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We study the potential energy between static charg€s:igluodynamics in three and four dimensions. Our
work is based on an efficient local hybrid Monte-Carlo algori and a multi-level Liischer-Weisz algorithm
with exponential error reduction to accurately measureetgtion values of Wilson and Polyakov loops. Both
in three and four dimensions we show that at intermediatiesdhe string tensions for charges in varidkis
representations scale with the second order Casimir. &etimensions Casimir scaling is confirmed within
four percent for charges in representations of dimensiong, 27, 64, 77, 77’, 182 and189 and in four dimen-
sions within five percent for charges in representationsimidsions?, 14,27 and64. In three dimensions
we detect string breaking for charges in the two fundamemtalesentations. The scale for string breaking
agrees very well with the mass of the created pair of glugshinClose to the string breaking distance Casimir
scaling between adjoint and defining representation istéd by2.5 percent. The analytical prediction for the
continuum string tension is confirmed for the defining repnéation in three dimensions.

PACS numbers: 11.15.-q, 11.15.Ha, 12.38.Aw

I. INTRODUCTION dynamics [5]. The temperature dependent couplings cotsstan
of these effective theories have been calculated ab injtio-b

There is compelling experimental evidence that the fundaverse Monte Carlo methods in [3].

mental constituents of QCD, quarks and gluons, never show With dynamical quarks in the fundamental representation
up as asymptotic states of strong interaction — rather they athe center symmetry isxplicitly brokenand the Polyakov
confined in mesons and baryons. Understanding the dynamié@op points always in the direction of a particular center el
of this confinement mechanism is one of the challenging probement. In a strict sense the Polyakov loop ceases to be an
lems in strongly coupled gauge theories. There are convind@rder parameter. This is attributed to breaking of the gtrin
ing analytical and numerical arguments to believe that conconnecting a static ‘quark anti-quark pair’ when one tries t
finement is a property of pure gauge theories (gluodynamicsjeparate the charges. It breaks via the spontaneous creatio
alone and that the underlying mechanism should not deper@f dynamical quark anti-quark pairs which in turn screen the
on the numbeV;, of colors. Confinement is lost at high tem- individual static charges.

peratures and for gauge groups with a non-trivial center the The pivotal role of the center for confinement also follows

trace of the Polyakov loop from a recent observation relating the Polyakov loop with-ce
ter averaged spectral sums of the Dirac operator [6—8]. More
P(Z) = tr P(2), precisely, for gauge groups witfon-trivial centerone can re-
1 ( Br ) late the expectation value of the Polyakov loop to dual con-
P(Z) = —tr | exp i/ Ao(T, T) dr) ,  Pr ==, densates. This result could finally explain why for gauge
0 T groups with a non-trivial center and fundamental matter the

transition temperatures for the deconfinementand chid@h

vanishes in the confined Io_w-temperatu_re ph"?‘se and is CIO% ansitions coincide. On the contrary, for gauge theorigls w
to an element of the center in the deconfined high-temperatur;

; . . : adjoint matter the two transition temperatures can be viéry d
phase. In gluodynamics or gauge theories with matter in th?erent [9, 10]
adjoint representation the action and measure are both-nva Tocl ’.f tH | fih ter f fi tit sua-
ant undercenter transformationsvhereas the Polyakov loop o clarlly the refevance ot the center for confinement It Sug
transforms non-trivially and hence serves as order pauez;rmetgeStS ltself to studpure gauge theoriewhose gauge groups

for the global center symmetry. This means that the cente'?a‘ve a trivial center. For sugh theories the string con_ngcti
symmetry is realized in the confined phase and spontaneous xternal charges can break via the spontaneous creatign of d

broken in the deconfined phase amical ‘gluons’ such that the Polyakov loop acquires a non-
In the vicinity of the transitioﬁ point the dynamics of the yanishin_g expecta_tion value_for all temperatures, siriyilgs

Polyakov loop is successfully described by effective threéta\doeeS 'TOQC%V;'thsdyngg;gatlsz][”;ggs.h di?e:je tt}?és;))mple

dimensional scalar field models for the characters of thd349¢ 9 upsO(3) sugg ! : (3)

Polyakov loop [1-4]. If one further projects the scalar field gauge theory has been studied in great detail on the lajtee,

onto the center of the gauge group then one arrives at ge or example [11]. Unfortunately, via the non-trivial firsbh

. . . motopy groupr; (SO(3)) = Z, the lattice gauge theory ‘de-
eralized Potts models describing the effective Polyakaywlo tects’ its simply connected universal covering grofii (2).

To avoid the resulting lattice artifacts one should ingest
theories with simply connected gauge groups with trivial-ce
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TABLE |. CentersZ of simple lie groups.

group A, B Cr D,, reven D,, rodd FEsg Er Esg Fy Go
centerZ ZT+1 T T Zio X T ym Zg T 1 1 1

exceptional Lie grougrs. This is one reason why the group in representation dpin(7) branches into the trivial representa-
Bern investigateds, gauge theories with and without Higgs tion and the7 dimensional fundamental representatioriaf
fields in series of papers [13-15]. In their pioneering worksThe 14 dimensional fundamental representatior:f which
it has been convincingly demonstrated thatgluodynamics at the same time is the adjoint representation, arises in the
shows a first order finite temperature phase transition witho branching of the adjoint o O(7) according t@21 — 7 @ 14.
order parameter from a confining to a deconfining phase. IThe27 dimensional representations. 8 (7) acting on sym-
this context confinement refers to confinement at intermedia metric traceles@-tensors remains irreducible undés. In
scales, where a Casimir scaling of string tensions has teeen rthis work we need the followingranchingsof SO(7) repre-
ported [16]. On large scales strings will finally break due tosentations t@+s:
spontaneous gluon production and the static inter-quark po
tential is expected to flatten [17]. However, the thresholde 7 — 7, 21 —14@7, 27 — 27,
ergy for string breaking it gauge theory is rather high and 35 21Tl TT—77. (2)
all previous attempts to detect this flattening have beeh-wit
out success. In the present paper we shall demonstrate thdr explicit calculations it is advantageous to view the- ele
string breaking for charges in the fundamental and adjeftr ments of the7 dimensional representation 6f, as matrices
resentations ofy, takes place at the expected scales. To thain the defining representation 6f0(7), subject to seven in-
aim we implemented a slightly modified Lischer-Weisz mul-dependent cubic constraints [15]
tistep algorithm for high precision measurements of thicsta
inter-quark potential. Tabe = Tdef 9da Geb Gfc- (3

The present paper deals with, gluodynamics in3 and
4 dimensions. The simulations are performed with an effi-
cient _and fast implementation of a local hybrlt_j Mont_e-CarIo Tyyr = Tiss = Thgs = Toss = Togs = Trg = Tsrg = 1.
algorithm. Below we shall calculate the potentials at imes ()

diate scales for static charges in the 4,27,64,77,77,182  Tpe gauge groupU (3) of strong interaction is a subgroup of

and_189 di_mensional representations. _We shovx_/ thad end G, and the corresponding coset space is a sphere [18],
4 dimensions the string tensions on intermediate scales are

proportional to the second order Casimir of the representa- Go/SU(3) ~ SS. (5)
tions. The high precision measurements iimensions con-

firm Casimir scaling withint percent for all mentioned repre- This means that every eleméiibof (> can be factorized as
sentations. Int dimensions Casimir scaling for the lowesst .

representations is again fulfilled withinpercent. I8 dimen- U=5y wih VeSU@B) and §eGz/SUB) (6)
sions we also calculated the static potential for widelyasep
rated charges in the two fundamental representations.t bo
cases we see a flattening of the potential which signals th
breaking of the connecting string. The energy where string ( = 7,(S%) — 73(SU(3)) — m3(Ga) — 73(S%) =0 (7)
breaking sets in is in full agreement with the independently

calculated masses of the glue-lumps formed after stringkere shows thatrs(G2) = Z and hence there should ex&t in-
ing. Interestingly, in the region close to the string bregki stantons of any integer topological charge. In the charge
distance Casimir scaling for the fundamental charges isdou sector there are at lea¥t magnetically charged defects [12].
to be violated by abou2.5 percent. Eventually the contin-

uum extrapolated numerical value of the string tensios in ~ Any irreducible representation 6f, is characterized by its
dimensions is found to be in good agreement with analyticahighest weight vector, which is a linear combination of the
predictions. fundamental weights, = ppu (1) + qu(2), With non-negative
integer coefficientp, ¢ called Dynkin labels. The dimension
of an arbitrary irreducible representatiéh = [p, ¢] can be
calculated with the help of Weyl's dimension formula and is
given by

HereT is a total antisymmetric tensor given by

and we shall use this decomposition in our simulations. The
%hort exact sequence

Il. THE GROUP G2

The exceptional Lie groufr, is the automorphism group of  ;  _ i, — 1 1 1 9

the octonion algebra or, equivalently, the subgroug'of(7) = P 120( ) +a)2+p+a)

that preserves any vector in Bglimensional real spinor rep- X (B+p+2¢9)(4+p+39)(5+2p+3q).
resentation. This means that tRedimensional real spinor (8)



TABLE Il. Representations aff2 with corresponding dimension and Casimir values.

representatiofiR [1,0] [0,1] [2,0] [1,1] [3,0] [0, 2] [4,0] [2,1]
dimensiondr 7 14 27 64 w 77 182 189
Casimir eigenvalu€x 12 24 28 42 48 60 72 64

Casimir ratioC% 1 2 7/3 3.5 4 5 6 16/3

Below we also use the physics-convention and denote a refirst two decompositions in (10) imply
resentation by its dimension. For example, the fundamental
representations afé, 0] = 7 and[0, 1] = 14. However, this X27 = X7 X7 7 X1 — X7 7 X14;
notation is ambiguous, since there exist different repriese X64 = X7 X14 — X7 — X27 (12)
tions with the same dimension. For exam{#e0] = 77 and _ 2
[0,2] = 77’ have the same dimension. An irreducible repre- = XTX14 — X7+ X1+ X14
sentation ofz; can also be characterized by the values of theand yield the characters of the representati@nhsnd64 as
two Casimir operators of degreeand6. Below we shallneed polynomials ofy; andy4. From further tensor products of
the values of the quadratic Casimir in a representdiog],  irreducible representations one can calculate the polyaiom
given by in xr = Polg (x7, x14) for any irreducible representatiad.

For a fast implementation of our algorithms we also need re-

Cr =Cpg=2p"+6¢°+6pg+10p+18¢.  (9)  ducible representations. In particular we use

For an easy comparison we normalize these ‘raw’ Casimir (7T®7)s, (T®7®7)s, (TRTR7RT)s, (T® 7)s®14, (13)
values with respect to the defining representatior?py = o .
C,.4/C10. The normalized Casimir values for the eiéht non-Where the subscript ‘s’ denotes the symmetrized part of the

trivial representations with smallest dimensions aregive ~'€SPective tensor product. Comparing the reduction of rep-
Tab. II. resentations fo5O(7) andGo and mapping representations

from SO(7) to G the following characters of reducible rep-

uarks and gluons it are in the fundamental represen- .
Q g 2 P resentations can be computed

tations7 and 14, respectively. To better understatd glu-
odynamics we recall the decomposition of tensor products of

: = + X1
these representations, Xen X

X(707@7), = X77 t X75
TRT=107T® 14627, X(7079707), = X182 T X77 + X27 + X64 + 2 X14 + X7,

7 024 14 = 7 [S2) 27 (o) 64, X(7®7)s®14 = X189 —+ X27 —+ X1-

MURU=1014d2TBTTOTT, (14)
TRTRKT=104-T®2-1403-27T02-64 77,
MeHUeld=10705-1403-27T0--- . . CASIMIR SCALING AND STRING BREAKING FOR
(10) SU (N.) GAUGE THEORIES

The decompositions (10) show that, similarly as in QCD, two
or three quarks or two or three gluons can build color sisglet
—mesons, baryons or glueballs. Since three gluons camrscre

%n QCD quarks and anti-quarks can only be screened by par-
the charge of a single (static) quark,

icles with non-vanishing-ality, especially not by gluons.
Thus, in zero-temperatugduodynamicshe potential energy
for two static color charges is linearly rising up to arhiyra
large separations of the charges. The potentials for charge
\n a representatio® can be extracted from the 2-point cor-

one expects that the string between two static quarks WiIr lator of Polyakov loops or the expectation values of Wilso
break for large charge separations. The two remnants are thg y P P

glue-lumps — charges screened by (at le@stjluons. The Gops with temporal exteri according to
same happens for charges in the adjoint representatiom Eac (PR (0)Pr(R)) = o—BTVR(R)
adjoint charge can be screened by one gluon. ’

TRUQUR1I4=16 -, (11)

(Wr(R,T)) = e =TV (R), (15)

_ With dynamical quarks the string should break at a character
Construction of characters from tensor products istic lengthry, due to the spontaneous creation of quark anti-
quark pairs from the energy stored in the flux tube connect-
The charactexr () = trg (U) of any irreducible represen- ing the static charges. However, for intermediate separsti
tationR is a polynomial of the charactexs andyi4 of the  r < ry the string cannot break since there is not enough en-
two fundamental representation@nd14. For example, the ergy stored in the flux tube.
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Forpure gauge theoriese expect the following qualitative merical data favor thein-formula, as suggested by supersym-
behavior of the static potential: At short distances pédtion  metry, in place of the Casimir scaling formula [37]. The dif-
theory applies and the interaction is dominated by gluon exterences between the Casimir scaling law simeformula are
change giving rise to a Coulomb-like potentidl,~ —a/r, tiny and it is very difficult to discriminate between the two
the strengtha being proportional to the valuéz of the  predictions in numerical simulations. Indeed, in [38] agre
quadratic Casimir operator in the given representafionf = ment with Casimir scaling ansin-formula in 4 dimensions
the charges; at intermediate distances, from the onsetsf coand disagreement i® dimensions has been claimed. In ad-
finement to the onset of color screening-gtthe potential is  dition the high precision simulations based on the Luscher
expected to be linearly risind; ~ or, and the corresponding Weisz algorithm in [36, 39] point to a violation of the Casimi
string tension is again proportional to the quadratic Casim scaling law in3 dimensionalSU (2) gluodynamics. In a very
at asymptotic distance scales (partial) screening setsdh s recent paper Pepe and Wiese [40] reanalyzed the static-poten
that the string tension typically decreases and only dependial for SU(2) gluodynamics ir8 dimensions with the help of
on the N-ality of the representation. In particular for center- the Liischer-Weisz algorithm and substantiated Casinail- sc
blind color charges or gauge groups without center the potering violation at intermediate scales while confirmi2glity
tial flattens. The characteristic length where the interme- scaling at asymptotic scales.

diate confinement regime turns into the asymptotic scrgenin - o gauge theories with matteve expect a similar quali-

regime is determined by the masses of the debris left aftgftive hehavior: A Coulomb-like potential at short distasc
string breaking. The Casimir scaling hypothesis, acc@rthn  casimir scaling at intermediate distances and (partiadese
which the string tension at intermediate scales is propoali g at asymptotic distances. The string tension at asyrieptot
to the quadratic Casimir of the representation [19], is &xacscales depends both on thvealities of the static color charges
for two dimensional continuum and lattice gauge theori@s an 54 of the dynamical matter. In particular, if dynamicaldsa
dimensional reduction arguments support that it also hilds o scalars can form center blind composites with the static
higher dimensions. Within the Hamiltonian approach to ¥ang charges then the potential is expected to flatten at large sep
Mills theories in2 +- 1 dimensions the following predictionfor g,ations. To see any kind of screening between fundamen-
the string tensions has been derived [20], tal charges requires a full QCD simulation with sea quarks,
which is demanding. Thus the earlier works dealt with gauge
or = , (16) theories with scalars in the fundamental representatiar. F
dr 122 example, in [41] clear numerical evidence for string bragki

with a recent refinement in [24] These analytical results di- 1" the 3 dimensionalSU/(2) Yang-Mills-Higgs model via a
rectly predict Casimir scaling in three dimensions. In fdisr MiXing analysis of string and two-meson operators has been
mensions Casimir scaling can be explained via Gaussian fielpr€Sented. Probably the first observation of hadronicgtrin
correlators [22]. Fopure SU(2) and SU(3) gauge theories !oreakmg in 5|mulat|pns of QCthh two flavors of dynam-
three and four dimensions there is now conclusive numericdf@l Staggered fermions using only Wilson loops has been re-
evidence foiCasimir scalingfrom Monte-Carlo simulations, Portedin [42, 43]. Despite extensive searches for colreser
for SU(2) in 3 dimensions [19, 23] and i dimensions [24— ingin4 dlmenS|onaI gauge theories with dynamlc_al f_ermlons
27] as well as forSU(3) in 4 dimensions at finite temperature the results are still preliminary at best. First indicatidor
[28] and zero temperature [29-32]. In particular the simula Stfing breaking in two flavor QCD, albeit only at temperaure
tions forSU (3) gluodynamics in [31] confirm Casimir scaling close to or abO\_/e the critical deconflneme_nttemperatum hg
within 5% for separations up tbfm of static charges in repre- P€€n reported in [44]. More recently Bali et al. used sophis-
sentations with Casimirs (normalized by the Casimif{ &) ticated methods (e.g. optimized smearing, improved action
up to7. String breakingfor charges in the adjoint representa- Stochastic estimator techniques, hopping parameterexecel
tion has been found in several simulations:3Idimensional  tiON) 0 resolve string blreakmg in two flavor QCD at a value
SU(2) gluodynamics with improved action and different op- Of the lattice spacing™ " ~ 2.37 GeV and of the sea quark
erators in [33, 34] and in dimensionalSU (2) gluodynamics  Mass slightly belowns [45]. By extrapolation they estimate
in [35] with the help of a variational approach involvingisty that in real QCD with light quarks the string breaking should
and glueball operators. For a critical discussion of théousr ~ N@PPen aty ~ 1.13 fm.
approaches we refer to [36], where string breaking in a sim- To measure the static potential and study string breaking
ple setting but with an improved version of the Lischerdkei three approaches have been used: correlations of Polyakov
algorithm has been analyzed and compared with less sophikops at finite temperature, variational ansaetze using two
ticated approaches. There is a number of works in which dypes of operators (for the string-like states and for tfodken
violation of Casimir scaling on intermediate scales havenbe string state) and Wilson loops. Most results on Casimir-scal
reported. For example, it has been claimed that dimen-  ing and string breaking have been obtained with the first two
sional SU (N¢) gluodynamics with largelN € {4,6} the nu- methods. This is attributed to the small overlap of the Wilso
loops with the broken-string state. To measure Polyakov or
Wilson loop correlators for charges in higher represeoieti
or to see screening at asymptotic scales one is dealing with e
! The factor1 /122 in the formula given here arises from a different normal- tremely small signals down t)~°. In order to measure such
ization of the quadratic Casimir operator. small signals one needs to improve existing algorithms con-

o 94 C14Cr
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05 = ' ' ' ' ' ' one can use a real representatiorGefand relatively simple
¢ analytical expressions for the two involved exponentiabma
0.4 1 to obtain a fast implementation of the algorithm. Finalhgt
inclusion of a (normalized) Higgs field is straightforwartta
0.3 | i t - does not suffer from a low Metropolis acceptance rate (even
{x7) for large hopping parameters).
02 L i The LHMC algorithm has been essential for obtaining the
? results in the present work. Since we developed the first im-
0.1k i plementation forGG; it is useful to explain the technical de-
s tails for this exceptional group. As any (L)HMC algorithm
0.0 N for gauge theories it is based on a fictitious dynamics for the
Ve o % — . : .
link-variables on the gauge group manifold. The “free evolu
tion” on a semisimple group is the Riemannian geodesic mo-
—01 9.I60 9.I65 9.'70 9_'75 9.;30 9.;35 9_50 tion with respect to the Cartan-Killing metric

8 ds?, = ste (AUU™ @ AUU ). (17)

FIG. 1. (Color online) Phase transition on@® x 6 Iattjce interms | the fictitious dynamics the interaction term is given bg th

of the Polyakov loop in the fundamental representation. Yang-Mills action of the underlying lattice gauge theorydan
hence it suggests itself to derive the dynamics from the La-

. . . . _ grangian
siderably or/and use improved versions of the Lischers¥Vei

multistep algorithm.

For gauge groups with trivial centerke G, Fy or Eg
the flux tube between static charges in any representatibn wi
always break due to gluon production. The potential flattengvhere ‘dot’ denotes the derivative with respect to the fimtis
for large separations and expectation values of the Polyakatime parameter and
loop never vanish [13]. However, fa@k, it changes rapidly

I = % Ztr (1uw,;tum_;lt)2 — Sym [Z/{]v (18)

T,

at the phase transition temperature and is very small in theSyy [i/] = o Z tr (2Ne — Uy p — L{;,W) , B= 2N;
low-temperature confining phase, see Fig. 1. Similarly as in 2N, z v ag
QCD we characterize confinement as the absence of free color (29)
charges in the physical spectrum [16, 46]. is the Wilson action. The Lie algebra valued fictiticzenju-
gated link momentuiis given by
oL oL .
IV. ALGORITHMIC CONSIDERATIONS Pop=i—F————— =il y—— = —illp Uy, ,
0 (the 4z, M.
A. Local hybrid Monte-Carlo (20)

and via a Legendre transform yields the pseudo-Hamiltonian

In simulations of gauge field theories different algorithans 1 )
in use. ForSU () gluodynamics heat-bath algorithms based H=3 Do tePl, + Sl (21)
on the Cabibbo-Marinai$U (2) subgroup updates, often im- W

proved by over-relaxation steps, have proven to be fast anflhe equations of motion for the momenta are obtained by
reliable. For QCD with dynamical fermions a hybrid Monte- 4rying the Hamiltonian. The variation of the Wilson action
Carlo (HMC) scheme is preferable. Based on [47] sl g,/ 17/] with respect to a fixed link variablé, , is given by
versions of HMC algorithms are available where single linksihe corresponding staple variatite ,,, the sum of triple prod-

are evolved in a HMC style. According to [48] the cost for cts of elementary link variables closing to a plaquettéwit
the local hybrid Monte-Carlo (LHMC) is about three times the chosen link variable. Hence we obtain

more than for a combined heat-bath and overrelaxation (HOR)

scheme for the case 6fU (N,) gluodynamics. §H = Z tr { B 6By + 10Uz, UL Fo i}
For the exceptional gauge groGp there exists a modifica- z,p
tion of the heat-bath update [13] which combines the hett-ba o : B
update for aSU(3) subgroup with randomly distributed- - zz; RS {%W FW} dr, (22)

gauge transformations to rotate tH& (3) subgroup through )
G2. Inthe presentwork we instead use a LHMC algorithm for g, = RN Uy Ry — R U} ) -
several good reasons: First, the formulation is given elytir ’ 2Ne © 0 M

in terms of Lie group and Lie algebra elements and there is nqhe variational principle implies that the projection okth

need to back-project ontG>. The autocorrelation time can term between curly brackets onto the Lie algepraanishes,
be controlled (in certain ranges) by the integration timéhin
(23)

molecular dynamics part of the HMC algorithm. Furthermore, ‘sz =Fuz |92-



Choosing a trace-orthonormal ba$ig, } of g» the equations Every element o7, can be factorized as
for the (L)HMC dynamics can be written as follows,
U=8- VW) with S e Gy/SU(3). (28)
Pen ;tr Fopula) To - and Us o = 195yl e (29) For a given timestefir in the molecular dynamics this factor-
ization will be expressed in terms of the Lie algebra element
with the “force” F,, ,, defined in (22). Now a LHMC sweep with the help of the exponential maps,
consists of the following steps:

1. Gaussian draw of the momentum variable on a given ¥ {oru} - exp {07 s} - exp {07 v}
link. with generators u € go, v € V. (su(3)) (29)

2. Integration of the equations of motion for the given link. fulfilling the commutation relations
3. Metropolis accept/reject step, [b,0']=v", [v,s]=5 and [s,5']=10v"+5". (30)

4. Repeat these steps for all links of the lattice. The generators are orthogonal to the generators of the re-

. . ally embedded’U (3) subgroup. To simplify the notation we
This local version of the HMC does not suffer from an ex- absorb the time ster in the Lie algebra elements.

tenswe&_] x V pmb'?m such that already a .S‘?CO“O' order The last exponential map in (29) can be calculated with
symplectic (leap frog) integrator allows for sufficientbrgie the help of the embedding (26) and the exponential map
timgsteps&. In condensed form the integration for a link for SU(3), W = exp(wv), which follows from the Cayley-
variable yields Hamilton theorem forSU(3) generators, see [49]. The re-
sult can be expressed in terms of the imaginary eigenvalues
w1, wo, w3 Of o and the differenced; = wy — w3, 05 =

w3 — W1y and§3 = w1 — Ws by

Ut + 67) = exp (iB(t + 07/2)6T) U(L).  (25)

For a large range of Wilson couplingsin our simulations an
integration length of ' = 0.75 with a step size odT = 0.25is 1
optimal for minimal autocorrelation times and a small numbe W = exp(r) = 5000 (
of thermalization sweeps. Acceptance rates of more #8&h 19293
are reached. Nevertheless, the most time consuming part gfith expansion coefficients
the calculations involves the exponential maps. A calautat

a1l 4+ apto + amzmQ) (31)

for G2 can be implemented fast and exact up to a given order 3 3
in 7 as will be shown in the next section. a1 = Z Jiwi 1 Wiyoe™t, Q= Z Siwie™,
=1 =1 (32)
3
B. The exponential mapg: — G2 Q2 = Zéiewi,
i=1
For an efficient and fast computation of the exponential MaR 1 erein one identifies-. . anduw;
we use theeal embeddingf the SU(3) representatiofl & 3 St Wi
into Gy, given by For thga ger)eratpr@l, ...,u14+ of G2 we use the real rep-
' resentation given in [46]. Theu(3) subalgebra formed by the
elements{u,, ..., us} generates the really embeddee> 3
; oo _ of SU(3) and the remaining generatofs,, ..., u14} gener-
yov)=Qtfow o0 [QeGy with WeSU3). ate the coset elemenssin the factorization (28). With this
0 0 W choice for the generators the real embedding (26) reads
(26)
One can choose the unitary matfixto have block diagonal 10
form with Q;; = 1. A possible choice fof? is yw) = A
—b —bszy —b
Q- 1 0 with ass 33 (32 32 31 A31
0VQ b3z asz b32 azx aszr b3 (33)
—b —bas —b
00000 1 Y, = a23 23 (22 22 21 (21 7
bas a3 baz aza a2 bay
001000 (27)
. b1z a1z bz a2 ann bi
Q= |1 00000y L (1) oy a3 —bis ary —biy —biy a
000010l NACE! 3 13 13 @12 12 11 @11
000100 where the entries are the real and imaginary parts of the ele-
010000 ments of theSU (3) matrix, W;; = a;; + ib;;.



Finally, to parametrize the elements of the coset space wia [16] with a variant of the smearing procedure. When re-
calculate the remaining exponential map producing these results we observed that the calculatied str
tensions depend sensitively on the smearing pararhdtens
to obtain accurate and reliable numbers for the static pielen
and to detect string breaking we implemented the multi-step
Luscher-Weisz algorithm with exponential error reductior
The result depends on the real parametet ||5|| and the6  the time transporters of the Wilson loops [50]. With this
dimensional unit-vectof = 5/(|5|. Inal x 6-block notation method the absolute errors of Wilson lines decrease exponen

=6

S=exp{s} with s=> siug;. (34)

i=1

the map takes the form tially with the temporal exterit’ of the line. This is achieved
by subdividing the lattice inta; sublattices/, ..., V,, con-
- ( cos20 —sin2o0 ,§T> (35) taining the Wilson loop and separated by time slices plus the
sin 20 & S, remaining sublattice, denoted by, see Fig. 2 (left panel). At
the first level in a two-level algorithm the time extent of kac
with 6 dimensional matrix sublatticeV,, is 4 such that; is the smallest natural number
o RS . N aaT with 4ny > T + 2. In Fig. 2 (left panel)I' = 14 and the
S1=cosol+sinos) + (cos2o —coso) 5 (36) lattice is split into four sgblatgicekg ngg;,, V4 containing
+ (1 —coso)od’ . the Wilson loop plus the compleme¥it The Wilson loop is

the product of parallel transporte¥8 = 7,7/ 747315 7;. If

a sublatticél/;,, contains only one connected piece of the Wil-
son loop (asi; andV, do) then one needs to calculate the
sublattice expectation value

The matrixs, is the6 x 6 right-lower block ofs in (34). The
unit-vectoro ™ = (32, —31, 84, — 83, — 3¢, 85) defining the last
projector in (36) is orthogonal to the unit-vectodefining the
projectorss’.

In the numerical integration we need the exponential map 1
for elementatin go. They are related to the generators used (Tn)n = A DUT, e %, (38)
in the factorization by the Baker-Campbell-Hausdoff fotagu s

ublattice n

5w =7 (s +v) + 3672 [s,0] + (37) if V,, contains two connected pieces Qégsaljd V3) then one
2 needs to calculatéZ, ® 7,'),,. The updates in each sublattice

solve this relation fos andv up to the corresponding order in the sublattice. Calculating the expectation value of tHe fu

§7. For a second order integrator used in this work this can bVilson loop reduces to averaging over the links in the- 1

done analytically since the commutaferv] does not contain  time slices,

any contribution of the subalgebsa(3). The integrator used

in the (L)HMC algorithm must be time reversible. It can be (W) = <C(<71>1<72 ®@Ty)2 -

checked that time reversibility holds to every order in #ms

pansion. To summarize, for a second order integrator the ap- o (Tn-1 ® Z;—1>m*1<7;u>m)>

proximation (37) may be used in the exponentiations needed

to calculate) andS. This approximation leads to a violation HereC is that particular contraction of indices that leads to

of energy conservation which is of the same order as the-violdhe trace of the produdV’ = 7 --- 7, |7, 7,1 --- T2 71.

tion one finds with a second order integrator. In comparison t In a two-level algorithm each sublattidé, is further divided

the exponentiation via the spectral decomposition the ateth into two sublatticed/, ; andV, », see Fig. 2 (middle panel),

based on the factorization (28) is more than ten times fasteand the sublattice updates are done on the small sublattices

It is also much faster than computing the exponential map fo#,,x With fixed link variables on the time slices separating the

SO(7) via the Cayley-Hamilton theorem. sublatticed/,, ;. This way one finds two levels of nested aver-
ages. Iterating this procedure gives thalti-level algorithm
Since the dimensiongz grow rapidly with the Dynkin labels

C. Exponential error reduction for Wilson loops [p, q] — for example, below we shall verify Casimir scaling for

charges in thé89 dimensional representatig® 1] — it is dif-

In the confining phase the rectangular Wilson loop scales aficult to store the many expectation values of tensor praduct

W(L,T) « exp(—cL - T). In order to estimate the string Of parallel transporters. Thus we implemented a slight mod-

tensiono we probe areas T ranging fromO0 up to 100 and ification of the Luscher-Weisz algorithm where the lattise

thus W will vary by approximatelyt0 orders of magnitude. further split by spatially slicing along a hyperplane odbe

A brute force approach where statistical errors for the expe Nal to the plane defined by the Wilson loop, see Fig. 2 (right

tation value of Wilson or Polyakov loops decrease with thePanel). The sublattice updates are done with fixed link vari-

inverse square root of the number of statistically independ ables on the same time slices as before and in addition on the

configurations by just increasing the number of generatad co

figurations will miserably fail. Nevertheless, convincires

sults onG2 Casimir scaling on intermediate scales for repre-

sentations with relative Casimi€%, < 5 have been obtained *This is not the case for the ratios of string tensions.

(39)

boundaries
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FIG. 2. (Color online) Iterative slicing (from left to rightf lattice and Wilson loop during the multi-level algonith

newly introduced space slice. Insteadrefsublattices con- sentationsk andR’ scale according to

taining the Wilson loop we now ha&; — 2 sublattices. But o o

now every sublattice contains only one connected part of the R_-_ZE (41)
Wilson loop and (39) is replaced by ‘R R

with quadratic Casimirz. Although all string tensions will

2m—2 vanish at asymptotic scales it is still possible to check for
(W) = <tr 11 <Tn>n>boundaries (40)  casimir scaling at intermediate scales where the lineafity
n=1 the inter-quark potential is nearly fulfilled.

. ) i . » To extract the static quark anti-quark potential two digfer
An iteration of this procedure by additional splittings bt ethods are available. The first makes use of the behavior of

present work we use a two-level algorithm with time slices

of length4 on the first and length on the second level. We (Wr(R,T)) = exp(nR(R) _ VR(R)T)
calculate(W) for Wilson loops (and hence transporté&rs) '

. «
of varying sizes and in different representations. To atoé with Vz(R) =g — FR +orR. (42)
storage of tensor products of large representations weeimpl
mented the modified algorithm as explained above. The potential can be extracted from the ratio of two Wilson

We also applied the Liischer-Weisz algorithm to calcu-loops with different time extent according to
late the correlators of two Polyakov 008z (0) P (R)) on 1 (Wr(R,T))
larger lattices. In this case the complete lattice is digtinko Vr(R) = —In —— 0200
sublattices separated by time slices, hence there is noleemp T (Wr(R,T+7))
mentV. Since the Polyakov loops are only used for lower-
dimensional representations we have not split the lattice b
a spatial slicing but used tensor products similar to Eq).(39
Actually for the calculations of Polyakov loop correlatove
used the three step LUscher-Weisz algorithm.

(43)

We calculated the expectation values of Wilson loops wiéh th
two-level Luscher-Weisz algorithm and fitted the right tian
side of (43) with the potentidl’z (R) in (42). The fitting has
been done for external charges separated by one latticenit
to separation® with acceptable signal to noise ratios. From
the fits we extracted the constants, ar andoxr entering
the static potential. For an easier comparison of the nuwaleri

V. STRING TENSION AND CASIMIR SCALING IN G2 results on lattices of different size and for different \edwof
GLUODYNAMICS (8 we subtracted the constant contribution to the potentrads a
plotted
The static inter-quark potential is linearly rising on imteedi- Vr(R) = Vgr(R) — & (44)

ate distances and the corresponding string tension witdep
on the representation of the static charges. We expect to find the figures. The statistical errors are determined with th
Casimir scalingwhere the string tensions for different repre- Jackknife method. In addition we determined theal string
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FIG. 3. (Color online) Continuum scaling of the fundamerptaten-
The correlators are calculated with the three-level Lasch tial.
Weisz algorithm and are fitted with the static potential R)

with fit parametersz, ar andor. Now the local string ten- 8 . . . .
sion takes the form .
p 1 . (Pr(0)Pr(R+p)) I SEEE P
Oloc, R (R+ —) = ——=1n R R (48) 4 o ¢ N i [ x 3 .
2) " "Bro | (Pr(0)Pr(R)) - P S
v & ® = f u
2+ : . : H Ll s s * N
~ 7 - .« * *
A. Casimir scaling in 3 dimensions VR/A(L) < s 8 R
- L] — -
. - : Rl o
Most LHMC simulations are performed orga? lattice with ok T R =27 —a— |
Wilson loops of time exteni” = 12. To extract the static % — ?‘71 N
potentials from the ratio of Wilson loops in (43) we chose 4t R =717 4
7 = 2. The fits to the static potential (42) for charges in the { % —
fundamental’ representatiorand for values? = 30, 35 and —6 L L L L
40 yield the lattice parameteks, v and o given in Tab. Ill. 0.0 0.5 1.0 R L5 2.0 2.5
)%

To check for scaling we plotted the potentials in ‘physical’

units, V/u, with mass scale set by the string tension in'the FIG. 4. (Color online) Unscaled potential with = 40 on a2s?

representation, lattice.

B =07, (49)
as function ofuR in Fig. 3. We observe that the potentials for !N Fig. 4 we plotted the values for the eight potentials
the three values o8 are the same within error bars. In addi- V7 - - - Viso (with statistical errors) measured in ‘physical
tion they agree with the potential (in physical units) egtesi ~ Units’  defined in (49). The distance of the charges is mea-
from the Polyakov loop on a much largés? lattice. sured in the same system of units. The linear rise at inter-

The fitted constantsx, vz andox of the potential (42) for m_ediate_ scales is clearly visible, even for charges inltte
the eight smallest representations are given in Tab. IV. Théimensional representation.
Casimir scaling of coefficients becomes apparent when they Fig. 5 contains the same data points rescaled with the
are divided by the corresponding coefficients of the static p quadratic Casimirs of the corresponding representatiohs.
tential in the7 representation. eight rescaled potentials fall on top of each other within er
The local string tensionsextracted from the Creutz ratio ror bars. This implies that th&ll potentialsfor short and
can be determined much more accurately as the global strinigtermediate separations of the static charges show Qasimi
tensions extracted from fits to the static potentials. Tab. \scaling.
contains the local string tensions for static charges iretgket To further check for Casimir scaling we calculated liheal
smallest representations fpr= 1 and differentR in (46), di-  string tensionwith p = 1, this time for all R betweenl and
vided by the corresponding local string tensions inttrep- 10 and not only forR = 0, 1,2 as in Tab. V. The horizontal
resentation. The results are insensitive the the distéhioe lines in Fig. 6 are the values predicted by the Casimir sgalin
the Creutz ratio. They agree withinpercent with the values hypothesis. Clearly we see no sign of Casimir scaling viola-
for the Casimir ratio®;, = Cz/C7 given in the last row of tionon a283 lattice near the continuum g@t= 40. Of course,
that table. for widely separated charges in higher dimensional represe
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TABLE lll. Potential for charges in th& representation.

8=30,N=28 3=35N=28 [=40,N=28% (3=30,N=48 pB=40,N=64> [=20,N =232°

va 0.185(8) 0.160(4) 0.147(5) 0.197(1) 0.164(1) 0.252(1)
o 0.0881(7) 0.0752(3) 0.071(4) 0.098(1) 0.0887(1) 0.117(1)
oa’ 0.046(1) 0.0340(8) 0.024(1) 0.0435(3) 0.0221(3) 0.1161(2)

TABLE IV. Fit-parameters of static potentials.

R 7 14 27 64 7 d 182 189
TRA 0.147(5) 0.29(1) 0.34(1) 0.51(1) 0.58(1) 0.74(2) 0.83(1) 0.77(2)
yra/Cxr 0.147 0.145 0.146 0.146 0.145 0.148 0.138 0.144
YR [ V7 1 1.97 2.31 3.46 3.94 5.03 5.64 5.23
aRr 0.071(4) 0.145(8) 0.16(1) 0.24(1) 0.27(1) 0.36(1) 0.37(1) 0.36(1)
ar/Cx 0.071 0.0725 0.069 0.069 0.068 0.072 0.062 0.068
ar/ar 1 2.04 2.25 3.38 3.80 5.07 5.21 5.07
ora? 0.024(1) 0.048(2) 0.057(3) 0.086(4) 0.099(5) 0.120(6) 0.157(6) 0.132(6)
JRaz/Céz 0.024 0.024 0.024 0.025 0.025 0.024 0.026 0.025
or /o7 1 2.00 2.37 3.58 4.12 5.00 6.54 5.50
3 0 T T T T 7 T T T T T T T T
2.5 % E 6 ~ 3 I
2.0 | i IR 51 T ¥ o .
i Y
VR 15+ i i i 4 |- . .
pnCr 2 or(R) = = = 3 Y S ¥
1.0 g 2 - o?(R) . TS ° TS - . s .
& R=T++— 3+ { E
0.5 L R=14 h z
. R =27 —a— 9 * - * L ]
0.0 ¥ R=64 o | 3 ]
= R S e
—05 R=182 -«
1 R =189 —=—
_10 ¥ 1 1 1 1 0 1 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 00 02 04 06 08 10 1.2 14 16

uR uR

FIG. 5. (Color online) Scaled potential with= 40 on a28? lattice. FIG. 6. (Color online) Ratio of the local string tension with= 40
scaled on &8 lattice for the eight smallest representations.

tations the error bars are not negligible even for an allgorit

with exponential error reduction. to the static potential fron? = 1 to values ofR with accept-

able signal to noise ratio, they contain contributions fribie
short range Coulombic tail. To calculatg; at intermediate

distances we better use the (local) Liischer term
B. Luscherterm

2
. . . . Qloc, R (R) = ﬂ =
In Tab. IV we have seen that the dimensionless coefficignt ’ R2—p?
in the static potential scales with the quadratic Casinfin- s R3 (Pr(0)PR(R + p)) (PR (0)Pr(R — p))
ilarly to the string tension. The corresponding term, if mea 25,2 In (Pr(0)Pr(R)) (Pr(0)Pr(R)) 5
sured at distances where the flux tube is fully developed, is TP R R R R
referred to as.iischer term Its value has been calculated by with p = 1. In Fig. 7 we plotted the local Luscher term
Luscher for charges in the fundamental representatiahglin -~ for charges in thg and 14 representation at couplings €
mensionsy = (d — 2)7/24, and it is believed to be universal {30,40}. Our data for the defining dimensional representa-
[51]. The valuex = /24 in 3 dimensions is off the results in  tion at intermediate distances are in agreement with the the
Tab. lll. However, since the coefficients in this table arefit oretical predictiom; = 7/24 ~ 0.131. The local Luscher

(50)
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TABLE V. Scaled local string tension.

R 7 14 27 64 7 e 182 189
or(1/2)/07(1/2) 1 1.9996(3) 2.3327(5) 3.498(1) 3.997(2) 4.996(3) 5.991(5) 5.328(4)
or(3/2)/07(3/2) 1 1.9989(7) 2.331(1) 3.495(5) 3.994(4) 4.989(7) 5.99(1) 5.321(9)
or(5/2)/07(5/2) 1 1.996(1) 2.327(1) 3.484(5) 3.980(7) 4.96(1) 5.94(2) 5.29(1)
Cr 1 2.0000 2.3333 3.5000 4.0000 5.0000 6.0000 5.3333
0.35 ' ' ' ' ' ' Accordingto (11) it requires at lea3luons to screen a static
0.30 | i charge in thg repr_esentation, one gluon to screen a char_ge in
' I l the 14 representation and two gluons to screen a charge in the
0.25 [ i | 27 representation. We shall calculate the separations of the
5 charges where string breaking sets in and the masses of the
0.20 L i produced glue-lumps. The mass of such a quark-gluon bound
ar(R) * } l state can be obtained from the correlation function acogrdi
0.15 ¥ - to
. N & T 1
0.10 | - " : J_ exp (—mrT) o« Cr(T)
0.05 | " R=7,8=30,N =48+ | N®) N®)
' Y, R=TB=40N =643 = = ( & F;w(y)) ’ R(%w%b( (0 F;w(w)) ’ ;
" R=14,4=40,N = 64I3 —— ne1 R,a et R,b
0000 0z 04 06 05 10 12 _ ~ (51)
1R whereR (U, ) is the temporal parallel transporter in the rep-

resentationR from x to y of length 7. It represents the
FIG. 7. (Color online) Local Liischer term at two differenplings ~ Static sources in the representatidnThe vertical line means
and for two different representations. projection of the tensor product onto that linear subspace o
which the irreducible representatidhacts,

term for the adjoint representation approaches a value clos MUMU®---@l4)=R&---. (52)

to aq4 &~ w/12. Although this exceeds the universal predic-

tion of [51] by a factor2 this behavior is in close analogy For example, for charges in the representation the projec-
to the situation in3 dimensionalSU(5) Yang-Mills theory  tion is simply

where Casimir scaling of the local Lischer term at shor dis

tances has been reported in [52] for ttiedimensional rep- Fu(x) = F,,(z), where Fj,T"=F,,. (53)
resentation. Since the Liuscher term is expected to show up 14.,a

at asymptotic large distances, this term can only be ettact po charges in the representation we must project the re-
if the flux tube has fully developed before string breakingqciple representationt @ 14 14 onto the irreducible rep-
sets in. Whether this is the case 1G5 gauge theory is not resentatiory. Using the embedding af into SO(7) repre-
clear. Our results suggest that this happens for chargéein t sentations one shows that this projection can be done véth th
7-dimensional representation. help of the totally antisymmetrie-tensor with7 indices,

C. String breaking and glue-lumps in 3 dimensions Fuw () @ Fl (2) @ Fu(2) 7.a

X ) . ) X F,LIZV (x)F;LZV (I)F;l/ (x)aadeenglf;TtgeT;g' (54)

To observe the breaking of strings connecting static clsarge

at intermediate scales when one further increases theaseparig. 8 shows the logarithm of the glue-lump correlator (51) a
tion of the charges we performed high statistics LHMC sim-function of the separation of the two lumps for static charge
ulations on a48? lattice with 3 = 30. We calculated ex- in the fundamental representatidghand14. The linear fits to
pectation values of Wilson loops and products of Polyakowthe data yield the glue-lump masses

loops for charges in the two fundamental representations of

G2. When a string breaks then each static charge in the repre- mra = 0.46(4), misa = 0.761(3). (55)
sentatiorR at the end of the string is screened ByR) glu-

ons to form a color blind glue-lump. We expect that the dom-Thus we expect that the subtracted static potentials approa
inant decay channel for an over-stretched string is string the asymptotic values

gluelump+ gluelump. For a string to decay the energy stored ~

in the string must be sufficient to produce two glue-lumps. VR — 2mp — YR (56)
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FIG. 8. (Color online) Glue-lump correlator (lattice sizg’, 3 = FIG. 10. (Color online) Local string tension&® lattice, 3 = 30).
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FIG. 11. (Color online) Casimir scaling of local string tes(48°
FIG. 9. (Color online) Potential for both fundamental regenetations  |attice, 3 = 30).

ats € {20, 30} and corresponding glue-lump mass fbe 30.

) , obtain
With the fit-valuesy;a = 0.197(1) andyi4a = 0.381(2) we
find ) 2
v, o’ b = — ﬂ — — — ﬂ _
Vijp— 347 | Vaju—osar. @7 PR \/“7 1 ( P MR) 2 (u MR) |
Fig. 9 shows the rescaled potentials for charges in the fun- _ 2mg
damental representations together with the asymptotiegal R puCr
(57) extracted from the glue-lump correlators. At fixed cou- (58)

pling 3 = 30 both potentials flatten exactly at separationsinserting the result from the last row in Tab. Il and the glue
of the charges where the energy stored in the flux tube itump masses we findR2 = 3.49 anduRb, = 2.77. These
twice the glue-lump energy. However, the direct comparisorvalues agree well with the separation® in Fig. 9 where
of the potentials for two different couplings, i.e. diffatdat-  the static potentials flatten such that string breaking sets
tice spacings, reveals that the potential for adjoint chaiig at scales predicted by formula (58). Fig. 10 shows the lo-
nearly free of lattice artifacts while the string breaking-d cal string tensions in the two fundamental representatiods
tance for charges in the defining representation is largaly ¢ Fig. 11 their ratio. Especially the last plot makes cleat tha
pling dependent and the continuum limit is not reached yetstring connecting charges in the adjoint representatiealor
earlier than the string connecting charges inthepresenta-

A good approximation for the string breaking distance istion. Just at the critical separation predicted by formaig) (
then given byVz (R") ~ 2mgz. Assuming Casimir scaling the ratio of local string tensionsi4(R) /o (R) shows indeed
for the coefficientsvr, vr andox in the static potential we a pronounced knee.
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2.01 T T T3
g - %82 % - §§3 : TABLE VI. String tension for the7 representation on lattice sizes
2.00 and couplings that are used for the continuum extrapolation
: 1] N ora’? 972\/07
(11%;99 - 1 20 32° 0.11807(19) 0.4908(4)
TR L 25 40° 0.06863(12) 0.4678(4)
1.98 - 3 1 30 483 0.04481(28) 0.4536(14)
; 35 563 0.03193(14) 0.4467(10)
- £ -
1.97 ! 40 643 0.02219(33) 0.4256(32)
1.96 LS }
] 0.52 : : ; : .
L
1.95 L L L 50 L 4
0.0 0.5 1.0 1.5 2.0 0-50 .
pR 0.48 | g
L ]
FIG. 12. (Color online) Deviations from Casimir scaling abtdif- 0.46 . E
ferent couplings. d .
970.44 | E
0.42 | : ]
D. Signs of Casimir scaling violations
0.40 i
Although the coarse grained view onto the ratio of locahstri 0.38 | i
tensions up to the string breaking distance (Fig. 11) shows

an approximate Casimir scaling, a closer look uncovers de- 0-3% 00 00l 002 003 004 005 006
viations from the expected Casimir ratio of the adjoint and ' ' ’ ,321 ’ ’ ’
defining representation (see Fig. 12). The results for tvo di

ferent lattice spacings indicate that for short distantethe  FiG. 13. (Color online) Linear continuum extrapolation béstring

Coulombic part of the potential, Casimir scaling is fuliillén  tension. The shaded region indicates the correspondiog lesund.
agreement with the predictions of perturbation theorygvai

short distances. For larger distances the measured raiis dr
by about2.5% near the string breaking distance and similarsmall reducedy? = 0.51. Both fit-values are in good agree-
deviations have already been reported in [36, 39] dimen-  ment with the prediction of Eq. (16}, 2,/a7 = 0.39894.

sional SU(2) gauge theory. In either case the scale depen- Corrections to this theoretical value have been derived in a
dence identifies Casimir scaling violations as a purely Bonp  systematic expansion in [21],

turbative long range effect. Of course, the given error lasun

in Fig. 12 may be taken with care as they include only statis- L 1

tical uncertainties. Lattice artifacts are still visibledsfurther g Vo7 = \/;(1 —0.02799 + - -+ ) ~ 0.38778,  (59)
work will be necessary to confirm that this violation persist

in the continuum limit. but they are still subject to ambiguities in defining a low mo-

mentum cutoff that may change this value by ug%. With

keeping in mind that we are left with possible systematic un-
E. Continuum limit of the string tension certainties in the extrapolation procedure that are natcest

in the given statistical error a complete agreement between

Formula (16) gives the string tension in the continuum asnalytical and numerical results is apparent.

function of the coupling? « 1/¢% [20]. To compare this

continuum result with our lattice data we extrapolate the co o o . )

responding valug—2,/7 linearly in 5~! « a to the contin- F. Casimir scaling in 4 dimensions

uum limit by using the couplings and lattice sizes in Tab. VI.

This procedure is motivated by the (in leading order) lifear  In this last section we present our results for the static po-
havior that has been found in a similar study for gauge grouptential in 4 dimensions. The LHMC simulations have been
SU(2) up to SU(5) [53]. For increasings the scaling win-  performed on a small4* and a largeR0* lattice for differ-
dow with a linear rising potential shrinks and it becomesenor ent values of3. The static potentials and local string tensions
difficult to extract reliable values for the intermediatérsf  have been extracted from (43) and (46), where the expeatatio
tension. Thus a linear fit to all points in table VI leads to values have been calculated with a two-step Luscher-Weisz
g~2\/o7 = 0.381(5) (see Fig. 13). with a rather large reduced algorithm. Tab. VII contains the fits to the parameters in the
x? = 8.56, whereas a linear fit to the reliable data points with potential for static charges in thHerepresentation for these
the 3 smallest3-values yieldsg~2,/o7 = 0.376(2) with a lattices and values fof.



TABLE VII. Parameters of the quark anti-quark potentiadidimen-
sions fork = 7.

8=97 N=14* 3=10,N =14* =9.7, N = 20*

yra 0.83(8) 0.74(4) 0.68(9)
ar 0.40(7) 0.33(3) 0.28(8)
ora? 0.07(2) 0.042(9) 0.11(1)
14 : ; .
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FIG. 14. (Color online) Unscaled potential 4t= 9.7 on a14*
lattice.

Fig. 14 shows the static potentials in ‘physical unjis=
/o7 for charges in th&, 14, 27 and64 dimensional represen-
tations and couplingg = 9.7 as function of the distance be-
tween the charges in physical units. The correspondingvalu
for o7 is taken from Tab. VII. The same coupling has been
used in [16] on an asymmetrid? x 28 lattice. After normal-
izing the potential with the quadratic Casimirs they arenide
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FIG. 16. (Color online) Unscaled potential 4t = 10 on a 14"
lattice.
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FIG. 17. (Color online) Scaled potential @t= 10 on al14" lattice.

tical within error bars, as can be seen in Fig. 15. Our findings

are in complete agreement with the results in [16] on Casimi
scaling in4 dimensionalz, gluodynamics at = 9.7 and our

Vr
nCr

b

SRR

]

N[ oo

0.5

1.0 1.5
uR

0
0.0 2.5

FIG. 15. (Color online) Scaled potential @t= 9.7 on a14* lattice.

r
accurate results on Casimir scaling on intermediate sdales
3 dimensional7s gluodynamics.

Figs. 16 and 17 show the corresponding results for a weaker
coupling@ = 10 closer to the continuum limit. For this small
coupling we can measure the potential only up to separations
uR ~ 1.5 of the charges. But we can do this with high preci-
sion and for higher-dimensional representations. Assfer
9.7 we find that the potentials normalized with the second or-
der Casimirs fall on top of each other. This confirms Casimir
scaling forGs gluodynamics ind dimensions for charges in
representations with dimensionsl 4, 27,64, 77, 77’,182 and
189.

Finally we simulated on a much larg2d* lattice at3 =
9.7 in order to calculate the static potential for larger separa
tions of the static quarks. Unfortunately the distapée~ 3
is still not sufficient to detect string breaking, see Fig. Bt
again the potentials normalized with the quadratic Casimir
shown in Fig. 19 are equal within error bars.

In Tab. VIII we have listed the fit-values for the parame-
ters of the potentials on the larg®* lattice for static charges
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10 T T T T T
RR::J TABLE VIII. Fit-parameters of static potential2@* lattice, 3 =
R =27 —a— 9.7).
8 B ° R - 64 —eo—1
z % R 7 14 27
6l C i TRG 0.68(9) 1.39(4) 1.61(3)
. " yra/Cx 0.68 0.695 0.690
Vr/p ‘
. } ar 0.28(8) 0.60(2) 0.69(2)
*
Sl .t i ar [Ch 0.28 0.30 0.295
] . ora? 0.11(1) 0.21(1) 0.251(9)
2 b * . ora’/Cr 0.11 0.105 0.107
*
0 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 TABLE IX. Scaled local string tensior2(* lattice, 3 = 9.7).
uR
R 7 14 27 64
FIG. 18. (Color online) Unscaled potential 4t= 9.7 on a20* or(1/2)/07(1/2) 1 1.973(1) 2.294(1) 3.396(8)
lattice. or(3/2)/07(3/2) 1 1.987(3)  2.303(4)  3.44(2)
. or(5/2)/07(5/2) 1 1.92(1) 2.28(3) —
' ' ' ' ' f Ch 1 2.0000 2.3333 3.5000
4t . : .
§ All our simulation results for the local string tensions
3L % i or(R) normalized byo7(R) on a 14* lattice with 8 €
Ve * {9.7, 10} and on &0 lattice with3 = 9.7 and foruR < 1.5
ROR ® are collected in Fig. 20. The horizontal lines in this figure
2F 1 show the prediction of the Casimir scaling hypothesis. The
M normalized data points are compatible with each other and
1L R=17 | with the hypothesis.
R=14 =
R =27 s
0 1 1 1 ?2 - 64 1
00 05 1.0 1.5 20 25 3.0 VI. - CONCLUSIONS

uR
In the present work we implemented an efficient and fast
FIG. 19. (Color online) Scaled potential @t= 9.7 on a20* lattice. =~ LHMC algorithm to simulate?, gauge theory in three and
four dimensions. With only a slight modification we can
include a (normalized) Higgs field in the representation.

in the representations with dimensionsl4 and27. For all

representation we find Casimir scaling of all three pararsete 7

in the potential. Unfortunately the fit-parameters canr®t b ' ' ' ' ' ' '
determined reliably in thé4 representation with the present 6L -

data. This is attributed to larger errors for the potentals i N

intermediate scales, see Fig. 18, so that the parameters can 51 % 5 .
only be determined from the ultraviolet part of the potdntia

for this representationf{ < 3) which is rather Coulomb-like 4= = =

than linearly rising. Much more conclusive are the locahsgtr Z?((If)) ses o v = %

tensions calculated on the larger lattice (now up toctheep- 3r 1
resentation). Tab. IX contains the local string tensiorngled . e i

by the local string tensions in tierepresentation. These nor- 2w w Tm
malized values are constant up to separations of the charges e
where the statistical errors are under control. Compared to

the corresponding numbers $ndimensions, see Tab. V, we 0 ! ! ! ! ! ! !
now see a slight dependence of the local string tensions from 00 02 04 06 08 10 12 14
Eq. (45) on the distanc®. Despite of the lower precision uR

of the results int dimensions compared to the corresponding . ) . .
results in3 dimensions we again confirm Casimir scaling onF!G. 20. (Color online) Scaled local string Tension with €
short to intermediate scales withirpercent. {9.7,10} on 14" and20" lattices.
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The corresponding results for the phase diagra@oang-  glue-lumps. To confirm this expectation we calculated ngmsse
Mills-Higgs theory will soon be presented in a companion pa-of glue-lumps associated with static charges in the funsame
per. The algorithm has been optimized with the help of thetal representations. Here, close to the string breakingrmiig,
coset decomposition of group elements and the analytic exsystematic Casimir scaling violations show up at 2tieper-
pressions for the exponential maps for the two factors. Ircent level and they are identified as a nonperturbative teffec
addition we implemented a slightly modified Luscher-Weiszarising only at large distances. Finally, the predictiontfe
multi-step algorithm with exponential error reductiontean  numerical value of the string tension 3ndimensions is con-
sure the static potentials for charges in variéiysrepresen-  firmed by a continuum extrapolation of our precise data.
tations. The accurate results 3ndimensions show that all In 4 dimensionalt7s gluodynamics we found Casimir scal-
parameters of the fitted static potentials show Casimir-scaling for charges in the representatiohd 4, 27 and64, simi-
ing, see Tab. Ill. The global string tensions extracted fromlarly as we did in3 dimensions, although the uncertainties are
these fits show that possible deviations from Casimir sgalin of course larger. But within error bars we see no violation of
must be less thath percent. We also extracted the local string Casimir scaling and this confirms the corresponding results
tensions from the Creutz ratios to obtain even more precisgl6], obtained with a variant of the smearing procedure. To
data. This way we confirm Casimir scaling at short distancesee the expected string breakingdidimensions one would
Vo7 R < 1 with 1 percent accuracy. Thus we conclude thatneed larger lattices than those used in the present work.

in 3 dimensionalG; gluodynamics the Casimir scaling vio-

lations of the string tensions are small for all charges & th

representations with dimensionsl4, 27, 64, 77, 77', 182 and ACKNOWLEDGMENTS
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