
ANNALS OF PHYSICS 187, 1-28 (1988) 

Supersymmetry and the Dirac Equation 

FRED CARPER 

Theorelical Division. Los Alamos National Laboratory, Los Alamos. New Mexico 87545 

AVINASH KHARE* 

Department of Physics, University of Illinois, Chicago, Illinois 60680 

R. MUSTO 

Dipartimento di Scienze Fisiche, Vniversitci di Napoli, and 
INFN Sezione di Napoli, Napoli, Italy 

AND 

A. WIPF+ 

Theorelical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

Received April 1, 1988 

We discuss in detail two supersymmetries of the 4-dimensional Dirac operator D2 where 
0 = B - ieA, namely the usual chiral supersymmetry and a separate complex supersymmetry. 
Using SUSY methods developed to categorize solvable potentials in l-dimensional quantum 
mechanics we systematically study the cases where the spectrum, eigenfunctions, and S-matrix 
of 0* can be obtained analytically. We relate these solutions to the solutions of the ordinary 
massive Dirac equation in external fields. We show that whenever a Schrijdinger equation for 
a potential V(x) is exactly solvable, then there always exists a corresponding static scalar field 
q(x) for which the Jackiw-Rebbi type (1 + 1 )-dimensional Dirac equation is exactly solvable 
with k’(x) and q(x) being related by V(x) = c?(x) + cp’(x). We also discuss and exploit the 
supersymmetry of the path integral representation for the fermion propagator in an external 
held. ‘I;: 1988 Academx Press, Inc. 

I. INTRODUCTION 

Recently there has been a renewed interest in understanding the zero modes and 
complete spectrum of the square of the Dirac operatbr for a Euclidean fermionic 
theory interacting with background gauge fields. This operator can be considered 
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[l] the Hamiltonian of a supersymmetric quantum mechanical system, with a 
superalgebra identical to that of Witten’s original N= 1 supersymmetric quantum 
mechanical model [2]. This supersymmetry was first successfully exploited in the 
context of the study of chiral anomalies. The reason for this is that the partition 
function for the supersymmetric quantum mechanics associated with the squared 
Dirac operator 

ZdP) = 1 dx C-4 Wy5epPH) Ix), H= -(0)2 (1.1) 

is related in the limit /I= 0 to the chiral U(1) anomaly [3]. 
Another reason for studying the spectrum of the Dirac operator is the recent 

experiments which explore the behavior of QED in the presence of strong external 
fields [4]. In these experiments conducted at GSI some curious results have been 
found concerning narrow peaks in the energy of electron-positron pairs coming 
from heavy-ion scattering. One interpretation of the results of this experiment is 
that in strong external fields, QED undergoes a phase transition [S]. 

The starting point for studying QED in strong external fields is the determination 
of the fermion propagator in an external field. Using the Fock-Nambu-Schwinger 
proper time formalism [6] one obtains for the fermion propagator in Euclidean 
space 

S(x, x’, A)= (iyD+w~)(--i)[~~ dsexp(-m2s)(xl exp(-Hs) Ix’). (1.2) 

The determination of this quantity clearly requires the wavefunctions as well as 
energy eigenvalues of H. As we will show both Z, and S(x, x’, A) have path integral 
formulations which are explicitly supersymmetric. We will also show that by 
introducing fermionic degrees of freedom, one can greatly simplify the deter- 
mination of the path integral. This path integral representation for S has been 
studied in a different context by Rajeev who was interested in reformulating 
quantum electrodynamics as a supersymmetric theory of loops [7]. 

Using the chiral decomposition of the Dirac operator 

b=t(l +~s)fl+t(l-~s)b=Q+ +Q- (1.3) 

to obtain a supersymmetric representation of H, Alvarez Gaume [S] constructed a 
simple proof of the Atiyah-Singer index theorem on compact spaces. This chiral 
supersymmetry was also exploited by Forgacs et al. to evaluate the partition 
function and thus the U(1) anomaly for the Dirac operator on both compact and 
non-compact 2-dimensional manifolds [9]. The calculation of the anomaly 
proceeds in a fashion identical to that of the determination of the Witten index in 
SUSY quantum mechanics [lo]. The index is determined by the difference in the 
density of states of the two partner Hamiltonians. This in turn is related to the 
derivative of the difference in phase shifts. However, the phase shifts of the partner 



SUPERSYMMETRY AND THE DIRAC EQUATION 3 

Hamiltonians are related by SUSY, which allows a simple calculation of the 
anomaly. 

In the past people have studied the Dirac equation in particular contigurations 
without any strategy for finding exact solutions. In a paper written in 1967, Stanciu 
[ 111 points out that until then, only six configurations of the external field were 
known to be solvable. He then discusses some new solutions where the problem 
reduces to a known l-dimensional Schrodinger equation. In his case only one com- 
ponent of the gauge field A was non-zero, and it depended on only one Cartesian 
coordinate. 

Given the renewed interest in the external field problem we have undertaken a 
systematic study of two different supersymmetric structures of the Dirac 
equation-the chiral supersymmetry discussed above and another, complex super- 
symmetry possessed by H [12]. In SUSY quantum mechanics it is now understood 
that all exactly solvable potentials can be obtained by exploiting the supersym- 
metry, factorization of the Hamiltonian [13], and a discrete reparametrization 
invariance-shape invariance [ 143. 

The purpose of this paper is to discuss the supersymmetric structure of H and to 
see how the methods used to obtain analytic solutions for the Schrodinger equation 
can be extended to finding the eigenfunctions and eigenvalues of H (and therefore 
also of #). For the case of the Dirac equation in a 3D Coulomb field Sukumar 
[15] showed how to exploit the supersymmetry along with factorization and 
“shape invariance” to obtain the complete energy spectrum and eigenfunctions of 
the Dirac equation. Here we are more interested in the Euclidean Dirac operator. 

We will show that all previously found solvable external electromagnetic field 
configurations can be found by our methods. We also find some configurations 
which were not known before. We find that in four dimensions the complex super- 
symmetry leads to a formulation of the solvability problem that is more useful than 
the chiral supersymmetry. 

The rest of the paper is divided as follows: in Section II we discuss the supersym- 
metric structure of the Dirac equation in 4 dimensions with respect to both the 
chiral and the complex supersymmetries. We also show how to trivially obtain zero 
modes using the complex supersymmetry. In Section III we discuss the Dirac 
equation in two Euclidean space-time dimensions as a preliminary exercise. Because 
O(4) = SU(2)@SU(2) the 2D solutions are a subset of the solutions to the 
Euclidean 4-dimensional Dirac equation. We then find all shape invariant poten- 
tials in 2 dimensions for which the Dirac equation is exactly solvable. In Section IV 
we present our strategy for finding solutions for the 4-dimensional Euclidean Dirac 
operator and find analytic solutions when the superpotential is a function of one 
variable or the sum of two functions of single variables. In Section V we discuss the 
path integral formulation of both the partition function and the fermion propagator 
in an external field and show how to obtain trivially previously known results for 
the constant external field case. We review in Appendix I how one uses shape 
invariance and factorization to obtain the exact wavefunctions for the Schriidinger 
equation. The subset of these solutions relevant to the Dirac problem are given. In 
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Appendix II we show that whenever the l-dimensional Schrodinger equation with 
potential V(x) is exactly solvable then there always exists a corresponding static 
scalar field q(x) for which the Jackiw-Rebbi type Dirac problem in 1+ 1 dimen- 
sions can be exactly solved. It turns out that q(x) is the superpotential 
corresponding to the Schrbdinger potential V(x). 

II. SUPERSYMMETRIC STRUCTURES OF THE DIRAC OPERATOR IN 4 DIMENSIONS 

In 4 dimensions one can show that the square of the Dirac operator possesses 
two different supersymmetric decompositions. The first of these is the well known 
chiral supersymmetry. 

Defining 

Q, = 81 f Ys) YPD,? (2.1) 

where 

D, = a, - iA,, 

one finds that the Dirac operator can be written as 

B=Q++Q-. (2.2) 

Because Q + and Q _ are nilpotent, Q: = Q2 = 0, the square of the Dirac operator, 
together with Q + and Q _ yields the usual N = 1 supersymmetry algebra 

H= -(Y,D,)~ = {Q, > Q- 1, [Q+,Hl=[Q-,Hl=O (2.3) 

first discussed in the context of SUSY quantum mechanics. 
If we take the following representation of the Euclidean y matrices, 

where the 0 are the usual Pauli matrices, then 

Y$, = 
0 

-iD,+a.D 
iyJ.D]=[;+ ;I 

(2.4) 

(2.5) 

-H=(ypD,)*=D,D,+ 
a.(B+E) 

0 a.(;-E)]=[LoL’ ;L]’ (2-6) 
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Here we have used the convention 

Fpv = apA, - &A,, Bi=@kkFjk, Ei = Foi. 

We see that if we have 

-L+LY,=E,Y,, 

then 

-LL+(L!P’,)= E,(LY,). 

This shows that eigenfunctions of H with energy E, are given by 

5 

(2.7) 

(2.8) 

(2.9) 

Y= 
0 [ 1 and Y= LYl ‘y , [ 1 0 

(2.10) 

Once we have an eigenfunction of H with a non-zero eigenvalue E, we can easily 
obtain the eigenfunctions @* of j? with eigenvalues f (El)“’ by the construction 

@‘* = C8 f (Ed”‘1 ‘y. (2.11) 

In the appendix we also show how to obtain the solutions of the usual massive 
Dirac equation from Y. 

The chiral supersymmetry still requires that we solve the two component 
equation C(2.8) or (2.9)] to obtain solutions. 

When A, has the special form 

(2.12) 

where the constant 4 by 4 matrix fpy has the properties 

f,"= -fvp (2.13) 

f,,f,,= -4m? (2.14) 

then there exists another breakup of the Dirac operator 8 which leads to the 
so-called complex supersymmetry. In particular, for all self-dual or anti-self-dual 
fields the potential can be chosen to have this form. However, (2.12) allows 
solutions which are not restricted to being dual or anti-self-dual. 

The complex supersymmetry relies on the fact that the Dirac matrices can be 
interpreted as fermionic creation and annihilation operators. This will generalize the 
form of Q _ and Q, which was found for the SUSY quantum mechanics of the 
Schriidinger equation. There the matrices cf found in the definition of Q _ and Q + 
were interpreted as the fermion creation and annihilation operators, tjt and II/. 

In SUSY quantum mechanics one has 

H=p2+ W2+a,W”= {Q+,Q-}, (2.15) 
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where 

w= f, *+=0-, @=a+ 
Q, =t,bt(c?,- W)=apex(d,)e-x 

Q- = $(a, + W) = o+epx(d,)ex. 

(2.16) 

The zero energy ground state wavefunctions could therefore be automatically found 
for any x since for the ground state 

Q- !P=Oa Y=epX. (2.17) 

The introduction of the ,fermionic degrees of freedom allows a Lagrangian 
formulation of SUSY quantum mechanics and of the Hamiltonian (fl)’ in which 
the SUSY transformations can be seen to be bose-fermi transformations. The 
Lagrangian formulation is exploited in Section V. 

To see the complex supersymmetry of the Dirac operator it is simplest to choose 
a particular basis for the fermion creation and annihilation operators. The general 
structure of the complex supersymmetry of the Dirac operator in 2D dimensions is 
discussed in Ref. (12). Let us introduce the two complex variables 

u=x,+ix, and 0=x, +ix2, (2.18) 

and the fermionic operators 

b’ = t(yo k iy, 1, (2.19) 

We need the complex derivatives (a, = a/a,,), 

and define (the identical equation holds for v) 

D, = a, - iA,, B,=a,-&I,. 

One can then show that we can write as in (2.2) 

fl=m+ +Qu 

where now, however, 0 + and &- are defined by 

&+ =b,+D,,+b;D,, Qp =b;&+b;d,. 

The condition that H = { & + , & ~ 1 is that 

&=&=O, 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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This imposes the integrability condition on the gauge field A,, the solution of 
which is Eq. (2.12). For our particular decomposition of 4 we have that fPV is 
given by 

[ 2, 21. (2.25) 

The Hilbert space breaks up into three subspaces labelled by the fermion 
number, N, where 

(2.26) 

The chiral supersymmetry operators Q + and Q _ defined in (2.1) connect the N = 2 
plus the N= 0 sector to the N= 1 sector. On the other hand, the complex super- 
symmetry operator &+ defined by (2.23) takes the zero particle sector into a 
particular linear combination of the one particle states which is orthogonal to the 
linear combination obtained by applying Q ~ to a state in the N = 2 sector. These 
subspaces depend on the superpotential x. 

In terms of the superpotential x we can write Q + and & ~ in a manner analogous 
to Eq. (2.16). That is we have 

0, =epx(b,+d,)ex, & = e”(b;&)cX. (2.27) 

Here i is summed over the complex coordinates u and u. We will use this form later 
to find the zero modes of the Dirac operator, just as we found the zero eigenstates 
of the Schrbdinger equation, in (2.17). 

If we analyze the restriction C(2.12) and (2.25)] of having the electromagnetic 
field A,, derived from a superpotential we find that for our decomposition 

E, = -B,, E,= -B,, (2.28) 

with E, and B, unrestricted. Another decomposition would have given the result 

E,=B,, E,=B, (2.29) 

and E, and B, unrestricted. All other decompositions are just 4-dimensional 
rotations of these two possibilities. We define the states of the Hamiltonian by 
defining the vacuum to be 

b,b, lO,o,) = o. (2.30) 
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The Hilbert space of solutions decomposes according to the Fermion number 
operator 

s5=8o+S,+fh, (2.31) 

and the one particle states also have a natural decomposition for a given super- 
potential 2, 

81 = !jji”’ + sj’,“. (2.32) 

The states in sjC,O) are obtained by applying 8, to a zero particle state 

Y(,“)=~+(Yo 100)). (2.33) 

Since &+ is a fermionic operator, we have 

& + Y\“’ = 0. (2.34) 

Similarly the states in $ji’) are obtained from 

Y”,‘)=&(Y2 11 1)) or & Yy’,2’=0. 

In the zero and two particle sectors the Dirac equation reads 

-p- &+ Yo=EY(J, -&+& Y2=EY2. 

1 (2.35 

(2.36 ) 

If we solve these two equations, then we can reconstruct the whole solution either 
from the chiral supersymmetry or by using the fact that Yi”) and Yi2) as defined by 
(2.33) and (2.35) are then solutions in $$i”) and !+jC,*J with the same energy. We have 
then a twofold degeneracy in the space of solutions as seen from either the chiral or 
the complex supersymmetry. 

The explicit projections of the Dirac operator squared in the zero and two 
particle sectors are given by 

where V is the gradient operator with respect to the ordinary Cartesian variables 
and f is the 4 x 4 matrix defined by (2.13) and given explicitly for our choice of 
complex coordinates in (2.25). 

If the condition V2x = 0 is satisfied, then the differential equation is identical in 
the two sectors and we end up with a fourfold degeneracy of all energy eigenvalues. 
If we take f as given by (2.25) this condition implies that the electromagnetic field is 
anti-self-dual. In the other inequivalent decomposition of the Dirac operator we 
would instead be in the self-dual sector when V*x = 0. 

One of our strategies to find analytic solutions to the 4-dimensional Dirac 
equation is to see if there is an additional supersymmetry to relate the solution in 
the zero particle sector to the solution in the two particle sector. 
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In the chiral symmetry language, this is the same as the problem of finding cases 
where the 2 by 2 matrix Hamiltonian H, = LLt defined in Eq. (2.6) itself contains 
another SUSY so that it can be written as 

H, = [“b” A;+], (2.38) 

If we can do that then we can find the solvable external field configurations by 
knowing solvable quantum mechanical potentials. For example, we can use the 
technique of factorization and shape invariance to obtain analytic solutions as 
described in the appendix. 

Let us first show how one finds the zero energy solutions. If we assume that these 
solutions are in the 10 0) sector, then we have the equation 

&+K lOO>)=O (2.39) 

01 

iJu(exY,) 10 1) + 8,(ex!P0) 11 0) = 0. 

This can be satisfied only if 

ex!Po = f(u, 21) or !Po = epxf(ii, V), (2.40) 

where f is an antianalytic function. Thus candidate solutions are of the form 

(x0 - i~~)~ (x, - ixz)” e-X. (2.41) 

Only those m, n for which the wavefunction is normalizable are bona fide zero 
mode solutions. If instead the zero modes are in the two particle sector, we obtain, 
by a similar argument, that the zero modes are of the form 

(x0 + ix3)m (x1 + ixl)n ex. (2.42) 

If x = x(pl, p2), where pf = xi + x$, p: = x: + xi, then m and n are the conserved 
angular momenta in the two 2-dimensional planes spanned by (x0, x3) and (x1, x2). 
This corresponds to the W(2) @ W(2) decomposition of O(4). 

Thus we see that when the vector potential A, is derivable from the super- 
potential x, then the method for obtaining zero modes is quite analogous to what 
happens in the Schrodinger case. 

III. THE SPECTRUM OF THE 2D DIRAC OPERATOR 

Although our primary interest is in the 4-dimensional Dirac equation, we first 
study the 2-dimensional Dirac equation because of its simpler structure and because 
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one set of solutions to the 4-dimensional equation is just the solution of the 2D 
equation and another is just a product of two 2-dimensional solutions. 

In two dimensions, the chiral and complex supersymmetries are equivalent since 
we can always by a choice of gauge write 

We use the representation 

YO=aIY Yl = cJ2. (3.2) 

In that representation we have that 

(3.3) 

where 

L=D,-iD,, L+=D,+iD,. (3.4) 

We find that (B = For ) 

(y.D)‘= -(pp-A,)2+.3B (3.5) 

from which one immediately reads off LLt and LtL from (3.3). 
The complex supersymmetry leads to the same result. For the complex super- 

symmetry we introduce 

b’=a+, d,=$(d,-ia,) 

&+ = b,+D,, &- = b,d,, 
(3.6) 

which yield D,, = L, D, = Lt as given above. 
The complex supersymmetry for (y . D)2 is always ensured in 2 dimensions since 

we can always choose the gauge: 

In analogy with finding exact solutions to SUSY quantum mechanics we look for 
potentials that lead to shape invariance. Using (3.7) we find 

LL+={V2-V2X-(V~)2+2iVXoEoV} (3.8) 

L+L= {V2+V2X-(VX)2+2iVXOsOV}. (3.9) 

These equations are similar in structure to those of SUSY quantum mechanics 
except that we now have a partial differential equation instead of an ordinary 
differential equation. If we can find a system of orthogonal coordinates and the 
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superpotential X depends only on one of the two variables, then we can reduce this 
problem to a l-dimensional quantum mechanical one. For example, in Cartesian 
coordinates, if we let x = x(x,), then the linear momentum pi is conserved. Letting 

!P(x,, x1) = e’p’“‘cp(x,), (3.10) 

we find 

-LL+= -d;+[p,+Xq2+f’ 

- L+L = -a; + [p, + x’]’ - x”. 
(3.11) 

This is precisely the structure of SUSY quantum mechanics with the SUSY super- 
potential 

W=p,+x’. (3.12) 

For a physical electromagnetic field, x’ cannot depend on pi. Thus only those 
solvable quantum mechanical potentials of the form W = p, +f(x,,), where f(xO) is 
independent of pi, lead to solvable Dirac equations with 

A I(%) = -f(xd (3.13) 

As shown in the appendix, when we solve the shape invariance equation with the 
above form there are only three solutions: the Morse potential with W(x)= 
Cl - C2 e ~ ‘-‘, the Rosen-Morse potential with W(x) = C,/C2 + C, tanh(clx), and the 
oscillator potential W(x) = wx + Cl. 

Let us next introduce polar coordinates via x0 = p cos 0, x, = p sin 8. If x = x(p) 
then we obtain using (3.1) 

A,= -PX’, A,=O, (3.14) 

where the prime denotes differentiation with respect to p. 
The electromagnetic field F,, we denote as before as B, 

B(p)=&A,-d,A,= -~“-f/p=p~~aA~/ap. 

The operators L and Lt which factorize the Hamiltonian take the forms 

L=P[a,-ip-l(a,- iA@)], 

L+=P[a,+ ip(a,-iA,)]. 

(3.15) 

(3.16) 

Following Akhoury and Comtet [lo], we take for the wavefunction 

Y= “fiti [ 1 gn ’ 
fn = p-“*@“.“(p) exp[i(m - t)Q], g, = p-“*@“+‘“(p) exp[i(m + +)I, 

where m takes on half integer values. 
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Then we have that the pairing equations 

L!fn=JE,&~ Lgn=Jzfn (3.18) 

become 

(3.19) 

where W = (m - A,)/p. 
Since we want A, to be independent of m, we see from the appendix that there 

are only two shape invariant Schrijdinger potentials that are relevant-namely the 
free problem in 2-dimensional radial coordinates (with shifted angular momentum) 
W= (m - @)/p and the 2-dimensional harmonic oscillator W= -iBp + m/p. 

The first case is connected with the vortex. Asymptotically the vortex field goes 
like 

A=@V0 (3.20) 

so that A, = @, 1= m - @, leading to a shifted angular momentum free problem and 
corresponding to x = -@ In(p), W= (m - @)/p. A non-singular vortex solution can 
be obtained [16] by assuming 

x= +p’ for p<R 

x = -aBR’( 1 + ln(p/R)) for p> R. 
(3.21) 

The second case corresponds to the constant field problem so that 

A, = $Bp’, x= -$Bp2. (3.22) 

Thus we see that for the 2-dimensional Dirac equation we find only five 
analytically solvable potentials-three for the case of a conserved linear momentum 
and two for the case of conserved angular momentum. 

IV. THE SPECTRUM OF THE ~-DIMENSIONAL DIRAC EQUATION 

The relevant equations that we need to solve in 4 Euclidean dimensions are 
Eqs. (2.36), where in the N= 0 and N= 2 fermion sectors, $- &+ and 0, & are 
given by (2.37). 

The simplest way of solving the pair of equations (2.36) is to have 2 a function of 
a single variable. The solutions of Stanciu [ 1 l] arise when we choose that variable 
to be one of the Cartesian coordinates, say x,. One then chooses for ‘P,, and Y2 the 
form 

(4.1) 
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One has that A, = -x’(xl) is the only non-zero component of the field and we have 

4H,=p~+p:-a:+(PZ+X’)2-X” (4.2) 

df?, = pi + p; - 8; + (p2 + 1’)’ + f. (4.3) 

We see that H, and H, are SUSY partners with 

w= P2 - A,@, 1. (4.4) 

Equations (4.2)-(4.3) are essentially the same as (3.11); thus again because we need 
A, independent of p2 there are only three solvable potentials-the Morse potential 
with W(x) = C, - C2e-““, the Rosen-Morse potential with W(x) = Cl/C2 + 
C, tanh(ax), and the oscillator potential W(x) = ox + C,. The eigenvalues and 
eigenfunctions of these potentials are given in the appendix. These potentials were 
the ones considered by Stanciu [ 111 in solving the massive Dirac equation. Because 
we are in Euclidean space, these solutions to the squared Dirac operator in 
Euclidean space are magnetic field solutions. 

The next simplest choice for x is that x=x(p), where p2 = XT +xi for example. 
Then the magnetic field is just a function of p and we obtain the same result in the 
(1, 2) plane as in the discussion of the Euclidean 2D Dirac equation. We obtain 
wavefunctions which are those functions of (p, m) found there times plane waves in 
the 0 and 3 directions. Thus we have in that case that the only solutions are a 
constant magnetic field F,, or a vortex field F,*. The solutions are similar to those 
of the 2D equation with appropriate changes of coordinates. 

For x = x(p3), where p: = xf + x2 + xz we get the possibility of Coulomb 
solutions. In a beautiful paper, Sukumar [ 151 has analyzed in detail how super- 
symmetry and shape invariance allow one to solve this problem. 

The most interesting l-dimensional x is x = X(r), where r* = xi + xf + x: + x:. 
In that case 

2iVx .f .V= -2rp1~‘(r)(A4,, + Ml*), (4.5) 

where M, are the O(4) angular momentum generators. Since O(4) = 
SU(2) @ SU(2) we can simultaneously diagonalize M,,, M12, and M2. Letting the 
eigenvalues of MO3 = m and M,, = n, M2 = j(j + 2), we find that, after scaling out a 
factor of r ~ 3’2, the radial equations for H, and H, become 

4H,= -~~+r~*[j(j+2)+~]+(f)*-~“+r~‘~‘(2m+2n-3) 

4H2= -~~+r-2[j(j+2)+~]+(f)2+f’+r-1,f(2m+2n+3). 
(4.6) 

There are only two solutions where 2 is independent of m, n, j such that Ho and 
H, are SUSY partners and the potential is shape invariant; namely 

x’( r ) = $or (harmonic oscillator), x = or214 (4.7) 
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which is the constant magnetic field case with 

Fp = Q&Y 

and f given by (2.25), and a vortex like potential 

x’(r) = a/r, X=alnr+C 

which leads to the field 

A, = af,,-Q 

(4.9 

(4.10 

which as in 2 dimensions corresponds to a shifted 4D angular momentum. As in 2 
dimensions one can also solve exactly the case where we combine these two 
solutions at r = R. So that 

X=cor2 for r<R 

x = oR2( 1 + In(r/R)) for r2R. 
(4.11) 

The other shape invariant solutions which are possible in the 4D Dirac equation 
are those for which x is the sum of two functions, each of which is a function of one 
variable only. 

For example, for the particular choice (2.25) forfPy the two 2-dimensional planes 
(x,,, x3) and (xi, x2) are distinguished. If we choose 

x = XOM +x,(x1 13 (4.12) 

then p3 and pZ are conserved momenta. Using a product wavefunction of the form 

the strutures of H, and H, become 

4&J= -J~+(p~+JoXo)2-J~xo-a:+(P2+a,X,)2-d:X1 
4H2 = 4 + (P3 + Jc&d2 + J&l - a: + (p2 + J,x*)2 + a;xl. 

(4.14) 

After separating variables, we get two l-dimensional SUSY Schrodinger equations 
in the x0 and xi coordinate systems. Thus one can have different shape invariant 
potentials in say the x,, and x1 directions and still solve analytically the Dirac 
equation. Each of these equations is exactly the equation we had for the 2-dimen- 
sional Dirac equation. Thus we have the restriction again that for 1 to be indepen- 
dent of the conserved pi only those x corresponding to the l-dimensional Morse, 
oscillator, and Rosen-Morse potentials are exactly solvable. 

Similarly because O(4) = SU(2) @ SU(2) we can simultaneously diagonalize say 
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Mo3, M,,, and M2. Thus we will get a similar structure in the two planes p,, q1 
and p2, (p2 if we choose 

x = Xl(Pl) + X2(P*L (4.15) 

where pT=xz+x:, pz=xf+x,. 2 Taking product solutions we can again separate 
the equation into two copies of the problem that we had for the 2D Dirac equation. 
So now we can have following the arguments from Eqs. (3.14)-(3.21) four 
possibilities with x, and x1 being of the form p* or In p. 

This exhausts the solutions we have found for the Dirac equation which relied on 
our knowing exact solutions to the Schrodinger equation. 

V. PATH INTEGRAL FORMULATION OF THE FERMION PROPAGATOR 

AND THE WITTEN INDEX 

The solvability of the Dirac operator is of course related to the ability to 
integrate the path integral. In this section we show that by introducing fermionic 
degrees of freedom, the path integral for the Dirac operator, which is initially a 
path ordered integral, is reduced to an ordinary path integral. By integrating over 
the fermionic degrees of freedom, we obtain a purely bosonic path integral. For the 
case of a constant external field strength F,,, the bosonic path integral is a 
Gaussian, which allows one to obtain trivially the effective potential for QED as 
well as the fermion propagator S(x, I, A) and the associated index I. 

As stated in the Introduction, the quantities we calculate are the Green’s 
functions, 

G(x, x, t) = (xl e-“’ Ix’) II=‘. 

G,(x, x, T) = (xl Tr(y,e-“‘) Is’) IXzi.. 
(5.1) 

By using Schwinger’s proper time formalism we can determine S((x I A) from G. 
The index Z, is just the spatial integral over G5. Once we introduce fermionic 
variables then G is determined by choosing antiperiodic boundary conditions for 
the fermions. If instead we use periodic boundary conditions on the fermions we 
obtain instead G,. The index of the Dirac operator which is related to the axial 
anomaly as shown in the papers of Friedan and Windey [l] and Freedman and 
Cooper [lo] is obtained by integrating G5 over dx as in (1.1). 

The square of the Dirac operator is given by 

H= (p-eA)* + +pvFp;,,. (5.2) 

If we do not introduce auxiliary fermions, then the related matrix valued 
Lagrangian would be 

L(x, ,t) = $t,c?,, + ieA,1, - +apYFp,, 

aPy = (2i)-’ [y”, y’] 
(5.3) 
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and we would obtain for Feynman’s path integral representation 

(xl epHr Ix’) = Bx,(t)Pexp - 
s [ f 

’ dt’ L(x, i) 
0 1 , (5.4) 

where P denotes path ordering. In analogy with what one does in SUSY quantum 
mechanics [2], several authors [ 1,7] have notied that one can introduce the 
Grassman variables tj, via 

*, = 2-i’2yll, W,? 4h> = &,.. (5.5) 

Then one can write H as 

H= (p - eA)2 - &blrFflv$,,. (5.6) 

The Lagrangian now becomes 

L, = $n,+t, + ieA,i-, + &Q,(t?$,, + F,,)$, (5.7) 

which is invariant under the SUSY transformations 

6x, = -it+,; s*, = &ip. (5.8) 

We now obtain for the path integral 

G(x, x; z) = (xl cHr Ix) = f ax,(t) Th,b, exp 1 , (5.9) 

where we impose antiperiodic boundary conditions on the fermions at 0 and r. To 
determine G, we have exactly the same path integral except one imposes periodic 
boundary conditions on I(/ at t = 0 and r. Since the fermion path integral is 
quadratic, we can perform the functional integral over the fermionic degrees of 
freedom exactly for arbitrary F,,. 

Consider first the quantum mechanics case where F is replaced by an ordinary 
function W. After performing the path integral, we must evaluate 

where the 1, satisfy 

so that 

det[a,- W] =fl I,, 
m 

(a,- Wx))~m=4n~m 

(5.10) 

(5.11) 

Y,,, = C, exp s ’ dz’ [A,,, + W(x(z’))]. (5.12) 
70 
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Imposing antiperiodic boundary conditions Y,Jr) = - Y,,JO) yields 

A,=z-‘[i(2m+ 1)7r-E(Z)] 

E(T) = i,: dz’ W(x(z’)) 

and the fermion determinant is 

L(g) 

I- I-  

m L(O) 

= cash 
I 

’ dz’ ; W(x(z’)), 
0 

(5.13) 

(5.14) 

whereas imposing periodic boundary conditions Y*(r) = Y’,(O) yields 

A,=zp’[i(2m)n-E(t)] 

so that for G, we have that the determinant is given by 

(5.15) 

rI?, L(g) 
n m+O Lk=O) 

= -fF (l+[$--I’)= -~sinh(~~~dr’I~(x(r~))). (5.16) 

To generalize to the case of an antisymmetric matrix F,,,, we can follow the work of 
Alvarez Gaume in his Bonn Lectures [ 161. Fpy is antisymmetric, so it can be skew- 
diagonalized: 

0 

--Xl 
0 
0 

0 
0 
0 

-x2 0 0 -x2 0 

(5.17) 

In terms of the “eigenvalues” of F, x, we obtain for the fermion path integral 

The prime in det’ denotes that we have omitted the zero mode contribution. 
For antiperiodic boundary conditions the ratio of determinants yields 

(5.19) 

whereas for periodic boundary conditions relevant to the Witten index we obtain 
instead 

(5.20) 
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Thus we can always perform the integration over fermions to get a sum of bosonic 
path integrals for G or G,. Whenever the path integrals can be transformed into 
Gaussian form, then we can explicitly evaluate the fermion propagator, and the 
index. 

Let us now calculate G and G5 in the constant field case for which 

A,, = -+Fp,,xv (5.21) 

with Fpy a constant matrix. The Fermion determinant is independent of x and can 
now be factored out of the path integral. The remaining path integral is Gaussian 
and can be performed trivially, 

2= Dx,(t)exp - 
I [ i 

‘dr’~%,.t,ir~.t,,Fpyxy 
0 1 

det”/2(d2S,,,/dt2) 
= det”“( - (d’/dt*)6,, + iF,,,,(d/dt)) 

(5.22) 

In 2 dimensions only F,, = B exists and we can write H in diagonal form, 

H=(p-eA)‘+a,B, (5.23) 

so that it resembles SUSY quantum mechanics in that 

(5.24) 

where 

H, =(p-eA)‘*B. 

Using the above equations we obtain, since x, = B, 

Z = B tanh(Br); Z, = B= +E~,,E;~, (5.25) 

a result obtained with more difficulty by Akhoury and Comtet [lo] using heat 
kernel methods and the exact eigenvalues and eigenfunctions. 

In 4 dimensions one can use the trick of Schwinger [6] to find the eigenvalues of 
F. Using the fact that we can write 

F,,,F,$ = 86 . PA’ 6 = ;(FF*) (5.26) 

Fzv F; + Fpy FYI = 256,, , i-j = a( FF). (5.27) 
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we find 

Thus 

x, = [g + (S2- 02)1’2]“2, y = [p(g2LQj’)‘q’/’ 
.2 (5.28) 

For the path integral we therefore obtain 

G(x, x; t) = (xl e 

which is just the result of Schwinger rewritten in Euclidean space. 
For G, we obtain 

G&x, x; z) = (xl Tr(y,epH’) Ix) = Q = +(FF*). (5.31) 

Once we have obtained G, the effective action is obtained by integration, 

L(x)=sI dssm’ep”*“G(s). 
E 

(5.29) 

(5.30) 

(5.32) 

This gives an example of the use of the auxiliary fermion variables. 

APPENDIX I: SUSY, SHAPE INVARIANCE, AND SOLVABLE POTENTIALS 

In this appendix we briefly sketch the procedure for obtaining exact energy eigen- 
values, eigenfuctions, and S-matrix elements for a class of Dirac Hamiltonians. 
There are two separate problems that we are interested in. First, in order to deter- 
mine field theory quantities such as S(x, y:A) or the index for particular external 
fields, it is sufficient to know the eigenvalues and eigenfunctions (continuous and 
discrete) of f12. Then one can directly evaluate Z, and S in Eqs. (1.1) and (1.2) by 
brute force as was done in two dimensions by Akhoury and Comtet [lo]. 

Another problem of interest is to find solutions to the massive Dirac equation. 
Since we are in Euclidean space, we can only discuss magnetic field solutions. As 
shown by Feynman and Gell-Mann [18] and Brown [19] the solution of the four 
component Dirac equation in the presence of an external electromagnetic field can 
be generated from the solution of a two component relativistically invariant 
equation. The connection is if Y obeys the two component equation, 
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then the four component spinors that are solutions of the massive Dirac equation 
are generated from the two component Y via 

(4P-eA)+(E-Ao)+mY 1 (ao(p-eA)+(E-A,)-m)Y . (AZ) 

For the case that A,=A, =A, =0 and A, =A,(x,) we find that the two com- 
ponent ‘I’ satisfies the equation 

[-t3~+p~+(pz-eA,(x,))2+m2+ea,B,]Y=E2~. (A3) 

A comparison with Eqs. (4.3) and (4.4) shows that one can determine Y from our 
solutions to (2.36), (4.3), and (4.4) with the identification 

&+m=2E,+p, and En-m=2E,-p,, (A4) 

where E, is an eigenvalue of H = -#*, in Eq. (2.36). 
Once we have reduced the problem to a l-dimensional Schrodinger equation 

such as (A3) then one can determine the wavefunctions, eigenvalues, and S-matrix 
of such an equation using supersymmetry, factorization, and shape invariance. 

It is well known that all l-dimensional Schrijdinger Hamiltonians possessing a 
ground state wavefunction Y0 with energy E. can be factorized [ 13, 141: 

H, Y;‘) = [ -d2/dx2 + V,(x, a,)] Yj,‘) = [A+A + Ef ‘1 !P;l’ = E;“Y;‘), (A5) 

where 

A+ = -d/dx+ W(x, a,), A =d/dx+ W(x, a,) 

I’, = W*(x, a,) - dW(x, u,)/dx + E&l’. 
(A61 

The a, are the parameters describing the potential, n labels the states, n = 0, 1, . . . . 
and n = 0 denotes the ground state. The superpotential W’(x, a,) is given in terms of 
the ground state wavefunction Yhl)(x, a,) as 

W(x, ai) = -d(ln Yh’l(x, u,))/dx. (A7) 

For simplicity let us set & (l) = 0. Then the partner Hamiltonian 

H, = AA+ = -d’ldx* + V2, 

V, = W*(x, a,) + dW(x, u,)/dx 
(Af3) 

gives the same spectrum as H, = AtA but with the ground state missing; that is, 

&q’ = 0 Et*’ = E”’ 
n n+l. (A9) 
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In addition the eigenfunctions of H, and H, with the same energy are related, 

Y(l) (x)= [E;q p* A+Y’*‘(X) II+1 n 

!ly(x) = [Ep] -“* A!q11 1(x). 
(AlO) 

It is well understood by now that the degeneracy in the two spectra is due to a 
supersymmetry [2]. We define the super-Hamiltonian H and the supercharges Q 
and Qt as 

These operators are the 2-dimensional representation of the sl(l/l) superalgebra: 

[Q, HI = CQ+, HI = 0, IQ+, Q> = H> {Q, Q} = {Q’, Q+} =O. (A=) 

The fact that the supercharge commutes with H gives the energy degeneracy. 
Clearly this process can be continued. Using factorization, VZ can also be written 

as A$A2 + Ei*), and the partner Hamiltonian of this can be constructed. This 
produces a ladder of potentials, V,. If the partner potentials are “shape invariant” 
in that V, has the same functional form as Vi but different parameters describing 
the strength and shape of the potential (except for an additive constant), then as 
noted by Gendenshtein and Infeld and Hull [14] the full ladder of potentials will 
be shape invariant, 

vrr+ 1(X? %I = V”(X, a,, 1) + C(%), (A13) 

and the energy spectrum of the original potential can be determined algebraically: 

n+l 

EL’)= c C(a,), Ea’ = 0. (A14) 
k=2 

Making use of (AlO) Dutt et al. [14] then showed that the energy eigenfunctions 
could also be obtained algebraically: 

y!,“(x, a,) = fi A+@, a/,) !f$“(x, a,,, 1). (Al51 
k=l 

In fact by using relations (AlO) and interpreting them as recursion relations for 
special functions, explicit wavefunctions have been obtained for all known shape 
invariant potentials [20]. Furthermore, on analytic continuation of these 
wavefunctions to imaginary values of k, the scattering matrix has also been 
obtained for these potentials [22]. 

Let us now come to the question of categorizing the shape invariant potentials, 
i.e., those which satisfy the condition (A13). This is a highly non-trivial problem as 
(Al 3) is a non-linear Riccati type of equation. However, a small number of shape 
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invariant potentials have been found and categorized by assuming that the super- 
potential W(x, a) factorizes [ 14,211: 

ww, 0) = c .t-i(a) g,(x). (A16) 

In this paper we have seen that there are basically two different types of relevant 
l-dimensional problems depending on whether one separates variables in Cartesian 
coordinates or in polar coordinates. From (2.37) and (3.8) we find that the 
equation for the square of the Dirac operator is most simple when written in terms 
of the potential x(x,) which determines the electromagnetic field via (2.12). If x 
depends on one Cartesian coordinate [I = x(x1), say] then we obtain a l-dimen- 
sional quantum mechanical problem where the superpotential has the form [see 
(3.4) (4.3), and (4.4)] 

Wx,)=P,-AAx1). (.417) 

If x is the sum of two functions of one variable of the form [see (4.14)] 

x = x(x, ) + x(x3) (A181 

then one can separate variables and one has a l-dimensional problem in both the 1 
and 3 directions with W having the form of Eq. (A17) (with different variables 
xi, etc.). 

For l-dimensional problems having the form 

W(x) = p; - Ai (A19) 

one needs that the electromagnetic field Ai is independent of the conserved linear 
momentum pi. This puts severe constraints on the acceptable solutions of the shape 
invariance condition: 

W2(x, al) + w’(x, a,) = W2(x, a()) - w’(x, a()) + C(q)). (A20) 

If we let W(x, p) = p + f(x) we obtain the equation for f(x) (a, = p, a, = p - CC), 

2f’(x)-2af= p* - (p-cry- C(p). (A.21 1 

In order forf(x) to be independent of p, the r.h.s. of (A21 ) must be independent of 
p. Thus we choose 

C(p2) = p2 - (p-a)’ - 2k (i-422) 

and obtain 

f(x)=k/a+be-“” (~23) 
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with k, ~1, and b arbitrary parameters. This gives the Morse potential: 

W(x)=p,+C,+C,cl~‘(l-ePV). (~24) 

For the special case where CI = 0 we obtain instead the oscillator potential 

W(x) = p, + wx + c. (425) 

The other way of obtaining a solution independent of p is to assume that 

W(x) = B/A + Af(x), (A’W 

where B/A = p, and we want A and f(x) independent of p. Now we choose a, = A, 
a, = A - LY under our shape invariance condition, and we find that the solution is 

f(x) = tanh(ctx), 6427) 

giving rise to the Rosen-Morse potential 

W(x) = p + A tanh(ax) + C. (A-28) 

The next type of problem was that where the potential was of the form x = I 
or x = I + x(p3), where p: = XT + xz, p: = xi + xi. In that case we found that the 
problem reduced to knowing the solution to the 2-dimensional Euclidean Dirac 
problem (see (3.19)) with W(p) having the form 

6429) 

From the shape invariance equation with a,, = m, a, = m + 1, we obtain the differen- 
tial equation 

dr+LC 
4 P 2' 

(A301 

In order for A, to be independent of m we need C to be independent of m. The 
general solution is 

fq-;, (A311 

where c1 is an integration constant. For CI = 0 we obtain the 3-dimensional oscillator 
potential with C = 2w, 

W(p) = mlp + imp, (~32) 
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which corresponds to a constant magnetic field. For C= 0 we obtain instead a 
shifted angular momentum free theory 

W(P) = (m + cc)lP> (A33) 

which corresponds to a vortex solution. 
In 4-dimensional problems with spherical symmetry we found (see (4.6)) that W 

was of the form 

W( r ) = a/r + x’. (A34) 

This is exactly the same form as that in 2 dimensions (except p is replaced by r) so 
that the same analysis applies. 

We now tabulate the eigenfunctions and the energy eigenvalues associated with 
these particular shape invariant potentials using Eqs. (AlO), (A14), (A15). The 
method of obtaining these results is discussed in detail in Refs. [ 14,20,21]: 

i. Morse Potential. 

W(x) = A - Be-*‘; V~(x)=AZ+B2e~*““-2B(A+a)e-““; 

E, = A2 - (A - ncc)*; 

ul,(y) = y”p”epY/2~~-2n(y); y=2Be-mx, A S=--. 
CI ci 

(A35) 

ii. Rosen-Morse Potential. 

W(x) = A tanh LXX + B/A; V_(x) = A* + B*/A* + 2B tanh ux - A(A + a) sech*(crx); 

E, = A2 - (A - ncr )’ + B*/A* - B*/( A - ncr )*; 

Yn(y)= (1 _ y)(s-n+m (1 + y)+n-a)/2 p;Pn+u.s-n-a)(y); 

y = tanh KY, s = A/a, A= B/CC’, a = ,I/(s - n). 

iii. Shifted 1D Oscillator. 

W(x) = &ox - 6; V/_(x) = fo’(x - 2b/w)2 - +o; 

E, = nw; 

Yn( y) = ed’2Hn( y); y=&(x-;). 

iv. 3-Dimensional Oscillator. 

W(r)=&or-(l+ 1)/r; T(r) = fw2r2 + l(l+ 1 )/r2 - (I+ 4)~; 

E, = 2nw; 

y =&or*. 

(A36) 

(A37) 

(A3g) 
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v. Shifted Angular Momentum (Bessel Functions). 

In this case there are no bound states and C(m) is zero. The equation 

2” - (m* - a)Z/r’ + IZ = 0 (A39) 

is factorized with 

W(r, m) = (m -+)/r. (A40) 

The operators A and At, as noted by Infeld and Hull [ 141, give the two recurrence 
formulas for the Bessel functions, 

Z m+l =A-“‘{(m+f)/r-d/dr} Z, 

Z,=E.~“*{(m+f)/r+d/dr}Z,+,, 

from which we realize 

Z, = r’i2J,,,(L”2r). 

(A41 ) 

Given the above wavefunctions we are now in a position to obtain the eigen- 
functions and eigenvalues of H = -#* as well as the solutions of the massive Dirac 
equation. 

For example, to solve Eqs. (2.36) with W given by (4.5) and a Rosen-Morse 
potential, 

A, = -eH,a-’ tanh(ax,), (A43) 

one has that the wavefunction corresponding to the eigenfunction with eigenvalue one has that the wavefunction corresponding to the eigenfunction with eigenvalue 
A,, = 4E, - p$ - pi in the 5O sector is A,, = 4E, - p$ - pi in the 5O sector is 

ei(mw + ~2.~2 + P~.T~)Q,(~(~~)) ; 1, (A44) 

where Gn and y are given in (A36) with the identification that 

A = eH,,/ol, B = p2 eH& 2, = A2 - (A - nc1)2. (A45) 

In the b2 sector a similar wavefunction having the same eigenvalue 1, is obtained, 
being non-zero only in the first column of the four component spinor, which 
because it is the SUSY partner of the previous wavefunction has A replaced by 
A - c1= eHO/cr -CC. To obtain the other two solutions with the same I,, one can use 
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either the complex SUSY operators Q, and Eqs. (2.23) and (2.25) or the chiral 
SUSY operator Q, (see (2.1) and (2.5)), 

1 (A46) 

to reconstruct the other two solutions. 
If instead we want solutions to the massive Dirac equation we consider instead 

the two component Y defined by 

[ 

0 
'yb"'= ,~(Po.~o+P?.~?+P3.~3)~n(Y(X,)) 1 (~447) 

as input in Eq. (A2) and uses,the identification of (A4). 

APPENDIX II: EXACT SOLUTIONS OF THE (I+ 1 )-DIMENSIONAL DIRAC 
EQUATION WITH A SCALAR FIELD 

In this appendix we sketch the procedure for obtaining exact energy eigenvalues, 
eigenfunctions, and hence the S-matrix for the Dirac equation involving a scalar 
field in 1 + 1 dimensions. These models are useful in the context of the phenomenon 
of fermion number fractionalization which has ben seen in certain polymers like 
polyacetylene. 

For these systems the Dirac Lagrangian is given by 

L= i!P(x)y%yP(x)- qx)(p(x) F(x), (Bl) 

where q(x) is the static, finite energy solution corresponding to the scalar field 
Lagrangian 

~,=;a,~ ap'cp- qcp). WI 

Note that in (Bl) and (B2) we have absorbed the coupling constant in cp and 
V(q), respectively. We would now like to address the question What are the 
various forms of the scalar field q(x) for which the Dirac equation corresponding to 
(Bl) can be exactly solved? We will show now that whenever the l-dimensional 
Schriidinger equation is exactly solvable for a given potential V(x) then there 
always exists a corresponding scalar field q(x) for which the Dirac equation is also 
exactly solvable. 

The Dirac equation following from (Bl ) is 

ifa,q~,t)-cp(~) ~(x,t)=o. 

Let 

Yqx, t) = e-iu’Y(x) 

(B3) 

(B4) 
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so that (B3) reduces to 

yOwY(x) + iy’ dY(x)/d.x - q(x) Y(x) = 0. 

Following Jackiw and Rebbi [23] we choose 

p = 0.1, yl = ia3, Y(x) = Y,(.x) [ 1 Y2(-u) 

W) 

WI 

so that we have the coupled equations 

Y\(x) + q(x) Y,(x) = COY&) 

Y;(x) - q(x) Yz(x) = -wYy,(x). 

W’a) 

W’b) 

These equations are easily decoupled yielding 

- Y’;(x) + [q2(x) - cp’(x)] Yu,(x) = 02Yy,(x) (B8a) 

- (u:(x) + [q*(x) + cp’(x)] Yu,(x) =w*w4 Wb) 

These are precisely the Schrodinger like equations corresponding to the super- 
symmetric partner potentials 

V*(x) = q’(x) f q’(x). (B9) 

As shown in Ref. (21), not only the shape invariant potentials but also the entire 
class of solvable Natanzon potentials (these are potentials whose wavefunctions are 
hypergeometric and confluent hypergeometric functions) can be cast into the SUSY 
form (B9), with q(x) being related to the ground state wavefunction of the related 
quantum mechanics problem via (A7) [here W is replaced by cp]. These potentials 
have wavefunctions and spectra that can be determined algebraically by exploiting 
supersymmetry, shape invariance, and hidden shape invariance [ 14,211. Using the 
construction given above one can then immediately find the solution of the 
corresponding Dirac Lagrangian (B 1). 
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