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The phase diagram of a gauge theory with fermionic baryons
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The fermion-sign problem at finite density is a persisting challenge for Monte-Carlo simulations.
Theories that do not have a sign problem can provide valuable guidance and insight for physically
more relevant ones that do. Replacing the gauge group SU(3) of QCD by the exceptional group G2,
for example, leads to such a theory. It has mesons as well as bosonic and fermionic baryons, and
shares many features with QCD. This makes the G2 gauge theory ideally suited to study general
properties of dense, strongly-interacting matter, including baryonic and nuclear Fermi pressure
effects as relevant in compact stars and heavy-ion collisions. We present the first lattice simulations
of the phase diagram of this theory at finite temperature and baryon chemical potential.

PACS numbers: 11.30.Rd 12.38.Aw 12.38.Gc 12.38.Mh 21.65.Qr

Finite fermion density continues to be a serious chal-
lenge for Monte-Carlo simulations due to the fermion-
sign problem [1, 2]. The sign problem appears in many
areas of physics, but is of notorious importance to dense
quark systems, especially in nuclei, heavy-ion collisions,
and compact stellar objects. An alternative are models
and continuum methods which do not have this type of
problem [3–6]. However, these usually require approx-
imations, and cross checks through lattice simulations
remain desirable to improve systematic reliability.

To provide support from numerical simulations, two
major strategies have been followed. One is to replace
the baryon chemical potential by some quantity more
amenable to simulations, e.g. an imaginary [7, 8] or
isospin chemical potential [9, 10]. The other is to re-
place the theory with one accessible through numerical
simulations at finite density. However, such theories usu-
ally differ from the original one in more or less important
aspects.

One very well studied replacement of QCD for strongly
interacting matter at finite density is two-color QCD [11–
15]. In this case, the baryons are bosons instead of
fermions, however. This leads to profound differences,
such as Bose-Einstein condensation of a baryon super-
fluid with a BEC-BCS crossover at high densities in-
stead of the usual liquid-gas transition of nuclear matter.
While two-color QCD has many interesting aspects that
deserve to be studied in their own right, the quantum ef-
fects due to the fermionic nature of baryons are expected
to play a very significant role for nuclear matter and es-
pecially in the physics of compact stellar objects [16].

Therefore, a more realistic replacement theory in this
regard should contain fermionic baryons. We employ
such a theory without sign problem for Monte-Carlo sim-
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ulations at finite baryon density here. It is obtained by
replacing the SU(3) gauge group of QCD with the gauge
group G2 [17]. All color representations of this theory
are equivalent to real ones. As a consequence the Dirac
operator has an anti-unitary symplectic symmetry which
leads to an extended Pauli-Gürsey SU(2Nf )×Z2 flavor
symmetry [11, 17], and it thus has a non-anomalous com-
ponent even for a single flavor. In this letter we study
the phase diagram for a single Dirac flavor of Wilson
fermions, corresponding to a continuum SU(2)×Z2 ex-
tended symmetry in the chiral limit. Spontaneous or
explicit breaking reduces this to SO(2)×Z2 ∼U(1)×Z2

[18]. The unbroken U(1) relates to the baryon number
to which the baryon chemical potential is coupled. The
reality of the representation implies that the fermion de-
terminant remains positive at finite baryon chemical po-
tential even for a single flavor [12].

The physical bound states of this theory, besides the
usual quark-antiquark and three-quark states, also con-
tain hybrids of one quark with three gluons, as well as
diquarks and further bound sates with more than three
quarks [17]. Thus, the hadronic spectrum contains both
fermionic as well as bosonic baryons and mesons. These
bound states are created by very similar interactions as
in QCD, i.e. by a potential which rises linearly with the
separation of the quarks before string-breaking sets in
[17, 19–22]. Another appealing aspect is that it might be
possible to continuously deform it to ordinary QCD by
breaking the G2 gauge group down to SU(3) via a Higgs
mechanism [17, 23], although this will likely require sev-
eral Higgs fields and various Yukawa couplings and CKM-
type explicit flavor violations. The surplus bound states
would then become infinitely heavy and hence disappear
from the spectrum. This implies that the sign problem
would then reappear. Its gradual emergence controlled
by the strength of the breaking might well lead to new
insights and pathways for simulations and therefore this
possibility deserves further study.

For our lattice simulations we employ an extension of
the available HMC algorithm for scalars [23]. The tech-
niques are generalizations from QCD simulations, for de-
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tails see [24, 25]. The introduction of temperature and
chemical potential proceeds as in QCD. Our aim here
is a first exploration of the phase diagram as proof-of-
principle study. One obstacle is the presence of a bulk
transition [21, 23, 26], which turns out to persist with
dynamical fermions [18, 25]. To avoid this we chose a
lattice with at least Nt = 6 time slices in finite tem-
perature simulations. Simulations of this theory incur
considerable computational costs so that we restricted
our lattices to Ns = 16 points in spatial directions. Al-
together, we investigated three different sets of lattice
parameters:

(a) At zero density we varied the lattice coupling β be-
tween 0.9 and 1.0 in order to control temperature on our
6× 163 lattice.

(b) At finite chemical potential µ we used β = 0.9 on
both, 6 × 163 and 8 × 163 lattices, and β = 1.0 in zero-
temperature simulations on a 164 lattice. The hopping
parameter in the fermion determinant was fixed at κ =
0.15625 in all these thermodynamic simulations.

(c) For comparison we also varied κ from 0.15385 to
0.15625 on the symmetric 164 lattice with µ = 0 and
β in 0.85 to 1.1. Results from smaller lattices to assess
systematic effects will be reported elsewhere [18, 25].

We measured three observables to study the phase di-
agram. One is the Polyakov loop. Unlike QCD, due to
the trivial center, it is not an order parameter of the
quenched theory [17], but it nevertheless reflects the cor-
responding first-order phase transition very well [21, 26].
In fact, it remains so small in the low-temperature phase
that it is only possible to determine upper bounds. We
found this to be true also with dynamical quarks. The
second observable is the chiral condensate. The quenched
G2 theory has only one first-order transition at finite tem-
perature which manifests itself also in the chiral conden-
sate [27], a feature that it shares with QCD and two-color
QCD. This is in contrast to QCD with adjoint quarks,
where there is no sign problem either [11], but where
separate chiral and deconfinement transitions occur at
largely different temperatures [28, 29]. We normalize the
chiral condensate to its (β-dependent) vacuum value, to
avoid explicit renormalization. The third observable is
the baryon number density, the derivative of the par-
tition function with respect to the chemical potential.
At large chemical potentials the density saturates to a
temperature-independent value. This is observed also in
two-color QCD, where this happens when each lattice site
is occupied by the maximum number of fermions [30].
Here, the saturation is smaller, about 4.8/lattice site.
The reason is yet unclear, but it may be that putting the
simplest baryonic bound state at each lattice site is not
saturating the lattice. To eliminate the scale, we normal-
ize the baryon density to its saturation value.

In order to assess the phase diagram it is necessary to
fix at least a relative scale. Using bound state masses for
this purpose is rather challenging. We have determined
in the vacuum the mass of the lowest states in the pseu-
doscalar meson and diquark channels, keeping only the
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FIG. 1: The Polyakov loop and the chiral condensate at zero
chemical potential (left panel) and the temperature deriva-
tives (right panel).

connected contributions. The results [18] show strong
systematic effects. The signal with the least lattice arte-
facts is the first excited state in the diquark channel,
which varies for β = 0.9...1.0 at κ = 0.15625 from 2.3+5

−4

to 1.65+1
−5. Setting its mass such that the zero density

critical temperature is 160 MeV leads to lattice spacings
between 0.25+5

−4 fm to 0.181+1
−20 fm, which is an acceptable

systematic error for this investigation.

The results at zero chemical potential are shown in
Figure 1. A (weak) transition is seen in the Polyakov
loop at about T = 160 MeV, while the chiral condensate
shows no response. This implies that either the chiral
transition is displaced outside the investigated tempera-
ture region, the chiral condensate is not really capturing
the transition, or the quarks are effectively very heavy.
Further investigations will be needed to clarify this.

The situation at finite density is shown in Figure 2.
At zero temperature a peak in the Polyakov loop is visi-
ble at around 1.4 GeV, and the derivative indicates two
broad changes. The chiral condensate and the baryon
density both show a transition roughly at the first peak
of the Polyakov loop derivative, but this transition is
rather broad. At large chemical potential the density
saturates, as discussed above. If this is interpreted as
effectively quenching the theory [30], this would explain
the decrease of the Polyakov loop, similar as in two-color
QCD [13]. This implies that severe lattice artifacts can
be expected from the turning point of the Polyakov loop
onwards.

On the present lattices our estimate of the lowest mass
in the baryonic channel is too imprecise to explicitly ver-
ify that the point where the thermodynamic quantities
start to respond to the chemical potential is half the
diquark mass [31]. But investigations at larger masses
on smaller lattices suggest that this so-called silver-blaze
point could be expected around µ ≈ 150− 300 MeV [18].

Finally, at both non-zero temperature and density not
much change is observed, and only a gradual shift of the
transition towards smaller chemical potential along with
a washing-out of the transition is seen. The phase dia-
gram, shown in interpolated form in Figure 3, therefore
exhibits a rather rectangular shape, although this may
be influenced by systematic effects in the scale setting.
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FIG. 2: The bottom row shows the raw data of the Polyakov loop (left panel), the chiral condensate (middle panel), and the
normalized baryon density (right panel) at finite chemical potential and temperatures T = 0, 98MeV and 131MeV. The top
row shows the numerical derivatives for the same quantities to identify regions of rapid changes.
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FIG. 3: The interpolated phase diagram for the Polyakov loop (left panels), chiral condensate (middle panels), and baryon
density (right panels).

Also, the limited set of results and statistics so far does
not permit to make any statement on the order of the
transitions. Results on smaller lattices just reproduce
the present results, albeit with larger systematic errors
[18]. Nonetheless, the phase diagram so obtained is not

far from the one expected, and similar to the one of two-
color QCD [12–15].

In total, the phase diagram at finite density shows a
number of interesting features, but requires much more
systematic investigations to see whether the effects ob-
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served are genuinely physical, or whether some of them
are lattice artefacts. In particular, the question of
whether there is a phase transition or merely a crossover
at finite density is a very interesting and important one.
Summarizing, we have determined the first full lattice

phase diagram of G2 QCD, a non-Abelian gauge theory
with fermionic baryons. This opens up completely new
horizons for high density studies of the strong nuclear
force, as it is now possible to use first-principles calcu-
lations to assess the importance of the Fermi statistics
of the baryons. Given the role this statistics plays for
compact stellar objects, this is of utmost importance. In
particular, it will be possible to investigate at which rel-
ative densities quark or hadron equations of state are
more favorable, and thus contribute to an understanding
of the question, whether just neutron stars or also quark
stars could exist. Given the inflow of new astrophysical
observational data on compact stellar objects, including
major new discoveries, this is very timely and important.
This theory offers also the possibility to investigate the

presence of a critical point in such theories, a question
of prime importance for the ongoing heavy-ion collision
experiments. Given sufficient computational resources,
the complete phase diagram can be mapped with any
desired precision. That is a novel perspective for a theory
with properties so close to the ones of QCD. This may
yield qualitatively new insights into low-energy heavy-ion

collisions and compact stellar objects.
Furthermore, these ab initio results open new avenues

to approach the QCD phase diagram by effective
models and functional methods. Firstly, it is possible
to provide systematic checks of model assumptions and
approximations in functional calculations. Secondly,
if the G2-theory is continuously deformable to QCD
[17, 18, 23], then proceeding along the lines developed
for Yang-Mills theory [5, 6, 32], the following approach
is feasible: Lattice calculations can provide guidance
and cross-checks for the non-lattice approaches to a
certain extent along the deformation to QCD, while the
non-lattice methods can then provide the final step to
QCD, providing its full phase diagram.

Acknowledgments

We are grateful to Simon Hands and Uwe-Jens Wiese
for helpful discussions and comments. B.W. was sup-
ported by the DFG graduate school 1523-1, A.M. un-
der DFG grant number MA 3935/5-1, A.W. under DFG
grant number Wi 777/11, and L.v.S. by the Helmholtz
International Center for FAIR within the LOEWE pro-
gram of the State of Hesse, the Helmholtz Association
Grant VH-NG-332, and the European Commission, FP7-
PEOPLE-2009-RG No. 249203. Simulations were per-
formed on the LOEWE-CSC at the University of Frank-
furt and on the HPC cluster at the University of Jena.

[1] C. Gattringer and C. B. Lang, Quantum chromodynamics

on the lattice (Lect. Notes Phys., 2010).
[2] P. de Forcrand, PoS LAT2009, 010 (2009), 1005.0539.
[3] S. Leupold et al., Lect.Notes Phys. 814, 39 (2011).
[4] M. Buballa, Phys.Rept. 407, 205 (2005), hep-

ph/0402234.
[5] J. M. Pawlowski, AIP Conf.Proc. 1343, 75 (2010),

1012.5075.
[6] J. Braun, J.Phys.G G39, 033001 (2012), 1108.4449.
[7] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and

F. Sanfilippo, (2012), 1201.2769.
[8] P. de Forcrand and O. Philipsen, Phys.Rev.Lett. 105,

152001 (2010), 1004.3144.
[9] J. Kogut and D. Sinclair, Phys.Rev. D70, 094501 (2004),

hep-lat/0407027.
[10] P. de Forcrand, M. A. Stephanov, and U. Wenger, PoS

LAT2007, 237 (2007), 0711.0023.
[11] J. Kogut, M. A. Stephanov, D. Toublan, J. Verbaarschot,

and A. Zhitnitsky, Nucl.Phys. B582, 477 (2000), hep-
ph/0001171.

[12] S. Hands et al., Eur.Phys.J. C17, 285 (2000), hep-
lat/0006018.

[13] S. Hands, S. Kim, and J.-I. Skullerud, Eur. Phys. J. C48,
193 (2006), hep-lat/0604004.

[14] S. Hands, P. Kenny, S. Kim, and J.-I. Skullerud,
Eur.Phys.J. A47, 60 (2011), 1101.4961.

[15] N. Strodthoff, B.-J. Schaefer, and L. von Smekal, (2011),
1112.5401.

[16] P. Braun-Munzinger and J. Wambach, Rev.Mod.Phys.
(2008), 0801.4256.

[17] K. Holland, P. Minkowski, M. Pepe, and U. J. Wiese,

Nucl. Phys. B668, 207 (2003), hep-lat/0302023.
[18] A. Maas, L. von Smekal, B. Wellegehausen, and A. Wipf,

unpublished.
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