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AbstratThe Thirring model and various generalizations of it are analyzedin detail. The four-Fermi interation modi�es the equation of state.Chemial potentials and twisted boundary onditions both result inomplex fermioni determinants whih are analyzed. The non-minimaloupling to gravity does deform the onformal algebra whih in par-tiular ontains the minimal models. We ompute the entral harges,onformal weights and �nite size e�ets.For the gauged model we derive the partition funtions and the ex-pliit expression for the hiral ondensate at �nite temperature andurvature. The Bosonization in ompat urved spae-times is alsoinvestigated.<



1 IntrodutionThe response of physial systems to a hange of external onditions is of eminentimportane in physis. In partiular the dependene of expetation values on tem-perature, the partile density, the spae region, the imposed boundary onditions orexternal �elds has been widely studied [1℄. Nevertheless, many properties of suhsystems are poorly understood. The massless Thirring model [2℄, whih is among thesimplest interating �eld theories, has already led to onsiderable onfusion about itsthermodynami properties in the literature [3, 4, 5℄. The reason is two-fold: Firstly,the omputation of the fermioni determinant in the presene of a hemial potentialand/or non-trivial boundary onditions is deliate, beause the eigenvalues of theDira operator are generially omplex. In setion 3:1 we propose a regularizationsheme via analyti ontinuation. We argue that the so-obtained determinant, whihdi�ers from previous results [4℄, leads to the orret equation of state.The seond ompliation originates in the infrared-setor. An elegant infrared regu-larization, whih is partiularly well suited for the study of thermodynami properties,is to quantize the model on a torus. Harmoni ontributions to the urrent arise thennaturally and taking them into aount turns out to be ruial for a orret quanti-zation. In partiular the so-obtained results di�er from those gotten earlier [3℄ usingbosonization. This is explained in setion 3:2.On another front there has been muh e�ort to quantize self-interating �eldtheories in a bakground gravitational �eld [6℄. For example, one is interested whethera blak hole still emits thermal radiation when self-interation is inluded. Due togeneral arguments by Gibbons and Perry [7℄ this question is intimately onneted withthe universality of the seond law of thermodynamis. The Thirring model (inludingthe gauged version of it) is still solvable in urved spae-time and we an study itsproperties in a bakground gravitational �eld. This provides us in partiular with anelegant approah to the study of its onformal struture: Correlation funtions withurrent- and stress-tensor insertions, whih are gotten by funtional di�erentiationwith respet to the gauge- and gravitational �elds, ontain the neessary informationto haraterize the underlying symmetry algebras. To familiarize the reader with ourapproah we �rst rederive the onformal struture of the original Thirring model insetion 3:3. We then show how a non-minimal oupling to gravity leads in a naturalway to a modi�ation of the onformal struture. In partiular, very muh as for afree salar �eld the entral harge in the fermioni formulation of the Thirring modelis not unique. Furthermore, we �nd that the equivalene between �nite size salingand entral harge of the Virasoro algebra holds only for a partiular treatment of1



the zero-mode setor in whih a harge at in�nity is generated automatially. Thisharge ombines in a non-trivial way with the Weyl-anomaly of the determinant ofthe utuation operators to reonile the equivalene of the �nite size saling and theentral harge. For ertain values of the non-minimal oupling we obtain minimalmodels from interating fermions. This is the subjet of setions 3.4 and 3.5.The gauged Thirring model, whih ontains the Shwinger model (QED2) as apartiular limit, is no longer onformally invariant but has a mass gap: The 'photon'aquires a mass m2 = e2=(� + 12g22 ) via the Shwinger mehanism. It possesses anon-trivial vauum struture whih promotes it to an attrative toy model to mimithe omplex vauum struture in 4-d gauge theories. From our experiene with theShwinger model [8℄, whih is supposed to share ertain aspets with one-avour QCD[9℄, we expet that gauge �elds with winding numbers are responsible for the non-vanishing hiral ondensate and in partiular its temperature dependene. Con�gura-tions with windings, so alled instantons, exist only for �nite volumes and minimizethe Eulidean ation. They lead to hirality violating vauum expetation values.For example, a non-zero hiral ondensate develops whih only for high temperatureand large urvature vanishes exponentially.Sine for partiular hoies of the oupling onstants the model redues to wellknown and well studied exatly soluble models there are many earlier works whih arerelated to ours. Some of them onentrated more on the gauge setor and investigatedthe renormalization of the eletri harge by the four-Fermi interation [10℄ or thenon-trivial vauum struture in the Shwinger model [8, 11℄. Others onentrated onthe un-gauged onformal setor. Freedman and Pilh alulated the partition funtionof the un-gauged Thirring model on arbitrary Riemann surfaes [4℄. We do not agreewith their result and in partiular show that there is no holomorphi fatorizationfor general fermioni boundary onditions. Also we deviate from Destri and deVega[5℄ whih investigated the un-gauged model on the ylinder with twisted boundaryonditions. We omment on these disrepanies in setion 3:2.Setion 2 ontains introdutory material and in partiular the lassial struture ofthe model.Other papers are dealing with di�erent aspets of ertain limiting ases of themodel onsidered here. In partiular in [3℄, the thermodynamis of the Thirring modelhas been studied and the Hawking radiation has been derived in [12℄. The equivaleneof the massive Thirring model and the Sine-Gordon model in urved spae has beenshown in [13℄. Partition funtions for salar �elds with twisted boundary onditionshave been omputed in [14℄ and more reently in [15℄.2



2 Classial TheoryThe gauged Thirring model in urved spae-time has the LagrangianLThir[A�; � ;  ℄ = � i�r� � g24 j�j� � 14F��F �� , j� = � � ; (1)where the gamma-matries in urved spae-time are related to the ones in Minkowskispae-time as �=e�âa, r�=��+ i!�� ieA� is the oordinate- and gauge ovariantderivative and F�� is the eletromagneti �eld strength. The gravitational �eld g��(or rather the 2-bein ea�, sine the theory ontains fermions) is treated as lassialbakground �eld, whereas the 'photons' A� and fermions  will be quantized.The lassial theory is invariant under U(1) gauge- and axial transformations andorrespondingly possesses onserved vetor and axial-vetor urrentsj� and j5�= � �5 =���j�: (2)Here ���=p�g ��� denotes the totally antisymmetri tensor. In fat, the onservationlaws together with the relation (2) between the vetor- and axial urrents imply thatthe urrents are free �eldsr2j� = r2j5� = 0 ; (3)whih is the reason that aounts for the solubility of the model [16℄, even in thepresene of gauge- and gravitational �elds. Of ourse, for any gauge invariant regu-larization the axial urrent possesses an anomalous divergene in the quantized model.Thus the normal UA(1) Ward identities in the un-gauged Thirring model [10℄ beomeanomalous when the fermions ouple to a gauge �eld.The solution of the equations of motion is most easily presented by introduingauxiliary salar- and pseudo-salar �elds, in terms of whih the ation takes the formS = Z p�gh� 14F��F �� + i � �(r� � ig1���+ ig2� �� ���) i+g��(������+ ������)i: (4)Note that for later use we have allowed for di�erent ouplings of the fermioni urrentsto the salar- and pseudo-salar auxiliary �elds � and �, respetively. The originalThirring model is reovered for g1=g2=g, sine then3



L = �14F 2 + i � �r� + gj�B� + g��B�B�; B� = ���� � �� ��� (5)is lassially and quantum-mehanially equivalent to (1), after elimination of themultiplier �eld B�.By deomposing the gauge �eld similarly as the B�-�eld asA� = ���� �����'; so that F01 = p�gr2'; (6)and hoosing isothermal oordinates for whih g�� = e2���� , the generalized Diraoperator readsD= = eiF�i5G� 32� �= e�iF�i5G+ 12�; whereF = g1�+ e � and G = g2�+ e ' : (7)Hene, if  0(x) solves the free Dira equation in at Minkowski spae time, then (x) � eiF+i5G� 12� 0 (8)solves the Dira equation of the interating theory on urved spae-time. The vetorurrents are related asj� = � � = � 0̂� 0e�2� � 1p�g j�0 :The same relation holds for the axial vetor urrent.Di�eomorphism invariane then leads ovariantly onserved energy-moment umtensor T �� � � 2pg ÆSÆg�� : (9)Applying the variational identities in Appendix A one obtains after a lengthy butstraightforward omputationT �� = 14g��F ��F�� � F ��F �� + i2[ � (�D�) � (D(� � )�) ℄+2r��r��� g��r��r�� + (�$ �) (10)+12j� (g1r��� g2���r��) + (�$ �)4



+g2g��j����r��� 2g2j��� (�r�)� ;where we have introdued the symmetrization A(�B�)= 12(A�B� + A�B�). The �rsttwo lines are just the energy momentum of the eletromagneti �eld, harged fermionsand free neutral (pseudo-) salars. The remaining terms reet the interation be-tween the fermioni and auxiliary �elds. On shell T �� is onserved as required bygeneral ovariane. Using the �eld equations for  and � its trae readsT �� = �12F ��F�� : (11)In partiular for A�=0 it vanishes, and the theory beomes Weyl-invariant.Sympleti struture: In the presene of both fermions and bosons it is onvenientto exploit the graded Poisson struture [17℄fA(x); B(y)g �XO Z dz1�A(x) �ÆÆO(z) �!Æ B(y)Æ�O(z) � A(x) �ÆÆ�O(z) �!Æ B(y)ÆO(z) ����x0=y0 :The sum is over all fundamental �elds O(x) in the theory . The sign is minus if oneor both of the �elds A and B are bosoni (even) and it is plus if both are fermioni(odd) �elds. The momentum densities �O(x) onjugate to the O-�elds are given byfuntional left-derivatives. A simple alulation yields the following momenta� = �i y; �� = g2j50 + 2�0� and �� = g1j0 + 2�0�:In the following setions we are lead to onsider the Eulidean version of themodel. Then one must replae the Lorentzian �; g�� and !� by their Eulideanounterparts. For example, with our onventions the relation (2) beomesj5� = �i��� j�and the generalized Dira operator in Eulidean spae-time beomesD= = e�2�efy �= ef ; where f = �iF + 5G+ 12� (12)(see (7) for the de�nition of F and G), instead of (7). Also, to reover the EulideanThirring model as partiular limit of (4) we must set g22 =g21 =g2.5



3 Thermodynami- and onformal propertiesIn this setion we analyze the quantum theory orresponding to the lassial ation(4) without gauge �elds, in at and urved spae-time. The gauged model is thenonsidered in the next setion. Here we alulate the partition funtion, ground stateenergy, equation of state and determine the onformal struture of the un-gaugedmodel.To allow for a non-vanishing U(1)-harge we ouple this onserved harge to ahemial potential �. For the �nite temperature model the imaginary time must varyfrom zero to the inverse temperature � and the bosoni and fermioni �elds mustobey periodi and anti-periodi boundary onditions, respetively. We enlose thesystem in a spatial box with length L to avoid infrared divergenes.We shall determine the dependene of the partition funtion and orrelators onthe metri. This provides us with an alternative approah to the onformal strutureand its relation to �nite size-e�ets. Also, it enables us to study the e�et of non-minimal oupling to gravity in setion 3:3. Hene we allow for an arbitrary metri or2-bein e�a with Eulidean signature. We an hoose (quasi) isothermal oordinatesand a Lorentz frame suh thate�a = e� ê�a � e� � �0 �10 1 �g�� = e2� ĝ�� � e2� � j� j2 �1�1 1 � ; pg = e2��0; (13)where � = �1 + i�0 is the Teihmueller parameter and � the gravitational Liouville�eld. Spae-time is then a square of length L and has volume V = R L0 d2xpg. Weallow for the general twisted boundary onditions for the fermions (x0 + L; x1) = �e2�i(�0+�05) (x0; x1) (x0; x1 + L) = �e2�i(�1+�15) (x0; x1): (14)The parameters �i and �i represent vetorial and hiral twists, respetively. We ouldallow for twisted boundary onditions for the (pseudo) salars as well [14, 15℄, e.g.�(x0+nL; x1+mL) = �(x1; x0) + 2�(m+n). However, to reover the Thirring modelfor equal ouplings we must assume that these �elds are periodi. For �=0, � = i�=Lin whih ase V = �L, and for �0 = �0 = 0 the partition funtion has the usualthermodynamial interpretation. Its logarithm is proportional to the free energy at6



temperature T =1=�.3.1 Fermioni Generating FuntionalTwisted boundary onditions as in (14) require some are in the fermioni path in-tegral. The subtleties are not related to the unavoidable ultra-violet divergenes butto the transition from Minkowski- to Eulidean spae-time. To see that more learlylet S� denote the spae of fermioni �elds in Minkowski spae-time with hirality �1.Sine both the ommutation relations and the ation do not onnet S+ and S� wean onsistently impose di�erent boundary onditions on S+ and S�. On the otherhand, in the Eulidean path-integral for the generating funtionalZF [�; ��℄ = Z D yD eR pg  yiD= +R pg (�� + y�); (15)the Dira operator D= = � 0 D�D+ 0 �exhanges the two hiral omponents of  , i.e. D= : S� ! S�. Thus, in ontrast tothe situation in Minkowski spae the two hiral setors are related in the ation. Ofourse, the eigenvalue problem for iD= is then not well de�ned. This is the origin ofthe ambiguity in the de�nition of the determinant. It is related to the ambiguitiesone enounters when one quantizes hiral fermions [18℄. Here we reformulate thisproblem in suh a way that the determinant with hiral twists (� 6=0) an be obtainedby analyti ontinuation. The resulting determinants do not fatorize into (anti-)holomorphi piees. In appendix B we give further arguments in favour of our resultby alulating the determinants in a di�erent way.Let us now study the generating funtional for fermions in an external gravita-tional and auxiliary �eld. For that we observe that on the torus we must add aharmoni piee to the auxiliary �elds to whih the fermioni urrent ouples in (4).More preisely, in the Hodge-deomposition of B� in (5) ontains a harmoni piee,B� = ���� � �� ���+ 2�L h� with r�h� = h[�;�℄ = 0: (16)More generally, allowing for arbitrary ouplings of the various terms in (16) to the7



fermioni urrent, we are led to add a term2�L g0 Z pg h�j� + (2�L )2 Z pg h�h�to the ation (4). Note, that in isothermal oordinates, for whih the metri has theform (13), the harmonis h� are onstant. The onstant h� ouple to the harmonipart of the urrent and are needed to reover the Thirring model in the limit g20 =g21 =g22 . Also, we shall see that the harmoni degrees of freedom are essential to obtainthe orret thermodynami potential.Finally we introdue a hemial potential for the onserved U(1) harge. In theEulidean funtional approah this is equivalent to oupling the fermions to a onstantimaginary gauge potential A0 [19℄.As a onsequene of the above observations the saling formula (12) (reall, thatF =g1� and G=g2� when the eletromagneti interation is swithed o�) is modi�edto D= = e�2�efy D̂= ef ; where f = �ig1�+ 5g2�+ 12�D̂= = ���� + i!̂� � 2�iL [g0h� + ��℄� and �� = �i�0L2� � Æ�0: (17)This saling property will enable us to relate the fermioni determinants and Green'sfuntions of D= and D̂= . The spin onnetion !̂ in (17) vanishes for our hoie ofthe referene zweibein. The dependene of D̂= on the hemial potential � and theonstant harmoni �eld h� annot be gotten by the anomaly equation [20℄. It must beomputed by diret methods. For this we expand the fermioni �eld in a orthonormalbasis of the Hilbert spae (x) = Xn an n+(x) +Xn bn n�(x) y(x) = Xn �an�yn+(x) +Xn �bn�yn�(x); (18)where an; bn; �an;�bn are independent Grassmann variables. A basis is given by n�(x) = 1pV ei(p�n ;x) e�; where (p�n )i = 2�L (12 + �i � �i + ni); (19)and the e� are the eigenvetors of 5. Reall that �i and �i represent the vetorial- and8



hiral twists (14) respetively. The  n+ and  n� must obey the S+ and S� boundaryonditions, respetively. These boundary onditions �x the admissible momenta p�nin (19). Sine the Dira operator maps S� into S� the �n� must then obey the sameboundary onditions as the  n�. Thus �n�(x) is obtained from  n�(x) by exhangingp+n and p�n . It follows then thatiD̂=  n� = ��n�n� (20)with �+n = 2��0Lh��(12 + a1 + �1 + n1)� (12 + a0 + �0 + n0)i��n = 2��0Lh�(12 + a1 � �1 + n1)� (12 + a0 � �0 + n0)i: (21)Here we have introdued a� � ���g0h����. To ontinue we reast the in�niteprodut for the determinant in the form1Yn �+n��n = Y~n2Z2 �2�L �2ĝ��(12 + � + n�)(12 + � + n�); (22)where ĝ�� is the inverse of the referene metri (13) and� = a� + i�̂� ���; with (�̂� �) = � 1�0 � �1 �j� j21 ��1 � : (23)The logarithm of the produt (22) an in turn be written as the derivative at zeroargument of a generalized zeta funtion. Indeed one easily veri�es that for�(s) �Xn (�+n��n )�s (24)we have (formally)det(iD̂= ) � (Yn �+n��n )reg = exp[�� 0(s)℄js=0: (25)However �(s) is divergent for s � 1. These divergenes an be regularized as follows:We ompute �(s) for s > 1 and subsequently de�ne its value for s < 1 by analyti9



ontinuation.Assume for the moment that � is real or equivalently that there are no hiral twists�� and hemial potential �. Then �(s) has a well de�ned analyti ontinuation tos<1 via a Poisson resummation [21℄. Indeed, writing �(s) as a Mellin transform�(s) = 1�(s)Xn 0 Z dt ts�1e�t�+n ��n ; (26)the generalized Poisson resummation formulaXZ exp[��h��(n� � a�)(n� � a�)℄ = phXZ exp[��h��n�n� � 2�in�a�℄; (27)applied to the integrand in (26) yields after integration over t�(s) = �(1� s)�(s) �2s�1pgXZ 0(g��n�n�) s�12 exp[�2�in�(� + 12)℄: (28)The zero mode with n� = 0 is eliminated beause for s > 1 it does not ontribute.After this analyti ontinuation �(s) and � 0(s) are now regular at s=0. More preisely�(0) = 0 and� 0(0) = ��1pgXZ 0(g��n�n�)� 12 exp[�2�in��℄= � log h 1j�(�)j2�h�10 i(0; �) ��h�10 i(0; �)i: (29)Here we made use of det[(iD̂= )2℄=det[(iD̂= )2℄, whih follows from �(0)=0.For omplex � the Poisson resummation is not appliable and � 0(0) annot be al-ulated by diret means. To irumvent these diÆulties we note that the in�nitesum (24) de�ning the �-funtion for s>1 is a mereomorphi funtion in . Thus wemay �rst ontinue to s<1 for real � and then ontinue the result to omplex values.Using the transformation properties of theta funtions the resulting determinant anbe written asdet(iD̂= ) = e2�(pĝĝ�������2i�1a0) 1j�(�)j2�h�a1 + �1a0 � �0 i(0; �) ��h��a1 � �1�a0 + �0 i(0; �): (30)This is the main result of this setion.10



It an be shown that this determinant is gauge invariant, i.e. invariant under �� !��+1, but not invariant under hiral transformations, �� ! ��+1, as expeted.Furthermore, it transforms ovariantly under modular transformations � ! � +1 and� ! �1=� . In other words, det iD̂= is invariant under modular transformations if atthe same time the boundary onditions are transformed aordingly. The exponentialprefator is needed for modular ovariane and is not present in the literature [4℄. Itorrelates the two hiral setors and will have important onsequenes. In AppendixB we on�rm (30) with operator methods.The last step in the alulation of the fermioni generating funtional is the inlu-sion of the loal ontributions to the auxiliary- and metri �eld, i.e. the dependeneof the determinant on �, � and �. For this we introdue the one-parameter family ofDira operators D= � = ĝ1=2g1=2� e�fyD̂= e�f : (31)We take the � -dependene of the metri as g� =e2��ĝ. With f as de�ned in (17), thisfamily interpolates between D̂= and D= . The determinant of the full Dira operator isthen obtained by integrating the orresponding anomaly equation [22℄:detiD= = det(iD̂= ) exp � SL24� + g222� Z qĝ�4̂��; (32)where SL = Z qĝ[R̂� � �4̂�℄ (33)is the Liouville ation. In deriving this result we assumed that R pg� = 0. Thisonstraint on the zero-mode of � (and similarly of �) will be disussed below. Atually,for our referene metri the Rii salar R̂ vanishes and the Liouville ation simpli�esto � R pĝ�4̂�. However, the above formulae hold for arbitrary referene metrisand arbitrary Riemannian surfaes. Furthermore, as expeted for a gauge-invariantregularization, the funtion � and thus the longitudinal part of B� does not appearin the determinant.To omplete the alulation of the generating funtional we need to know thefermioni Green-funtions S. Using the saling property of the Dira operator, eq.11



(31), it is easy to see that in an arbitrary bakground �eld S is related to Ŝ byS(x; y) = e�f(x) Ŝ(x; y) e�fy(y):Together with the relation (32) and the expliit form (29,30) for det iD̂= this yieldsthe fermioni generating funtionalZF [�; ��℄ = 1j�(�)j2�h�10 i(0; �) ��h��1�0 i(0; �)e� R ��(x)S(x;y)�(y) � exp � 124�SL + g222� Z pg�4�℄�: (34)By using the saling properties of the Rii-salar and Laplaian (see appendix A)the exponent an be written in a manifest di�eomorphism-invariant way as� 196� Z pgR 14R + g222� Z pg�4�:Here we used that on the torus R integrates to zero. On the sphere or higher genussurfaes the last formula is modi�ed.The Integration over the auxiliary �elds then leads to the full generating funtionalof the Thirring model. It ontains all information about the thermodynami- andonformal properties. This is the subjet of the next two setions.3.2 Thermodynamis of the Thirring ModelIn this hapter we derive the grand anonial potential, equation of state and groundstate energy for the Thirring model. For this we need to ompute the partitionfuntion Z = Z d2hD�D� ZF [�=��=0℄ e�SB ; (35)where ZF is the fermioni generating funtional (34) and SB the bosoni ationSB = (2�)2qĝĝ��h�h� � Z pg��4�+ �4��: (36)As it stands the partition funtion is still ill-de�ned unless we onstrain the zero-modes arti�ially introdued in the Hodge deomposition of B� in (16). The hoie12



of the onstraints is restrited by the symmetries of the system. In partiular transla-tion invariane (or rotation invariane on the sphere) and ovariane under modulartransformations of the torus are symmetries whih me may want to preserve by thezero-mode onstraint. The onstraint measureZ dh0dh1D�D�Æ(��)Æ(��) � � � � Z dh0dh1DÆ�DÆ� � � � ; �� � 1V Z pg� (37)(and similarly for ��) satis�es these requirements (The normalization by the volumein the de�nition of �� is needed suh that the onstraints and hene the partitionfuntion are both dimensionless). For example, one �nds the dimensionless partitionfuntion N0 � Z D� Æ(��) e(�;4�) = pVdet0 12 (�4) (38)for free bosons, where the prime indiates the omission of the zero-eigenvalue.Integration over the harmonis: There is no restrition on the harmoni partsof the auxiliary �elds and the Gaussian integral yields1Z�1 d2h�h�10 i��h��1�0 i exp[�(2�)2qĝĝ��h�h�℄ = �h uw i(�)4�q1 + g20=2� ; (39)where �h uw i(�) = Xn2Z2 ei�(n+u)�(n+u)+2�i(n+u)wis the theta funtion with harateristisu = �� 11� (�1 + i� �1 ��) and w = � 1�1� (�0 + i� �0 �� � �0) (40)and ovariane� = � � 00 ��� �+ i �g20 �02� + g20 � g20 �4� � g20�4� � g20 g20 � : (41)13



Integration over � and �: The integral over �, subjet to the Æ-onstraint in (37),merely ontributes one inverse square-root of the primed determinant of �24 to thepartition funtion and so does the integration over �. In fat, to obtain the partitionfuntion of the Thirring model we divide Z by the orresponding partition funtionsN0 of the free bosons, eq. (38). Using (39) and (34) we obtainZN0 = 1j�(�)j2vuut2� + g222� + g20 �h uw i(�) e(1=24�+g23)SL; (42)where we have also used the saling formula for the primed determinant of 4 [20, 23℄log det0(�a4)det0(�4) = log a � �(0) = log a � [ 14� Z a1 � p℄; (43)with p being the number of zero modes of the operator. On the torus R a1=0 and we�nd det0(� a4) = 1a det0(�4);whih produes the extra fator p2� + g2. In the Thirring model limit g2 = g0 andthe square-root in (42) disappears.Zero-temperature limit: To investigate the thermodynamis of the model weassume spae-time to be at and that � = i�=L. Then
 = � 1� log ZN0is the grand anonial potential. First we analyze the low temperature limit of 
. For�=0 this yields the ground state energy. We observe that for � = i�=L the ovarianematrix � in (41) simpli�es toi�� = ���L hId + g204� 12� + g20 � g20 �4� � g20�4� � g20 g20 � i (44)and has eigenvalues 14



�1 = ���L 2� + g202� and �2 = ���L 2�2� + g20 (45)with orresponding eigenvetorsv1 = (�1; 1) and v2 = (1; 1): (46)Also, the �̂ tensor (see 23) and �0 (see 17) in (40) simplify to� �� = � 0 �=L�L=� 0 � and �0 = �i �2��:For � ! 1 the saddle point approximation to the Gaussian sum (39) de�ning thetheta-funtion beomes exat and therefore using thatlog j�(�)j2 �! ���6L for � !1we �nd 
(� !1) = � �6L � 4�2� + g20 �L(�1 + �L2� )2+ �2L minn2Z2 h2� + g202� fn2 � n1 � 4�2� + g20 (�1 + �L2� )g2+ 2�2� + g20 fn1 + n2 � 2�1g2i (47)
for the zero-temperature grand potential of the un-gauged model. Here the hemialpotential and hiral twist enter only through the ombination �1+�L=2�. Let us nowdisuss the potential in the various limiting ases.i) No hiral twist, �1=0, and vanishing hemial potential: Then 
(� !1) oinides with the ground state energy. The minimum in (47) is attained forn1=n2=[12+�1℄ and we �ndE0(L; �1; �1=0) = � �6L + 2�L 2�2� + g20 (�1 � [12 + �1℄)2: (48)Only for anti-periodi boundary onditions, that is for �1=0, does this Casimir energy15



oinide with the orresponding result for free fermions. For g20�4� the Casimir foreis always attrative whereas for g20 <4� it an be attrative or repulsive, depending onthe value of �1. The result (48) is in agreement with the literature [5℄. For example, itoinides with De Vega's and Destri's result if we make the identi�ation !DD=2��1and 1=�DD=1 + g20=2� in formula (42) of that paper.ii) Small twists and hemial potential: For small �1 and � the minimumis assumed for ni=0 and the potential simpli�es to
(� !1) = � �6L + 2�L 2�2� + g20 �21 (49)and does not depend on the hemial potential. For vanishing g0 the minimum of(47) is attained forn1 = [12 + �1 � �1 � �L2� ℄ and n2 = [12 + �1 + �1 + �L2� ℄;where [x℄ denotes the biggest integer whih is smaller or equal to x. This then leadsto the following zero temperature potential
 = � �6L � 2�L (�1 + �L2� )2+ �Ln�1 � �1 � �L2� � [12 + �1 � �1 � �L2� ℄g2+ �Ln�1 + �1 + �L2� � [12 + �1 + �1 + �L2� ℄g2: (50)For � = �1 = 0 this redues to the Casimir energy for free fermions with left-rightsymmetri twists and agrees with the results in [24℄.Note, however, that for �1 6=0 we disagree with [5℄. The di�erene is due to the seondterm on the right in (47). Let us give two arguments in favour of our result: Thedisrepany arises from the prefator appearing in the fermioni determinant (30). Asdisussed earlier this prefator implies the breakdown of holomorphi fatorization,a property whih has been presupposed in [5℄. One an show that our results anbe reprodued by starting with massive fermions and taking the limit m ! 0 (seeappendix B).The seond argument goes as follows: Suppose that �1=�1=0. Then (50) simpli�esto 16




(� !1) = � �6L � 2�L ��L2� �2 + 2�L ��L2� � [12 + �L2� ℄�2: (51)For massless fermions the Fermi energy is just � and at T =0 all eletron states withenergies less then � and all positron states with energies less then �� are �lled. Theother states are empty. Sine d
=d� is the expetation value of the eletri hargein the presene of � we onlude that it must jump if � rosses an eigenvalue of the�rst quantized Dira Hamiltonian h. For vanishing twists the eigenvalues of h arejust En=(n� 12)�=L. From (51) one sees by inspetion that the eletri hargehQi = d
d� = 2[12 + �L2� ℄ = 2n for En � � < En+1indeed jumps at these values of �. Further observe, that in the thermodynami limitL!1 the density 
L ! � 2�2� + g20 �22� ;redues for g0=0 to the standard result for free eletrons.Equation of state: We wish to derive the equation of state for �nite T in thein�nite volume limit L ! 1. This may be ahieved by interhanging the rolesplayed by L and �. More preisely, using that�h uw i(�) = qdet(i��1) e2�iw�u �h�wu i(i��1)we �nd in analogy with the low temperature limit, that for L ! 1 the pressure isgiven by �p = limL!1 1L log ZN0 = �6� + 2�� 2� + g202� �20� �2� minn2Z2 h2� + g202� fn1 + n2 + 2�0g2+ 2�2� + g20 fn2 � n1 + 2�0 + 2i��2� g2i:17



Here the minimum of the real part has to be taken. Again the minimization arisesfrom the saddle point approximation to the theta funtion whih beomes exat whenL!1. For small twists the minimum is assumed for ni=0 and then�p = �6� � 2�� 2�2� + g20 (�0 + i��2� )2beomes independent on the hiral twist �0. As we have interhanged the roles ofthe temporal and spatial twists this is onsistent with the earlier result that for smalltwists 
 is independent of �1. In partiular, for �0=0, we �nd the following equationof state p(�; �; �0=0) = �6�2 + �22� 2�2� + g20 : (52)This result is onsistent with the renormalization of the eletri harge whih is on-jugate to the hemial potential. It shows that the thermodynamis of the Thirringmodel is not just that of free fermions as has been laimed in [3℄. Indeed, the zeropoint pressure is multiplied by a fator 2�=(2� + g20 ). This modi�ation arises fromthe oupling of the urrent to the harmoni �elds. It is missed if only the loalpart of the auxiliary �eld is onsidered, whih is the ase if one quantizes the modelin Minkowski spae and then replaes the k0-integral in the Green funtions by theMatsubara sum. This remark should also be taken seriously in four dimensions! Fur-thermore, we see that the 'pressure' p is real only for �0=0, whih is onsistent withthe �nite temperature boundary onditions1.3.3 Conformal strutureIn the �rst part of this setion we derive the Ka-Moody and Virasoro algebras ofthe model (4) without gauge-interation and prepare the ground for an extension,ontaining in partiular the minimal models, in the seond part.Reall (11) that for A� = 0 the theory redues to a onformal �eld theory on atMinkowski spae-time. To ontinue it is onvenient to introdue adapted light oneoordinates x� = x0 � x1 and the hiral omponents of the Dira spinor  � =12(1� 5) . Then after substituting the lassial equations of motion1This an also be observed in the Hamiltonian formalism [25℄.18



T�� = �12(� +�� + � ��� + +) + 2(���)2 + 2(���)2+i��(g1�+ g2�)� + + (53)depends only on x� and is therefore the hiral Noether urrent. Evaluating thePoisson braket of the symmetry generator Tf = R dx�f(x�)T�� with the di�erent�elds yields the lassial strutureÆf� = f��� ; Æf� = f���Æf + = f�� + + 12 +��f ; Æf y+ = (Æf +)yÆfj� = f��j� + j���f ; ÆfT�� = f��T�� + 2T����f: (54)
Short Distane Expansions: Let us now determine the quantum orretions tothese lassial results. These are omputed within the Eulidean funtional approahfrom the short-distane expansions of the relevant n� point funtions. We need notpostulate Ka-Moody and Virasoro algebras in advane as has been done in [10, 26℄.These strutures are derive here. When omparing the lassial with the quantumresults one should keep in mind that the roles of  y0 and  y1 are interhanged whenone swithes from Minkowski to Eulidean spae-time. In oordinates adapted to theholomorphi struture of the torusx = i��x0 + ix1; so that �x = 12�0 (�x0 � ��x1);the Dira operator and the orresponding Greens funtion take the formi�= = 2i� 0 �x��x 0 � and S(x�; y�) = 12�i � 0 1=�1=�� 0 �+O(1);where � = x�y, and the hiral omponents of the energy momentum tensor andurrent are given byTxx = �02i(�T 00 + T 01) = �02i dĝ��d�� T �� and jx = 12i(�j0 � j1):From the onformal Ward identities 19



nXi=1 hO(x1) � � � ÆO(xi) � � �O(xn)i = 1i I dzhO(x1) � � �O(xn)Tzzi (55)we obtain the entral harges and onformal weights diretly from the orrelationfuntions. However, beause on the at torus the expetation value of Txx is onstant,we need to ompute at least the 3-point funtion to read o� the onformal weights.As in the lassial theory (see (9)) the symmetri energy momentum tensor measuresthe hange of the e�etive ation � = logZ under arbitrary variations of the metri.On the torus there are two independent ontributions. One being due to variations ofthe modular parameter � and its onjugate �� whih depend impliitly on the metri.The other is due to the variations of terms whih depend expliitly on the metri.Sine the hiral omponent Txx is gotten by ontrating T �� with dĝ��=d�� it followsthat hTxxi = i�0qg(x�)� 1L2 ���� + dĝ��d�� ÆÆg��(x�)� �[g; �; �� ℄ � Æx�[g; �; �� ℄:When doing metri variations it is always understood that we take the at spae-time limit afterwards. The �� variation is onstant and may be disarded in theshort distane expansion. Thus to analyze the algebrai struture we an work onany Riemann surfae. This is not true for the �nite size e�ets, whih are globalproperties. This aspet will be analyzed in setion 3:4:For example, taking three metri variations of the urvature dependent part of logZwith Z from (42) we �nd the following short distane expansions for the three pointorrelation funtionhTuu Tvv Tzzi � � 1(2�)3 1(u� v)2(u� z)2(v � z)2 :Substituting this result into the Ward identity (55) we obtain the entral harge andthe onformal weight of the energy momentum tensor = 1 and hTxx = 2 : (56)Note that the the entral harge as well as the onformal weight are independent ofthe ouplings g1 and g2.The onformal weights of the fundamental �elds are obtained by omputing the20



fermioni two point funtion with stress tensor insertionh 0(x)  y1(y) Tzzi = 1Z Æz�Zh 0(x)  y1(y)i�:Sine Z � exp[F (R2)℄, its metri variation vanishes after the at spae-time limithas been taken. The variation of Sij an be found in appendix A. This yieldsh 0 = h y1 = 12 + 116�g21 � 116� 2�g222� + g22�h 0 = �h y1 = 116�g21 � 116� 2�g222� + g22 : (57)Thus we have reprodued the lassial results supplemented by additional g1 and g2dependent quantum orretions. In the Thirring model limit g2=g1=g, these termsadd up to give the known anomalous dimension appearing in the Thirring model [26℄.Furthermore, from (57) we may derive a ondition on the ouplings g1; g2 if we insiston unitarity, i.e. on h � 0. We �ndg21 � 2�g222� + g22 : (58)In partiular for g1 � p2� the onformal weights are positive for any real g2.Next we determine the Ka-Moody algebra of the U(1) urrents. To derive the orre-lation funtions with urrent insertions we ouple the fermions to an external vetor�eld, that is onsider the 'gauged' model without Maxwell term. For example,< j�(x�) j�(y�) > = 1e2qg(x�)g(y�) Æ2�[g; A℄ÆA�(x�)ÆA�(y�) jA=0:The e�etive ation with external vetor �eld is then obtained by shifting the auxiliary�elds in (17) as g2�! g2�+ e' , g1�! g1�+ e�; (59)where A� = � �� ��' + ��� and we have negleted the harmoni ontribution to theexternal vetor �eld, beause it does not ontribute to the short distane expansion.The resulting e�etive ation does not depend on � due to gauge-invariane. To relate21



the variation w.r.t. A� to that w.r.t. ' we use��� = � �� AT� ; where AT� = A� �r� 14r�A�is the transverse part of A�. We obtain the following short distane expansionhjx jyi � � 12� 12� + g22 1(x� y)2 :We read o� the value k of the entral extension in the U(1)-Ka-Moody algebrak = 2�2� + g22 : (60)The preise g2-dependene of k (whih an of ourse be resaled to unity by anappropriate rede�nition of the urrent) is related to a �nite renormalization of theeletri harge in the gauged Thirring-model whih we will disuss in setion 4.Finally, from hjx jy Tzzi � � 14�2 12� + g22 1(x� z)2(y � z)2we obtain hj = 1.To see how the left and right Ka Moody urrents at on the fermioni �elds wenotie that after the integration over the auxiliary �elds the A-dependene of thefermioni Green funtion fatorizes ash 0(x) y1(y)iA = e 12m R '4' � e�eg(x) h 0(x) y1(y)iA=0 e�egy(y);where g(x) = �i�(x)+5�'(x), � = 2�=(2�+g22 ) andm is the indued 'photon'-mass(see(86)). Variation w.r.t. the A� �eld yields, after some algebrai manipulations,the U(1) hargesq 0 = 12(1 + 2�2� + g22 ) and �q 0 = 12(1� 2�2� + g22 ): (61)We have used the onvention where the eletri harge q+�q is unity. In the Thirringmodel limit we an ompare (61) with the results obtained in [26℄. For that we needto resale the urrents suh that the entral extension (60) of the Ka-Moody algebrabeomes unity jz ! q1 + g22=2� jz . It is then easy to see that we agree with Furlanet al. [26℄ if we make the identi�ation �gFu=g22=4�q1 + g22=2�.22



Non-Minimal Coupling: In setion 3:1 we have analyzed the fermioni determi-nant in the presene of twisted boundary onditions. One may ask what happens ifwe introdue a loal twist instead, that is (x)!  (x) ;  (x)y !  (x)ye��(x); (62)whih should be interpreted as a modi�ation of the harge neutrality ondition. Theomputation of the fermioni determinant in the presene of suh twists is similar tothat for a Weyl resaling of the bakground metri (31-32). Integrating the orre-sponding anomaly equation we �ndlog det(iD= �)det(iD= 0) / � Z R�+O((��)2): (63)We will ome bak to the relation between the above determinant and harges atin�nity at the end of this setion. For the moment we use the analogy merely as amotivation to study the extension of the Thirring model obtained by oupling the�-�eld non-minimally to the bakground geometry. That is we onsider the model(4) again without gauge-interation but with an extra ouplingg3 Z R�:Then T�� in (53) is modi�ed,T�� �! �T�� = T�� + 3g3�2��:The orresponding modi�ation of the lassial onformal transformations (54) gen-erated by the modi�ed generator �Tf = R dx�f(x�) �T�� are�Æf� = Æf� ; �Æf� = Æf�� g32 ��f�Æf + = Æf + � i2g1g3 +��f ; �Æf y+ = Æf y+ + i2g1g3 y+��f: (64)Whereas � and  + remain primary �elds, � does not. This is in fat needed foronsisteny. Indeed, sine  is not a salar under onformal transformations generatedby �Tf , the term � R  yD= in the ation is only onformally invariant if � transformsinhomogeneously like a spin onnetion.It may be surprising that the new symmetry transformations depend on the ou-pling onstant g3 whih is not present in the at spae time Lagrangian. However,23



the same happens for example in 4 dimensions, if one ouples a salar �eld onfor-mally, that is non-minimally, to gravity. Although the Lagrangian for the minimallyand onformally oupled partiles are the same on Minkowski spae-time, their en-ergy momentum tensors are not. The same happens for the onformally invariantnon abelian Toda theories whih admit several energy momentum tensors and heneseveral onformal strutures [27℄.The urrent still transforms as a primary with weight 1, but the energy momentumtensor aquires a lassial entral harge�Æf �T�� = f�� �T�� + 2 �T����f � g23�3�f: (65)The orresponding ommutators in the quantized theory with non-minimal ouplingto gravity are alulated as explained for the minimally-oupled model. One �ndsthat the quantum orretions to (64) are idential to those of the minimally oupledmodel and thus are g3 6= 0-independent.To summarize, we have obtained the following Virasoro � Ka-Moody struture:Central harge:  = 1 + 24g23� and hTxx = 2 (66)Ka-Moody level and harges:k = 2�2� + g22 ; hj = 1q 0 = 12(1 + 2�2� + g22 ) ; �q 0 = 12(1� 2�2� + g22 )Conformal weights:h 0 = 12 + 116�g21 � 116� 2�g222� + g22 � ig1g32 = (h y1)y�h 0 = 116�g21 � 116� 2�g222� + g22 � ig1g32 = (�h y1)y: (67)Here some omment about unitarity is in order. It an be shown that with respetto the standard salar produt [28℄ reetion-positivity holds for any real g3 [29℄.However with respet to this inner produt the Virasoro generators are not selfadjoint.Choosing an alternative salar produt [14℄ for whih they are selfadjoint, positivity24



does not hold in general for g3 6= 0. We give a more detailed disussion about unitarysubspaes in setion 3:5.3.4 Finite size e�etsWhen quantizing a onformal �eld theory on a spae-time with �nite volume one in-trodues a length sale. The presene of this length sale in turn breaks the onformalinvariane and gives rise to �nite size e�ets. It has been onjetured [30℄ that the�nite size e�ets on a Riemann surfae are proportional to the entral harge. Forexample, when one strethes spae time, x� ! ax�, then the hange of the e�etiveation is proportional to :�ax � �x = � 6 log a � �; (68)where � is the Euler number of the Eulidean spae time. In [31℄ this onjeture hasbeen proven for a wide lass of onformal �eld theories on spaes with boundaries.The only important assumption has been that the regularization respets generalovariane. In this subsetion we shall see that the equivalene does hold only for apartiular zero-mode treatment, whih di�ers from (37).The only global onformal transformations on the torus are translations whih donot give rise to �nite size e�ets. Also, the Euler number vanishes and aordingto (68) the �nite size e�ets are insensitive to the value of . For that reason wequantize the un-gauged model (4) on the sphere where the global onformal group isthe Moebius group.An e�etive method to ompute �nite size e�ets has been developed in [31℄. Itis based on the following observation: Any onformal transformation z ! w(z) is aomposition of a di�eomorphism (de�ned by the same w) and a ompensating Weyltransformation g�� ! e2�g�� withe2� = dw(z)dz d �w(�z)d�z ; z = x0 + ix1:Therefore, hoosing a di�eomorphism invariant regularization one has0 = Æ�Diff = Æ�Conf � Æ�Weyl:The hange of the e�etive ation under Weyl resaling isÆ�Weyl = � log R D(��) det(iD= g) exp(�SB[g℄)R D(��) det(iD= ĝ) exp(�SB[ĝ℄) ;25



where SB is the bosoni ation (36). Sine on the sphere there are no harmoni vetor�elds the term � h2 in SB is not present. Imposing the onditions (37) we obtainÆ�Weyl = log V̂V � SL24� + g234 Z R 14(R� 8�V ) + log det04det0 4̂ : (69)To evaluate (69) one introdues the 1-parametri family of Laplaians4� = e�2��4̂interpolating between 4̂ and 4. Integrating the orresponding anomaly equation[20℄ we end up withÆ� = g234 Z pgR 14�R� 8�V �� 324� Z qĝR̂� + 324� Z qĝ�4̂�: (70)Consider now a dilatation w(z)=az. Then, the onformal angle is onstant, �=log a,and (R � 8�=V ) = 0. Then the �rst term in (70) vanishes and the �nite size e�etdoes not depend on g23 . It is given byÆ� = � 324� log a Z qĝR̂ = � log aand does not agree with (68) sine  in (66) depends on g3. On other Riemanniansurfaes one would �nd the same result. Note that the �nite size saling omes fromthe middle term � log a R pĝR̂ in (70) whih is topologial in nature, while the short-distane behaviour of the energy-momentum orrelators is ontrolled by the remainingtwo terms in (70) whih are insensitive to the topology. In that sense �nite size salingand the entral harge are omplementary. There is a way to math the two resultsby adding the term �g234 Z pgR4Rto the e�etive ation. With this new e�etive ation the short distane expansionof the energy-momentum orrelators does not depend on g3 any more and the or-responding entral harge equals that obtained from the �nite size saling. Howeversuh a term would orrespond to a non-loal ounter term to be added to the regu-larized ation. 26



3.5 Charge neutrality and unitary subspaesIn this subsetion we show how the equivalene between the entral harge and �nitesize saling an be restored, provided the partition funtion is replaed by an averageover un-normalized expetation values of harges at in�nity. In fat it turns out thatthe g3 R R�-term, ie. the non-minimal oupling to gravity, itself an be given theinterpretation of a harge at in�nity if the zero-mode onstraints (37) is replaed bya non-translation invariant sum over harges at in�nity.The hint omes from inspeting the fermioni weights (67), whih shows that (x) and  g3(x) � e�8�g3�(x) (x) have the same onformal weights. We an thereforeonsistently put a harge at in�nity with a orresponding modi�ation of the hargeneutrality ondition. The non-vanishing two-point funtion is now h g3(x)y (x)i. It'soinidene limit jg3 is again a primary �eld with onformal weight hj=1.On the other hand, inluding a harge at in�nity into the de�nition of the partitionfuntion we haveZg3 = 1N0 Z DÆ�DÆ� ZF [�=��=0℄ e�SB : e8�g3�(�0) := Z0 exp[16�2g23G0(�0; �0)℄ (reall that DÆ� = Æ(��)D�): (71)To ontinue we need to determine the oinidene limit of the salar Greens funtionG0(x; y), i.e. to regularize the omposite operator exp(��) appearing in (71). Thenormal ordering presription: e��(x) := e��(x)he��(x)i : (72)works well on the whole plane [32, 33℄. On urved spae we must be more arefulwhen renormalizing this operator. The required wave funtion renormalization is notunique but it is very muh restrited by the following requirements: First we take asreferene system (the denominator in (72)) one with a minimal number of dynamialdegrees of freedom sine we do not want to loose information by our regularization.Seond, the renormalized operator should have a well-de�ned in�nite volume limit.Finally, the regularization should respet general ovariane. These requirementsthen fore us to take as referene system the in�nite plane with metri g�� . The atmetri Æ�� is not permitted sine it leads to a ill-de�ned expression for hexp(��)i.With this hoie the normal ordering in (72) is equivalent to replaing the masslessGreen funtion in (71) by 27



Greg0 (x; y) := G0(x; y) + 14� log [�2s2(x; y)℄: (73)Here s(x; y) denotes the geodesi distane between x and y. The ourrene of thearbitrary mass sale � omes from the ambiguities in the required ultra-violet regu-larization. On the 2-sphere with onstant Rii salar R we haveGreg0 (x; x)=� 14� [log[ R8�2 ℄ + 1℄:The expetation value h: e8�g3�(�0) :i then transforms under a onstant resaling z !az as h: e8�g3�(�0) :i ! h: e8�g3�(�0) :i exp[8�g23 log(a)℄; (74)and therefore gives an extra ontributionÆ�g3 = �24�g236 log(a)�;to the �nite size saling of the e�etive ation. Adding this ontribution to (70) abovewe see that this is preisely the piee needed to restore equivalene with the entralharge for any real or imaginary g3.More generally we an de�ne the funtional integral as an average over all possibleharges at in�nity: assume g3 imaginary. The (un-normalized) expetation values arethen given byD nYi=1O�i(xi)E � 1Z Z DÆ�D�h 1p2� Z d k : eik�(�0) : i nYi=1O�i(xi) e�SB : (75)Here �i denotes the U(1)-harge of the operator Oi. In partiular the partitionfuntion on S2 isZ = 1N0 Z DÆ�d�0D�0h 1p2� Z d k : eik�(�0) : i : e�8�g3�(�0) : e�SB [�0℄;where �0 is the zero mode and �0 the exited modes of �(x). The middle term in theabove integrand is the zero-mode part of SB. The zero-mode integration yields a deltafuntion Æ(k + i8�g3) and thus the g3 R R�-term itself aquires the interpretation ofa harge at in�nity, due to the presene of the zero mode. The 'extra' harges eik�(�0)28



assure the harge neutrality of the partition funtion. For the general n-point funtion(75) the �0- integration yieldsÆ(k + 8�ig3 + nXi=1 �i);where the sum of the U(1)-harges of the operators in (75) enters. In partiular, forneutral states, for whih (P�i + i8�g3 = 0), k must be zero and no extra harge atin�nity is present.Finally, using 1p2� Z d k eik�(�0) = Æ(�(�0));the averaging over all possible harges an also be written asD�Æ(�(�0)): (76)It is easy to verify that if the ation has translation invariane in the target spae,then the onstraints (76) and (37) are equivalent and the orrelation funtions do notdepend on the hosen base-point �0. However, in the present ase (76) learly breakstranslation invariane (or rotation invariane on S2) and the zero-modes onstraintsare inequivalent. Although we have assumed an imaginary g3, our results apply forany g3. For partiular values we reover the (unitary) minimal models, providedsreening harges [34℄ are inluded for the n-point funtion with n > 2. In partiularfor g3 = 1=p48� and g1=g2=0 we obtain the Ising model with h =h y= 12 .4 Gauged Thirring-like ModelsIn this setion we extend the model by gauging the global U(1)-symmetry. Contraryto what one might think, many aspets of the gauged model are atually simpleras ompared to the ungauged model. In partiular the thermodynamial propertiesare independent of external onditions like hemial potentials and twisted boundaryonditions. The reason is that the model is losely related to the Shwinger model, forwhih the spetrum onsist solely of a neutral, massive partile. On the other hand,the gauge interation ompliates the analysis, beause the U(1)- bundle over thetorus allows for gauge �eld on�gurations with winding number, so alled instantons.These, in turn, imply fermioni zero-modes whih trigger a hiral symmetry breaking29



and therefore a non-vanishing ondensate. This is the subjet of the seond partof this setion. In the �rst part we disuss the partition funtion to whih onlytopologially trivial on�gurations ontribute.To see how the fermioni generating funtional (34) is modi�ed, we deompose ageneral gauge potential on a torus asA� = AI� + 2�L t� + ���� �����'; (77)where the last 3 terms orrespond (as for the auxiliary �eld B�) to the Hodge de-omposition of the single valued part of A in a given topologial setor, that is theharmoni-, exat- and o-exat piees. The role of the toron �elds t� has reently beenemphasized within the anonial approah [35℄. In the Hamiltonian formulation theyare quantum mehanial degrees of freedom whih are needed for an understandingof the infrared setor in gauge theories. Also, in [36℄ it has been argued that the ZN -phases of hot pure Yang-Mills theories [37℄ should orrespond to the same physialstate if the toron �elds are taken into aount. The �rst term in (77) is an instantonpotential whih gives rise to a non-vanishing quantized ux. As noted above on�gu-rations with non-vanishing ux do not ontribute to the partition funtion due to theassoiated fermioni zero modes. We an therefore assume AI� = 0 for the moment.The fermioni generating funtional is obtained from (30) by simply shiftingg0h� ! et� + g0h�=H� , g1�! e� + g1�=F and g2�! g2�+ e'=G;whih leads toZF [�; ��℄ = e2�(pĝĝ�������2i�1a0) 1j�(�)j2�h�a1 + �1a0 � �0 i(0; �) ��h��a1 � �1�a0 + �0 i(0; �)e� R ��(x)S(x;y)�(y) � exp � 124�SL + 12� Z pgG4G℄�; (78)with a�=�� �H� � ��.To ompute the partition funtion we must swith o� the soures � and �� in (78)so that Z0 = J Z d2td2hD'D�D� ZF [0; 0℄ e�SB ; (79)where now 30



SB = (2�)2qĝĝ��h�h�+ Z pg�12'42'� �4�� �4�� g3R��: (80)Note that we have kept the non-minimal oupling of the �-�eld to gravity as insetion 3:3. Sine SB and the fermioni determinants are both gauge invariant andthus independent of the pure gauge mode � in (77), it is natural to hange variablesfrom A� to ('; �; t�). This transformation is one to one, providedZ pg' = Z pg� = 0 and et� 2 [0; 1℄: (81)In ontrast to the auxiliary harmoni �elds h� in (16), the toron �elds et� and et�+n�with integer n� are to be identi�ed, due to gauge invariane [8℄. The measures arerelated asDA� = JXk dt0dt1D'D�; where J = (2�)2det0(�4): (82)In expetation values of gauge invariant and thus �-independent operators the �-integration anels against the normalization. This simply expresses the fat that inQED the ghosts deouple in the Lorentz gauge.As we shall see shortly it is advantageous to integrate �rst over the toron �elds. Byusing the series representation of the theta funtions one omputes1Z0 d2(et)�h�10 i(0; �) ��h�10 i(0; �) = 1p2�0 : (83)Sine the result appears always together with the �-funtion fator in (34) it is on-venient to introdue � := 1p2�0 1j�(�)j2in the following expressions. The result (83) does not depend on the h-�eld and henethe h-integration in (79) beomes Gaussian and yields a fator 1=4� so that
31



Z0 = �� det0(�4) eSL=24� Z DÆ('��) e 12� R pgG4G�SB[h=0℄; (84)where we inserted the expliit expression (82) for the Jaobian. Now we see why wedid well integrating over the toron �elds �rst. It has washed out the dependene onthe boundary onditions and hemial potential in (83).The integral over �, subjet to the ondition in (37), deouples ompletely apart fromthe non-minimal oupling to gravity whih modi�es the Liouville fator and yieldsone inverse square-root of the determinant of �24 in (84). ThusZ0 = ��q2V det0(�4) e(g23+1=24�)SL� Z DÆ('�) e 12� R pgG4G�SB[h=�=0℄; (85)where we have used (43). The �-integration in ontrast, leads to a �nite renormaliza-tion of the dynamially generated 'photon' massZ0 = 2p��eVm e(g23+1=24�)SL Z D'e� 12 R pg'(42�m24)';where m2 = e2� 2�2� + g22 (86)plays the same role as the �0-mass in QCD [41℄. The determinant obtained from the'� integration fatorizes asdet0(42 �m24) = det0(�4) � det0(�4+m2):This fatorization property is not obvious sine all determinants must be regulated.But it holds for ommuting operators and in the zeta-funtion sheme. Then thepartition funtion simpli�es toZ0 = 2p��eVm �det0(�4)det0(�4+m2)�� 12 exp �(g23 + 124� )SL�:We an go further by using the saling formula for the determinant of 4 [20℄ and theknown result for the determinant of 4̂ [21℄ whih together yielddet0 12 (�4) = �0Lj�(�)j2s V̂V exp �� 124�SL�: (87)32



Thus we obtain the following partition funtion for the general model (4) on urvedspaes:Z0 = p2�V em 1�0j�(�)j4 1det0 12 (�4+m2) exp �( 112� + g23 )SL�: (88)Again we have fatored out the partition funtion N0 for free auxiliary �elds. Theformula (88) shows expliitly that in the topologially trivial setor the theory isequivalent to a theory of free massless and massive bosons with mass m, even inurved spae-time [13℄.The appearane of m in (86) should be interpreted as renormalization of the eletriharge indued by the interation of the auxiliary �elds with the fermions. Aftersumming over all fermion-loops this leads to an e�etive oupling between the photonsand the �-�eld and in turn to a modi�ed e�etive mass for the photons in (86). In thelimit g2 ! 0 this mass tends to the well-known Shwinger model result, m ! e=p�[38℄.We have already mentioned that the hemial potential oupled to the eletriharge has ompletely disappeared from the partition funtion. This does not omeas a surprise sine the only partile in the gauged Thirring model is a neutral boson.This has no harge whih may ouple to the hemial potential. Also, if the partitionfuntion depended on � then the expetation value of the harge would not vanish, inontradition to the integrated Gauss law. The result (88) provides therefore anothertest for our result (30) for the fermioni determinants with hemial potential.The �nal result is also independent of the hiral and non-hiral twists. The normaltwists have been wiped out by the toron integration. In fat the hiral twists areequivalent to a hemial potential and therefore the above remarks onerning thehemial potential apply here as well. Did we assume holomorphi fatorization forthe fermioni determinant [5℄ then the partition funtion would depend on the hiraltwists.We onlude this subsetion by giving the expliit formula for the partition funtionon the at torus. The zeta-funtion regularized massive determinant is expressed bydet0(�4̂+m2) 12 = 1m e� 12 �0(0);where 33



� 0(0) = Xn 6=0 1�L V̂ mq(n; n)K1(mLq(n; n))� V̂ m24� ; (89)and (n; n) = ĝijninj is the inner produt taken with the referene metri, and thesum is over all (ni) 2 Z2 with the origin exluded. For g�� = Æ�� , in whih ase thepartition funtion has the usual thermodynamial interpretation, the result reduesto one derived previously by Ambjorn and Wolfram [39℄. In addition, if L approahesin�nity we reover a result in [19℄. The free energy for �1 = 0 and on at spaesimpli�es then to F = � 1� logZ = 12� � 0(0):with � 0(0) from (89) and the partiular hoie for the parameters.4.1 Bosonization of the gauged Thirring modelWe pointed out in setion 2 that for g1=g2=g the lassial theory (4) redues to thegauged Thirring model. The same is true for the quantized theory on the torus if inaddition we set g0 = g. More preisely, the Hubbard-Stratonovih transform [40℄ ofthe Thirring model is just the derivative oupling model (4) with idential ouplings.In the proess of showing that we shall arrive at the Bosonization formulae for thegauged Thirring model on the urved torus. We shall see that only the non-harmonipart of the fermion urrent an naively be bosonized and that for this part the rulesof the un-gauged model on at spae time [32℄ need just be ovariantized.For that we alulate the partition funtion (79) in a di�erent order. First weintegrate over the auxiliary �elds. To understand the role of � and � we introduesoures for them. Thus we study the generating funtional for the orrelators of theauxiliary �elds Z[�; �℄ = Z D(��h A�)e�S+R pg[��+��℄:Here S = �i Z pg yD= + SB[g3=0℄is the ation of the full theory. D= is the Dira operator in (17) with all ouplingsset equal and SB the bosoni ation (80). Sine � and � integrate to zero (see (37))34



we may assume the same property to hold for the soures. The integration over theauxiliary �elds is Gaussian and yieldsZ = N0Z D( A�) e�ST expZ pgh�14 (� 14� + � 14�) + g2(� 14j�;� + � 14j�5;�)i; (90)where ST = �14 Z pg�F��F �� � i yD= � g24 j�j�� (91)is the ation of the gauged Thirring model on urved spae-time andN0 = V2�det0(�4) (92)omes from the integration over the auxiliary �elds.Let us �rst onsider the partition funtion, that is set the soures to zero. Comparing(90) with (86) and using (87) we easily �ndZ D( t)e�ST = s12 + g24� e� 14 R F��F�� Z D Æ(�) e�S ; (93)where � is the mean �eld (see (37)) and we used (82) and (43). The ation for theneutral salar �eld  is found to beS = 12 Z pg���� � iep� 1q1 + g2=2� Z pg4':Sine (93) holds for any ' (and thus for the non-harmoni part of any A�, beause ofgauge-invariane) we read o� the following bosonization rules:j 0� �! ip� 1q1 + g2=2������j 0�5 �! � ip� 1q1 + g2=2���; (94)where prime denotes the non-harmoni part of the urrents. Thus, only the non-harmoni parts of the urrents an be bosonized in terms of a single valued salar35



�eld. To bosonize their harmoni parts one would have to allow for a salar �eld with winding numbers. On the in�nite plane the harmoni part is not present andwe may leave out the primes in (94). If we further assume spae time to be at wereover the well-known bosonization rules in [32℄. What we have shown then, is thatfor the gauged model on urved spae time the bosonization rules are just the atones properly ovariantized and with the omission of the zero-modes.Sine (93) holds for any gauge �eld the urrent orrelators in the Thirring modelare orretly reprodued by the bosonization rules (94). To see that more learly wealulate the two-point funtions of the auxiliary �elds in the Thirring model (90-92). For that we di�erentiate (90) (' is treated as external �eld) with respet to thesoures and �ndh�(x)�(y)i = 12G0(x; y) + g24 Z hG0(x; u)j�;�(u)G0(y; v)j�;�(v)iTh�(x)�(y)i = 12G0(x; y) + g24 Z hG0(x; u)j�5;�(u)G0(y; v)j�5;�(v)iT ; (95)where G0 is the free massless Green-funtion in urved spae-time and the integrationsare over the variables u and v with the invariant measure on the urved torus. Hereh: : :iT are vauum expetation values in the Thirring model (91). Alternatively we analulate these expetation values from (84) and (85), where the fermioni integrationhas been performed and �ndh�(x)�(y)i = 12G0(x; y)h�(x)�(y)i = �m22e2 G0(x; y) + m22 �1� �m2e2 �'(x)'(y):Comparing this with the result (95) we see at one thatZ hG0(x; u)j�;�(u)G0(y; v)j�;�(v)iT = 0 (96)Z hG0(x; u)j�5;�(u)G0(y; v)j�5;�(v)iT = m2e2 �m2'(x)'(y)�G0(x; y)�:These orrelators express the gauge invariane and the axial anomaly hj�5;�i=�m4'in the gauged Thirring model. They an be orretly reprodued with the bosoniza-tion rules (94). They are not reprodued with the ones derived for the un-gaugedmodel [32℄. 36



4.2 Chiral ondensateThe hiral ondensate is an order parameter for the hiral symmetry breaking. How-ever, on the torus its expetation value, whose temperature- and urvature depen-dene we will here ompute would vanish if topologially non-trivial gauge �eld on-�gurations were absent. There is a useful lassi�ation of the gauge on�gurationsorresponding to the number of fermioni zero modes they give rise to. If we letk = n+ � n�, where n� ounts the number of zero-modes with positive/negativehirality, then we havek = 12� Z d2x 5a1(D= 2; x) = 14� Z pgd2x ���F�� � 12��; (97)whih establishes a relation between the number of fermioni zero modes (or, morepreisely the number of zero modes with positive hirality minus the number of thosewith negative hirality) and the �rst Chern harater of the bundle. Also from (97)one immediately onludes that the ux must be quantized in integer multiples of 2�.This is really a onsequene of the single valuedness of the fermioni wave funtion(oyle ondition).Realling the deomposition (77) of the gauge �eld we now onentrate on the�rst term AI� whih is the instanton potential giving rise to a non-vanishing quantizedux �. Sine 2-dimensional gauge theories are not sale or Weyl invariant, as 4-dimensional ones are, the instantons on a onformally at spae-time are not identialto the at ones [42, 43℄. As representative in the k-instanton setor we hoose the, upto gauge transformations, unique absolute minimum of the Maxwell ation in a giventopologial setor. It has �eld strength eEI = pg�=V . The orresponding potentialan be hosen aseAI� = eÂI� � � � �� ���; where eÂI = �pĝ̂V �(x1; 0) (98)is the instanton potential on the at torus with the same ux but �eld strengthpĝ�=V̂ . The funtion � is then determined (up to a onstant) bypg�V �qĝ �̂V = pg4�: (99)The solution of this equation is given by37



�(x) = � 1̂V ( 14e�2�)(x) = 1̂V Z d2yqg(y)G0(x; y) e�2�(y); (100)where G0(x; y) = hxj 1�4jyi = X�n>0 �n(x)�y(y)�n (101)is the Green-funtion for �4. In deriving (100) we have used that 14(�=V )=0 whihfollows from the spetral resolution (101) for the Green funtion in whih the onstantzero mode �0=1=pV of 4 is missing.Our hoie for the instanton potential (98) orresponds to a partiular trivializa-tions of the U(1)-bundle over the torus [8℄. In other words, the gauge potentials andfermion �elds at (x0; x1) and (x0; x1+L) are neessarily related by a nontrivial gaugetransformation with winding numbersA�(x0; x1 + L)� A�(x0; x1) = ���(x) (x0; x1 + L) = �eie�(x) e2�i(�1+�15)  (x0; x1): (102)For the hoie (98) we �nd e�(x) = ��L x0:Note that A is still periodi in x0 with period L and  still obeys the �rst boundaryondition in (14). To alulate the fermioni zero modes we use the square of theDira operatorD= 2 = �D�D+ 00 D+D� � = 1pgD�pgg��D� � 14R+ e2���F��5 (103)In a pure instanton and harmoni bakground (' = � = 0) on the at torus (103)simpli�es to �D̂= 2 = �ĝ��D̂�D̂� � �̂V 5: (104)In other words, D̂= 2 is the same in the left- and right-handed setors, up to the onstant38



2�=V̂ . Furthermore this operator ommutes with the time translations whih leadsto the following ansatz for the zero-modes~�p = e2�ipx0=L e2�iH1x1=L �p(x1) e+; p = 12 + p;where we have assumed k > 0. The hoie of p is ditated by the time-like boundaryonditions in (14). Inserting this ansatz into the zero mode equation D̂= 2 ~�p = 0 yields(j� j2 d2dy2 � �2L4 y2 � 2i�1 �L2 y ddy � i� �L2 )�p = 0;where y = x1 + Lk (p �H0):This is just the di�erential equation for the ground state of a generalized harmoniosillator to whih it redues for � = i�0. The solution is given by�p = exp h� �2i��L2fx1 + Lk (p �H0)g2i:These funtions do not obey the boundary ondition (102), but the orret eigenmodesan be onstruted as superpositions of them. For that we observe that~�p(x0; x1+L) = e�i�x0=� e2i�H1 ~�p+k(x0; x1)so that the sums ̂p0 = (2k�0) 14qj� jV̂ e��20k�0 e2�i(H0��0� 12 )�1 Xn2Z e�2i�(n+p=k)( 12�H1) ~�p+nk e+; (105)where p= 1; : : : ; k, obey the boundary onditions and thus are the k required zero-modes. Indeed, sine (iD̂= )2 in non-negative there are no zero modes with negativehirality beause of (104). With (97) we onlude then that there are exatly k zeromodes with positive hirality. Modes with di�erent p in (105) are orthogonal to eahother and the overall fator normalized them to one, so that the system (105) formsan orthonormal basis of the zero-mode subspae. For k < 0 the zero-modes are thesame if one replaes e+ by e�.To ompute the fermioni determinant in a given topologial setor we again introduethe one-parameter family of Dira operators39



D= � = ĝ1=2g1=2� e�fy D̂= e�f ; D̂= = ̂���� + i!̂� � ieÂI� � 2�iL [H� + ��℄�; (106)whih interpolates between D̂= and D= , similarly as in (31). But nowf = �iF + 5(G+ ��) + 12�;with F and G from (7), ontains an instanton ontribution. Also note that D̂= ontainsthe instanton part ÂI�. To ompute it's determinant we observe that the simple form(104) of �D̂= 2 allows one to reonstrut its spetrum ompletely [20, 8℄:�̂2n = � 0 degeneray = k2n�=V̂ degeneray = 2k:The orresponding determinant is [20, 8℄det0(iD̂= ) = ��V̂� ��=4�: (107)To relate the determinants of D̂= to that of D= we again integrate the anomalyequation, whih now readsd log det0D= �d� = Z d2xpg��f(x)+f y(x)� d log g�2d� �fa1(x;D= 2� )4� � P0(x;D= 2� )g; (108)where, due to the fermioni zero-modes, the projetor onto the zero-mode-subspae,P0(x;D= 2� ) =Xpr  (�)p0 (x)N�1pr (�) (�(�)r )y(x) , Npr(�) = (�(�)p0 ;  (�)r0 ) (109)appeared. For the deformed operator D= 2� the �rst Seeley-deWitt oeÆient isa�1 = � 112R� + 5�4�G+ 1pg� h(1� �)qĝ �̂V + �pg �V i5: (110)Integrating w.r.t. � [20℄ one ends up with the following formula for the determinantin arbitrary bakground gravitational and gauge �elds:40



det0iD= = det N N̂ det0(iD̂= ) exp � SL24� + 12� Z qĝG4̂G�� exp �2kV Z pgG+ �22�V̂ Z qĝ��: (111)In deriving this result we used that R pg�=0.Now we are ready to ompute the hiral ondensate h yP+ i. Observing thatthe fermioni Green's funtion anti-ommutes with 5 one sees at one that onlyon�guration supporting one fermioni zero-mode with positive hirality ontributeto the hiral ondensateh yP+ i = � JZ0 Æ2Æ�+(x)Æ��+(x) Z D(: : :)ZF [0; 0℄ e�SB ;where �+=P+�. Earlier we have seen that these are the gauge �elds with ux �=2�or instanton number k=1. Thus the ondensate beomesh yP+ i = � JZ0s V̂2 Z D(:) y0(x) 0(x) exp(:) e�SB [k=1℄; (112)where exp(: : :) stands for the exponentials in (111). First we integrate over the toron�eld t. The t-dependene enters only through the zero mode and more spei�ally  ̂0in (105) with p=1. Using the series representation for the theta funtions one �ndsZ d2t  ̂y0(x) ̂0(x) = 1̂V : (113)Note that the result does not depend on the hemial potential similarly as in ouralulation of the partition funtion. To ontinue we observe that the term R pgGin exp(: : :) vanishes beause of our onditions (81) and (37) on the �elds ' and �.Furthermore SB[k = 1℄ = SB[k = 0℄ + 2�2e2V . The remaining funtional integrals areperformed similarly as those leading to the partition funtion and we end up with thefollowing formula for the ondensateh yP+ i = s�0̂V j�(�)j2e�2�2=e2V+2�=V̂ R pĝ�De�2(g�+e')(x)��(x)E�': (114)
41



The expetation value is evaluated withSeff = Z pgh12'(42 � e2� 4)'� e2�m2 �4�� eg2� �4'i:A formal alulation of the resulting Gaussian integrals yieldsh yP+ i = s�0̂V j�(�)j2e�2�2=e2V+2�=V̂ R pĝ� e��(x)�2��(x)� exp [2�2m4e2 K(x; x)℄ exp [ 2�g222� + g22 G0(x; x)℄; (115)where K(x; y) = hxj 142 �m24jyi = 1m2 (G0(x; y)�Gm (x; y)) (116)and Gm; G0 are the massive and massless Green-funtions. Here we enounter ultra-violet divergenes sine G0(x; y) is logarithmially divergent when x tends to y. Toextrat a �nite answer we need to renormalize the operator exp(��) as explained insetion 3:5. This wave funtion renormalization is equivalent to the renormalizationof the fermion �eld in the Thirring model and thus is very muh expeted [32, 33℄.The at Green's funtion on the torusĜ0(x; y) = � 14� j 1�(�)�h 12 + �0L12 + �1L i(0; �)j2 = � 14� j 1�(�)ei��(�0=L)2�1(��0 + �1L ; �)j2;where �=x� y, possesses the logarithmi short distane singularityĜ0(x; y) = � 14� log ĝ������V̂ � 14� log (4�2�0j�(�)j4) +O(�): (117)Furthermore G0(x; y) � Ĝ0(x; y) + 2�(x)� 1̂V Z qĝ�+O(�):With the presription explained in setion 3:5 we �nd that on the at torus Ĝreg0 hasnow the �nite oinidene limit 42



Ĝreg0 (x; x) = � 14� log �4�2�0j�(�)j4�2V̂ �: (118)To determine the hiral ondensate we also need to determineK(x; y) on the diagonal.In a �rst step we shall obtain it for the at torus. Its �-dependene is then determinedin a seond step. For �=0 and � = i�0 the Green funtion K̂ has been omputed in[8℄. The generalization to arbitrary � is found to bem2K̂(x; x) = � 12mL�0 oth (��0aj� j2 ) + 1m2V̂+ 12��� log j�(�1� )j2 + F (L; �)�H(L; �)�; (119)where we introdued the dimensionless onstant a = Lm j� j=2� and the funtionsF (L; �) = Xn>0 h 1n � 1pn2 + a2 iH(L; �) = Xn>0 1pn2 + a2 h 1e�2�iz+(n) � 1 + 1e2�iz�(n) � 1i: (120)We used the abbreviationsz� = 1j� j2 (n�1 � i�0pn2 + a2): (121)Substituting (119) and (118) into (115) with � = 0 we obtain the following exatformula for the hiral ondensate on the torus with at metri ĝ��:h yP+ iĝ = 1Lj� j �mLj� j2� � g222�+g22 exp ��2me2L�0 oth Lm�02j� j �� exp h�m2e2 �F (L; �)�H(L; �)�i; (122)where we used that on the at torus �=0 and V = V̂ . Furthermore, we identi�ed �with the natural mass sale m of the theory.To extrat the �nite temperature behaviour of the hiral ondensate we take � =i�=L where �=1=T is the inverse temperature. In the thermodynami limit L!1.43



Then oth(: : :) ! 1, H ! 0 and the expression for the hiral ondensate simpli�esto h yP+ i� = �T� m2�T � g222�+g22 exp h� �2me2 T + 2�2� + g22 F i: (123)Using F (�)!  + log a2 + 12a for a!1;where =0:57721 : : : is the Euler number, we obtain the zero temperature limith yP+ i = �m4� 2g22=(2�+g22) exp � 2�2� + g22 � for T ! 0: (124)For temperatures large ompared to the indued photon mass F vanishes. Thus weobtain the high temperature behaviourh yP+ iT = �T� m2�T � g222�+g22 exp �� �2me2 T� for T !1 (125)It is instrutive to disuss the various limiting ases. For all gi=0, i.e. the Shwingermodel limit, the exat result (123) simpli�es toh yP+ iT = �T e� �m T+F (�) �! ��m4� e T ! 0�T e��T=m T !1, (126)where now m2 = e2=� is the indued photon mass in the Shwinger model. Thisformula for the temperature dependene of the hiral ondensate in QED2 agreeswith the earlier results in [8℄.Next we wish to investigate how the self interation of the fermions a�et thebreaking. For large oupling g2 and �xed temperature the exponent in (123) vanishesso that h yP+ iT � 1q2� + g22 for T �xed; g2 !1:Hene, for very large urrent-urrent oupling the hiral ondensate vanishes. Orin other words, the eletromagneti interation whih is responsible for the hiralondensate, is shielded by the pseudo salar-fermion interation.44



For intermediate temperature and oupling g2 we must retreat to numerial evalua-tions of the sums de�ning the hiral ondensate in (123). The numerial results aredepited in Fig. 1How does the gravitational �eld a�et the hiral ondensate? To answer thisquestion we need to know the massive Green's funtion, entering in (116), for non-trivial gravitational �elds (for simpliity we assume T = 0). Let us �rst onsider aspae with onstant negative urvature. Then Gm has been omputed expliitly in[44℄. Here we only need its short distane expansion, given byGm (x; y) = � 14�f2 + log (�s2R8 ) +  (12 + �) +  (12 � �) +O(s2)g; (127)where �2= 14 + 2m2R and  (z) is the Digamma funtion. Substituting (127) into (116)we end up with the exat formula for the hiral ondensate for onstant urvatureh yP+ iR = h yP+ iR=0 � exp h �2e2m2f log (�R2m2 ) +  (12+�) +  (12��)gi: (128)The asymptoti expansions for large-and small urvature are easily worked out in-serting the orresponding expansions for the Digamma funtion [45℄. We �ndh yP+ iR = h yP+ iR=0 � exp h �12e2Ri for jRje2 � 1 (129)andh yP+ iR = h yP+ iR=0 � ( R2m2 ) �2�+g22 exp h �4e2R� �m24e2 i for jRje2 � 1:(130)Hene the hiral ondensate deays exponentially for large urvature analogous to thehigh temperature behaviour. However, the pseudo-salars do not suppress the e�etof the urvature in ontrast to (125). Comparing the exponentials in (130) to (125)we may de�ne the urvature indued e�etive temperature asTeff = �R4�m : (131)In passing we note that if we ompare the prefators, rather than the exponentials,we would write Teff = (�R) 124�p2 : (132)45



The latter identi�ation atually oinides (up to fator of 2) with the Hawkingtemperature of free salars in de Sitter spae [6℄. The orret identi�ation involvesthe (dynamial) mass of the gauge �eld and is therefore not universal. From thisobservation we learn that the temperature assoiated with urvature depends on thematter ontent. Note �nally that the non-minimal oupling (g3) has no e�et onthe hiral ondensate. In Fig. 2 we have plotted the hiral ondensate for arbitraryonstant values of the urvature.For gravitational bakgrounds with non-onstant urvature we have to refer toperturbative methods for the alulation of the massive Green's funtion. Againwe only need the short distane expansion of Gm . For geodesi distanes s smallompared to m�1 the massive Green's funtion may be approximated by the Seeley-DeWitt expansion [46℄Gm(x; y) � 14i 1Xj=0 aj(x; y)(� ��m2 )j H(2)0 (ms); (133)where H(2)0 is the Hankel funtion of the seond kind and order zero. In partiularH(2)0 (z)! 2i� [ log z2 + ℄ for z ! 0:Inserting (133) into (116) we end up with the following expansion for the hiralondensate in an arbitrary bakgroundh yP+ iR = h yP+ iR=0 � exp h� �2 (me )2 1X1 aj(x)(j � 1)!m2j i; (134)where we have used that a0(x)=1. The �rst order ontribution involves a1(x)=�16Rand reprodues the asymptoti behaviour (129). Higher order ontributions must betaken into aount to unover the e�et of variable urvature. For this one has tosubstitute is the orresponding Seeley DeWitt oeÆients aj into (134). These havebeen omputed up to j=5 [47℄.5 ConlusionsIn this paper we have elaborated on various features of the Thirring model as well assome of its extensions. In partiular we found the dependene of the partition funtionon the hemial potential and the non-trivial boundary onditions for the fermions46



on the torus. For that a areful analysis of fermioni determinants has been ruial.We have found that the familiar hiral anomaly of the UV-regularized two pointfuntion is also seen in the IR-setor as a breakdown of holomorphi fatorization.This fat, whih has not been properly taken into aount previously, together withthe presene of harmoni ontributions to the urrent, leads to a modi�ation of theequation of state due to the urrent-urrent interation. We believe that our resultsould also be obtained in the bosonized theory, provided the usual bosonization rulesare modi�ed to inlude salar �elds with winding numbers, i.e. salar �elds withvalues in a ompati�ed target spae.Furthermore, we have deformed the onformal struture by allowing for di�erent ou-plings in the transversal- and the longitudinal parts of the urrent-urrent interation.This does not hange the Virasoro- and Ka-Moody algebra, but modi�es the on-formal weights of the primaries and in partiular of the fermioni �elds. Not allvalues of the oupling onstants belong to physial theories, sine positivity of thesalar produt imposes ertain restritions on them. Our approah allows also fora non-minimal oupling of the longitudinal setor to gravity. While suh a ouplingmay seem to be ad-ho we gave some arguments that it might arise naturally whenquantizing fermions in presene of a a bakground harge. We �nd that the entralharge of the Virasoro algebra is sensitive to the non-minimal oupling. In partiular < 1 ours for ertain values of the oupling onstant. However, we have not beenable to derive onstraints on this extra oupling without referring to the result byFriedan, Qiu and Shenker. We believe that an independent derivation of their resultwithin a fermioni model would be most welome. We have also established that theentral harge ontrols the �nite size e�ets only for a partiular treatment of thezero-modes of the auxiliary �elds whih is equivalent to an average over harges atin�nity.Finally we have onsidered the gauged Thirring model in urved spae-time. We �ndthat the partition funtion is independent of vetorial as well as hiral twists and thehemial potential. This result, whih tehnially is due to the harmoni ontributionsto the gauge-�elds, is in fat expeted as a onsequene of Gauss's law. Furthermore,using the (probably not so obvious) fatorization property of the zeta-funtion reg-ularized determinants of ommuting operators we �nd that the partition funtionan be expressed ompletely in terms of a single massive salar �eld. The gaugedThirring model shows a hiral symmetry breaking whih originates in the existene offermioni zero-modes and thus in on�gurations with winding number (instantons).We have obtained expliit expressions for these instantons as well as the expetationvalue of the hiral ondensate as a funtion of temperature and urvature. The on-47



densate is exponentially suppressed for high temperatures and/or big urvature whihis interpreted as an almost restoration of the hiral symmetry under these extremeonditions. Although temperature and urvature have qualitatively the same e�etthey annot be identi�ed. In partiular the identi�ation with the Hawking temper-ature for free salar �elds in de Sitter spae does not hold in the present situation. Itfollows from general arguments that the hiral symmetry an not be restored for any�nite temperature or urvature so an exponential suppression is most we an expet.In fat, it has been argued earlier, that the axial U(1)-symmetry in 4 dimensionalQCD also shows an almost restoration as a funtion of the temperature [49℄. Ourresults on the urvature dependene ould motivate a orresponding investigation inQCD. Finally we note that the hiral ondensate is linearly suppressed for largeurrent-urrent ouplings.Aknowledgments: This work has been partially supported by the Swiss NationalSiene Foundation and the ETH-Z�urih, where part of the researh leading to thepresent results has been done. We wish to thank Arne Dettki for his ollaboration atthe beginning of this work and J. Fr�ohlih, K. Gawedzky, D. O'Connor and C. Nashfor helpful disussions.A Conventions and Variational FormulaeOur onventions for the metri and urvature agree with those of Birrell and Davies[6℄. We use the hiral representation ̂0M = �1; ̂1M = i�2 for at spae with Lorentziansignature and ̂0E = �1; ̂1E = ��2 in Eulidean spae. Furthermore ̂5=5 = �3.In what follows we derive some variational formulae used in the text. Here D� denotesthe spae-time and Lorentz ovariant derivative.Using the de�nition of the Christo�el symbols it is straightforward to show thatÆg�� = Æe a� e�a + e a� Æe�a ; Æpg = 12pgg��Æg��Æ� = ��e�aÆe a� ; Æ� �� = 12(���Æg�� � � �� g��Æg��)Æ���� = 12g��(D�Æg�� +D�Æg�� �D�Æg��): (135)For some formulae related to the variation of the tetrad let us refer to [48℄48



Æe�a = 12e�aÆg�� � t ba e�b ; Æe a� = 12e�aÆg�� � tabe b� ;where tab = 12(e�aÆe�b � e�bÆe a� ): (136)In addition we haveÆ!�ab = D�tab � ��ab ;��ab = 12e�ae�b(D�Æg�� �D�Æg��): (137)When performing the variation of urvature dependent expressions we have used theidentities g��ÆR�� = !�;� ; where !� = g��Æ���� � g��Æ����and R pg !�A� = R pgfg��r�A� �r�A�gÆg�� : (138)Depending on the topology of spae-time, the referene urvature R̂ may be di�erentfrom zero. In this ase it is not possible to express the onformal angle � in terms ofthe urvature salar. Nevertheless, to perform variations of �-dependent expressions,the identity Æ(pgR) = �2Æ(pg4�) (139)proves to be useful.Taking the variations of the equationspg2G(x; y) = �Æ(x� y) and pg iD=S(x; y) = Æ(x� y) (140)for the salar and fermioni Greens funtions we may derive (up to ontat terms)the following variational formulaeÆG = Z (� 12g��g�� + g��g��)��G(x; u) ��G(u; y)pgÆg��ÆS = i4 Z �2S(x; u)�D�S(u; y)�D�[S(x; u)Æ� �Æ ���S(u; y)℄�pgÆg�� :Here all arguments and derivatives whih are not made expliit in the integral referto the oordinate u over whih is integrated. Finally, we need the following formulafor the variation of the inverse Laplaian49



Æ  14f! = 14  Æf � Æ(4) 14f!� 12V Z pgg��Æg�� 14f; (141)where V is the volume of spae-time and f an arbitrary funtion. To prove thisidentity we note that for f 2 (Kern4)? we have4 14f = f:Varying this equation yields4(Æ 14f) = Æf � (Æ4) 14fwhih may be inverted to giveÆ  14f! = 14  Æf � Æ(4) 14f!+ 1V Z pgÆ  14f! : (142)Varying the identity 1V Z pg 14f = 0allows to replae the last term of (142) to obtain the required result (141).B Canonial Approah to the Partition FuntionIn this appendix we ompute the partition funtion for massive Dira fermions in theanonial formalism. In the limit m! 0 we on�rm the result (30) for the fermionideterminant with hemial potential in hapter 3. For massive fermions one annotonsistently impose hirally twisted boundary onditions. However, from the expliiteigenvalues (21) one sees at one that the hiral twist �1 and the hemial potentialare equivalent. One an easily verify that this equivalene holds also for masslessfermions in the anonial approah and that �1 � �L=2�. Let us therefore omputethe partition funtion Z(�) = Tr[e��:(H��Q):℄ (143)for massive Dira fermions with hemial potential � on a ylinder with (non hiral)twisted boundary onditions 50



 (x+ L; t) = �e�2i��1 (x; t): (144)For massive partiles it is more onvenient to use the Dira representation0 = �3 1 = �i�2; 5 = 01 = ��1: (145)The Dira �eld is expanded in terms of the eigenmodes of the �rst quantized Hamil-tonian h = � m i�xi�x �m� (146)as 	(x; t) =Xn  n;+bn +Xn  n;�dyn; (147)where the  n;+ and  n;� are the positive and negative energy modes, n;+ = e�i!nt�i�nxn;  n;� = ei!nt�i�nx1n;n = (2!n(!n +m)L)� 12 �!n +m�n � : (148)The momenta �n and frequenies !n are determined by the boundary ondition (144)to be �n = 2�L (n� 12 � �1) and !n = qm2 + �2n: (149)After normal ordering the 'positron' operators with respet to the Fok vauum de-�ned by H we �nd(H � �Q) =Xn (!n � �)bynbn +Xn (!n + �)dyndn �Xn (!n + �); (150)where the last -number term represents the in�nite vauum ontribution whih mustbe regularized. To do that we employ the zeta funtion regularization. That is wede�ne the zeta-funtion for s>1 by the sum�(s) =Xn (!n + �)�s;51



whih in turn de�nes an analyti funtion on the whole omplex s-plane up to a simplepole at s=1. The analyti ontinuation is onstruted by a Poisson resummationXn (!n + �)�s = Ls2�Xn F (n); (151)where F (�) = e2�i�( 12��1) Z dy ei�y[q ~m2 + y2 + ~�℄�s (152)and ~m=Lm, ~�=L�. Taking the Mellin transform of (152) we �ndF (�) = e2�i�( 12��1) 1�(s) Z dy ei�y Z dt ts�1e�tp ~m2+y2�t~�= � 2�(s)e2�i�( 12��1) Z dt ts�1e�t~� ddtK0(~�q�2 + t2) (153)= 2 ~m�(s)e2�i�( 12��1) Z dt tse�t~�K1(~�p�2 + t2)p�2 + t2 :F diverges at �=0 sine the Kelvin funtion K1(z) � 1=z for small z. It follows thatthe n= 0 term in (151) diverges. This divergene is regularized by subtrating theground state energy of the in�nite volume system. Indeed, beause of the exponentialdeay of the Bessel funtion for large arguments, only the n=0 term ontributes forin�nite volume. So we �nd for the regularized sumXn (!n + �)�s = ~mLs�(s)� Xn 6=0Z dt e2�in( 12��1)tse�t~�K1( ~mpn2 + t2)pn2 + t2 : (154)Now we perform the limit m ! 0. Only the most singular term in the expansion ofthe Bessel funtion ontributes, heneXn (!n + �)�s = Ls�(s)� Xn 6=0 Z dt e2�in( 12��1)tse�t~� 1(n2 + t2)= sLs� Xn 6=0 e2�in( 12��1)q~�ns� 12S�s� 12 ; 12 (~�n); (155)where Sa;b(z) is the Lommel funtion [50℄. In partiular for s=�1 this funtion isS = 1=z so that �nally 52



Xn (!n + �)reg = � 1�L Xn 6=0 (�)nn2 e�2�in�1 = �6L � 2�L (�1 � [�1+12℄)2: (156)Inserting this into (150) then yields the regularized expression: H � �Q :=Xn (!n��)bynbn +Xn (!n+�)byndn � �6L + 2�L ��1 � [�1+12℄�2: (157)For small � the normal ordering is �-independent so thath0j : H � �Q : j0i = � �6L + 2�L ��1 � [�1 + 12℄�2 = h0j : H : j0i (158)is independent of � and oinides with the Casimir energy [24℄.Let us now ompute the partition funtion. Using (158) we easily �ndZ(�) = tr [e��:(H��Q):℄ = q[�21� 112 ℄= 1Yn>[ 12+�1℄(1 + q(n� 12��1)e��) 1Yn>�[ 12+�1℄(1 + q(n� 12+�1)e��) �1Yn>[ 12��1℄(1 + q(n� 12+�1)e���) 1Yn>�[ 12��1℄(1 + q(n� 12��1)e���)= 1j�(�)j2�h��1i� �2� i(0; �) ��h ��1�i� �2� i(0; �); (159)where we have used the produt representation of the theta funtions in the lastidentity and that q = e2�i� = e�2��=L. A non-vanishing hiral twist �1 an now beinluded by shifting the hemial potential. Thus we have on�rmed the formula (30)in the text.Note that for � 6= 0 the zero-temperature limit of the grand potential is not equalto the vauum expetation value of :H � �Q : . For � 6= 0 all states up to the �-dependent Fermi energy are �lled. For example, for !1 < � < !2 in the limit � !1,
 redues to the expetation value of : H � �Q : in the one-eletron state.
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