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We study the phases and phase transition lines of the fimtpagature&> Higgs model. Our work is based on
an efficient local hybrid Monte-Carlo algorithm which allsfor accurate measurements of expectation values,
histograms and susceptibilities. On smaller lattices ieutate the phase diagram in terms of the inverse gauge
coupling3 and the hopping parameter For x — 0 the model reduces @2 gluodynamics and for — oo to
SU(3) gluodynamics. In both limits the system shows a first ordefinement-deconfinement transition. We
show that the first order transitions at asymptotic valuethefhopping parameter are almost joined by a line
of first order transitions. A careful analysis reveals thatre exists a small gap in the line where the first order
transitions turn into continuous transitions or a crossraegion. For3 — oo the gauge degrees of freedom
are frozen and one finds a nonlinga(7) sigma model which exhibits a second order transition fromaasive
O(7)-symmetric to a massleg3(6)-symmetric phase. The corresponding second order linafgeB remains
second order for intermediatguntil it comes close to the gap between the two first ordeslirigesides this
second order line and the first order confinement-deconfinemansitions we find a line of monopole-driven
bulk transitions which do not interfer with the confinemeetonfinment transitions.

PACS numbers: 11.15.-q, 11.15.Ha, 12.38.Aw

I.  INTRODUCTION

Quarks and gluons are confined in mesons and baryons andtaeenas asymptotic states of strong interaction. Undwetistg
the dynamics of this confinement mechanism is one of theeahgithg problems in strongly coupled gauge theories. Comigms
is lost under extreme conditions: when temperature reaittee@CD energy scale or the density rises to the point where th
average inter-quark separation is less tham, then hadrons are melted into their constituent quarks.

For gauge groups with a non-trivial center is the Polyak@plo

Br 1

ﬁa (1)

0

P(@) =trP(Z), P@) = %tr (exp 1 Ap(1,T) dT) , Br=

an order parameter for the transition from the confined toutheonfined phase igluodynamicgpure gauge theories). Its
thermal expectation value is related to the differenceae gnergy' due to the presence of an infinitely heavy test quark in the
gluonic bath as

(P)oce ™, )

such that(P) # 0 in the unconfined high-temperature phase aR{l = 0 in the confined low-temperature phase. Below
the critical temperature i® (%) uniformly distributed over the group manifold and above thiéical temperature it is in the
neighborhood of a center-element. Near the transitiontfitsidynamics is successfully described by effective tldiegensional
scalar field models for the characters®ifr) [1-3]. If one further projects the Polyakov loops onto theteeof the gauge group,
then one arrives at generalized Potts models describingffibetive Polyakov-loop dynamics [4].

With matter in the fundamental representation the centansgtry isexplicitly brokenand for all temperatures h@sa non-
zero expectation value and points in the direction of a paldr center element. Thus in the strict sense the Polyatay |
ceases to be an order parameter for the center symmetry. Ger@soopic scale this is attributed to the breaking of thimgt
connecting a static ‘quark anti-quark pair’ when one treesdparate the static charges [5]. It breaks via the spomtarezeation
of dynamical quark anti-quark pairs which in turn screenitioividual static charges.

To clarify the relevance of the center symmetry for confinenitesuggests itself to study gauge theories for which theyga
group has a trivial center. Then the Polyakov loop ceaseg tanborder parameter even in the absence of dynamical matter
since the strings connecting external charges can bredke/igpontaneous creation of dynamical ‘gluons’. The sreiadlienple
and simply connected Lie group with a trivial center is thledimensional exceptional Lie groug.. This is one reason why
G4 gauge theory with and without Higgsfields has been investtim series of papers [6-11]. Although there is no symmetry
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reason for a deconfinement phase transitiaddmyluodynamics it has been conjectured that a first order dea@menttransition
without order parameter exists. In this context confinemefiers to confinement at intermediate scales, where a Qasialing
of string tensions has been detected in [12]. Although thestiold energy for string breaking ¥, gauge theory is rather high,
string breaking has been seerBidimensionalys gluodynamicsin [13].

The gauge groupU (3) of strong interaction is a subgroup@% and this observation has interesting consequences, asgoin
out in [8]. With a Higgs field in the fundamentaldimensional representation one can break@egauge symmetry to the
SU(3) symmetry via the Higgs mechanism. When the Higgs field in ttioa

S0 61 = [t (s 0 BB + 1D,0,0,0) 4 V(0)) ©
picks up a vacuum expectation valugthen6 gauge bosons acquire a mass proportionalwhile the8 gluons belonging to
SU(3) remain massless. The massive gauge bosons are removed&a@pectrum fop — co. In this limit G Higgs model
reduces toSU (3) Yang-Mills theory. Even more interesting, for intermediaind large values af the G, Yang-Mills-Higgs
(YMH) theory mimicsSU (3) gauge theory with dynamical ‘scalar quarks’. The masselsesfd ‘quarks’ and the length scale at
which string breaking occurs increase with increasindhe Polyakov loop serves approximate order parameteseparating
the confined from the unconfined phases with a rapid chandeedtdnsition or crossover. This rapid change is depicted in
Fig. 1 which shows the expectation valueffor G gluodynamics as function of the inverse gauge coupling 1/¢2.
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FIG. 1: Phase transition onl@> x 6 lattice in terms of the Polyakov loop in the fundamental espntation of>-. The rapid change of the
Polyakov loop with3 = 1/¢2 (left panel) and histograms of the Polyakov loop fbin the vicinity of 3. (right panel) point to a first order
transition.

In an earlier work we derived & dimensionakffective theoryor the dynamics of the Polyakov loop for finite temperature
G4 gluodynamics and analyzed the resulting Landau-type thesdth the help of elaborate Monte Carlo simulations [14].
Already the leading order effective Polyakov loop modelibith a rich phase structure with symmetric, ferromagnetiad
anti-ferromagnetic phases.

In the present paper we investigate the phase structureabstiopicG: YMH lattice theory with a Higgs field in th&
dimensional representation. The corresponding lattitieraéor theG- valued link variables and a normalized Higgs field with
7 real components reads

1
Symu[U, 2] =3 (1 — ?trReL[D> — 6 Y Payplhy y Oy, Dy Dy =1, (4)
O

T,p

and depends on the inverse gauge couplirand the hopping parameter For 3 — oo the gauge bosons decouple and the
theory reduces to a®(7) invariant nonlinear sigma model which is expected the hasecand order (mean field) symmetry
breaking transition down t®(6). The mean field prediction for the critical couplingsds s = 7/8 and this value bounds.

from below [15]. In the limitx = 0 we recovelG, gluodynamics with a first order deconfinement phase tramsiin agreement
with the findings in [16]. In the other extreme case— oo we end up withSU(3) gluodynamics with a weak first order
deconfinement transition. The known transitions in thetlimgicases: — 0, x — oo or 3 — oo are depicted in Fig. 2. If is
lowered fromoo then in addition to th& gluons ofSU (3), the6 additional gauge bosons 6f; with decreasing mass begin to
participate in the dynamics. Similarly as dynamical quaked anti-quarks, they transform in the representat{@jsand {3}

of SU(3) and thus explicitly break thg; center symmetry. As iQCD they are expected to weaken the deconfinement phase
transition. Thus it has been conjectured in [6] that therg exdst a critical endpoint where the transition disappears
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FIG. 2: Expected phase diagram in the parameter spagg, «) (taken from [6]).

In the following section we shall briefly recall those fack®at G- representations which are relevant for the present work.
In Sec. Ill some algorithmic aspects are reviewed. A moraibket presentation can be found in our earlier paper [13]. Bé
contains our Monte-Carlo results for the phase diagramerihx) plane. We find that the two first order lines emanating from
the deconfinement transitons @, and.SU(3) gluodynamics at = 0 andx = oo end in the vicinity of(3, k) = (9.4, 1.6)
on a6 x 162 lattice. Sec. VI contains the results of our high statissizsulations for histograms and susceptibilities in the
small region in parameter space where the two first ordes lame either connected by a second order line or leave opem a ga
which smoothly connects the confinend and deconfined ph&sesdata are consistent with the conjectured critical emtpo
attached to the two first order lines. For larga second order transition line which separatesafie) andO(6) sigma models
comes close to the first order deconfinement transition.lifles phases and transition lines are localized and analyisietiigh
statistics simulations of the Polyakov loop distributiordausceptibility, plaguette and Higgs action susceitidsl and finally
with derivatives of the mean action with respect to the hnggarameter. Besides the transition lines indicated in Fipere
exists another line of monopole driven bulk transitionsisTime emanates from the bulk crossover in pGitegluodynamics at
0 =9.45[16].

IIl. THE GROUP G2

The exceptional Lie groufr; is the smallest Lie group in the Cartan classification whehiinply connected and has a trivial
center. The two fundamental representations arg ttienensional defining representati¢f} and thel4 dimensional adjoint
representatiof14}. One may view the elements of the representafitnas matrices in the defining representatior56f(7),
subject to seven independent cubic constraints, see [8].ekample, the defining representati¢n} of SO(7) turns into
an irreducible representation ¢f;, whereas the adjoint representatif?l} of SO(7) branches into the two fundamental
representatioq 14} and {7} of G,. The gauge group of strong interaction is a subgrougofind the corresponding coset
space is a sphere [17],

G2/SU(3) ~ S°. (5)
This means that every elemeutof G, can be written as
U=S-V with Se€Gy/SUB) and Ve SU(3), (6)

and we shall use this decomposition to speed up our numeiinalations.
Quarks inG, transform under th& dimensional fundamental representation, gluons undet4fttmensional fundamental
(and adjoint) representation. To better underst@pdjluodynamics we recall the decomposition of tensor pragluct

{te {7 ={1}e {7t e {14} & {27},
Me{te{y={11e4-{T}e2- {14} @3- {27} 02 {64} @ {77},
{4y {14} ={1}a{4}e {27} {17} & {77},
{4} {14} {14} ={1} {7} ®5 - {14}®3- {27} - .

()
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These decompositions show similarlies to QCD: two quatkgg quarks, two gluons and three gluons can build cologtetin
— mesons, baryons and glueballsdn gauge theory three gluons can screen the colour charge ndlke sjuark,

{T}e {14} {14} {14} ={1}&---, (8)

and this explains why the string between two external cleirgthe{7} representation will break for large charge separations.
The two remnants are colour blind glue lumps. The same hapjoertwo external charges in the adjoint representatiora In
previous work we did observe string breaking at the expestpdration between the two charges [13].

The G2 gauge symmetry can be broken$®/(3) with the help of a Higgs field in th& dimensional representation. For
Kk — oo the factorS in the decomposition (6) is frozen and we end up with6ah(3) gauge theory with rescaled gauge coupling
for the factor/. With respect to the unbroken subgro$ify (3) the fundamental representatiofig} and{14} branch into the
following irreducibleSU (3) representations:

{1} — {3te 3o {1},
{14} — {8} o (3} & {3}.

The Higgs field branches into a scalar quark, scalar antikgaiad singlet with respect t8U(3). Similarly, theGs gluons
branch into masslessU (3) gluons and additional gauge bosons with respeétif@3). The latter eat up the non-singlet scalar
fields such that the spectrum in the broken phase consistmaksless gluons,massive gauge bosons and one massive Higgs
particle.

9)

I, ALGORITHMIC CONSIDERATIONS
A. Equations of motion for local hybrid Monte-Carlo

In this work we employ a local version of the hybrid Monte-l6aiHMC) algorithm where single site and link variables are
evolved in a HMC style [18]. The algorithm assumes a locariattion and hence applies to all purely bosonic theoriége T
implementation for thé&:5 Higgs model is a mild generalization of the algorithm usedunprevious work ori7s gluodynamics
[13]. We use alocal hybrid Monte-Carlo (LHMC) algorithm &®veral good reasons: First there is no low Metropolis decee
rate even for large hopping parameters. More precisely,Haa bath algorithm combined with an over-relaxation we leiou
need two Metropolis steps in each update #or- 0 which for largex may lead to low acceptance rates. With the LHMC-
algorithm we can avoid this problem and deal with arbitraajues of<. Autocorrelation times can be controlled (in certain
ranges) by the integration time in the molecular dynamicsg@fahe HMC algorithm. Second, the formulation is giveniesty

in terms of Lie group and Lie algebra elements and there isaeal o back-project onto the group. Kgs it is possible to use

a real representation and in addition an analytical exjmeder the involved exponential maps from the algebra toghaup.
These maps allow for a fast implementation of the LHMC aligoni.

This algorithm has been essential for obtaining the aceuesults in the present work. Since we developed and usdilghe
implementation foi7, it may be useful to sketch how it works for this exceptionallgy. More details can be found in [13].
For G2 YMH lattice theory the (L)HMC algorithm is based on a fictit®dynamics for the link-variables on thi& manifold
and the normalized Higgs field on thesphere. The “free evolution” on a semisimple group is thenfRinnian geodesic motion
with respect to the Cartan-Killing metric

dsg; = ktr (dUU™" @ dUU™) . (10)
In a (L)HMC dynamics the interaction term is given by the YMEtian (4) of the underlying lattice gauge theory and hence it
is natural to derive the HMC dynamics from a Lagrangian offtren

1 ) N2 .
Linve = =5 2 tr (Ul ) + K (@,9) = Soun[U, @), (12)
T,

where ‘dot’ denotes the derivative with respect to the fimtis time parameter and K (®, ®) is a kinetic term for the Higgs
field. To update the normalized Higgs field we set

B, = 0,8, with O, € SO(7T) (12)

and constand®,. The change of variablal, — O, converts the induced measure$hc R7 into the Haar measure &fO(7).
Without interaction the rotation matricé3, will evolve freely on the group manifol§O(7) such that in terms of thé/, O)
variables we choose as Lagrangian for the HMC dynamics

L= —% ;;tr (L'{w,,tu;}t)Q - % ;tr (OIO;l)Q — Symu[U, O]. (13)



The Lie algebra valued fictitious momenta conjugated toitilevariablel(, ,, and site variabl€, are given by

oL oL

op=—————— = U U, Q= ——— =-0,0;". 14
P & (Us, Uz s e 8(0,0:1) a4
The Legendre transform yields the following pseudo-Hamikin
1 1
H:—§Ztr&p§7u—52trﬂ§+SYMH[U,O]. (15)
T, x

Note that for reals, , andO, the momenta are antisymmetric such that both kinetic termpa@sitive. The equations of motion
for the momenta are obtained by varying the Hamiltonian. idr@tion ofSym [ U, O] with respect to a fixed link variablé, ,
yields the staple variablg, ,,, the sum of triple products of elementary link variablesuig to a plaquette with the chosen link
variable. Setting

By = Popdr, Uy, = Uy dr = =Py Uy, dr (16)

with similar expressions for the momentum and field varialile and O, in the Higgs sector yields for the variation of the
HMC Hamiltonian

6H:—Ztrmzu{mI”u—FI”u}—Ztrﬂm{ﬂz_Gz} (17)
€, T
with the following “forces” in the gauge and Higgs sector
p oyt T !
Fz,,u = ﬂ (uz,pRm,p - Rm”uuz“u) + H(um,,u(bz) T+p Gz = Iid)m(zym ury d’y) ’ (18)

where the last sum extends over all nearest neighpofs andU,,, denotes the parallel transporter frgrto «. The variational
principle implies that the projection of the terms betweerlycbrackets onto the Lie algebrgs andso(7) vanish,

gi}m,u = F;L,w’ ) Qm = Gm’50(7)- (19)

g2

The equations (14) and (19) determine the fictitious dynamic¢he lattice fields in the (L)HMC algorithm. Choosing aca
orthonormal basi$T, } of g, the LHMC equations in the gauge sector read

Upy = —Polhsy and Po =Y tr(Fy,T0) T, (20)

with force F, ,, defined in (18). In the Higgs sector they take the form

0, =-9,0, and 9, =Y tr (Gme) T (1)
b
with trace-orthonormal basigl}, } of so(7) and forceG,, defined in (18).

B. Numerical solutions of YMH-dynamics

We employ a time reversible leap frog integrator which ubesrtegration scheme

mm#”/(q— + %57—) = mmvﬂ(’r) + %57— s.ﬁmal"(T)
Uy, (T +07) = exp {—67 PBa,u(T + %67)} Uz, (T) (22)
PBopu(T+07) = Po w7+ %57’) + %57’ ‘bw,u(T +47),
and similarly for the variablesO,,, 9..) in the Higgs sector. The ‘time’ derivative 88(r + 7) in the last step is given in
terms of the already known group valued fieldrat- 67 via the equations of motion. Clearly, to calculdteand O at time

7 + o7 a fast implementation of exponential maps is required. énHiggs sector the mag(7) — SO(7) is computed via the
Cayley-Hamilton theorem. For small values of the hoppingpeeters the step size and integration length for the integration



may be chosen as in the gauge field integrator. For an effiar@hfast computation of the exponential ngap— G2 we exploit
thereal embedding’ of the representatioh® 3 of SU(3) into G»,

U=S VW) with SeGo/SUB), W e SU®3). (23)

For a given time stepr the factorization will be expressed in terms of the Lie atgeddements with the help of the exponential
maps,

exp{dTu} =exp{d7s} exp{d7v} withgenerators u € gz, v € V.(s5u(3)). (24)

The exponential maps for the two factors can be calculatéciesftly, see [13]. But in the numerical integration we néled
exponential map for elements € g,. These elements are related to the generat@rsdv used in the factorization by the
Baker-Campbell-Hausdorff formula,

&u:%@+w+%%ﬂaﬂ+uu (25)

For a second order integrator the approximation (25) maydeel in the exponentiations needed to calcula@ndS. This
approximation leads to a violation of energy conservatitictv is of the same order as the violation one finds with a sg&con
order integrator. To sum up, a LHMC sweep consists of thefdlg steps:

1. Gaussian draw for the momentum variables on a given sitdiran
2. Integration of the equations of motion for the given sitd &nk,

3. Metropolis accept/reject step,

4. Repeat these steps for all sites and links of the lattice.

This local version of the HMC does not suffer from an exteasiti «« V' problem such that already a second order symplectic
(leap frog) integrator allows for sufficiently large timeepsdr. For a large range of couplind®, <) in our simulations an
integration length of" = 0.75 with a step size ofr = 0.25 is optimal for minimal autocorrelation times and a small fn@mof
thermalisation sweeps. Acceptance rates of more@hahare reached. To compare the performances of our LHMC algorit
with the usually used heat-bath algorithm we estimated ¢imepuitation time of the different parts in the LHMC-algonthin
units given by the average computation time for one stapl®Sfy. On an Intel Corei7 CPU the latter is approximat¢jys for
a123 x 6 lattice.

In Table | we listed the times needed to change the gauge @stigtion during a single update of one link or one Higgs field
variable, the time for both integrators without expondmtiap and separately the computation time for a single expttadenap.
Most time is spent with calculating the exponential mapsSfor(7). Note that during the calculation of one exponential map for

Part ASy ASo integr.i{  integr.O  exp(G2) expE0r)
pure gauge  1.00 - 1.34 - 0.42 -
gauge Higgs 1.03 0.43 1.74 1.00 0.40 4.97

TABLE I: Computation times normalized tA Sy, (staple).

SO(7) the CPU calculates about exponential maps fak. Table Il compares the total time-contributions to one apfation
with those of the heat-bath algorithm with overrelaxatidfe see that for pure gauge theories the standard heat-lpaifitlain
with overrelaxation is only two times faster as the LHMC altjon.

Part ASu ASo integr.U{ integr.O exp(Gz2) expEO-) totaltime/V -d - Config. heat-bath
pure gauge  1.00 - 1.34 - 1.26 - 3.60 ~ 2
gauge Higgs 1.03 0.11 1.74 0.25 1.20 3.72 8.05 -

TABLE II: Total time contribution to one LHMC configuratiorompared to heat-bath algorithm.



IV. THE PHASE DIAGRAM OF THE G2 HIGGS MODEL: OVERVIEW

With the help of the local HMC algorithm sketched previously calculated several relevant observables to probe theepha
and phase transition lines in t8, ) plane. First we present the phase diagram obtained on sttalel. For vanishing we
are dealing withG5 gluodynamics which shows a first order finite temperature@diégement phase transition. The transition
is discontinuous since there is a large mismatch of degrefre@dom in the confined and unconfined phases. At the other
extreme value: = oo six of the fourteen gauge bosons decouple from the dynamitsva are left withSU (3) gluodynamics,
which shows a first order deconfinement phase transition s Wee question arises whether the first order transitionS4
andSU (3) gluodynamics are connected by a unbroken line of first ordassttions or whether there are two critical endpoints.
In the latter case the confined and unconfined phases couldrmected continuously. On the other hand, for arbitrabut
8 — oo the gauge degrees of freedom decouple from the dynamicsranis deft with a nonlinea®(7)-sigma model. We
expect that the(7)-symmetry is spontaneously broken®g6) for sufficiently large values of the hopping parameter arad th
this transition is of second order.

In order to localize the confinement-deconfinement traosiine(s) we first measured the Polyakov loop expectatidumeva
as (approximate) order parameter for confinement on a Si2lk 2-lattice in a large region of parameter spage<{5. .. 10,
k= 0...10%). Forx > 1 the Polyakov loop takes its values in the reducible reptasien {3} & {3} & {1} of SU(3) and

Thus, for largex we should find(P) = 1 in the confining phase anP) ~ 7 or (P) ~ —2 in the unconfined phase whefe
is near one of the three center-elemenféf(3). We eliminate the ambiguity of assigning a value to the Ralydoop in the
unconfined phase by mapping values witf) < 1to3 — 2 (P).

The result for(P) is depicted in Fig. 3. We see that in the confining phase theaagion value varies fror to 1 when

4.0 6
3.0 >
4
2.0 (P)
logo K 3
1.0
2
0.0
1
-1.0 0
5.0 6.0 7.0 8.0 9.0 10.0

B

FIG. 3: Expectation values d? in the coupling constant plane and on a sriafl x 2 lattice

the hopping parameter increases. For large valugsinfthe unconfined phase the Polyakov loop is near the ideotitjor
largex) near one of the three center-element$'6%(3). On the small lattice the Polyakov loop jumps along a comtirecurve
connecting the confinement-deconfinement transitions & @y and pureSU (3) gluodynamics. This suggests that there exists
a connected first order transition curve all the way from 0 to k = co. To see whether this is indeed the case we performed
high-precision simulations on larger lattices. A carefuhlgsis of histograms and susceptibilities for Polyakapl® and the
Higgs action shows that the first order lines beginning at 0 and atx = co do not meet. This happens in a rather small region
in parameter space such that the two first order lines almest.rithey may be connected by a line of continuous transition
in-between there may exists a window connecting the confineldunconfined phases smoothly.



For 8 — oo we are left with a nonlinea®(7) sigma model with action

So ==k D0y, (27)
T,p

and this model shows a second order transition at a critmabng <. from aO(7) symmetric to a8J(6) symmetric phase. To
see how this transition continues to finite valuegjofle measured the expectation valyéy) and (O ) of the (averaged)
plaguette variable and Higgs action

Op = ZRetrLlD and Oy = — Z@Muwcbw. (28)

Tp

76V

and the corresponding susceptibilities

x(0) =V ((0%) = (0)?) . (29)

The finite size scaling theory predicts that near the tremmsjtoint the maximum of the susceptibilities scales with Wiolume
to the power of the corresponding critical exponent

X(O) ~ a4+, (30)

wherev is the critical exponent related to the divergence of theatation length. For a first order phase transition we expect
the susceptibility peak to scale linearly with the spat@lvne (sinceV, is fixed). More precisely, for a first order transition one
expectsy = 1 andv = 1/3 while for a second order transition=# 1 [19].

The expectation values and logarithms of susceptibilies small6® x 2-lattice are depicted in Fig. 4. The expectation
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FIG. 4: Average plaquette, Higgs action and susceptigdlitiear the critical point off x 2 lattice.

value of a plaquette variable jumps at the deconfinemensitian line and the corresponding susceptibility is peak&His
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is in full agreement with the jump of the Polyakov loop acrtss transition line. The expectation value of the Higgsact
and the corresponding susceptibility both spot the decenfent transition well. But they also discriminate betweden(7)
unbroken and broken phases. The data on the small lattioétpa second order Higgs transition line in the YMH-modelt

B > Baecont(x). This could imply that the second order line ends at the fidéndeconfinement transition line. To determine
the order of the Higgs transition line we consider the finite scaling of

2

X(O) = 5-{0) and - (Oy) (31)
for lattices up t@20® x 6. The results presented below show that the Higgs transiiomsecond order transitions. Unfortunately
we cannot exclude the possibility that the second ordettlings into a crossover near the deconfinement transitien lin

Our results on the complete phase diagram in(the:)-plane as calculated on a large#® x 6-lattice are summarized in

Fig. 5. We calculated histograms and susceptibilities ttreamarked points on the transition lines in this figure. # thiple
point exists then an extrapolation to the point where theined phase meets both unconfined phases leads to the caupling
Buip = 9.62(1) andkyip = 1.455(5). Near this point the deconfinement transition is very weaktiauous or absent and thus

0 ‘- T T T 2 B T T T T
10% | i 18 |
SO(7) broken
10% + SU(3) deconfinement 4 16}
K K
10t | T 4 14l
5
=
100 LS -e- - 12 L
© SO(7) unbroken
G2 deconfinement
0 L 1
5 15 30 00 9

B

FIG. 5: Phase transition lines onl&® x 6 lattice. The solid line corresponds to the first order decamfient transitions, the dashed line to
the second order Higgs transitions and the dotted line téefhef the first order line to the bulk transitions. The plat the right shows the
details inside the small box in the plot on the left where thagition lines almot meet.

we performed high-statistics simulations on larger lafito investigate this region in parameter space more dgre§ome
of our results are presented in the following sections. Up tather small region surrounditigyip, ~uip) We can show that the
deconfinement transition is first order and the Higgs tramsis second order. But we shall see that in a small regionrato
this point the deconfinement transition is either seconémoodabsent.

The bulk transition

The existence of a bulk transition in lattice gauge theamtezero temperature can influence its finite temperaturevii@ima
Such transitions are almost independent of the size of tiedand are driven by lattice artifacts [20]. Bulk trarits between
the unphysical strong-coupling and the physical weak-ttogpgegimes in lattice gauge theories is the rule rathen ttine
exception. The strong coupling bulk phase contains vaticel monopoles which disorder Wilson loops down to thevititet
length scale given by2?c ~ O(1) [21, 22]. In the weak coupling phase the short distance physidetermined by aymptotic
freedom andi’oc < 1. Both SU(2) and.SU (3) lattice theories exhibit a rapid crossover between the taasps which beomes
more pronounced fofU (4) [21]. For SU(N) with N > 5 the bulk transition is first order [21]SU (3) lattice gauge theory
with mixed fundamentalf)) and adjoint §) actions shows a first order bulk transiton for laygeand small3;. For decreasing
(. the transition line terminates at a critical point and tue a crossover touching the lirg = 0. On lattices withV; = 2
the deconfinement transition line joins the bulk transitioe smoothly from below and fav, > 4 from above [23, 24]. More
relevant for us is the finding in [16] that the bulk transitiorpure G, gauge theory af = 9.45 is a crossover [16].

We have scanned the values for the plaquette variables dpdkiew loops from the strong to the weak coupling regime to
find a bulk transition that might interfere with the finite teemature deconfinement transition. For various valuesédwtw = 0
andr = oo on al2?® x 6 and16® x 6 lattice we determined the position and nature of the bulksitions. In full agreement
with [16] we see a crossover @, <) ~ (9.44, 0) which is visible as a broad peak in the plaquette susceipfibiépicted in the



right panel of Fig. 6. The Polyakov loop does not detect thissover.
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FIG. 6: Plaquette and susceptibility for small values:afear the bulk transition on 22 x 6 lattice.

does not depend on the hopping parameter which means thiatitth&ansition line hits the line = 0 vertically. Despite of
the broad peak in the susceptibility of the plaquette dersi the bulk and deconfinement transition cleary sepaeatddhis
agrees with the results in [25]. In the regidl < x < 1.6 the critical coupling3. decreases with increasimg but the nature
of the transition does not change much as can bee seen in.Fldne/plaquette density seems to be a continous functigh of
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FIG. 7: Plaguette and susceptibility for intermediate ealofx near the bulk transition onE? x 6 lattice.

andx and we conclude that the transition is still a crossover.
Betweenx = 1.6 andx = 1.65 the peak in the bulk transition becomes pronounced. In #g®n the distance between

the bulk and deconfinement transitions becomes very smalleftheless we expect that the much localized bulk tramsstiill

does not interfere with the weak deconfinement transitiam.velues ofx betweenl.65 and approximatel.5 the position of

the bulk transition gets more sensitive to the hopping patarmand the distance to the deconfinement transition licreases
again. The nature of the transition changes at the same timkarge gap in the action density separates the strong cgupli
from the weak coupling region. This is depicted in Fig. 8. Tin@ny data points taken at= 1.8 show that the size of the gap
does not depend on the volume and this points to a first oraesition. The plots for the plaquettes and plaquette stibdéps
look very much like the plots in Fig. 6. Far 2> 2.5 the situation changes again. The gap in the plaquette gerhsgies and the
position of the bulk transition tends to that of the bulk siion in SU (3) gluodynamics which again is a crossover.

There is ample evidence that bulk transitions are driven byapoles on the lattice [20]. Thus we calculated the demdity
monopoles [24] as a function ¢f for k = 0 andx = 1.8. The densityM together with the plagquette variable are plotted in
Fig. 9. Forx = 0 they vary smoothly with3, as expected for a cross-over, but for= 1.8 they jump at the samg ~ 9.25.
The height of the jump does not depend on the lattice sizekiged, right panel. Thus we find strong evidence that the bulk
transition is intimately related to the condensation of oywies in the strong coupling, Higgs model.
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FIG. 9: Plaquette and Monopole density for= 0 andx = 1.8 on a12® x 6 and16® x 6 lattice.

Finally we would like to comment on the behaviour neae= 1.6. Here theG»> Higgs model behaves similar t8U(3)
gluodynamics with mixed fundamental and adjoint actionfe Tatter shows a first order bulk transition which turns iato
crossover for smalB,. It seems that for > 1.6 the massive72-gluons are heavy enough such that the approximate center
symmetry of the unbrokefiU(3) is at work. This could explain why we find a first order traritfor x 2 1.6.

V. THE TRANSITION LINES AWAY FROM THE TRIPLE POINT

In this section we come back to the confinement-deconfinetreemtition. Sufficiently far away from the suspected triple
point atfyip = 9.62(1) andkyip = 1.455(5) the signals for first- and second order phase transitionarsebiguous and are
presented in this section. The measurements taken neawotild-tye triple point are less conclusive and will be presérnd
analysed in the following section.

The confinement-deconfinement transition line

Already the histograms for the Polyakov loop show that theodénement transition is first order for values of the hogpin
parameter in the intervalq0, 1.4] and[1.7, oo]. Two typical distributions for = 1.0 andx = 1.3 corresponding to the points
1 and2 in the phase diagram in Fig. 5 are depicted in Fig. 10 (lefefjahese and other histograms with< 1.4 show a clear
double peak structure near the transition line and are dlidestical to the histogram for = 0. Similar results are obtained
for larger hopping parameteks> 1.7.
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In Fig. 10 (Right panel) we plotted histograms of the Polyakmps for3 = 9 and hopping parameters in the vicinity of
Kk =~ 2.6, corresponding to poirt in Fig. 5. The histograms with < 2.6525 show peaks at almost the same positions. The
systems with these small valuessoéire in the confined phase. For largevalues the peak moves towards the 'would-be’ center
elements of the subgroufl/(3) and a second peak appears. Again the double-peak strutheedistribution points to a first
order transition. We varied the spatial sizes of the lattmed observed no finite size effects in the distributions\ipe> 16.

The Higgs transition line

For 3 — oo the gauge degrees of freedom are frozen and we are left witménearO(7) sigma-model which shows a
second order transition from@(7)-symmetric massive phase tad6)-symmetric massless phase. With the help of a cluster
algorithm [26] we updated the constrained scalar fields atmitated the susceptibility of

1
T, 1
which is proportional to the sigma-model actiSp in (27),
1
X(OU) = _W (9%(50). (33)

The results of our simulations on lattices with varying sgdatizes are depicted in Fig. 11, left panel. The suscdityitnf

the action becomes steeper as the spatial volume incre&dlestive peak of the (normalized) second derivative alsoeiages.
This means that the system undergoes a second order warsiti. = 1.075(5) (corresponding to point in Fig. 5) from

a massiveO(7)-symmetric phase with vanishing vacuum expectation vatua massles®(6)-symmetric phase with non-
vanishing expectation value. Actually the mean field thdoryO(n) models ind dimensions predicts a second order transition
at the critical couplings.,m¢ = n/2d. For our model it dimensions the mean-field predictionds,,s = 7/8 ~ 0.875 and is
not far from our numerical value.

For smaller values off the gauge degrees of freedom participate in the dynamic)a() is now proportional to the
susceptibility ofOg in (28). The plots in Figs. 12 and 13 show a similar behaviothef first and second derivatives of the
average Higgs action fgf = 30 and12, corresponding to the poinisand6 in the phase diagram in Fig. 5.

Even for the smaller valug = 12 we see that the susceptibility becomes steeper with inicigeietice size while the second
derivative of the average action increases. This alreadyodstrates that the second order transition at the ayroptgion
(8 — oo extends to smaller values gf

VI. THE TRANSITION LINES NEAR THE TRIPLE POINT

When the first order transition become weaker it becomesasingly difficult to distinguish it from a second order s#ion
or a cross-over. For example, the four histograms in Fig. HbWsdistributions of the Polyakov loop at poifiin the phase
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FIG. 12: First and second derivative of the average actidh meispect to the hopping parameter for different spatttitkasizes ag = 30

diagram depicted in Fig. 5, correspondingite= 1.5 and g varying betweerd.5525 and9.5550. All histograms are computed
from 400 000 configurations on a medium sizé x 6 lattice. The histogram on top left shows a pronounced pe#k-at0.1,
corresponding to the value in the confined phase. With istngs8 a second peak builds up &t ~ 0.25 corresponding to a
value in the unconfined phase. We have calculated more histecand conclude that the well-separated peaks in thédisbn
are of equal heights fgi. ~ 9.5535. At this point the Polyakov loop jumps from the smaller to kwger value. For even larger
values of§3 the second peak at largErtakes over and the system is in the unconfined phase. Althibeghistograms point to a
weakly first order transition we can not rule out the posiibihat the transition at = 1.5 and ~ 9.5535 is of second order.
Later we shall see that it is a first order transition. If wglstly decrease the value ef then the signal for a first order transition
is more pronounced. This is illustrated in the Polyakov lbggtograms depicted in Fig. 15. If we again increase theeviium

k = 1.5to k = 1.55 the peak of the Polyakov loop does not jump at the transitmntmt 5 ~ 9.4885. Instead it increases

smoothly fromP = 0.12 in the confinement phase & =~ 0.24 in the deconfinement phase, see Fig. 16. We conjecture that in

this region of parameter space the first order transitiomsturto a continuous transition or a cross-over which ig ledafirmed

by an even more careful analysis.
We studied the size-dependence of the average Polyakoy ptaquette variable and Higgs-action per lattice site tiogie

with their susceptibilities. The following results are aisied on lattices withlV; = 6 and spatial extend¥’; € {12, 16, 20, 24}

and forg = 9.5535. This corresponds to points in the neighborhood of pointthe phase diagram in Fig. 5.

Fig. 17 shows th&-dependence of the Polyakov loop and its susceptibilityHerfour different lattices. The measurements
have been taken a0 different values of the hopping parameter in the vicinitycof 1.5. This way we cross the phase transition
line vertically in thex-direction at the transition poirtin the phase diagram in Fig. 5. Thedependence has been calculated
with the reweighting method. Later we shall see that the pé#the susceptibility at. ~ 1.501 scales linearly with the volume.
This linear dependence is characteristic for a first ordarsition.
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The plots in Fig. 18 show the-dependence of the average plaquette variable and thesporrding susceptibility for the four
lattices. Again we observe that the susceptibility peak.at 1.501 increases linearly with the volume of the lattice. Also note
that on the small 23 x 6 lattice the peak in the susceptibility can hardly be seen.

The two plots in Fig. 19 show the-dependence of the average Higgs action per lattice poithtarresponding susceptibility.
Similarly as for the Polyakov loop and the plaquette we olesarpeak of the susceptibility at the same value- 1.501.

To check for finite size scaling we investigated the susbéjpiiés corresponding to the Polyakov loop, plaquettéalale and
Higgs-action per site as a function of the volume. The resaé plotted in Fig. 20, left panel. For an easier compang®n
normalized the data points by the peak value for the largétsté with lattice sizeV, = 24. The linear dependence of the peak
susceptibilities on the volume is clearly visible for thegler three lattices and this linear dependence is predistedirst order
transition [19]. In recent studies of the latti§&/ (2) Higgs model in [25] it turned out that fa¥, = N; < 18 the maxima of the
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FIG. 15: Distribution of the Polyakov loop &8, <) = (9.6190, 1.455) — (9.6220, 1.455) near the supposed triple poid)0 000 configura-
tions on16> x 6 lattice

susceptibilities are well described by a function of therfar.* + b, so that they seem to scale linearly with volume, as expected
for a first order transition at zero temperature. Simulation larger lattices revealed however, that the suceyilpigaks all
saturate at larger values 6fand no singularities seems to develop in the thermodynamit IFor the latticeG2-Higgs model
considered in the present work we see no flattening of thespleaarger lattices withV, up to24 and we interpret this as a
signal for a true first order transition.

Table Il shows the extrapolation of the critical hoppinggraeter to infinite volumes. To that end we calculated foheac
lattice size the value.(V') at which the Polyakov loop-, plaquette- and Higgs actiorcspsbilities take their maxima. Note
that on the larger lattices witlV, = 20 and24 the three critical hopping parameters are the same withirsstal errors. The
infinite volume extrapolation yields the critical valug = 1.5008.

Volume 122 163  20® 243

x(P) 1.5012 1.5016 1.5008 1.5008
x(Om) 1.4992 1.5012 1.5008 1.5008
x(Op) 1.4980 1.5008 1.5008 1.5008

TABLE llI: Critical coupling . obtained from the maximum of the susceptibility peaks ofyRBkdv loop, plaquette and Higgs action for
different spatial volumes at = 9.5535

A. The first order lines do not meet

The previous results on tné® x 6 lattice leave a small region in parameter space figat) ~ (9.4, 1.6), where the transition
may be continuous or where we can cross smoothly betweemttimed and unconfined phases. Since a jump of the Polyakov
loop expectation values in the infinite volume limit poirasat first order transition we investigated the quantity

AP = <P>deconﬁned - <P>C0nﬁned (34)
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FIG. 17: Finite size scaling of Polyakov loop and Polyakaydausceptibility a8 = 9.5535

more carefully. In the small parameter region we localizegldritical curve(g,, x.) with the histogram method. At the critical
point is the height of the confinement peak equal to the heifjtite deconfinement peak. For fixedwe crossed the transition
line by increasing the inverse gauge coupling. Then we ntedshe maximal jump as a function of the step siz@ for one
step size below and one aba¥%g For a first order transition the jump should not depend much 8 whereas for a continuous
transition or a cross-ovek P should decrease with decreasifigg. The results on a63 x 6 lattic are depicted in Fig. 20 (right
panel). We see that fox.35 < 5. < 9.52 corresponding td.52 < k. < 1.72 the jump approaches zero with shrinking step size
and this clearly points to second order confinement-decemfémt transitions or cross-overs in these small paramegens.
Simulations on a large&0? x 6 lattice confirm these results. Fig. 21 shows histogramsePthlyakov loop fok-values between
1.5 and1.7. At k = 1.5 we still observe a weakly first order transition which turntia continuous transition or crossover
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FIG. 19: Finite size scaling of Higgs action and its susdgjitly for 5 = 9.5535.

for 1.5 < k < 1.7. Within the given resolution in parameter space the windothé same as on thé?3 x 6 lattice. Since the
critical couplings for spatial volumes beyo6d® do not change we conclude that the gap will not close in thaitefivolume
limit. This shows that the two first order lines emanatingvire = 0 andx = co do not meet.

Here the question arises whether such a gap in the first angdvétween the confined and unconfined phases is expected. Th
celebrated Fradkin-Shenker-Osterwalder-Seiler the¢2&m28], originally proven for th&U (V) Higgs-model with scalars in
the fundamental representation, says that there is no etengparation between the Higgs- and the confinement eghay
point deep in the confinement regime and any point deep in ihgsHegime are related by a path such that Green’s functions
of local, gauge invariant operators vary analytically @dme path. Thus there is no abrupt change from a colorlessdtoa
charged spectrum. This is consistent with the fact thaetheg only color singlet asymptotic states in both 'phases’.

The proof of the theorem relies crucially on using a comfyefied unitary gauge. A complete gauge fixing is not possibl
with scalars in the adjoint representation$i (V) since these scalars are center blind. Thus the theorem doéwid for
adjoint scalars and indeed, with adjoint scalars theres exfihase boundary separating the Higgs and confined phaisesot
completely obvious what these results tell us about thegptagram of the&z» Higgs model. The center @¥s is trivial and
the 14-dimensional adjoint representation is just one of the wwdBmental representations. Since there is no need to tireak
center one may conclude that the confinement-like regimetaméiiggs-like regimes are analytically connected. In o]
for large values of the hopping parameter the center of thespondingsU (3) gauge theory is explicitly broken by the scalar
fields, simililarly as for theSU (3) Higgs model with scalars in the fundamental representafidrese arguments suggest that
there exist a smooth cross-over between the confining angsHtigases. But one important assumption of the Fradkini&nen
theorem is not fulfilled for thé&'s Higgs model. The theorem assumes that there exists nottoanfsir largex. Then at large:
one can move from large to smalland then at smalf further on to small values of without hitting a phase transition. Clearly
this is not possible for thé&'s Higgs model such that not all assumption of the theorem hakl t
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VIl. CONCLUSIONS

With a new and fast LHMC-implementation for the exceptioGalHiggs model we calculated the full phase diagram in the
coupling constant plane spanned by the hopping parametad inverse gauge couplirigy First we confirmed the proposed
and earlier seen [6, 16] first order transition for pd¥e-gluodynamics which corresponds to the line= 0 in the phase
diagram of the Higgs model. A first analysis on smaller lagiindicated that this first order transition is connecteithécfirst
order deconfinement transition 80 (3)-gluodynamics, corresponding to the limit— oo, by a smooth curve of first order
transitions. The same analysis spotted another curve ofidearder transitions emanating fraim— oo and meeting the first
order line at a triple point. For this first analysis we caftatl histograms for the Polyakov loop, Higgs-action andyxdte
action. To identify the second order transition line we @ddhe finite size scaling of various susceptibilities amel $econd
derivative of the action with respect to the hopping paramethe final result of our analysis onl&® x 6 lattice is depicted

in Fig. 22. Note that the tiny region in the vicinity of the wdtbe triple point is very much enlarged in this figure. Irstkiny
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FIG. 22: Complete phase diagram in th® )-plane on al6® x 6 lattice. The neighbourhood of the 'would-be triple poirs’viery much
enlarged and the variable scale in the diagram is resparfsibthe cusps in the transition lines. The solid line intisaa first order transition,
the dashed line (blue) a second order transition and thedibitte (red) a second oder transition or a crossover.

region in the(s3, x)-plane where the order of the transition could not be decidedtudied the slope dfP) in the vicinity of
the suspected transition. The simulations show that thditatsorder curves emanating from the lines with= 0 andx = ~
end before they meet. The two curves could be connected by afisecond-order transition or they could end at two (d}i
endpoints in which case the confined and unconfined phassesna@thly connected. If indeed there exists a cross-ovéhin
Higgs model at a finite value of the hopping parameter theig#uge model behaves very similar to QCD with massive quarks.
To finally answer the question about the behavioGefHiggs model theory in the vicinity of the 'would-be triple ipt
at (6,x) = (9.4,1.6) further simulations with an even higher statistics and aevsmphisticated analysis of the action sus-
ceptibilities may be necessary. Since we already used aneeffiand parallelized) LHMC-algorithm and much CPU-titoe
arrive at the results presented in the work this will not beasy task. Earlier studies of the susceptibility peaksénstmpler
SU(2)-Higgs model on smaller lattices pointed to a first ordergigon ats < 2.5. Recent simulations on larger lattices in [25]
showed that the susceptibility peaks do not scale with thenve such that there is actually no first order transitiontfarse
small values of3. We have seen no flattening of the peaks with the increasilugnes forNV, < 24 and conclude that the solid
line in Fig. 22 is a first order line. But of course we cannotiede the possibility that the correlation length is largeeapected
and that simulations on even larger lattices are necessdinatly settle the question about the position and size @ftmdow
connecting the confined with the unconfined phase. This wilbe easy and thus it would be very helpful to actually prina t
the confining and Higgs phases@t can be connected analytically, perhaps with similar argumas they apply t&6U (V)
Higgs models with matter in the fundamental representatji@n, 28].
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