually simpler
as compared to the ungauged model. In particular the thermodynamical properties
are independent of external conditions like chemical potentials and twisted boundary
conditions. The reason is that the model is closely related to the Schwinger model, for
which the spectrum consist solely of a neutral, massive particle. On the other hand,
the gauge interaction complicates the analysis, because the U(1)- bundle over the
torus allows for gauge field configurations with winding number, so called instantons.
These, in turn, imply fermionic zero-modes which trigger a chiral symmetry breaking
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and therefore a non-vanishing condensate. This is the subject of the second part
of this section. In the first part we discuss the partition function to which only
topologically trivial configurations contribute.

To see how the fermionic generating functional (34) is modified, we decompose a
general gauge potential on a torus as

A, = Aft + Q%tu + Oy — 107, (77)
where the last 3 terms correspond (as for the auxiliary field B,,) to the Hodge de-
composition of the single valued part of A in a given topological sector, that is the
harmonic-, exact- and co-exact pieces. The role of the toron fields ¢, has recently been
emphasized within the canonical approach [35]. In the Hamiltonian formulation they
are quantum mechanical degrees of freedom which are needed for an understanding
of the infrared sector in gauge theories. Also, in [36] it has been argued that the Zy-
phases of hot pure Yang-Mills theories [37] should correspond to the same physical
state if the toron fields are taken into account. The first term in (77) is an instanton
potential which gives rise to a non-vanishing quantized flux. As noted above configu-
rations with non-vanishing flux do not contribute to the partition function due to the
associated fermionic zero modes. We can therefore assume Ai =0 for the moment.
The fermionic generating functional is obtained from (30) by simply shifting

Gohy = ety +g9h,=H, , gX—ex+gA=F and ¢,¢— ¢,¢0+ep=G,

which leads to

S 2n(\/30" Bubu—2iBrao) L —a1 + f ~ Ao,
G S e PP L P LU
e f’l () . exp(—SL—F—/\/_GAG]

with a,=ay, — H,, — 1.
To compute the partition function we must switch off the sources n and 7 in (78)
so that
Ty = J / d2td*hDp DDA Zz[0,0] e 57, (79)

where now
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S = (2m)*\/gg" h,h,

1, (80)
+ /@(;m o~ ADX = 9L — g,R).

Note that we have kept the non-minimal coupling of the A-field to gravity as in
section 3.3. Since Sp and the fermionic determinants are both gauge invariant and
thus independent of the pure gauge mode « in (77), it is natural to change variables
from A, to (¢, a,t,). This transformation is one to one, provided

/\/§g0 = /\/goz =0 and et, €]0,1]. (81)

In contrast to the auxiliary harmonic fields b, in (16), the toron fields et, and et,+n,
with integer n, are to be identified, due to gauge invariance [8]. The measures are
related as

DA, =J> dtydtiDeDa, where J = (2m)°det'(—A). (82)
[

In expectation values of gauge invariant and thus a-independent operators the a-
integration cancels against the normalization. This simply expresses the fact that in
QED the ghosts decouple in the Lorentz gauge.

As we shall see shortly it is advantageous to integrate first over the toron fields. By
using the series representation of the theta functions one computes

1

/d?(et)@[_cl}(o,f) o[ “(o,7) =

C C
0 0 0

1
Yers (83)

Since the result appears always together with the n-function factor in (34) it is con-
venient to introduce

1 1
K

T V2n ()P

in the following expressions. The result (83) does not depend on the h-field and hence
the h-integration in (79) becomes Gaussian and yields a factor 1/47 so that
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ZO — K det'(—A) 65L/247T/D5(S0¢)\) 6% f\/yG'AG—SB[h:O]7 (84)

where we inserted the explicit expression (82) for the Jacobian. Now we see why we
did well integrating over the toron fields first. It has washed out the dependence on
the boundary conditions and chemical potential in (83).

The integral over A, subject to the condition in (37), decouples completely apart from
the non-minimal coupling to gravity which modifies the Liouville factor and yields
one inverse square-root of the determinant of —2A in (84). Thus

Zy = wmy/2Vdet' (—A) elos+1/2Amse

'/Da(wﬁ) ox f\/yGAG—SB[h:,\:o]7 (85)

where we have used (43). The ¢-integration in contrast, leads to a finite renormaliza-
tion of the dynamically generated 'photon’ mass

?

Zy = m el95+1/24m) S, /'Dgpeféf\/@%?(Ame?yA)@
My

(86)

2
e 2
where m? = — T
T 7w 21w+ g2

plays the same role as the 7’-mass in QCD [41]. The determinant obtained from the
p— integration factorizes as

det'(A? = m2A) = det'(—=A) - det'(=A +m?).

This factorization property is not obvious since all determinants must be regulated.
But it holds for commuting operators and in the zeta-function scheme. Then the
partition function simplifies to

2\/mreV 9\~ 3 o 1

Zy = T(det'(—A)det'(—A + mv)) ? exp ((93 + —W)SL)'

We can go further by using the scaling formula for the determinant of A [20] and the
known result for the determinant of A [21] which together yield

" v 1
det'* (=) = nLln(r)*y 5 exp (= 5,-51). (87)
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Thus we obtain the following partition function for the general model (4) on curved
spaces:

e 1 1 1
Zy =2V — T exp ((—=— +¢7) S1).
o =V T et o g+ 51) 89

Again we have factored out the partition function N for free auxiliary fields. The
formula (88) shows explicitly that in the topologically trivial sector the theory is
equivalent to a theory of free massless and massive bosons with mass m,, even in
curved space-time [13].

The appearance of m, in (86) should be interpreted as renormalization of the electric
charge induced by the interaction of the auxiliary fields with the fermions. After
summing over all fermion-loops this leads to an effective coupling between the photons
and the ¢-field and in turn to a modified effective mass for the photons in (86). In the
limit g, — O this mass tends to the well-known Schwinger model result, m, — e/\/7
[38].

We have already mentioned that the chemical potential coupled to the electric
charge has completely disappeared from the partition function. This does not come
as a surprise since the only particle in the gauged Thirring model is a neutral boson.
This has no charge which may couple to the chemical potential. Also, if the partition
function depended on p then the expectation value of the charge would not vanish, in
contradiction to the integrated Gauss law. The result (88) provides therefore another
test for our result (30) for the fermionic determinants with chemical potential.

The final result is also independent of the chiral and non-chiral twists. The normal
twists have been wiped out by the toron integration. In fact the chiral twists are
equivalent to a chemical potential and therefore the above remarks concerning the
chemical potential apply here as well. Did we assume holomorphic factorization for
the fermionic determinant [5] then the partition function would depend on the chiral
twists.

We conclude this subsection by giving the explicit formula for the partition function
on the flat torus. The zeta-function regularized massive determinant is expressed by

det'(—A + m?/)% =20

where
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, 1 Vm Vm?2
¢ (0) = 7%20 ﬁ (n,ZL) Kl(m’YL (na n)) - 47r77 (89)

and (n,n) = g;n'n’ is the inner product taken with the reference metric, and the
sum is over all (n’) € Z, with the origin excluded. For g,, = d,,, in which case the
partition function has the usual thermodynamical interpretation, the result reduces
to one derived previously by Ambjorn and Wolfram [39]. In addition, if L approaches
infinity we recover a result in [19]. The free energy for 7 = 0 and on flat space
simplifies then to

1 1

with ¢'(0) from (89) and the particular choice for the parameters.

4.1 Bosonization of the gauged Thirring model

We pointed out in section 2 that for g, =g, =g the classical theory (4) reduces to the
gauged Thirring model. The same is true for the quantized theory on the torus if in
addition we set g, =g. More precisely, the Hubbard-Stratonovich transform [40] of
the Thirring model is just the derivative coupling model (4) with identical couplings.
In the process of showing that we shall arrive at the Bosonization formulae for the
gauged Thirring model on the curved torus. We shall see that only the non-harmonic
part of the fermion current can naively be bosonized and that for this part the rules
of the un-gauged model on flat space time [32] need just be covariantized.

For that we calculate the partition function (79) in a different order. First we
integrate over the auxiliary fields. To understand the role of A and ¢ we introduce
sources for them. Thus we study the generating functional for the correlators of the
auxiliary fields

Z[¢, (] = / D(AphipA,)e St/ Valer+co]
Here
S =i [ VGu' Py + Sulg.=0)

is the action of the full theory. D is the Dirac operator in (17) with all couplings
set equal and Sp the bosonic action (80). Since A and ¢ integrate to zero (see (37))
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we may assume the same property to hold for the sources. The integration over the
auxiliary fields is Gaussian and yields

2 =Ny [Pl e 5 esp [ Vo[ HExe+ O+ Senit+ )] (o0)

where
1 m; " 92 "
1 [Va(BuF —itpy - L) (o)
is the action of the gauged Thirring model on curved space-time and
V
No = S det (=2 (92)

comes from the integration over the auxiliary fields.
Let us first consider the partition function, that is set the sources to zero. Comparing
(90) with (86) and using (87) we easily find

/D(z/;t)eiST = \/% + g e~ ) Pk /D*yé(fy) e 5, (93)

where 7 is the mean field (see (37)) and we used (82) and (43). The action for the
neutral scalar field v is found to be

T

Since (93) holds for any ¢ (and thus for the non-harmonic part of any A,, because of
gauge-invariance) we read off the following bosonization rules:

0",

P
\/_,/1 + g2/27r
.Iu H

7 \/_1/1—1-92/2%

where prime denotes the non-harmonic part of the currents. Thus, only the non-
harmonic parts of the currents can be bosonized in terms of a single valued scalar

(94)
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field. To bosonize their harmonic parts one would have to allow for a scalar field y
with winding numbers. On the infinite plane the harmonic part is not present and
we may leave out the primes in (94). If we further assume space time to be flat we
recover the well-known bosonization rules in [32]. What we have shown then, is that
for the gauged model on curved space time the bosonization rules are just the flat
ones properly covariantized and with the omission of the zero-modes.

Since (93) holds for any gauge field the current correlators in the Thirring model
are correctly reproduced by the bosonization rules (94). To see that more clearly we
calculate the two-point functions of the auxiliary fields in the Thirring model (90-
92). For that we differentiate (90) (¢ is treated as external field) with respect to the
sources and find

@A) = 3Co(r.)+ % [(Gole.)it0)Goly. 017 0)r .
2 95
(B0 = 5Golr,y) + % [(Gole, )i, (0)Goly,v) % ()

where (G is the free massless Green-function in curved space-time and the integrations
are over the variables v and v with the invariant measure on the curved torus. Here
(...)r are vacuum expectation values in the Thirring model (91). Alternatively we can
calculate these expectation values from (84) and (85), where the fermionic integration
has been performed and find

AW = 5Gol9)

mm?2 m? wm?2
_ il v v
(@@)oW) = =53 Golw.y) + 5 (1= =57 )e@)ev)
Comparing this with the result (95) we see at once that
[(Golw, )t ()Goly, v)it (e = 0 (96)

[ (ol Wit (W)Goly, 0)i, ) = (mEp(@)e(y) = Golz,y)).

These correlators express the gauge invariance and the axial anomaly (j§,,) = —m, Ay
in the gauged Thirring model. They can be correctly reproduced with the bosoniza-
tion rules (94). They are not reproduced with the ones derived for the un-gauged
model [32].
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4.2 Chiral condensate

The chiral condensate is an order parameter for the chiral symmetry breaking. How-
ever, on the torus its expectation value, whose temperature- and curvature depen-
dence we will here compute would vanish if topologically non-trivial gauge field con-
figurations were absent. There is a useful classification of the gauge configurations
corresponding to the number of fermionic zero modes they give rise to. If we let
k = n, — n_, where ny counts the number of zero-modes with positive/negative
chirality, then we have

1 2 2 1 2 g o L
k:%/d:r%al(ﬂ),x)za/\/gd:rn“ FW:%@, (97)

which establishes a relation between the number of fermionic zero modes (or, more
precisely the number of zero modes with positive chirality minus the number of those
with negative chirality) and the first Chern character of the bundle. Also from (97)
one immediately concludes that the flux must be quantized in integer multiples of 27.
This is really a consequence of the single valuedness of the fermionic wave function
(cocycle condition).

Recalling the decomposition (77) of the gauge field we now concentrate on the
first term Ai which is the instanton potential giving rise to a non-vanishing quantized
flux ®. Since 2-dimensional gauge theories are not scale or Weyl invariant, as 4-
dimensional ones are, the instantons on a conformally flat space-time are not identical
to the flat ones [42, 43]. As representative in the k-instanton sector we choose the, up
to gauge transformations, unique absolute minimum of the Maxwell action in a given
topological sector. It has field strength e B! = /9 ®/V. The corresponding potential
can be chosen as

eAfL = efli —®n,0,x, where eAl = —\‘/75‘1)(331, 0) (98)

is the instanton potential on the flat torus with the same flux but field strength
Vg ®/V. The function y is then determined (up to a constant) by

\/§§ - \[g = V9Ax. (99)

The solution of this equation is given by
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€)=~ = (5™ = o [ Pufyu)Gale,y) e, (100

()0 (y)

Go(z,y) = (x|i|y> = N (101)

An>0
is the Green-function for —A. In deriving (100) we have used that = (®/V) =0 which
follows from the spectral resolution (101) for the Green function in which the constant
zero mode ¢0:1/\/I7 of A is missing.

Our choice for the instanton potential (98) corresponds to a particular trivializa-
tions of the U(1)-bundle over the torus [8]. In other words, the gauge potentials and
fermion fields at (z°, z') and (2°, '+ L) are necessarily related by a nontrivial gauge
transformation with winding numbers

1[)(.’170,112‘1 + L) — _eiea(x) 627ri(o¢1+ﬂ1fy5) w(xOJ .’L‘l).
For the choice (98) we find

o
ea(zr) = —— 2.

L

Note that A is still periodic in 2° with period L and 1 still obeys the first boundary
condition in (14). To calculate the fermionic zero modes we use the square of the
Dirac operator

2 D—D+ 0 _ 1 ng 1 € v
D= < 0 D+D_> = %Du\@g D, — ZR+ 3" Fls (103)

In a pure instanton and harmonic background (¢ = o =0) on the flat torus (103)
simplifies to

. R )
—P*=—-g""D,D, - e (104)
In other words, ],7)2 is the same in the left- and right-handed sectors, up to the constant
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20/ V. Furthermore this operator commutes with the time translations which leads
to the following ansatz for the zero-modes

1
_+p7

~ _ 2micpz®/L 2miH 1z /L 1 o
Xp =€ € &) es, Cp—2

where we have assumed k > 0. The choice of ¢, is dictated by the time-like boundary
conditions in (14). Inserting this ansatz into the zero mode equation %y, = 0 yields
2 o, o d )

2 & Y = i :0
(|7 07 7Y ZTlLdey zTLQ)fp :

L
where y = 2' + E(cp — H).

This is just the differential equation for the ground state of a generalized harmonic
oscillator to which it reduces for 7 = ir5. The solution is given by

o L

7R G Ho)Y’]

fp:eXp[_

These functions do not obey the boundary condition (102), but the correct eigenmodes
can be constructed as superpositions of them. For that we observe that

R, 4 L) = e A (0, )

so that the sums

2

NI

i = (2kTo) o 2miHo—ao—3)h S e vt/ Gy e (105)
|7'|V nezZ
where p=1,...,k, obey the boundary conditions and thus are the k required zero-

modes. Indeed, since (iJ0)? in non-negative there are no zero modes with negative
chirality because of (104). With (97) we conclude then that there are exactly k zero
modes with positive chirality. Modes with different p in (105) are orthogonal to each
other and the overall factor normalized them to one, so that the system (105) forms
an orthonormal basis of the zero-mode subspace. For k£ <0 the zero-modes are the
same if one replaces e, by e_.

To compute the fermionic determinant in a given topological sector we again introduce
the one-parameter family of Dirac operators
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q 211
—

/2
g 7ft oy 1 7 ~ " e A
br= e e, D=3 (0u + it — ey — == [Hy + ), (106)

which interpolates between I) and I, similarly as in (31). But now
. 1
f=—iF +v(G+ ®x) + 30

with F and G from (7), contains an instanton contribution. Also note that I) contains
the instanton part A}It' To compute it’s determinant we observe that the simple form

(104) of —I)? allows one to reconstruct its spectrum completely [20, 8]:

n

§2 {0  degeneracy =k
1 2n®/V  degeneracy = 2k.

The corresponding determinant is [20, 8]

i)‘b/@r‘

det/(i]p) = ( 5 (107)

To relate the determinants of ],7) to that of ) we again integrate the anomaly
equation, which now reads

dlogdet')p,
dr B

[ oy () () - 890y (AP e pyy (1o

where, due to the fermionic zero-modes, the projector onto the zero-mode-subspace,
Poar, 2) = S (@N (1) () (@) N () = (3, 015 (109)
pr
appeared. For the deformed operator ],7)3 the first Seeley-deWitt coeflicient is

1 1 - ®
aj = —ERT+75TATG+\/? [(1—T)ﬁ§+7ﬂv]75- (110)

Integrating w.r.t. 7 [20] one ends up with the following formula for the determinant
in arbitrary background gravitational and gauge fields:
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%Z det’ (i) exp o T —/fGAG
2 V/\/gx)'

In deriving this result we used that [,/gx=0.

Now we are ready to compute the chiral condensate (TP, 1). Observing that
the fermionic Green’s function anti-commutes with 5 one sees at once that only
configuration supporting one fermionic zero-mode with positive chirality contribute
to the chiral condensate

(111)

- exp (V

J 8 s
WP == e | P00

where 1, =P, 7. Earlier we have seen that these are the gauge fields with flux ® =27
or instanton number k=1. Thus the condensate becomes

(W Pyp) = —Zi@ [ PO vl (@) exp() 5w (112)

where exp(. ..) stands for the exponentials in (111). First we integrate over the toron
field t. The t-dependence enters only through the zero mode and more specifically v
in (105) with p=1. Using the series representation for the theta functions one finds

/dthg(fr)wo(:r) = % (113)
Note that the result does not depend on the chemical potential similarly as in our
calculation of the partition function. To continue we observe that the term [,/gG
in exp(...) vanishes because of our conditions (81) and (37) on the fields ¢ and ¢.
Furthermore Sp[k = 1] = Sp[k = 0] + % The remaining functional integrals are
performed similarly as those leading to the partition function and we end up with the
following formula for the condensate

T —2r /e )V g — ep)(x)—o(x
<1/)TP+’[/)> _= ?0|77(7—)|2€ 2 2/ 2V+2 /Vf\/;x<e 2(g¢+ Lp)( ) ( )> (114)

by’
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The expectation value is evaluated with

2
“ons— Long).

™

1 e?
Sur = [ Vilgeldt = To)e =2

A formal calculation of the resulting Gaussian integrals yields

T —2m?/e? /v gx ,—o(z)— z
(WPy) = §0|77(r)|2e 272 2V 42m/V [ \/ax o =o(@)-20x(x)
115)
2m2m? 21 a? (
exp [ 5 1 K(z, )] exp[27r f2g22 Go(z, )],
where
K = ! - L@ G
(z,y) = (ﬂm@) = m—%( o(z,y) — mw(x,y)) (116)

and G,,, Gy are the massive and massless Green-functions. Here we encounter ultra-
violet divergences since Go(x,y) is logarithmically divergent when z tends to y. To
extract a finite answer we need to renormalize the operator exp(ag@) as explained in
section 3.5. This wave function renormalization is equivalent to the renormalization
of the fermion field in the Thirring model and thus is very much expected [32, 33].
The flat Green’s function on the torus

. 11 i+ o 11 o TEOHEL o
Golz,y) = ——|—0|2  L1(0,7)] = ——|—¢" /D0, (———— 7)|%,
where £ =x — y, possesses the logarithmic short distance singularity
2 Lo w1 2 "
Go(@,y) = — —log . log (47*7o|n(7)[") + O(&). (117)
Furthermore

Go(z,y) ~ Golz,y) + 2x(x) — é/\/@ﬁo(&)-

With the prescription explained in section 3.5 we find that on the flat torus G5 has
now the finite coincidence limit
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~re 1 427 n(T)|*
Gy, 2) = =~ log (%) (118)

To determine the chiral condensate we also need to determine K (z,y) on the diagonal.
In a first step we shall obtain it for the flat torus. Its o-dependence is then determined
in a second step. For 0 =0 and 7 =171y the Green function K has been computed in
[8]. The generalization to arbitrary 7 is found to be

A 1 TTo 1
2K = - th (52— :
ma Kz, z) 2m., Ly coth ( |72 ) m2V
1 1 (119)
—dlyi2
+ %(_logM(T” +F(L77_)_H(L77—))7

where we introduced the dimensionless constant a = Lm,|7|/27 and the functions

1 1
FLn = X[ - 7m=s
P ) . (120)
( aT) - nzgo\/m[ —2mizy(n _1+€2m'z,(n)_1]'

We used the abbreviations
1
2y = |7_|2(TL7'1 + itoVn? + a?). (121)

Substituting (119) and (118) into (115) with 0 = 0 we obtain the following ezact
formula for the chiral condensate on the torus with flat metric g,,:

1 ,m,LiT| o2 5 m’m Lim, 7o
1Py, — My LTI\ 2274 T coth -
(P Pa)g Li7| ( o ) ¢ exp (62LT0 0 2|7| ) (122)

2
™m,
7 _

exp [~ (F(L,7) — H(L.7))].
where we used that on the flat torus y =0 and V=V. Furthermore, we identified p
with the natural mass scale m, of the theory.

To extract the finite temperature behaviour of the chiral condensate we take 7=
i3/L where B=1/T is the inverse temperature. In the thermodynamic limit L — oo.
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Then coth(...) = 1, H — 0 and the expression for the chiral condensate simplifies
to

2

g 2
+ o My \ iy Ty 2
(YT Py s = T(—%T) 7 exp | SR v ggF]. (123)
Using
F(B) —~vy+1 25 ! fi —
v + log 5 2, or a— 00,

where v=0.57721 ... is the Euler number, we obtain the zero temperature limit

m 2 2
(YIP) = —4—7: 292/(27+92) exp ( 27) for T — 0. (124)

For temperatures large compared to the induced photon mass F' vanishes. Thus we
obtain the high temperature behaviour

2

My \ 2y wm.
(WP)r = =T(5 %)% exp (= —57T) for T o0 (125)

It is instructive to discuss the various limiting cases. For all g;=0, i.e. the Schwinger
model limit, the exact result (123) simplifies to

—en T—0

_E TR
<r¢)TP+’l/)>T =-Te ™ (8) —_— { _14_, e—WT/m'y T 00, (126)

where now m? = ¢*/m is the induced photon mass in the Schwinger model. This

formula for the temperature dependence of the chiral condensate in QQE D, agrees
with the earlier results in [8].

Next we wish to investigate how the self interaction of the fermions affect the
breaking. For large coupling g, and fixed temperature the exponent in (123) vanishes
so that

1

tp ~
(YTPy)r m

Hence, for very large current-current coupling the chiral condensate vanishes. Or
in other words, the electromagnetic interaction which is responsible for the chiral
condensate, is shielded by the pseudo scalar-fermion interaction.

for T fixed, g, — .
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For intermediate temperature and coupling g, we must retreat to numerical evalua-
tions of the sums defining the chiral condensate in (123). The numerical results are
depicted in Fig. 1

How does the gravitational field affect the chiral condensate? To answer this
question we need to know the massive Green’s function, entering in (116), for non-
trivial gravitational fields (for simplicity we assume 7'=0). Let us first consider a
space with constant negative curvature. Then Gy,, has been computed explicitly in
[44]. Here we only need its short distance expansion, given by
2

) rug )t oG- 10N}, (20)

1
G, (,9) = =327+ log (=

m2 . . . . . .
where o =1 + %7- and 1(z) is the Digamma function. Substituting (127) into (116)
we end up with the exact formula for the chiral condensate for constant curvature

WPy = (VTP )r=0 - exp [ ma{ log ( R) + 1/)( +a) + w(——a)}]- (128)

2e 2m

The asymptotic expansions for large-and small curvature are easily worked out in-
serting the corresponding expansions for the Digamma function [45]. We find

R
(7/)TP+7/)>R = (7/)TP+7/)>R:0 " €xXp [12 272] for |e—2| <1 (129)
and
R\ : R
(7/)TP+7/)>R = <¢TP+¢>R:O : (ﬁ)%“2 exp [% — 7;7;77} for % > 1.(130)

Hence the chiral condensate decays exponentially for large curvature analogous to the
high temperature behaviour. However, the pseudo-scalars do not suppress the effect
of the curvature in contrast to (125). Comparing the exponentials in (130) to (125)
we may define the curvature induced effective temperature as

—R

4mm,

Tepr = (131)

In passing we note that if we compare the prefactors, rather than the exponentials,
we would write )
(=R)2
Terr = :
A7t+/2

(132)
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The latter identification actually coincides (up to factor of 2) with the Hawking
temperature of free scalars in de Sitter space [6]. The correct identification involves
the (dynamical) mass of the gauge field and is therefore not universal. From this
observation we learn that the temperature associated with curvature depends on the
matter content. Note finally that the non-minimal coupling (gs;) has no effect on
the chiral condensate. In Fig. 2 we have plotted the chiral condensate for arbitrary
constant values of the curvature.

For gravitational backgrounds with non-constant curvature we have to refer to
perturbative methods for the calculation of the massive Green’s function. Again
we only need the short distance expansion of G, . For geodesic distances s small
compared to m, ! the massive Green’s function may be approximated by the Seeley-
DeWitt expansion [46]

Gl )~ 5 Loy~ 5zl HEms), (1)

where H(gQ) is the Hankel function of the second kind and order zero. In particular

2
HéQ)(z) — %[log% +v] for z—0.

Inserting (133) into (116) we end up with the following expansion for the chiral
condensate in an arbitrary background

T My o e (7 — 1!
(W'Py)r = (YT Pip)r— - exp [ - 5(77)2 Eljaj(:v) 3 ]7 (134)
where we have used that ag(z)=1. The first order contribution involves a;(2)=—%R

and reproduces the asymptotic behaviour (129). Higher order contributions must be
taken into account to uncover the effect of variable curvature. For this one has to
substitute is the corresponding Seeley DeWitt coefficients a; into (134). These have
been computed up to j=5 [47].

5 Conclusions

In this paper we have elaborated on various features of the Thirring model as well as
some of its extensions. In particular we found the dependence of the partition function
on the chemical potential and the non-trivial boundary conditions for the fermions
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on the torus. For that a careful analysis of fermionic determinants has been crucial.
We have found that the familiar chiral anomaly of the UV-regularized two point
function is also seen in the IR-sector as a breakdown of holomorphic factorization.
This fact, which has not been properly taken into account previously, together with
the presence of harmonic contributions to the current, leads to a modification of the
equation of state due to the current-current interaction. We believe that our results
could also be obtained in the bosonized theory, provided the usual bosonization rules
are modified to include scalar fields with winding numbers, i.e. scalar fields with
values in a compactified target space.

Furthermore, we have deformed the conformal structure by allowing for different cou-
plings in the transversal- and the longitudinal parts of the current-current interaction.
This does not change the Virasoro- and Kac-Moody algebra, but modifies the con-
formal weights of the primaries and in particular of the fermionic fields. Not all
values of the coupling constants belong to physical theories, since positivity of the
scalar product imposes certain restrictions on them. Our approach allows also for
a non-minimal coupling of the longitudinal sector to gravity. While such a coupling
may seem to be ad-hoc we gave some arguments that it might arise naturally when
quantizing fermions in presence of a a background charge. We find that the central
charge of the Virasoro algebra is sensitive to the non-minimal coupling. In particular
¢ < 1 occurs for certain values of the coupling constant. However, we have not been
able to derive constraints on this extra coupling without referring to the result by
Friedan, Qiu and Shenker. We believe that an independent derivation of their result
within a fermionic model would be most welcome. We have also established that the
central charge controls the finite size effects only for a particular treatment of the
zero-modes of the auxiliary fields which is equivalent to an average over charges at
infinity.

Finally we have considered the gauged Thirring model in curved space-time. We find
that the partition function is independent of vectorial as well as chiral twists and the
chemical potential. This result, which technically is due to the harmonic contributions
to the gauge-fields, is in fact expected as a consequence of Gauss’s law. Furthermore,
using the (probably not so obvious) factorization property of the zeta-function reg-
ularized determinants of commuting operators we find that the partition function
can be expressed completely in terms of a single massive scalar field. The gauged
Thirring model shows a chiral symmetry breaking which originates in the existence of
fermionic zero-modes and thus in configurations with winding number (instantons).
We have obtained explicit expressions for these instantons as well as the expectation
value of the chiral condensate as a function of temperature and curvature. The con-
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densate is exponentially suppressed for high temperatures and/or big curvature which
is interpreted as an almost restoration of the chiral symmetry under these extreme
conditions. Although temperature and curvature have qualitatively the same effect
they cannot be identified. In particular the identification with the Hawking temper-
ature for free scalar fields in de Sitter space does not hold in the present situation. It
follows from general arguments that the chiral symmetry can not be restored for any
finite temperature or curvature so an exponential suppression is most we can expect.
In fact, it has been argued earlier, that the axial U(1)-symmetry in 4 dimensional
QCD also shows an almost restoration as a function of the temperature [49]. Our
results on the curvature dependence could motivate a corresponding investigation in
QCD. Finally we note that the chiral condensate is linearly suppressed for large
current-current couplings.
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A Conventions and Variational Formulae

Our conventions for the metric and curvature agree with those of Birrell and Davies
[6]. We use the chiral representation 49, = 01,9}, = io» for flat space with Lorentzian
signature and 49, = 01,7, = —o3 in Euclidean space. Furthermore 45 =5 = o3.

In what follows we derive some variational formulae used in the text. Here D, denotes
the space-time and Lorentz covariant derivative.

Using the definition of the Christoffel symbols it is straightforward to show that

1
59#1/ - 5€ﬂaeua + eﬂaéeua 3 5\/§ = Eﬂguy(sguu

v a v 1 oV o,V
oyt = —"efoe,t ;5 o, = 5(77 OGua = 1,"9 7990) (135)

(0] ]' «
6T, = 59 ’(D,0gs, + D895, — Ddgyu)-

For some formulae related to the variation of the tetrad let us refer to [48]
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1 1
det', = 56”“@#” — tabe“b ;e = ie”“égw, — t“beﬂb,
. (136)
where 1%, = 5(6”“(56”1, —e"de,?).
In addition we have
1
Swpap = Dytah — Quap 3 Qpuap = ieo‘aeﬁb(Da(Sggﬂ — Dgdgay)- (137)

When performing the variation of curvature dependent expressions we have used the
identities
9" oRw = wS, , where w® =gl —g*ol'l,

1
and [ /gw*A, = [ /g{g*PV, A" —VAP}ég.s . (138)

Depending on the topology of space-time, the reference curvature R may be different
from zero. In this case it is not possible to express the conformal angle o in terms of
the curvature scalar. Nevertheless, to perform variations of o-dependent expressions,
the identity

5(\/gR) = —26(\/g/0) (139)

proves to be useful.
Taking the variations of the equations

V9OG(z,y) = —6(x —y) and /giDS(z,y) =4d(x —y) (140)

for the scalar and fermionic Greens functions we may derive (up to contact terms)
the following variational formulae

1 vV _« « v
0G =/ (=599 +9™9")0aG (@, u) 05G (u, y) /GO G
0
55 =% [ (28(5, 01" DS (u,y) = DalS(w, )7 11" 1, 1)) VB
Here all arguments and derivatives which are not made explicit in the integral refer

to the coordinate u over which is integrated. Finally, we need the following formula
for the variation of the inverse Laplacian
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6<%f> Gf—a ) ) L/JE“MWA (141)

where V' is the volume of space-time and f an arbitrary function. To prove this
identity we note that for f € (KernA)* we have

1
Axf =

Varying this equation yields

1 1
Do) =0f = (60) % f

which may be inverted to give

)bk m()

Varying the identity

k-

allows to replace the last term of (142) to obtain the required result (141).

B Canonical Approach to the Partition Function

In this appendix we compute the partition function for massive Dirac fermions in the
canonical formalism. In the limit m — 0 we confirm the result (30) for the fermionic
determinant with chemical potential in chapter 3. For massive fermions one cannot
consistently impose chirally twisted boundary conditions. However, from the explicit
eigenvalues (21) one sees at once that the chiral twist £, and the chemical potential
are equivalent. One can easily verify that this equivalence holds also for massless
fermions in the canonical approach and that ; ~ uL/2m. Let us therefore compute
the partition function

Z(B) = Trle#=nQ)] (143)

for massive Dirac fermions with chemical potential p on a cylinder with (non chiral)
twisted boundary conditions
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o+ Lot) = =, ). (144)
For massive particles it is more convenient to use the Dirac representation

V=03 o =—ioy, =90 =0 (145)

The Dirac field is expanded in terms of the eigenmodes of the first quantized Hamil-
tonian

b < m 10, )
as
U, t) =3 Yo iby + >ty _df, (147)
where the 1, + and v, _ are the positive and negative energy modes,
¢n,+ — e—iwnt—i/\nxcm wn,— — eiw"t_i/\"x’)/lcn,
en = (2wn(wp +m)L) "3 (“”;m). (148)

The momenta A, and frequencies w,, are determined by the boundary condition (144)
to be

2m 1
)\":f(n_i_al) and  w, =/m?+ A2. (149)

After normal ordering the ’positron’ operators with respect to the Fock vacuum de-
fined by H we find

(H = p@Q) = 3 (wn — w)bibu + D (wn + p)didn = D (wn + 1), (150)

where the last c-number term represents the infinite vacuum contribution which must
be regularized. To do that we employ the zeta function regularization. That is we
define the zeta-function for s>1 by the sum

() = Y (wa 1),

n
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which in turn defines an analytic function on the whole complex s-plane up to a simple
pole at s=1. The analytic continuation is constructed by a Poisson resummation

> (wn + 1) SZ—ZF (151)

where

F(g) = e?mismo) /dy U2y ) (152)

and m=Lm, ji=Lu. Taking the Mellin transform of (152) we find

F§) = eQWif(%—O‘l)%/dy eigy/dt to etV Myt
['(s

2 omig(t- )/ i 4o o
— _ e (5] S K 2 2 1
F(s)e 2 dt t° e o o(fin/&2 + 12) (153)

_ Qm 6271'7:5(%7051) /dt ts —ti Kl (/’L 4 52 + t2) .
T(s) NEwE

F diverges at £ =0 since the Kelvin function K;(z) ~ 1/z for small 2. It follows that
the n =0 term in (151) diverges. This divergence is regularized by subtracting the
ground state energy of the infinite volume system. Indeed, because of the exponential
decay of the Bessel function for large arguments, only the n=0 term contributes for
infinite volume. So we find for the regularized sum

Z( + )" = 27rm 15 —tuKl(mV n? + t2)

Now we perform the limit m — 0. Only the most singular term in the expansion of
the Bessel function contributes, hence

W 4 -5 _ 27rm ts —th
;( ) =2 )
SLS 7TZTL —Q] L ~
= ; ¢? Wi TES s (m), (155)
where S,(2) is the Lommel function [50]. In particular for s = —1 this function is

S = 1/z so that finally
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(=)™ . T 27 1

1
}: reg:__E:_—Zmnou:___ _ —1\2
L+ 0) L2 or L\ Lt (156)

Inserting this into (150) then yields the regularized expression

0 = i o2 Ih?
tH — puQ = zn:( )bl b, +Z wn+ )b d,, T (on - [a1—|—2]) . (157)
For small i the normal ordering is p-independent so that
. . 7r 27.(— 1 2 . .
OF: H = pQ :|0) = — 7 + (01 = [oa + 5])" = (0] : £ : 0) (158)

is independent of ;1 and coincides with the Casimir energy [24].
Let us now compute the partition function. Using (158) we easily find

Z(ﬂ) = tr[ Bi(H~ “Q]—qal 15
= I s I g,
n>[%+a1} n>—[%+a1}
H (1+q(”*%+a1)e*ﬂu) H (1+q("*%*al)e*ﬂu)
n>[1—a] n>—[1—oa]
1 — Q7 ~ (0%}
= ——0]. 0,7) O . 0,7 159
Ol 07 0L, 500 (159)

where we have used the product representation of the theta functions in the last
identity and that ¢ = €™ = e=27%/L_ A non-vanishing chiral twist 3, can now be
included by shifting the chemical potential. Thus we have confirmed the formula (30)
in the text.

Note that for u # 0 the zero-temperature limit of the grand potential is not equal
to the vacuum expectation value of : H — u@) :. For u # 0 all states up to the u-
dependent Fermi energy are filled. For example, for w; < p < wy in the limit § — oo,
Q) reduces to the expectation value of : H — u() : in the one-electron state.
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