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tWe 
onsider Yang-Mills theories with general gauge groups G and twists on thefour torus. We �nd 
onsistent boundary 
onditions for gauge �elds in all instantonse
tors. An extended Abelian proje
tion with respe
t to the Polyakov loop operatoris presented, where A0 is independent of time and in the Cartan subalgebra. Funda-mental domains for the gauge �xed A0 are 
onstru
ted for arbitrary gauge groups. Inthe se
tors with non-vanishing instanton number su
h gauge �xings are ne
essarilysingular. The singularities 
an be restri
ted to Dira
 strings joining magneti
ally
harged defe
ts. The magneti
 
harges of these monopoles take their values in the
o-root latti
e of the gauge group. We relate the magneti
 
harges of the defe
ts andthe windings of suitable Higgs �elds about these defe
ts to the instanton number.PACS numbers: 11.10Wx, 11.15Tk, 11.15K
, 12.38AwKeywords: Gauge �eld theory at �nite temperature, gauge �xing, abelian proje
tion,magneti
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tionCon�nement and 
hiral symmetry breaking are supposed to follow from the dynami
s ofYang-Mills �elds. These phenomena are highly non-perturbative and still have not beenderived from �rst prin
iples. In this paper we will follow the strategy put forward by 'tHooft [1℄ who 
onsidered Yang-Mills theories on a Eu
lidean spa
e-time torus T4. Thetorus provides a gauge invariant infrared 
ut-o�. Its non-trivial topology gives rise to anon-trivial stru
ture in the spa
e of Yang-Mills �elds whi
h yields additional information onthe possible phases of Yang-Mills theories. Compared to other Riemannian 4-dimensional
ompa
t manifolds the torus has many advantages (besides being the `spa
e-time' used inlatti
e simulations):� one 
an use a 
at metri
 in whi
h 
ase 
urvature e�e
t do not mix with �nite sizee�e
ts,1Supported by the Deuts
he Fors
hungsgemeins
haft, DFG-Wi 777/3-22e{mails: Ford, Tok and Wipf�tpi.uni-jena.de 1



� the 
ir
umferen
e L0 in the temporal dire
tion 
an be identi�ed with the inversetemperature � [2, 3℄,� gauge invariant periodi
 �elds on R 4 
an be viewed as �elds on T4,� one may 
al
ulate non-perturbative quantities from �nite size e�e
ts [4℄; the string
onstant is dire
tly related to the energy of a string winding around the torus [1℄,� one keeps the relevant part of the supersymmetry in SUSY-YM theories.Even the less ambitious goal to demonstrate 
on�nement of stati
 quarks without relian
eon numeri
al simulations has not been a
hieved yet. Without dynami
al fermions therelevant observables are produ
ts of Wilson-loops [5℄. At �nite temperature T = 1=� thegauge �elds in the fun
tional integrals are periodi
 in Eu
lidean time i.e.A�(x0 + �; ~x) = A�(x0; ~x):and one may use Polyakov loops [6℄P (~x) = Tr R(P(�; ~x)); where P(x0; ~x) = P exp "i Z x00 d�A0(�; ~x)# (1.1)as order parameters for 
on�nement. Here R is the representation of the gauge group whi
ha
ts on the matter �elds. We shall assume that the gauge group G is simply 
onne
ted,e.g. G = SU(2) rather than SO(3) = Ad(SU(2)). But sin
e we allow for arbitraryrepresentations R of G our results apply to general gauge groups R(G), for example toSO(3).The Polyakov loop P (~x) is invariant under gauge transformations whi
h are periodi
in time. Sin
e it is a fun
tional of A0 only, one is motivated to seek a gauge �xing whereA0 is as simple as possible. Note that the Weyl gauge, A0 = 0, is not 
ompatible withtime-periodi
ity. In a previous paper [7℄ we dis
ussed an extended Abelian proje
tion forSU(2) gauge theories on the four torus in whi
h A0 is time independent and in the Cartansubalgebra. The gauge �xing pro
edure hinges on the diagonalization of the path orderedexponential, P(�; ~x), whose tra
e is the Polyakov loop. In 
ontrast to the two dimensional
ase investigated in [8℄ the diagonalization pro
edure has unavoidable singularities [9, 10℄.The singularities 
an be interpreted as Dira
 strings [11℄ joining magneti
ally 
harged`defe
ts'. Here we understand defe
ts as points, loops (not to be 
onfused with the Dira
strings!), sheets and lumps where P(�; ~x) has degenerate eigenvalues. For the gauge groupSU(2), the eigenvalues of P(�; ~x) are degenerate when P(�; ~x) = �1l. Thus there aretwo types of defe
t a

ording to whether P(�; ~x) is plus or minus the identity. Asso
iatedwith the gauge �xing pro
edure one 
an de�ne an Abelian magneti
 potential Amag onT3 [9℄. In [7℄ we showed that the total magneti
 
harge of P = 1l defe
ts is equal to theinstanton number q. Moreover, the total magneti
 
harge of all defe
ts is zero, i.e. the totalmagneti
 
harge of P = �1l defe
ts is minus that of the P = 1l defe
ts. The relationshipbetween magneti
 
harges and the instanton number was 
onsidered earlier by Christ and2



Ja
kiw [12℄, Gross et.al. [2℄ and Reinhardt [13℄ who worked on S1 � R 3 or R 4. Thoughhere one requires `
harges at in�nity' to have overall magneti
 
harge neutrality. For anexpli
it dis
ussion of the singularities emerging in the gauge �xing pro
edure at point likemonopoles see the re
ent paper by Jahn and Lenz [14℄.In this paper we extend the defe
t analysis to gauge theories on T4 with arbitrarygauge groups G of rank r. We also 
onsider arbitrary twists [1℄, whi
h allows us to treatmatter transforming a

ording to any representation of the gauge group. One has r +1 types of basi
 defe
ts asso
iated with the r + 1 fa
es 
onstituting the boundary of a`fundamental domain' (these are essentially 
ompa
ti�ed Weyl 
hambers) in the root spa
e.Sin
e the magneti
 potential lies in the Cartan subalgebra H we now have a matrix QM 2H of magneti
 
harges. The possible magneti
 
harges are quantized and are in one toone 
orresponden
e with the points of the integral 
o-root latti
e. For a basi
 defe
t,QM is an integer multiple of a �xed matrix. Mu
h as in the SU(2) analysis there is asimple linear relation between the total magneti
 
harge of a given type of defe
t andthe instanton number q. We have overall 
harge neutrality on T3 unless there are non-orthogonal magneti
 and ele
tri
 twists.The paper is organized as follows. In the remainder of this se
tion we re
all somebasi
 fa
ts 
on
erning gauge �elds on T4. Next we present a set of transition fun
tions(i.e. boundary 
onditions for the gauge �elds) where the instanton number is equal tothe winding number of the mapping P(�; ~x) : T3 ! G. These transition fun
tions serveas the starting point for our gauge �xing. In se
tion three we 
onstru
t `fundamentaldomains' for all gauge groups. Our Lie algebra 
onventions are stated here. Then weexplain pre
isely what we mean by `defe
ts'. In the next se
tion we de�ne the magneti

harge of the defe
ts. Our key result is given in se
tion six. Here we obtain the relationshipbetween the magneti
 
harges and the instanton number. Next we rewrite P(�; ~x) in termsof `Higgs �elds'. This enables us to tie up a loose end from se
tion six, and also allows usto interpret the magneti
 
harges as Higgs winding numbers. In se
tion eight we show howthe ideas apply to SU(3) and give our 
on
lusions in se
tion nine. Te
hni
alities regardingour transition fun
tions (in
luding a 
onstru
tion of magneti
 twist eaters for all gaugegroups) 
an be found in Appendix A. Finally, an identity quoted in se
tion six is derivedin Appendix B.We view the four torus as R 4 modulo the latti
e generated by four orthogonal ve
torsb�; � = 0; 1; 2; 3, for a re
ent review see [15℄. The Eu
lidean lengths of the b� are denotedby L� (we may identify L0 with the inverse temperature �). Lo
al gauge invariants su
has TrF��F�� are periodi
 with respe
t to a shift by an arbitrary latti
e ve
tor. However,the gauge �elds have to be periodi
 only up to gauge transformations. In order to spe
ifyboundary 
onditions for gauge potentials A� on the torus one requires a set of groupvalued transition fun
tions U�(x), whi
h are de�ned on the whole of R 4. The periodi
ityproperties of A� are as followsA�(x + b�) = U�1� (x)A�(x)U�(x) + iU�1� (x)��U�(x); �; � = 0; 1; 2; 3;where the summation 
onvention is not applied. It follows at on
e, that the path orderedexponential P(x0; ~x) in (1.1) has the following periodi
ity properties3



P(x0+L0; ~x) = P(x0; ~x)P(L0; ~x); P(x0; ~x+ bi) = U�1i (x0; ~x)P(x0; ~x)Ui(0; ~x): (1.2)The transition fun
tions U�(x) satisfy the 
o
y
le 
onditions [1℄U�(x)U�(x+ b�) = z��U�(x)U�(x + b�); z�� = z�1�� ; (1.3)where the twists z�� lie in the 
enter Z of the group. From now on we assume thatthe transition fun
tions belong to the universal 
overing group. In general, our matter�elds will not transform a

ording to the 
overing group. However, a matter �eld insome representation is equivalent to matter transforming a

ording to the 
overing groupprovided we pla
e suitable restri
tions on the twists. More pre
isely, 
onsider a matter �eldwhi
h transforms under some representation R(G) of the gauge group. A 
enter elementz 2 Z is an allowed twist if R(z) = 1l. For example if we have matter �elds in the de�ningrepresentation of SU(3) all the twists must be the identity, sin
e the other two 
enterelements are faithfully represented. By 
ontrast, if the matter �elds are in the adjointrepresentation of any group then there is no restri
tion on the twists.Under a gauge transformation, V (x), the pair (A;U) is mapped toAV� (x) = V �1(x)A�(x)V (x) + iV �1(x)��V (x); UV� (x) = V �1(x)U�(x)V (x+ b�): (1.4)The twists, z�� , are gauge invariant. We de�ne the topologi
al 
harge or instanton numberas follows q = 132�2 ZT4 ����� TrF��F��; (1.5)where the tra
e 
orresponds to the 
anoni
ally normalized s
alar produ
t in the Lie al-gebra3. Note that q is fully determined by the transition fun
tions [17℄. In parti
ular, ifwe take all the transition fun
tions to be the identity (i.e. we assume the gauge �elds areperiodi
 in all dire
tions) then the instanton number is zero. A

ordingly, if we are todes
ribe the non-perturbative se
tors, one must 
onsider non-trivial transition fun
tions.For a given q and set of twists, z�� , we only require one set of transition fun
tions. Ifwe have two sets of transition fun
tions with the same instanton number and twists thenthey are gauge equivalent [17℄.2 Transition fun
tions, the Polyakov loop operatorand gauge �xingFirst we 
onstru
t a 
onvenient set of transition fun
tion su
h that the instanton numberis equal to the winding number of the map P(�; ~x) : T3 ! G. Then we �nd the (in general3It is equal to half the tra
e in the adjoint representation divided by the dual Coxeter number.4



singular) gauge transformation whi
h transforms A0 into a time-independent �eld in theCartan subalgebra.In the untwisted 
ase, z�� = 1l, we may assume that the transition fun
tions have thefollowing propertiesU0 = 1l; Ui(x0=0; ~x) = 1l; i = 1; 2; 3; so that Ui(x + b0) = Ui(x): (2.1)In [7℄ it was shown by expli
it 
onstru
tion that there exist untwisted (i.e. z�� = 1l)transition fun
tions satisfying (2.1) in all instanton se
tors. The 
ondition that U0 = 1lis simply the statement that our gauge �elds are periodi
 in time. Sin
e the transitionfun
tions are trivial on the time sli
e x0 = 0, and hen
e with (2.1) also on the time sli
ex0 = �, the path ordered exponential P(�; ~x) is periodi
 in the three spatial dire
tions (see(1.2)).In the presen
e of magneti
 twists (i.e. at least one of the zij 6= 1l) it is no longerpossible to attain (2.1). However, one 
an still arrange for the transition fun
tions tobe independent of ~x on the time sli
e x0 = 0. In appendix A we prove that there existtransition fun
tions with the following propertiesU0 = 1l; Ui(x0 = 0; ~x) = !i; so that Ui(x0 = �; ~x) = !iz0i; (2.2)where the !i are independent of ~x and satisfy the `twist eating' 
onditions!i!j = zij!j!i; i; j = 1; 2; 3; (2.3)whi
h follow from the 
o
y
le 
onditions for the Ui at time x0 = 0. For example, 
onsiderSU(2) gauge theory with the following magneti
 twists z12 = �1l; z23 = z31 = 1l. Then apossible 
hoi
e of !i's is !1 = i�1, !2 = i�2; !3 = 1l, where the �i are the Pauli matri
es.Twist eaters satisfying (2.3) are known to exist for arbitrary twists in SU(N) gauge theories[16℄. Twist eaters for the other simple Lie groups are 
onstru
ted in appendix A.Now we use the properties of the transition fun
tions to obtain a relation for the instan-ton number in terms of the Polyakov loop. Consider the following gauge transformationV (x0; ~x) = P(x0; ~x);where P(x0; ~x) is the path ordered exponential in (1.1) whi
h in general is non-periodi
 intime. For brevity we use the notationP(~x) := P(�; ~x): (2.4)Using (1.2,1.4,2.1), the gauge transformed transition fun
tions areUV0 = P(~x); UVi = !i:The new U0 is simply the path ordered exponential P(~x), while the transformed spatialtransition fun
tions are 
onstant matri
es. Applying the well know formula for the instan-ton number in terms of the transition fun
tions [17℄ yields5



q = 124�2 ZT3 �0ijkTr h(P�1�iP)(P�1�jP)(P�1�kP)i ; (2.5)where P = P(~x), and T3 = fx 2 T4jx0 = 0g. We emphasize that (2.5) is only valid whenthe (original) transition fun
tion satisfy (2.2). Another useful 
onsequen
e of (2.2) is thatP(~x) has very simple periodi
ity propertiesP(~x + bi) = z0i !�1i P(~x)!i; i = 1; 2; 3: (2.6)In parti
ular, P(~x) is 
ompletely periodi
 in the absen
e of twists.Now we follow [18, 19, 20, 7, 8℄ and seek a (time-periodi
) gauge transformation, V (x),for whi
h the gauge transformed A0 is independent of time and in the Cartan subalgebra.Consider the time-periodi
 gauge transformationV (x0; ~x) = P(x0; ~x)P�x0=�(~x)W (~x); (2.7)where P(x0; ~x) is the path ordered exponential (1.1), and W (~x) diagonalizes P(~x), i.e.P(~x) =W (~x)D(~x)W�1(~x); D(~x) = exp[2�i h(~x)℄; (2.8)with h(~x) in the Cartan subalgebra H. The fra
tional power of P is de�ned via thediagonalization of P. It follows at on
e that the gauge transformed A0 readsAV0 = 2�� h(~x); (2.9)whi
h is indeed independent of time and in the Cartan subalgebra. Whereas P(~x) is smooththe fa
torsW (~x) and D(~x) in the de
omposition (2.8) are in general not. The 
lassi�
ationand impli
ations of these singularities are investigated in se
tions 4-7.3 Fundamental domainsThe mapping h(~x) ! D(~x) in (2.8) from the Cartan subalgebra to the toroidal (Cartan)subgroup is not one to one. In this se
tion we shall �nd domains M in the Cartansubalgebra su
h that this mapping be
omes bije
tive. We shall 
hoose domains whi
hare left invariant under the a
tion of the Weyl group W. If w is a Weyl re
e
tion, thenWw diagonalizes P in (2.8) if W does. We shall �x this residual gauge freedom, underwhi
h D ! wDw�1, by restri
ting h to one Weyl 
hamber. The interse
tion of a Weyl
hamber with the `Weyl invariant' domain M de�nes our fundamental domain F . F isin one to one 
orresponden
e with the toroidal subgroup modulo Weyl transformations orequivalently with the 
onjuga
y 
lasses of G. The main result of this se
tion is that F isthe simpli
ial box with the extremal points (3.7).6



Our Lie algebra 
onventions are as follows: Let Hk; k = 1; : : : ; r be an orthogonal basisof the Cartan subalgebra H, TrHkHl = j�Lj22 Ækl;whi
h are diagonal in a given representation4,Hkj�i = �kj�i and [Hk; E�℄ = �kE�:We normalize the roots su
h that the long roots have length p2, i.e. (�L; �L) = 2, andthe Hk be
ome orthonormal. Throughout this paper we identify P �kHk = � �H 2 H with� 2 R r. Let�(i) ; �(i) ; �_(i) = 2�(i)(�(i); �(i)) and �_(i) = 2�(i)(�(i); �(i)) ; i = 1; : : : ; r (3.1)be the simple roots, fundamental weights, 
o-roots and 
o-weights, respe
tively:(�(i); �_(j)) = Kij; (�_(i); �(j)) = (�(i); �_(j)) = Æij; (�(i); �_(j)) = (K�1)ij: (3.2)We used that the simple roots and fundamental weights are related by the Cartan matrix,�(i) = rXj=1Kij �(j):The fundamental weight-states (whi
h are the highest weight states of the r fundamentalrepresentations) and states in the adjoint representation obey�_(i) �H j�(j)i = Æijj�(j)i and �_(i) �H j�(j)i = Æijj�(j)i: (3.3)The most negative root �(0) and its 
o-root �_(0) de�ne the integral Coxeter numbers niand dual Coxeter numbers n_i :0 = �(0) + rX1 ni�(i) � rX�=0n��(�) and 0 = �_(0) + rX1 n_i �_(i) � rX�=0n_��_(�);where we have de�ned n0 = n_0 = 1. The (dual) Coxeter numbers are listed in appendixA. For later 
onvenien
e we assign to �(0) the 
o-weight �_(0) = 0.The fundamental domains we seek are intimately related to the 
enter elements of thegroup. Thus it is useful to �nd 
onditions on � �H 2 H su
h that exp(2�i� �H) is in the
enter Z. Center elements are the identity in the adjoint representation. Be
ause of these
ond set of equations in (3.3) they must be powers ofzi = exp �2�i�_(i) �H�:4We use the same symbol Hk for Hk in any representation.7



In an irredu
ible representation a 
enter element a
ts the same way on all states. Hen
e,a ne
essary and suÆ
ient 
ondition for zi 6= 1l is thatzi j�(j)i = exp �2�iK�1ji �j�(j)i 6= j�(j)i; or that K�1ji =2 Zfor at least one fundamental weight �(j). Here we have used that the inner produ
ts of theweights with the 
o-weights yield the inverse Cartan matrix, see (3.2). The order of the
enter group is just det(K). The 
enters and their generators are listed in appendix A.Let us now �nd a suitable domain in the Cartan subalgebra whi
h is mapped bije
tivelyinto the toroidal subgroup. The elementsexp �2�i� �H�in the toroidal subgroup are the identity if � is in the integral 
o-root latti
e, i.e. thelatti
e spanned by the simple 
o-roots �_(i) (see (3.2)). Thus, the 
onvex regionM de�nedby the interse
ting half-spa
es (�; �) � 1, where � is an arbitrary root, is in one to one5
orresponden
e with the toroidal subgroup of the gauge group6. This set is invariant underthe a
tion of the Weyl group W and is given byM = f�j (�; �) � 1 for all roots �g: (3.4)Now we may �x the residual Weyl re
e
tions by further assuming that � � � �H is in theWeyl 
hamber de�ned byf�j (�; �(i)) � 0 for all simple roots �(i)g: (3.5)The inner produ
t of a ve
tor � in this Weyl 
hamber with the highest root ��(0) is alwaysgreater or equal to the inner produ
t with any other root. It follows that the 
onditions(3.4,3.5), whi
h de�ne the fundamental domain F , simplify toF = n�j (�; �(i)) � 0; �(�; �(0)) � 1o: (3.6)F is a simplex bounded by r+1 hyperplanes orthogonal to the roots f�(�)g = f�(0); �(i)g.In what follows we 
all the plane orthogonal to �(�) the �-plane, � 2 f0; ig. The i-planesall meet at the origin. Sin
e �(0) is a long root the last 
ondition in (3.6) means that the0-plane orthogonal to �(0) goes through ��_(0)=2. The roots �(�) point inside the box.An equivalent de�nition of F is that F is the 
onvex set with extremal pointsf0; 1n1�_(1); 1n2�_(2); : : : ; 1nr�_(r)g: (3.7)This 
an be seen by expanding � in terms of the 
o-weights5On the boundary of the so de�ned set we have to identify points di�ering by a ve
tor �_, i.e. we haveto remove half of the boundary to get a one to one 
orresponden
e.6The hyperplane (�; �) = 1 is orthogonal to �_ and goes through �_=2.8



F = n� =Xi �i �_(i)j �i � 0; (n; �) � 1o; (3.8)where n = (n1; : : : ; nr) being the r-ve
tor formed from the Coxeter labels. For example, thefundamental domains F for the Ar and Cr groups are the simpli
ial boxes with extremalpoints f0; �(i); i = 1; : : : ; rg (re
all, that we have 
hosen j�Lj2 = 2). Also, if �1 and �rare the long and short roots at the endpoints of the Br-Dynkin-diagram, the fundamentaldomain for Br is the 
onvex set with extremal pointsf0; �(1); 12�(2); 12�(3); : : : 12�(r�1); �(r)g:The fundamental domains F and the 
enter elements for the gauge groups of rank 2 aredepi
ted in �g.1. The fundamental domain of A2 is an equilateral triangle, that of B2 halfa square, that of G2 half of an equilateral triangle and that of A1 � A1 is a square. There
e
tions on the r walls of F through 0 generate the Weyl group W of G and give rise toM.Sin
e (�(0); �(i)) � 0, the highest root ��(0) is always inside the Weyl 
hamber (3.6)or on its boundary. Indeed, for all groups with the ex
eption of A2 ��(0) lies on theboundary of F . From the extended Dynkin diagram7(see �g.2) one reads o� that for allbut the Ar algebras the highest root is orthogonal to r� 1 simple roots. Hen
e it must beproportional to the weight �(i) 
orresponding to the simple root �(i) with (�(i); �(0)) 6= 0.Although our strategy is to work in the 
overing group with suitably restri
ted twistsrather than dire
tly dealing with arbitrary representations, we 
ould in prin
iple do withouttwists if we used transition fun
tions and fundamental domains FR appropriate to therepresentation R. A
tually it is quite straightforward to 
onstru
t domains FR for anyrepresentation. The volume of su
h domains is always less than or equal to that of F ;more pre
isely Vol(FR) = Vol(F)jCRj ;where CR is the subgroup of the 
enter C whi
h is mapped to the identity by going fromthe 
overing group to the representation R and jCRj is its order. For a given group, thedomain with the smallest volume is that for the adjoint representation sin
e the 
enter istrivial in this 
ase. The fundamental domains for the adjoint representation for the ranktwo groups are shown in �gure 1.4 Defe
tsAlthough the Polyakov loop operator itself is smooth for smooth gauge potentials thefa
tors W (~x) and D(~x) in the de
omposition (2.8) are in general not. In this se
tion we7One adds the most negative root �(0) to the system of simple roots �(i) and uses the well-known rulesto draw the Dynkin diagram of this extended system of roots.9
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Figure 1: Roots, fundamental weights, 
enter elements, 
entralizer subgroups and fun-damental domains F for the rank 2 
ase shown. The shaded regions inside F are thefundamental domains for the adjoint representations.shall see that singularities (so 
alled defe
ts) o

ur at points ~x at whi
h h(~x) is on theboundary of the fundamental domain F . At su
h defe
ts the residual gauge freedom isenlarged. We shall expli
itly determine the residual gauge groups at the various defe
ts.From now on we shall assume that h(~x) is in the fundamental domain F . Then (2.8)assigns a unique D(~x) (and thus a unique h(~x) 2 F) to ea
h Polyakov loop operator sin
ewe have �xed the Weyl re
e
tions. However, the diagonalizing matrix W (~x) in (2.8) isdetermined only up to right-multipli
ation with an arbitrary matrix 
ommuting with D(~x)W (~x) �!W (~x)V (~x); V (~x)D(~x)V �1(~x) = D(~x); D(~x) = e2�ih(~x): (4.1)At ea
h point the residual gauge transformations V (~x) form a subgroup ofG, the 
entralizerof D(~x) in G, denoted by CD(~x)(G). The 
entralizer 
ontains the toroidal subgroup of G.10
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rFigure 2: The extended Dynkin diagrams, Æ: long roots, �: short roots, 0: most negativeroots (verti
es are labelled as in [22℄).At points where the 
entralizer is just the toroidal subgroup we 
an smoothly diagonalizethe Polyakov loop operator.However, at points where the 
entralizer is non-Abelian P(~x) has degenerate eigenvaluesand there are obstru
tions to diagonalizing P(~x) smoothly [7, 9, 10℄. For what follows itis useful to de�ne the defe
t manifoldD = f~x 2 T3jCD(~x)(G) 6= U r(1)g (4.2)on whi
h the 
entralizer is non-Abelian. In the spe
ial 
ase G = SU(2) the defe
t manifoldis D = f~x 2 T3jP(~x) = �1lg. A defe
t Di is understood to be a 
onne
ted subset of D.In the neighborhood of a defe
t the diagonalization is in general not smoothly possibleand the gauge �xing will be singular. Note that D is invariant under time-periodi
 gaugetransformations so that the positions of the defe
ts are gauge invariant.Now we are going to 
lassify the various defe
ts whi
h arise in our gauge �xing. To do thatwe expand h(~x) in (4.1) into a basis of the Lie algebra as h(~x) = �(~x) �H so thatD(~x)E�D(~x)�1 = e2�i(�(~x);�)E�:We see that D(~x) 
ommutes with the subgroup SU(2) 
orresponding to � if and only if(�(~x); �) is integer-valued. For � 2 F in (3.6) this 
an only happen if � lies on the boundaryof the fundamental domain. We parametrize �(~x) as in (3.8) so thatD(~x)E�(i)D(~x)�1 = e2�i�i(~x)E�(i) and D(~x)E�(0)D(~x)�1 = e�2�i(�(~x);n)E�(0) :Therefore D 
ommutes with the SU(2)-subgroup 
orresponding to the simple roots �(i) ifand only if �i = 0 and it 
ommutes with the SU(2)-subgroup 
orresponding to �(0) if andonly if (�; n) = 1. In other words, the 
entralizer 
ontains the SU(2) 
orresponding to �(�)if the defe
t is on the �-plane, i.e. the plane perpendi
ular to �(�).The 
entralizer of D(~x) generated by these SU(2) subgroups 
an be read o� from theextended Dynkin diagram (see �g.2) as follows: keep the vertex � assigned to the root�(�) 2 f�(0); �(i)g in the extended Dynkin diagram if and only the defe
t lies on the �-plane. Remove the other verti
es and bonds atta
hed to them. The remaining diagram11



is then just the Dynkin diagram belonging to the semisimple fa
tor of the 
entralizer. Toobtain the 
omplete 
entralizer group we must multiply with as many U(1)-fa
tors as areneeded to get a group of rank r.Let us illustrate how this works for the simply la
ed groups G = Ar for whi
h the funda-mental domains F 
an be parametrized as� = rX1 �i �_(i); �i � 0; �0 � 1� rX1 �i � 0:The extremal points of the fundamental domain are f�_(�)g and they 
orrespond to the r+1
enter elements of Ar. If just one �� vanishes then � lies inside the (r � 1)-dimensional�-plane. and we must keep the vertex � in the extended Dynkin of Ar, i.e. the leftmostdiagram in �g.2. The 
orresponding 
entralizer is A1 � U r�1(1). We 
all su
h defe
tswith minimal non-Abelian 
entralizers basi
 defe
ts. If �� and ��0 vanish in whi
h 
ase thedefe
t lies both on the �- and �0-plane, then we must keep the two verti
es � and �0 inthe extended Dynkin diagram. If they are neighbors in �gure 2, then the 
entralizer isA2�U r�2(1), otherwise it is A1�A1�U r�2(1). In the extreme 
ase where just one �� doesnot vanish (then � is one of the extremal points of F) we must retain all verti
es with theex
eption of the vertex �. We get the Dynkin diagram of Ar and the 
entralizer is the wholegauge group. By s
anning the whole boundary of F 
omprising of r�1-dimensional, r�2-dimensional,. . . ,1-dimensional simpli
es and the extremal points we obtain all stabilizersubgroups of G.5 Quantization of the magneti
 
hargesIn this se
tion we de�ne the Abelian magneti
 potential Amag(~x) asso
iated with the partialgauge �xing and show that the magneti
 
harge of any defe
t is quantized. Away fromthe defe
ts the 
entralizer of D(~x) is U r(1) and W (~x) in (2.8) is unique up to a residualAbelian gauge transformation (4.1):W (~x) �! W (~x)V (~x) with V (~x) = e�i�(~x) 2 U r(1) on D
: (5.1)If we append to ea
h point in D
 the set of all diagonalizing matri
es W (~x) we obtain aU r(1) prin
ipal bundle over D
. If we 
an �nd a smooth global se
tion in this bundle thenthe diagonalization is smoothly possible outside of the defe
ts, see also [23℄. To investigatethe stru
ture of the bundle we employ the Abelian U r(1) gauge potential, Amag(~x), obtainedby proje
ting the pure gauge A(~x) = iW�1(~x)dW (~x) onto the Cartan subalgebra, i.e.Amag(~x) := A
(~x);where the subs
ript 
 denotes proje
tion onto the Cartan subalgebra of G. This potentialis singular at the defe
ts and on Dira
 strings joining the defe
ts. Under a residual gaugetransformation (5.1) the gauge potentials transform asAmag �! Amag + i(V �1dV )
 = Amag + d� on D
:12



Sin
e A is pure gauge the 
orresponding �eld strength is given byFmag = dAmag = i(A ^ A)
; (5.2)and it is invariant under residual U r(1)-gauge transformations.Next we will show that a defe
t may 
arry r quantized magneti
 
harges [24℄. For ea
hdefe
t these 
harges form a matrix QM in the Cartan subalgebra H,QM = 12� ZS Fmag: (5.3)Here S is a surfa
e surrounding the defe
t Di. Ex
luding walls extending over the whole
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Figure 3: Two typi
al defe
ts: a monopole and a magneti
 loop with surrounding surfa
esand overlap regions.3-torus this surfa
e is either a 2-sphere or a 2-torus (see �g.3). For ea
h U(1) the magneti

harge is just the instanton number of an Abelian gauge model on S2 or T2 [25, 26℄ andhen
e is quantized. More expli
itly, the magneti
 
harges are the winding numbers of themap exp(i�) : S1 �! U r(1), QM = 12� IS1 d�;where S1 is in the overlap of the two pat
hes Ui one needs to 
over S2 or T2. Sin
e thegauge transformation exp(�i�) is single valued on the overlap, QM 2 H must satisfye2�iQM = 1l for ea
h defe
t. (5.4)For simply 
onne
ted G this equality must hold on all states j�i and we �ndQM = �_ �H; where �_ 2 
o-root latti
e. (5.5)Thus we obtain the same magneti
 
harge quantization as un
overed by Goddard, Nuytsand Olive [27℄ in their pioneering work on ele
tri
-magneti
 duality in Yang-Mills-Higgstheories. 13



6 Instantons and magneti
 monopolesIn this se
tion we work with the simply 
onne
ted 
overing group and ex
lude twists8.Depending on the residual gauge symmetry in the defe
ts we get di�erent types of magneti
monopoles. There are r+1 kinds of basi
 monopoles with minimal non-Abelian 
entralizerSU(2) � U r(1), 
orresponding to the r + 1 hyperplanes whi
h make up the boundary ofthe fundamental domain. We will show that a basi
 defe
t on the �-plane has magneti

harge QM = n�_(�) �H; � 2 f0; 1; : : : ; rg (6.1)with integer n. If we have a defe
t whi
h is on two or more of the hyperplanes (whi
h meansthat the Polyakov loop has more than two degenerate eigenvalues) then the magneti
 
hargeof this defe
t is an integer 
ombination of the 
o-roots perpendi
ular to these hyperplanes.Below we argue that in general the total magneti
 
harge of the defe
ts on a given fa
egives the instanton number. For example, the magneti
 
harge of a defe
t on the 0-planeis QM = (n�_(0) + �_) �H; n 2 Z, where �_ is in the 
o-root latti
e. This de
omposition ofthe magneti
 
harge is unique, see below. Now the instanton number is simplyq = � Xdefe
ts on 0-planen (6.2)This is our main result. Some illustrative examples of the use of this formula are given inse
tion 8.To derive the results (6.1,6.2) we assume that:� There are no wall defe
ts9� Inside a defe
t the 
entralizer CD(~x) is uniform.The �rst assumption is a re
e
tion of the fa
t that one 
annot surround a wall defe
t witha 
losed surfa
e and so it is not obvious how to de�ne the magneti
 
harge of su
h a defe
t.The se
ond assumption is made to avoid the 
ompli
ation of `defe
ts within defe
ts'. Itmay be possible to drop this requirement.Our arguments are based on the observation thatl ZT3 Tr(P�1dP)3 = ZT3 Tr(P�ldP l)3 (6.3)and furthermore8See se
tion 8 where we in
luded twists for the relevant example G = SU(3).9We 
an formally de�ne the absen
e of walls as follows. Consider the extension of the defe
t manifoldto R 3, i.e. ~D = fx 2 R 3jCD(~x) 6= Ur(1)g There are no walls if ~D
 = R 3 n ~D is 
onne
ted.14



Tr(P�ldP l)3 = dA(�); � 2 f0; ig (6.4)where the 2-forms areA(�) = �12l �iTr �A ^ A�h� 1n��_(�) �H��+ 3Tr hAD�l ^ ADli : (6.5)Here l is the least 
ommon multiple of the Coxeter labels ni and as before �_(0) � 0 andn0 � 1. We prove this 
ru
ial identity in appendix B. These 2-forms are well de�ned outsidethe defe
ts, be
ause they are invariant under the residual Abelian gauge transformations(5.1). Both terms in (6.5) may be singular at defe
ts. However, in the following se
tionwe will show that A(�) 
an be singular only at defe
ts on the �-plane or equivalently atdefe
ts whose 
entralizers have �(�) as root,A(�) singular () defe
t is on � plane() �(�) is a root of defe
t 
entralizer. (6.6)A
tually, in (6.5) we 
ould have subtra
ted an arbitrary 
onstant Lie algebra elementfrom h(~x) and (6.3) would still hold true. But the smoothness 
onditions (6.6) only holdif this 
onstant element is an extremal point of the fundamental domain and ifexp �2�i ln��_(�) �H�is a 
enter element. Thus we take for l in (6.3) the least 
ommon multiple of the Coxeterlabels ni. For example l = 1 for the Ar series and l = 2 for the other 
lassi
al groups.Now we make use of (6.3) to relate the magneti
 
harges of the defe
ts on the 0-plane tothe instanton number. Away from defe
ts on the 0-plane A(0) is regular. Now we surroundea
h defe
t D on the 0-plane with a 
losed surfa
e S and pi
k a two form A(i) whi
h issmooth inside S, see �g.4. Sin
e a defe
t 
an lie on at most r of the r+1 fa
es 
onstitutingthe boundary of F there is always at least one su
h regular two form. With (1.5,6.3) the
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Figure 4: We must 
hoose two forms A(ip) whi
h are regular inside spheres Sp 
ontaininga defe
t on the inhomogeneous 0-fa
e. 15



instanton number readsq = 124�2l Zoutside dA(0) + 124�2lXp ZBp dA(ip) = 124�2lXp ZSp (A(ip) �A(0)); (6.7)where, sin
e A(0) is periodi
 on T3, we get no 
ontributions from the `boundary of thetorus'10. Using (6.5) we obtainA(i) �A(0) = 12�i lni Tr �A ^ A�_(i) �H� :Sin
e the magneti
 �eld Fmag is the proje
tion to the Cartan of iA ^ A we �ndA(i) �A(0) = 12� lni Tr(Fmag �_(i) �H) (6.8)and end up with q =XDp 1nipTr �QM �_ip �H� ; (6.9)where we used (5.3). The sum extends over defe
ts on the inhomogeneous 0-plane. Let ushave a 
loser look at the 
ontribution1niTr �QM �_(i) �H� (6.10)of a given defe
t on the 0-plane. Consider �rst a basi
 defe
t with minimal non-Abelian
entralizer. Then all two forms A(i); i 2 f1; : : : ; rg are regular and must lead to the same
ontribution (6.10). We see at on
e that the magneti
 
harge must be proportional to �_(0),QM = n�_(0) �H; n 2 Zand it 
ontributes n to the instanton number.A non-basi
 defe
t on the inhomogeneous fa
e must also lie on at least one of thehomogeneous fa
es, say the i-plane. For su
h a defe
t we must not take the 
orrespondingsingularA(i) in (6.7) or �_(i) in (6.10). We see that QM may be an integer linear 
ombinationof �_(0) and �_(i). More generally, if the defe
t lies on the 0-plane and several homogeneousplanes, thenQM = �n�_(0) +Xmi�_(i)� �H; mi 6= 0 if defe
t is not on plane i: (6.11)Sin
e a defe
t on the 0-plane 
an at most sit on r � 1 of the r homogeneous planes, therepresentation (6.11) for the magneti
 
harge is unique.10For twisted gauge �elds there are surfa
e 
ontributions, see se
tion 8.16



Outside of the defe
ts we 
ould have taken any A(�) instead of A(0). Then only defe
tson the �-plane would 
ontribute to the instanton number and we would �ndq = Xdefe
ts on �-planeTr �QM(�_(�) � �_(�)) �H� :Again the 
ontribution of a given defe
t must not depend on � if the 
orresponding twoform A(�) is regular on the defe
t. As above we 
on
lude that the magneti
 
harge of adefe
t is in the 
o-root latti
e of the defe
t 
entralizer,QM = �n�_(�) +Xm��_(�)� �H; m� 6= 0 if defe
t is not on plane �; (6.12)and that the instanton number isq = � Xdefe
ts on �-planen:7 Higgs �eldsIn this se
tion we 
onsider a parametrization of P(~x) in terms of stati
 `Higgs' �elds. Thismay seem to be a ba
kward step sin
e we are en
oding a smooth group-valued obje
t,P(~x), in terms of r + 1, in general singular, Lie algebra-valued �elds. However the Higgs�elds fa
ilitate a very dire
t proof that the A(�) 2-forms introdu
ed in the previous se
tionhave the stated smoothness properties. Moreover, we shall see that the magneti
 
hargesof the defe
ts 
an be related to Higgs winding numbers around the defe
ts.One 
an de�ne a `basi
' Higgs �eld, �(0), as followsP(~x) = exp h2�i�(0)(~x)i with �(0)(~x) =W (~x)h(~x)W�1(~x): (7.1)Now, �(0)(~x), is smooth everywhere ex
ept for the inhomogeneous 0-plane. This followsbe
ause the 
entralizer of D(~x) 
ommutes with h(~x) unless (�; �(0)) = �1. It is possibleto de�ne `alternative' Higgs �elds whi
h are smooth on the 0-plane, but singular on one ofthe homogeneous i-planes, i.e. 
onsider�(i) = W (~x)�h(~x)� 1ni�_(i) �H�W�1(~x); i = 1; 2; :::; r: (7.2)ni being the i'th Coxeter label. The �eld �(i) is smooth everywhere ex
ept points on thei-plane. The relation between the Polyakov loop and the alternative Higgs �elds is asfollows [P(~x)℄nizi = exp h2�ini�(i)(~x)i ;where zi is the 
enter element exp[2�i�_(i) �H℄. The r+1 Higgs �elds �(�); � 2 f0; ig `
over'the group in the sense that it is possible to partition T3 into pat
hes, so that in ea
h pat
hat least one of the Higgs �elds is smooth. 17



In the previous se
tion we wrote Tr(P�ldP l)3 as the derivative of two forms A(�). We
laimed that A(�) is only singular on the �-plane. In other words, wherever �(�) is smoothA(�) is smooth. This is obvious in the light of the following identityA(�) = 12�2l2 Z 10 ds(s� 1)Tr hexp(2�isl�(�))d�(�) ^ exp(�2�isl�(�))d�(�)i ; (7.3)where as before l is the least 
ommon multiple of the Coxeter labels11.We now show that the magneti
 �eld, Fmag 
an be written in terms of the Higgs �elds.Using the �elds �(i) one 
an 
onstru
t normalized Higgs �elds '̂(i) as follows'̂(i)(~x) = �(0)(~x)� �(i)(~x) =W (~x) �_(i)ni �HW (~x)�1:In terms of the normalized Higgs �elds, the magneti
 �elds are� lniTr(Fmag�_(i) �H) = �l2 Z 10 ds(s�1)Tr h exp �2�isl'̂(i)� d'̂(i) ^ exp ��2�isl'̂(i)� d'̂(i)iIf the Coxeter label ni is unity, the integral redu
es toTr(Fmag �_(i) �H) = iTr �'̂(i)d'̂(i) ^ d'̂(i)� : (7.4)Let S be a 
losed surfa
e surrounding a defe
t. Sin
e the 
entralizer of �_(i) �H in G isK�U(1), where K is semi-simple, the normalized Higgs �eld '̂(i) indu
es a map from S intoa 
oset spa
e Ci = G=(K�U(1)) with �2(Ci) = Z. That is to ea
h normalized Higgs �eld '̂(i)there is one asso
iated winding number whi
h 
an be identi�ed with Tr �QM(S)�_(i) �H�.For SU(N) all the Coxeter labels are unity, and soFmag = i N�1Xi=1 �(i) �H Tr �'̂(i)d'̂(i) ^ d'̂(i)� :For the groups Br, Cr, Dr, E6 and E7 it seems that the magneti
 �eld 
annot be writtentrilinearly in normalised �elds sin
e (7.4) only applies if the relevant Coxeter label is one.For example the gauge group E7 has only one unit Coxeter label, n7. However, the Weylorbit of �_(7) 
ontains a linearly independent basis of the root spa
e. To make this more
on
rete, 
onsider the �eld '̂X = W (~x)X �HW�1(~x):A simple 
al
ulation shows thatTr(FmagX �H) = iTr ('̂X d'̂X ^ d'̂X) ;11One 
an prove this identity by inserting � = WDW�1 into the integral and 
ompar-ing with equation (6.5). Alternatively, one 
an get it from the identity Tr(e� de )3 =3d hR 10 ds (s� 1)Tr �e�s d ^ es d �i. 18



if and only if (X;�)3 = (X;�) for all roots �. (7.5)Clearly, X = �_(i) is a solution of (7.5) if and only if ni = 1. But there are other solutions of(7.5) apart from the 
o-weights with unit Coxeter; these 
orrespond to Weyl re
e
tions ofthe 
o-weights. In fa
t for Br, Cr, Dr, E6 and E7 one 
an always �nd r linearly independentsolutions of (7.5) whi
h we denote by Xi; i = 1; 2; :::; r. Thus we haveFmag = i rXi=1 Y i �H Tr �'̂(i) d'̂(i) ^ d'̂(i)� ;where now '̂(i) = 'Xi , and the Y i are dual to the Xi in the sense that (Y i; Xj) = Æij (theY i are roots or Weyl re
e
tions thereof). To ea
h normalized Higgs �eld '̂(i) there is oneasso
iated winding number whi
h 
an be identi�ed with Tr (QM Xi �H).For the groups E8, F4 and G2 no solutions of (7.5) exist.8 SU(3)In this se
tion we illustrate the ideas of the previous se
tions by 
onsidering the relevantgauge group SU(3). In the instanton number 
al
ulation of 
hapter 6 we assumed that ourmatter transformed a

ording to the 
overing group. Here we will also 
onsider the 
aseof matter in the adjoint representation by allowing for twists.First we 
onsider SU(3) with untwisted gauge �elds, i.e. the Polyakov loop operator inthe de�ning representation. The fundamental domain F has been depi
ted in �gs.(1a,5).The magneti
 
harges of the three types of defe
ts 
orresponding to the three edges of Fare integer multiples of�_(1) �H = 0B� 1 0 00 �1 00 0 01CA ; �_(2) �H = 0B� 0 0 00 1 00 0 �11CA ; �_(0) �H = 0B��1 0 00 0 00 0 11CABe
ause of overall 
harge neutrality the magneti
 
harges of all defe
ts must add up tozero, Xall defe
ts QM = 0:Any 
luster of magneti
 monopoles 
onne
ted by a Dira
 string has vanishing magneti

harge. For example, if a monopole pair is un
harged no Dira
 string, besides the one
onne
ting the two monopoles, is needed. Sin
e defe
ts on the 0-plane for whi
h QM =n�_(0) �H (ignoring `higher defe
ts') 
ontribute to the instanton number asq = Xdefe
ts on 0-planeTr�QM �_(1) �H�19
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harges
orresponding to the defe
ts and a string network 
onne
ting di�erent basi
 monopoles.Shown is a network with instanton number �1the monopole pair 
onne
ted by a string in �g.5 does not 
ontribute to the instantonnumber. The three monopoles 
onne
ted by a Dira
 string 
ontribute �1 to the instantonnumber.What about defe
ts with larger 
entralizers? If P(~x) = z, in whi
h 
ase h(~x) lies atan extremal point of F in �g.5, then P has maximal degenera
y and the 
entralizer is A2.Su
h a defe
t has magneti
 
hargeQM = n1 �_(1) �H + n2 �_(0) �H = �(n1 � n2)�_(1) � n2�_(2)� �H; ni integersand 
ontributes with �n2 to the instanton number.Finally, let us swit
h to the adjoint representation. In prin
iple we 
ould do this byrestri
ting h(~x) to the fundamental domain for the adjoint representation, see the shadedregions in �g.1. However this would lead to walls on whi
h W (x) is not smooth. A mu
heasier approa
h is to work in the 
overing group but now with arbitrary twists. In generalthis leads to a fra
tional instanton number. Su
h fra
tional instanton numbers are relatedto a loss of 
harge neutrality and nonperiodi
ity of P(~x) engendered by the twists.For example 
onsider the following set of twists z01 = exp[4�i=3℄1l = exp[2�i�_(1) �H℄; z23 = exp[2�i=3℄1l = exp[2�i�_(2) � H℄, and all other twists the identity. This is anexample of non-orthogonal twists, and leads to an instanton number of the form q = 13 +nwhere n 2 Z. From the periodi
ity properties of P(~x)P(~x + bi) = z0i!�1i P(~x)!i ; i = 1; 2; 3we obtain periodi
ity properties of W (~x), D(~x) = exp[2�ih(~x)℄ and h(~x). In our examplewe get h(~x + b1) = w �h(~x)� �_(2) �H�w�1;where exp(�2�i�_(2) �H) = z01 and w 
orresponds to an element of the Weyl group, here arotation of 2�=3. The equation 
an be understood as follows. By multiplying D(~x) with20



z01 we shift h(~x) by the ve
tor ��_(2) �H. Then we have to Weyl re
e
t this shifted ve
torba
k into the fundamental domain F with w. In F itself this 
orresponds to a rotation withangle 2�=3 around the 
enter of the equilateral triangle F . It follows that we get 
hargeneutrality in the `tripled' torus obtained by taking three adjoining tori in the x1-dire
tion.If we have in the �rst torus a defe
t of one type then in the adjoining torus in the x1dire
tion we have a defe
t with the next type of 
harge and so on, see �g.6. In the x2-
Ηα α (2) α (0)(1)Η Η

Figure 6: In the twisted se
tor with q = 1=3 there maybe just one basi
 monopole in thetorus. In the tripled torus we have 
harge neutrality.and x3-dire
tions h(~x) is periodi
 (z02 = z03 = 1l). The periodi
ity properties of W (~x) aregiven byW (~x+ b1) =W (~x)w�1R1(~x) and W (~x+ bi) = !iW (~x)Ri(~x); i = 2; 3;where !1 and !2 are twist eaters su
h that !2!3 = !3!2z23 and Ri are fun
tions with valuesin the Cartan subgroup12. From these 
onditions we obtain periodi
ity of the magneti
�eld strength Fmag = iA^A in the x2- and x3-dire
tions and Fmag(~x+ b1) = wFmag(~x)w�1.To 
al
ulate the topologi
al index q we may use the 2-forms A(�), but now we will get
ontributions from the `boundary' of the torus. This is in 
ontrast to the non twisted 
asewhere we have had no 
ontributions from the boundary be
ause of the periodi
ity of P(~x).We assume that there are no defe
ts on the boundary. Then we 
an integrate A(0) over theboundary. One easily 
he
ks that A(0) is periodi
 in the x2- and x3-dire
tions. Thereforewe end up withqb = 124�2 Z�T3 A(0) = 124�2 Zx1=0A(0)(~x + b1)�A(0)(~x) = 12� Zx1=0Tr(Fmag�_(2) �H):This shows the relation between the noninteger boundary 
ontribution13 to the instantonnumber and the total magneti
 
ux through the torus whi
h results from the loss of 
hargeneutrality on T3. In our example the element w of the Weyl group is a rotation of 2�=3in the Cartan subalgebra. Therefore r3 = 1l whi
h shows together with the periodi
ityproperties of Fmag that in the tripled torus we have no boundary 
ontributions to thetopologi
al index.12In general the fun
tions Ri 
an not be 
hosen smooth on the whole torus.13By writing Fmag = dA and using the 
o
y
le 
ondition for R2 and R3 one easily sees that qb is indeednoninteger. 21



9 Con
lusionsIn this paper we have 
onsidered gauge-�xing of Yang-Mills theory on the four torus forarbitrary gauge groups, instanton se
tors and twists. We have generalized our earlier results[7, 8℄ on the extended Abelian proje
tion with respe
t to the Polyakov loop operator onthe four torus. We have 
onstru
ted a 
omplete set of non-Abelian transition fun
tions,whi
h en
ode the `boundary 
onditions' for the gauge potentials, for all instanton se
torsand arbitrary twists. With these transition fun
tions the path ordered exponential, P(~x),whi
h is 
entral to the gauge �xing, is periodi
 up to multipli
ation by 
onstant matri
es,even though of 
ourse the gauge �eld itself is non-periodi
. Then we found an expli
it gaugetransformation whi
h transforms A0 into the Cartan subalgebra and hen
e the Polyakovloop operator into the toroidal subgroup of G. The resulting gauge �xed A0 is timeindependent. We have �xed the freedom in 
hoosing the gauge transformation by restri
tingA0 to a fundamental domain in the Cartan subalgebra.In the se
tors with non-vanishing instanton number the �nal gauge �xed potential musthave singularities [9℄. These singularities are due to ambiguities in the diagonalization ofP(~x) at points where the 
entralizer of P(~x) is non-Abelian. There is a 
lose analogybetween these defe
ts and magneti
 
harges in Yang-Mills-Higgs theories. The defe
ts are
lassi�ed a

ording to the non-Abelian 
entralizer subgroups of P(~x). A point ~x belongs toa defe
t if the gauge �xed A0(~x) lies on the boundary of the fundamental domain. Here theresults for SU(2) may be misleading; at the defe
ts the Polyakov loop operator need not bein the 
enter of the gauge group as it must for SU(2). For example, forG 2 fE8; F4; G2g the
enter is trivial but there are many di�erent types of defe
ts 
orresponding to the di�erentfa
es of the fundamental domain. The magneti
 
harges of the defe
ts are quantized andlinearly related to the points of the integral 
o-root latti
e. For all groups with nontrivial
enters we have 
onstru
ted r normalized Higgs �elds whi
h wind around the magnetizeddefe
ts. Finally we generalized earlier results in [12, 2, 13, 7℄ and related the magneti

harges of a given type of defe
t to the instanton number q. In parti
ular, if q 6= 0 then allpossible magneti
 defe
ts must appear.One may view our gauge �xing as the `nearest' �xing to the Weyl gauge 
ompatiblewith time periodi
ity. Yet unlike the Weyl gauge we �nd monopole like singularities. Thisis gratifying, sin
e in those theories where we analyti
ally understand 
on�nement, thelatter is due to the 
ondensation of monopoles; these examples are 
ompa
t QED [29℄ andsupersymmetri
 Yang-Mills theories [30℄. Of 
ourse, there is a long way from the pi
tureof 
ondensed magneti
 monopoles to real QCD.The treatment given here has been purely 
lassi
al. The next step would be to studythe path integral within this gauge �xing. At this point one would need a sensible approxi-mation [31℄. The balan
ing of the energy and the entropy of monopoles (and/or loops) mayexplain the o

urren
e of the de
on�nement transition in QCD. It would be interestingto 
larify the role of the 
enter of the gauge groups. There are gauge groups with trivial
enters but many di�erent types of monopoles and other magneti
 defe
ts.
22
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harges and the instanton number has been dis
overed, to our attention.A Transition fun
tions and twistWe prove that for arbitrary twists and instanton number there exist transition fun
tionswith the following property U0 = 1l; Ui(x0 = 0) = !i; (A.1)where the !i are twist eaters satisfying!i!j = zij!j!i; zij 2 Z: (A.2)We now start o� with Abelian transition fun
tionsU� = exp "2�i 3X�=0 n��x�L� # ; (A.3)where n�� is a Cartan sub-algebra valued lower triangular matrixn�� = 0BBB� 0 0 0 0n1 0 0 0n2 m3 0 0n3 �m2 m1 0 1CCCA : (A.4)With this 
hoi
e of n�� we have U0 = 1l. The 
o
y
le 
ondition ensures that the ni and misatisfy the 
onstraintse2�ini = z0i; e2�im1 = z23 and 
y
li
 permutations: (A.5)The instanton number is simplyq = Tr (n1m1 + n2m2 + n3m3):Now we 
laim that there exists a time-independent gauge transformation V (~x) with thefollowing properties V �1(~x)Ui(x0 = 0; ~x)V (~x + bi) = !i: (A.6)To prove this 
onsider the following two sets of transition fun
tions. Firstly take theAbelian transition fun
tions (A.3) but with the ni all set to zero. Se
ondly take the setof transition fun
tions U0 = 1l; Ui = !i, where the !i are de�ned as in (A.2). Now both23



sets of transition fun
tions have instanton number zero and an identi
al set of (magneti
)twists. Hen
e they must be gauge equivalent [17℄. This establishes the existen
e of asmooth V (~x) satisfying (A.6). Now we perform this gauge transformation on the originalAbelian transition fun
tions (i.e. with the ni not ne
essarily zero)UV0 = 1l; UVi = V �1(~x) exp "2�i 3X�=0 ni�x�L� #V (~x + bi): (A.7)These transition fun
tions have the stated properties.This proof hinges on two assumptions:� The existen
e of Abelian transition fun
tions for arbitrary twists and instanton num-ber.� The existen
e of twist eaters for all possible magneti
 twists zij.It is well known that the �rst assumption breaks down in the odd instanton se
tors ofuntwisted SU(2) gauge theory. This spe
ial 
ase has been addressed in ref. [7℄. In [16℄it was shown that the se
ond assumption is valid for SU(N). We will show the existen
eof magneti
 twist eaters also for the other simple Lie groups. For every group (withthe ex
eption of the D2r-series, whi
h will be 
onsidered separately) the 
y
li
 
enter isgenerated by z = exp �2�i�_(z) �H�:In the table below we list the 
o-weights �_(z) generating the 
enters. We now argue thatmagneti
 twist eaters 
an be 
onstru
ted from an Abelian element A and an element w inthe Weyl group. The Abelian element A is given byA = exp "2�ig Æw �H# ; (A.8)where g = 1+Pni is the Coxeter number (see the table below) and Æw is the Weyl ve
torÆw =Xi �(i) = 12 X�>0� ; jÆwj2 = dimG24 g j�Lj2:The element w is �xed by the requirement thatw�1(Æw �H)w = Æw �H � g�(z) �H: (A.9)Su
h a Weyl group element w exists for all groups. For example for G = SU(N) and�(z) = �(r) it is w = w1w2 : : :wN�1;24



where wi is the fundamental re
e
tion on the plane orthogonal to the simple root �(i),w�1i (� �H)wi = ��(i)(�) �H:The Weyl word w1w2 �rst re
e
ts on the plane orthogonal to �(1) and then on the planeorthogonal to �(2). A and w have the basi
 propertyw�1Aw = z�1A so that w�pAqwp = z�pqAq:To prove this property we �rst note, that we may repla
e the weight �(z) in (A.9) by the
orresponding 
o-weight, sin
e �(z) is always a long root. Now we 
on
lude thatw�1Aw = exp "2�ig w�1Æw �Hw# = exp (� 2�i�_(z) �H)A = z�1A;as required.Now we prove that for given magneti
 twists zij = z�ijktk ; tk 2 Z we 
an �nd twisteaters !i satisfying equation (A.2). We make the ansatz!i = wpiAqi su
h that !i!j = zpiqj�pjqi!j!i:It follows that equation (2.3) is equivalent to~n � ~p ^ ~q mod(jZj); (A.10)where jZj is the order of the 
enter group. If all twists are the identity (all ni are zero)the solution is trivial. So let us assume that at least one ni, say n3 is not zero. Then we
hoose ~p = 0B� 01p1CA ; ~q = 0B��n30n1 1CA so that ~n = 0B� n1�pn3n3 1CA :It remains to be shown that for a given n2 and n3 6= 0 we 
an solven2 = �pn3 mod(jZj): (A.11)If the order of the 
enter is a prime number, as it is for all but the A and D groups, thenwe 
an always �nd a p solving this equation. For the Dr groups with odd r the order ofthe 
enter is not prime but 4. If only one ni, say again n3 is odd then we 
an again solve(A.11). In the other 
ase all ni must be even and (A.11) 
an again be solved. This provesthe existen
e of twist eaters for all but the Dr-groups with even rank.For the Dr-groups with even rank the 
enter 
omprises of1l; z1 = e2�i�_(1) �H ; z2 = e2�i�_(r)�H and z3 = e2�i�_(r�1)�H ;where zizj = Æij1l + �ijkzk. As before one 
an �nd 
ommuting Weyl words w(i) su
h thatfor ea
h 
enter element 25



w�1(i)Aw(i) = z�1i A = ziA and w(i)w(j) = w(j)w(i): (A.12)For example, w(1) = w1w2 � � �w2rw2r�2w2r�3 � � �w1:Now we make a 
ase by 
ase analysis to show the existen
e of twist eaters for arbitrarygiven twists. Using (A.12) one �nds the following solution for the possible 
hoi
es for zijin (A.2): 
ase !1 !2 !3 z12 z13 z23one twist A w(i) 1l zi 1l 1ltwo twists A w(i) w(j) zi zj 1l3 di�erent twists w(i)A w(j)A w(k)A �ijkzk �ikjzj �jkizi2 or 3 identi
al twists w(i) w(j)A A zi zi zjTogether with the result in [16℄ this �nally proves the existen
e of magneti
 twist-eatersfor all gauge groups.In the main body of the paper we needed the 
enters, (dual) Coxeter labels and Coxeternumbers of the various gauge groups. For 
ompleteness we have listed these in the tablesbelow. group Ar Br Cr Dr; r even Dr; r oddZ Zr+1 Z2 Z2 Z2 � Z2 Z4�_(z) �_(1) �_(1) �_(r) �_(1); �_(r) �_(r)ni 1; : : : ; 1 1; 2; : : : ; 2; 2 2; : : : ; 2; 1 1; 2; : : : ; 2; 1; 1 1; 2; : : : ; 2; 1; 1n_i 1; 2; : : : ; 2; 1 1; : : : ; 1; 1g r + 1 2r 2r 2r � 2 2r � 2Table 1a: Centers Z, generators �_(z) of the 
enters: z = exp(2�i�_(z)), Coxeter labels ni,dual Coxeter labels n_i and Coxeter number g of the 
lassi
al groupsgroup E6 E7 E8 F4 G2Z Z3 Z2 1l 1l 1l�_(z) �_(1) �_(7)ni 1; 2; 2; 3; 2; 1 2; 2; 3; 4; 3; 2; 1 2; 3; 4; 6; 5; 4; 3; 2 2; 3; 4; 2 3; 2n_i 2; 3; 2; 1 1; 2g 12 18 30 12 6Table 1b: Centers Z, generators �_(z) of the 
enters: z = exp(2�i�_(z)), Coxeter labels ni,dual Coxeter labels n_i and Coxeter number g of the ex
eptional groups
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B Proof of (6.3)For l = 1 this formula is easily 
he
ked if one uses P = WDW�1 and the de�nitionsA = iW�1dW and logD = 2�ih. To prove the formula for l > 1 is less trivial. As a �rststep 
onsider two group valued �elds P1; P2. ThenTr�(P1P2)�1d(P1P2)�3 =Xi Tr(P�1i dPi)3 � 3 dTr(P�11 dP1 ^ dP2P�12 ):If the Pi are smooth and periodi
 thenZT3 Tr�(P1P2)�1d(P1P2)�3 =Xi ZT3 Tr(P�1i dPi)3:With our 
hoi
e for the transition fun
tions the Polyakov loop operator is indeed periodi
and we 
on
lude that ZT3 Tr�P�ld(P l)�3 = l ZT3 Tr(P�1dP)3: (B.13)Now we 
an relate the instanton number in (1.5) to the winding of P l as followsq = 124�2l ZT3 Tr�P�l dP l�3Sin
e P l = WDlW�1 we 
an now apply formula (6.3) with D repla
ed by Dl. This thenleads to q =X� 124�2l ZM� dA(�) ; [� M� = T3 ; M� \M�0 = ; ; if� 6= �0;where A(�) is smooth in M� and has been de�ned in (6.5). This proves (6.3) for l > 1 asrequired.Referen
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