Effective Polyakov Loop Dynamics for Finite Temperature G, Gluodynamics
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Based on the strong coupling expansion we obtain effetiinensional models for the Polyakov loop in finite
temperaturérs gluodynamics. The Svetitsky-Jaffe conjecture relatesehelting continuous spin models with
G2 gluodynamics near phase transition points. In the preserk we analyse the effective theory in leading
order with the help of a generalised mean field approximadioah with detailed Monte Carlo simulations. In
addition we derive a Potts-type discrete spin model by ictstg the characters of the Polyakov loops to the
three extremal points of the fundamental domainGf Both the continuous and discrete effective models
show a rich phase structure with a ferromagnetic, symmatritseveral anti-ferromagnetic phases. The phase
diagram contains first and second order transition linegrérdical points. The modified mean field predictions
compare very well with the results of our simulations.
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. INTRODUCTION 050 = ' ' ' ' ' '
0.45 |- ¢
For many good reasorts, gluodynamics has attracted much oaor i
attention recently. For example, thd-dimensional excep- 0351 ' i
tional groupG, has a trivial centre, in contrast to the usually 030 |- ¢ T
studiedSU (V) gauge groups. Indeed it is the smallest simple< ) 0.25 |- 8
and simply connected compact Lie group with this property. X020k g
ThusG, gluodynamics is useful to better understand the rel- 0.15 |- %é i
evance of the centre symmetry for confinement [1]. Actually 010 L |
a non-trivial centre is needed in several proposed scenario 005 L ’ 1
for confinement and hend&, gluodynamics can be used to '
test these proposals. It has been convincingly demondtrate %[ ¢ . l

that the theory shows a first order finite temperature transi-  -0:05
tion without order parameter from a confining to a deconfin-

ing phase which can be explained by centre vortices [2]. In

this context confinement refers to confinement at intermedig - ;. Expectation value of the traced Polyakov loop in thedh-
ate scales, where a Casimir scaling of string tensions hes be e tai7-dimensional representationds, gluodynamics on a6°x6
reported [3]. But on large scales, deep in the infraredigsi  |attice as obtained via hybrid Monte Carlo sampling. Thesgftaan-
break due to gluon production and the static inter-quar&pot  sition is located for the Wilson action at a critigal &~ 9.765.

tial becomes flat [4]. Recently it has been demonstrated that

chiral symmetry is broken at low temperatures and is regtore

at high temperatures at the thermodynamic phase transiti

9.60 9.65 9.70 9.75 9.80 9.85 9.90
B

%h approximate order parameter separating the confined from

[51 the deconfined phase (see Fig. 1) with a rapid change at the
G2 gluodynamics has an intriguing connection4é/(3) phase transition point.

gauge theory. When one couples a scalar field in@e * According to the conjecture by Svetitsky and Yaffe [6, 7]
dimensional fundamental representation to the gauge fielg,o dynamics at the finite temperature confinement-decon-
one can break the/, gauge symmetry to th8U(3) gauge  finement transition of @-+ 1-dimensional pure gauge theory
symmetry of strong interaction. With increasing hopping pa ¢5n, pe described by an effective spin modef idimensions.
rameters the resulting Yang-Mills-Higgs theory interpolates gaqeq on our earlier results on finite temperatitg2) and
smoothly betweedr; gluodynamics without centre symmetry g 3y gluodynamics [8-12] there are strong indications that

andSU(3) gluodynamics withiZ; centre symmetry. For in- ¢ effective models derived and analysed in the preserit wor
termediate values of the hopping parameter the theory reimic

; P are sufficient to accurately describe the dynamics of Palyak
SU(3) gauge theory with dynamical quarks and the massef,qns The direct connection between the effective spin-mod
of these ‘quarks’ increase with increasing hopping paramet

els andG gluodynamics is postponed to a forthcoming pub-
In G2 gluodynamics the Polyakov loop is no longer an ordefji-4tion. 29 y postp ap

parameter in the strict sense. Despite this fact it stilesias In Sec. Il we review kinematic aspects@§ and the main

implications forG» gluodynamics. Afterwards in Sec. Ill the

strong coupling expansion for the effective Polyakov loop a
*Electronic addresses: tion'is exp_la!ned and in particular the e_ffectlv_e theoryaad-
Bjoern.WellegehausenOuni-jena.de, wipfOtpi.uni-jena.de and mg order is |ntrqduced- In _Sec- IV we |nye5t|gate the preper
Christian.Wozar@uni-jena.de ties of the effective model first by a classical analysisnthg



a modified mean field approximation and finally by extensivewhere the characters are given in terms of (particularly- cho
Monte Carlo simulations. Reducing the continuous spin desen) angular variables, » as
grees further to the discrete spins situated atadges of the
fundamental domain af'> we end up with a deformed Potts-  x7; = 1+ 2cos(¢1) + 2 cos(p2) + 2 cos(p1 + @2),
type spin model whose phase diagram is explored in Sec. V. 14 = 2(1 + cos(p1) + cos(1 — pa) + cos(ws)

+ cos(p1 + @2) + cos(2p1 + p2) + cos(ip1 + 2¢2)).

(7

The boundary of the fundamental domain is determined by
J = 0 and thus is parametrised by the three curves (see Fig. 2)
G- is the smallest of the five exceptional simple Lie groups
and can be viewed as a subgroupS#d(7) subject to seven

IIl. THE GROUP G2

1
X14 = Z(X7 +1)* -2,

independent cubic constraints for thii&imensional matrices (8)
g representingO(7) [13]: Y11 = —5(x7 + 1) £ 2(x7 + 2)*/2.
Tabe = Taef Jda Geb Gfc- 1) Note that the reduce@, Haar measure is maximal not at the
origin but for (x7, x14) = (=1/5,—2/5). The fundamental
HereT is a total antisymmetric tensor given by domain has no symmetries at all and this expresses the fact

that the centre ofy5 is trivial.
T1o7 = T154 = T163 = T235 = T264 = T374 = T576 = 1.

(2) 14 T T T T T T T T
The constraints (1) for the group elements reduce 2he | i
generators 050(7) to 14 generators of the groufs with
rank 2. Its fundamental representations are the defirffing 10 .

dimensional and the adjoint4-dimensional representation
with Dynkin labels

Xx14 6 | E
(7) = [L,0, (14) = [0, 1). © A |
G4 has a trivial centre and its Weyl group is the dihedral 2 L 4
groupDg of order12. Additionally G is connected t&'U (3)
through the embedding 6fU (3) as a subgroup df, accord- Or 7
ing to [14] 2 . . . .
-2 -1 0 1 2 3 4 5 6 7
G2/SU(3) ~ SO(7)/SO(6) ~ Sg. 4) X7

So when thess part of G is frozen out we end up aSU (3) FIG. 2: Fundamental domain 6f-. Darker regions indicate a bigger
gauge theory. Haar measure.

In effective theories for the gauge invariant (traced) Rely
kov loops in the fundamental representations we are aiming
at, only the reduced Haar measure is needed. Based on [15]
this measure can be given for a parametrisation of the conju- Representation theory and implications for confinement
gacy classes either by angular variables or alternativeth®

fundamental characters, In the pioneering work [13] the confining properties G§
) have been discussed and compared to thos&/¢8). Quarks
dp o< Jodpy dps = J dx7 dxia. (5)  and anti-quarks inSU(3) transform under the fundamental

_ _ representation8 and 3 such that their charges can only be
The densityJ? can be expressed in terms of the fundamentakcreened by particles with non-vanishigglity, especially

characters, not by gluons This explains why in the confining phase of
SU(3) gluodynamics the static inter-quark potential is lin-
J? = (4x3 — X3 — 2x7 — 10x7x14 + 7 — 10x14 — X14) early rising up to arbitrary long distances. As a consegeenc

« (7 — X2 —2x7 + 4X14) 7 the free energy of a single quark gets infinite and the Polyako

(6) loop expectation value vanishes. Hence the Polyakov loop
discriminates the confining from the deconfining phase and
at the same time serves as order parameter foZtheentre
symmetry.

1 This is possible when a fundamental Higgs field is couplechéogauge To better understand', gluodynamics we recall the de-
field [1]. composition of tensor products into irreducible represent
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tions, _do that one inserts a group valued delta function into thi pat
(M e @) =014 e 27) integral,
Me(Me(M=0a4-(7)D2-(14)®3-(27) g /DU exp(—Sw[U])
@2 (64) @ (77)
(14) ® (14) = (1) & (14) & (27) @ (77) & (77" B i
(14)® (14) © (14) = (1) ® (7) ®5- (14) B 3- (27) @ - -- B /DP/D[M (P“”’ TH:1 UT’“”) p(=SwlU]) (13)
9)
with Dynkin labels = /DP exp(—Sef[P]).

(1) =100 (27,) =20, (64) =11}, (10) HereDP denotes the product of reduced Haar measures on
(77) =[3,0], (77)=]0,2]. the sites of thespatial lattice We do not need the full Haar
The quarks inG» transform under th&-dimensional funda- Measure oty since the effective actioflerr only depends on
mental representation, gluons under tHedimensional fun-  the gauge invariant content of the local Polyakov loop.
damental (and at the same time adjoint) representatiom Fro !N compact form the strong coupling expansion is then
(9) we see that similarly as ifit/ (3) two or three quarks can 9'Ven by
build a colour singlet (meson or baryon, respectively)Gin

gluodynamics three centre-blind dynamical gluons carescre S| P] = bl : S
the colour charge of a single quark, efi[ P Z Z Z Rl...RT(ﬁ)E Rili

r Ri.Rpli...4,
(Mo (1) (1) (14)=(1) - . (11) => A

Thus the flux tube between two static quarks can break due to

gluon production and the Polyakov loop does not vanish evewith the basic building blocks

in the confining phase [1]. This shows that the Polyakov loop

can at best be an approximate order parameter (see Fig. 1) Sr.¢ = XR(Pz)xr(Py) +c.c., (= (zy). (15)
which changes rapidly at the phase transition and is smatil (b . o
non-zero) in the confining phase. To characterise confinemefi€re  counts the number of link operators contributing at
we can no longer refer to a non-vanishing asymptotic string@ch order.  The coefficients; "7 ~couple the operators
tension and vanishing Polyakov loop. Instead we define con?®:.¢: Sitting at nearest neighbour links = (x;, y;) in rep-

finement as the absence of free colour charges in the phydieSentatior?;. The effective action hence describesit-
cal spectrum. In the confining phase the inter-quark patenti work of link operatorghat are collected into (possibly discon-

‘ 1 H H H ‘ H 4 f,
rises linearly at intermediate scales [2, 3]. nected) ‘polymers’ contributing with ‘weight "% . The
resulting ‘operators’ (Polyakov loop monomials) afienen-

sionlessand there is10 naturalordering scheme at hand. Our

. EFFECTIVE THEORIES AND THE STRONG chosen truncation is based on the strong coupling expaimsion
COUPLING EXPANSION powers of3 which is closely related to the dimension of the
corresponding group representations and the distancesacro

Based on a conjecture relating finite temperafitg N') glu- which the Polyakov Ioopska}\ge coupled. In the strong coupling
odynamics ind+ 1 dimensions at the critical point withzy ~ €XPansion truncated &(3"™) one has- < k and the addi-
spin model ind dimensions [6, 7], there have been extendedional restriction R, |+-- -+[R.| < kwith [R| = p1+p; fora
studies to compare correlation functions of both systems fodiVen representatioR of i with Dynkin labelsip: , ps]. The
SU(2) [9-11] andSU (3) gluodynamics [8, 12], either by us- qudmg order terms only contain interactions betweenenﬂzar
ing Schwinger-Dyson equations or demon methods [16, 17]ne|ghbours(ccy> and the two fundamental representations.
The strong coupiing expansion for the distribution of the in FOrSU(3) the characters of the two fundamental represen-
homogeneous Polyakov loops was taken as ansatz for the (e{@tions are complex conjugate of each other such that the ef-
ponentiated) effective Polyakov-loop action. This wayeeff _fectlve Polyakov I_oop_ action contains just one term m_Iead—
tive models forSU(3) gluodynamics have been derived in [8]. ing order. InGs this situation changes and we find two inde-

Here we sketch how one arrives at the analogous results f@€ndent contributions in leading order. We refer to theeorr
G and obtain the effective continuous spin model in leadingsPending model containing the two fundamental representa-

(14)

order. tions asftundamental modelts action is explicitly given by
Starting with the lattice Wilson action
Seft = A7 Z X7(Pz)x7(Py) +A1a Z X14(Pz)x14(Py),
1 2N,
Sw=pY (1-—RetrlUg), B=-r5, Nc=7 (ev) (@)
Nc atg?
O S7 S14
(12) (16)

astrong coupling expansiofiior small 5) is performed to ar- where the coupling&d; and\4 are indexed by the dimension
rive at an effective theory for the local Polyakov loops. To of the involved representation. In next-to leading orderé¢h



exist six additional terms with nearest neighbour intecast.
Their explicit forms are dictated by representation the8jy

Sor =Y X27(Pa)x27(Py),

(zy)
Srr =Y x77(Pa)x7r (Py),
(zy)
Ses = Z X64(Px)x64(Py),
(zy) . (17)
S =Y (xr(Pa)x(Py))®,
(zy)
S1a,14 = Z (X14(73m)X14(73y))27
(zy)
S71a = Z X7(Px)X7(Py)X14(Px) X14(Py)-
(zy)

It the remainder of this work we shall neglect the next-lallea
ing order terms and concentrate on the fundamental model

(16).

IV. THE FUNDAMENTAL MODEL

4

To localise the different phases we may assume that the
Polyakov loop on one sublattice, say, is equal to the group-
identity with maximal characters;; o = 7 andxi4,0 = 14.

For given couplings\; and A4 the corresponding thermody-
namic phase is then determined by that Polyakov loopgn
for which the linear functiom A7 x7 e+ 14A14x14,¢ IS Minimal.

If the minimising characters are the same on both sublattice
then the phase is ferromagnetic, else it is anti-ferromtgne
The minimum of the linear function is attained fgg on one

of the three corners of the fundamental domain in Fig. 2 or
on the curve connecting the cornérsl, —2)T and(7,14)T.
Depending on the sign of; and the slopg = A\14/)\7 one
finds the following phases:

e ForA; > 0and¢ < —1/2orfor\; < 0and¢ > —1/8
we find theferromagnetic phasg with x! = (7,14).

e For\; > 0 and¢ > 1/14 we find aanti-ferromagnetic
phaseAF1 with x! = (-1, -2).

e For\; > 0and—-1/2 < ¢ < 1/14 we find a second
anti-ferromagnetic phasaF2 with x! = (-2, 5).

e For)\; < 0 and¢ < —1/8 the characterg! = (-1 —
1/€,1/(2¢€)? — 2) change continuously frorfv, 14) to
(—1,—2) along the connecting boundary curve of the
fundamental domain. Thigansition phasas denoted

For the fundamental effective model (16) we shall localise by F— AF1.

the symmetric, ferromagnetic and anti-ferromagnetic p8as e phase portraitis depicted in Fig. 3 where we also indude
with cogxistence lines in order to fin_d the region in the SPacgnhe expected symmetric phase for weak couplings. Since in a
of couplingsh7, A14 where & connection t6; gluodynamics  symmetric phase entropy wins over energy it cannot be seen
can be established. in any classical analysis.

1.0 ,

A. Classical analysis

For strong couplings the fluctuations of the Polyakov loops 05| AF1 .
are suppressed and the spin system behaves almost clgssical
Thus for largelA\7| and|\;4| we may compute the phase di- .
agram by minimising the classical action. Anticipatingttha »,, ool S —_—
there are anti-ferromagnetic phases we introduce the odld an )

even sublattices el

Ao ={x|x1 + 29 + 23 Od and 05
o={z |21 + 22 + x5 odd} (18) .
Ae: {.’B|I1—|—.§C2—|—.§C3 ever‘}.
On each sublattice the Polyakov loop is assumed to have a -1.0 L L L
constantvalue and the two values are denotedyand Pe, -1.0 -0.5 0.0 0.5 10
respectively. We denote the corresponding charactersein th A7

fundamental domain af'; by
_ [ X7re ) _ [ X7
Xe = <X14,e) N <X14) (Pe) and

_ [ X710\ _ [ X7
Xo = <X14,o) B <X14> (Po).

With this assumption and notation the action of the fundamen
tal model (16) reads

FIG. 3: The classical phase diagram of the fundamental teféec
G2 model. In addition to the calculated ferromagnetic and-anti
ferromagnetic phases we expect a symmetric phase for waak co

(19) plings.

B. Mean field analysis

Az 0

Seif = VxTKxo With K —3 ( : /\14> . (20) The classical analysis is refined by a modified mean field ap-

proximation in which one allows for inhomogeneous mean
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fields. First we recall the main aspects of the method. Hersubject to the following four constraints for the admittezhel

we are interested in expectation values of the form sitiespe andpo:
1 = Xeo- 27
(4) = E/DPGXP(—Seﬁ[P])A[P], (X)eo = Xeo (27)
(21)  The one-site expectation valués .)670 are calculated with
DpP = Hdu(Pm), Peodu. To actually compute the minimising densities one
x needs the expectation value of the action and entropy, given
where the gauge invariant functioA(?) depends on the by
Polyakov Ioop_wa the the fundamental character&P) anq <Seﬁ>p = VX! KXo,
x14(P) anddy is the reduced Haar measure®f. The equi- v v (28)
librium probability measur®P exp(—Sett)/Z is the unique (Inp), = 3 (Inpe), + 5 (In po), ,

minimum to the variational problem

) where K is the matrix given in (20). On each sublattice the
“%f (Seft +Inp),, (22)  variational problem is solved by a densityx exp (7-x(P))
with two Lagrangian multiplierg = (j7, j14). The four mul-
where thep-indexed expectation value is calculated with thetipliers are determined by the four constraints in (27).ngdsi
integration measurg[P] DP, whose probability density is  this solution for the densities in the variational prineigle-
to be varied. Expectation values of observables can then kiermines the effective potential as function of the predsamti

computed as mean fields. The expectation values of the characters on the
two sublattices minimise the effective potential. Thesaimi
(A), = /DPp[P]A[P]. (23)  mas solve the following system of coupled gap equations
- Ow(Xo) - Jw(Xe)
In this scope a Monte Carlo simulation is just the approxima- Kxe= T oxe KXo = T oxe
tion of the probability density[P] o exp(—Sex[P]) with B (29)
a finite set of configurations which givelP] ~ N& x w(x) = 1n/du(7?) e X Ex(P),

Zfi”f 6(P — Pt), whereP; is the configuration in the'th

Monte Carlo step andVyc is the number of Monte Carlo We have calculated the expectation valuegpfand 4 on

steps. both sublattices as functions of the couplings ar2é x 100
In a variational approach the mean field approximationgrid in the rectangle

amounts to the restriction of the admissible densifie®
—03< A\ <03 and —0.25 <Ay <025  (30)

product form
The contour plot of the expectation value
p[P] = [ [ pe(Px). (24) ,
‘ (xr) = 5 (e + (x70)) (31)

Then expectation values factorise and the computationean b

done site by site. Due to the translational invariance of th&alledmagnetisationis depicted in Fig. 4. As expected, for

action one may believe, that the minimising density is transWeak couplings we find a symmetric phase with vanishing

lational invariantp, (P) = p(P). However, this assumption Magnetisation in the centre of the phase diagram. On the

is only justified for the symmetric and ferromagnetic phasedower left, for negative couplings, we find the ferromagoeti

with constant mean fields. phase with(x7.e) = (x7,0) & 7 or equivalently with a typical
Anticipating the existence of additional anti-ferromatine  P= near the identity. For an unambiguous identification of the

phases we partition the lattice into its even and odd subPhases one needs the expectation values ofpoiimdy 4 on
lattices, as we did in the classical analysis, and allow fbr d both sublattices. We have calculated these four expentatio

ferent densities on the sublattices, values for the fundamental model on a grid in the space of
coupling constants with extensive Monte Carlo simulations
pe(Pz) :x€ Ae Since the numerical simulations and mean field approxima-
Pz(Pz) = po(Pe) i@ E Mo (25) tion yield almost identical results we defer the detailest di
)

cussion of phase portrait, and in particular the localisatf
the various anti-ferromagnetic phases for positive cogsl

The classical analysis is then recovered by allowing @nl ; )
y y g arly to the following section.

type point-measures g o. In the modified mean-field anal-
ysis we allow for allpe c in the variational principle with pre-
scribed mean fieldge andx, on the even and odd sublattices.

. S - . C. Monte Carl It
The effective potential is then obtained by computing onte Laro resufts

1 We performed our Monte Carlo simulations with abd@i000

inf (Seft + Inp) (26) samples for every point on@ x 50 grid inside the rectangle

U(XEa XO) = V » P>
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FIG. 4. (Colour online) Polyakov loofy~) of the fundamentalGz FIG. 6: (Colour online) Staggered magnetisatioof the fundamen-
spin model in mean field approximation. tal model obtained via Monte Carlo simulation ong&irlattice.

(30) in the space of coupling constants. Two neighbouringhe simulation results agree well with the classical analy-
points on this grid are separated by 1. First we calculated sjs for strong couplings: all phases but tnensition phase

the magnetisatiofy;) and the resulting phase portrait is de- F — AF1 are already visible in the classical phase diagram in
picted in Fig. 5. It looks very similar to the portrait calcu- Fig. 3. In the Monte Carlo simulation an additional “symmet-
lated in the mean field approximation, see Fig. 4. For weakic phase” with vanishing Polyakov loop and vanishing stag-
gered magnetisation appears for weak couplings, in complet
agreement with our mean field analysis. The resulting phase
6 diagram with one symmetric, one ferromagnetic and two anti-

ferromagnetic phases is depicted in Fig. 7.
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0.1

/

N}
(0]

Aia 00| 4
! N \/
- AF2
0 01 i
03 02 -01 00 01 02 03 = :
A7 )
02} i

FIG. 5: (Colour online) Polyakov loogy7) of the fundamental
model obtained via Monte Carlo simulation on&hlattice.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

. . A
couplings entropy wins over energy and the product of Haar !

measures of the Polyakov loops become relevant. In ordet|G. 7: Phase diagram of the fundamental effective modet drh
to unambiguously identify the anti-ferromagnetic phas®s f ders of phase transitions are indicated with full lines (frsler) and
positive couplings we again subdivided the lattice in thenev dotted lines (second order/crossover).

and odd sublattice\ = AsU Ay, and measured thretaggered

magnetisation Eventually the finite temperature phase transitionGin
1 gluodynamics will correspond to a transition between the
S = §<|X7,e — X7,0l)- (32)  symmetric and the ferromagnetic phase in the effective spin
model. The dependence of the effective couplixgs\,4 on
The corresponding contour plot is exhibited in Fig. 6. Onthe Yang-Mills coupling3 can be calculated with the help
top and on the right of the plot the staggered magnetisationf powerful inverse Monte Carlo techniques [8, 12]. This
gets large and we identify this region as belonging to antiwill be done in a forthcoming publication. However, we
ferromagnetic phases. For large absolute values;of\;4 anticipate that the confinement-deconfinement phase transi
action (energy) dominates over entropy and this explains whtion in G gluodynamics will happen near the critical point
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FIG. 8: Polyakov loop(x7) of the fundamental effective model with  FIG. 9: Distribution ofy andx14 in the fundamental domain 6f-
coupling A14 = 0 obtained via Monte Carlo simulation on an at\; = 0 and 14 = 0.1446.

lattice.

22 T T T T T
Mac = 0, A\rc =~ —0.0975(75) of the fundamental model. 2or e
Thus we have plotted the magnetisation in the vicinity o thi L8 T i
first order transition from the ferromagnetic to the symietr 16 = 1
phase in Fig. 8. Note that even in the “symmetric” phase we 14+ I;" .
find a non-zero magnetisatidn7) which jumps atthe critical ., 12| - g

coupling)7 ¢. This parallels the jump of the Polyakov loopin () 19 o
G- gluodynamics, see Fig. 1. o

The phase diagram in Fig. 7 contains lines of second and ol “,‘*”" i
first order transitions and triple points. The full lines be- 06 - i
long to first order and the dotted lines to second order tran- %41 / T
sitions. Note that we may pass from the symmetric to the 0.2 ':ii:; §
ferromagnetic phase via a first or via a second order tran- 0.0 ! ! ! ! !
sition. The transitions from the ferromagnetic to the anti- 012 013 014 015 016 017 018
ferromagnetic phases AF1 and AF2 and between the anti- A7

ferromagr_letlc phases are always qf_ second order. In ord?:rIG. 10: (Colour online) Magnetisations;-) (Upper curve) and
to determine the orders of the transitions we calculatedcemor .
(x14) (lower curve) for various\z at A\14 = 0.13.

than 30 histograms for the Polyakov loop distribution near
the various phase transition curves and the changes of vari-
ous ‘order parameters’ when one crosses the transitios.line
A typical scatter plot is depicted in Fig. 9. It shows the dis-
tribution of y; at a transition from the symmetric to the anti-
ferromagnetic phase AF1 with critical couplings. = 0 and
A1ac = 0.1446. Without further analysis it is already clear
that we are dealing with a first order phase transition.

The following Fig. 10 shows the behaviour of the magneti
sations(x7) and(x14) near the transition from the symmetric
to the ferromagnetic phase, which happensXor = 0.13
and \; between—0.18 and —0.12. Both expectation values
vary continuously during the transition and this alreadg-su
gests that the transition is of second order. This conafuisio The continuous and discrete models have coinciding ckitica
further substantiated by the corresponding histogramth®r exponents at the second order anti-ferromagnetic phase tra
distributions ofy; andx14. sition and similar phase structures [18]. Motivated by ¢hes
earlier successes we perform a similar reduction of thedund
mentalGs spin model and arrive at a discrete Potts-like
spin model.

By projecting the values dP,, to the three group elements
After having collected sufficient information to reconstru  with characters7, x14 lying at the extremal points of the fun-
the full phase diagram of the fundamental continuous spilamental domain in Fig. 2, we arrive at a model for the tree

model with two effective couplings we now truncate the de-
grees of freedom further to arrive at a discrete spin model. |
the case of the well-studietlU (3) Polyakov loop models one
projects a Polyakov loo@,, onto the closest centre elements
of SU(3) and arrives at &3 Potts model with action (energy)
_given by

Sn=-B 8(0s,0y), 0z €Ly (33)
(

xy)

V. THE G2 POTTS MODEL
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FIG. 11: The classical phase diagram of the disofétéotts model.  FIG. 12: (Colour online) Magnetisatiofx~) of the discrete>, Potts
model in mean field approximation.

spins
x7) ~ 0 and in the symmetric phase of the discrete spin

(
c 7 -1 -2 (34) model{x7) ~ 4/3.
Tz 14)°\-2)"\ 5 Similarly as for the continuous model we calculated the

_ _ _ _ _ phase diagram of the discrete model with the help of the mod-
with nearest neighbour interaction determined by the Pottsified mean field approximation. The contour plot for the mag-

type action netisation is depicted in Fig. 12. In the lower part of thetplo
\ we can see the ferromagnetic phase for which the Polyakov
0 I both sublatticese and A, are equal to the identit
o — T (A7 ) _ 35 oops on both su iceSe o qu i ity
Pots = D, 72 ( 0 )Y (35) Wit very high probability.

) The corresponding contour plot as obtained from Monte

As expected, the classical phase diagram of the Potts-ty&aﬂo simulations is shown in Flg 13. Again, the mean field
model with discrete spins is similar to the diagram of the fun approximation and the Monte Carlo simulations fully agree
damental model with continuous spins. Depending on the sigRVver the whole range of coupling constants. Note that tree cla
of A7 and the slop& = \14/\; we find the following phases sical behaviour as depicted in Fig. 11 can be seen already for

and phase transition lines: rather small coupling constants.
e For\; > 0and¢ > —1/2 and forA; < 0 and¢ > 7
—47/206 we find theferromagnetic phasg with xJ = 0.04 6
T
Xo = (7,14).

(92

e For\; < 0and—1/2 < & < —47/206 we find the 0.02
anti-ferromagnetic phasé&F3 with x! = (—1,-2)
andx! = (-2,5).

IN

w

A4 0.00 ) (x7)
e ForA; > 0and—-1/2 < £ < 1/14 we find theanti-
ferromagnetic phas&F2 wit x! = (—2,5) andx/! = 0.02 1
(7a 14) 0
e For\; < 0and¢ < —1/2 and forA; > 0 and¢ > -0.04 -1
1/14 we find theanti-ferromagnetic phas&F1 with 2

Xe = (—1,-2) andx! = (7,14). -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04

A
The phase portrait is depicted in Fig. 11, where we have ’
inserted by hand the expected symmetric phase for weakiG. 13: (Colour online) Magnetisatijy-) of the discretes> Potts
couplings. A striking difference between the diagrams inmodel obtained via Monte Carlo simulation ongihlattice.
Fig. 3 and in Fig. 11 is the absence of the “transition phase”
F — AF1 in the discrete model for which this phase does In order to localize the anti-ferromagnetic phases we also
not exist by construction. Instead we find a third anti-measured the staggered magnetisation introduced in (82). T
ferromagnetic phase denoted by AF3 in Fig. 11. In addi+esulting values on a grid in coupling constant space aite plo
tion, in the symmetric phase of the continuous spin modeted in Fig. 14. In accordance with the classical analysiseve d



9

4° coupling expansion af’s gluodynamics. Already the leading

4.0 order continuous and discrete effective theories showla ric
phase structure with two coexisting phases along tramsitio

0.04

35 X L i

0.02 lines and three coexisting phases at several triple poirits.
3.0 fundamental model with continuous spins and the Potts-type
25 model with discrete spins share many properties, althongh i

A4 0.00 s the absence of a centre symmetry they need not be in the same

20 universality class. The continuous model exhibits a transi
-0.02 L4 15 tion from the symmetric to the ferromagnetic phase with the
' 110 same behaviour of the Polyakov loop asGf gluodynam-
ics, namely a steep jump from a small (but non-vanishing)
-0.04 -1 05 Polyakov loop to a loop near the identity Gf.
L1 00 The classical, mean field and Monte Carlo analysis all lead

-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04
A7

to a coherent and consistent picture for bdtdimensional
effective theories. In particular, the prediction of theane
field approximation for(x7) and(|x7.e — x7.0/) is in excel-
lent agreement with the corresponding results obtainedby d
tailed Monte Carlo simulations. This parallels our findings
for SU(3) in [18] and probably is due to the existence of tri-

tect different anti-ferromagnetic phases for positiveping c.rit.iclal points which lower the upper critical dimensiontire
constants in the upper right part of the phase portrait. vicinity of these points.

As concerning the relation between the Potts-type model As concerning the relationship between the continuous ef-
andG'; gluodynamics one caveat should be mentioned. In théective models to the underlying's gluodynamics we plan
discrete spin model there exists no real “symmetric phaseto apply inverse Monte Carlo techniques, preferably with de
with a fixed expectation value of. Even for very weak mon methods, to determine the dependence of the coupling
coupling do the magnetisatiofig) depend on the couplings. in the fundamental model on the gauge coupling. We hope
This is a remnant of the missing centre symmetrgzgf Nev-  to present the resulting curve (), A14(3) in a forthcoming
ertheless, there exists a first order phase transition froen o publication. However we anticipate that for the criticahga
(would be symmetric) ferromagnetic phase\at~ A4 ~ 0 Mills coupling 3, this curve will cross the transition line be-
to a second ferromagnetic phase with directed to thel- tween the symmetric and ferromagnetic phases at skaall
element inG,. Even in the simple discrete model we seeand negative\; ~ —0.1 in Fig. 5.
very pronounced what happens in rég gluodynamics. In
the deconfining and confining phase there is a non-vanishing
Polyakov loop, which still serves agpproximateorder pa-
rameter for confinement since it shows a steep jump at the
transition point.

FIG. 14: (Colour online) Staggered magnetisattoof the discrete
G Potts model obtained via Monte Carlo simulation ors&fattice.
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