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Spectral sums of the Dirac-Wilson operator and their retatd the Polyakov loop are thoroughly investi-
gated. The approach by Gattringer is generalized to mode sthith reconstruct the Polyakov lodgeally.
This opens the possibility to study the mode sum approxonat the Polyakov loop correlator. The approach is
re-derived for the ab initio continuum formulation of YaijHs theories, and the convergence of the mode sum
is studied in detail. The mode sums are then explicitly dated for the Schwinger model arftl/(2) gauge
theory in a homogeneous background field. Usiig(2) lattice gauge theory, the IR dominated mode sums
are considered and the mode sum approximation to the stati& @nti-quark potential is obtained numerically.
We find a good agreement between the mode sum approximatibtharstatic potential at large distances for
the confinement and the high temperature plasma phase.

PACS numbers: 12.38.Aw, 11.10.Wx, 11.15.Ha

I. INTRODUCTION value serves as the litmus paper for confinement. Specpral re
resentations of P) have subsequently been the subject of re-
i . cent studies. Bruckmann et al. [9] investigated the respons
: Color confinementand spontaneous chiral symmetry brea >f the eigenvalues of the staggered Dirac operator to a bfist
ing are the two most relevant features of Yang-l\_/l_|lls th_eorythe boundary conditions. They found that the infrared part
when the structure of matter under normal conditions is eXof the spectrum is most sensitive to twists. It was subse-
}ﬁuently pointed out that the spectral sdin, , originally pro-
osed by Gattringer, is dominated by the ultraviolet pathef
pectrum since the sum contains large powers of the eigen-
alues [8-11]. A sensible continuum limit was caught into
qguestion. In [10] alternative spectral sums were put fodvar
which serve as order parameters for confinement and which
receive their main contributions from the infrared partiod t

sector of Yang-Mills theory, an analytic description of wini
is hardly feasible due to strong couplings between the basi
degrees of freedom, quarks and gluons. Lattice gauge simul@
tions found that both so different phenomenons are intilpate
related: in the chiral limit, the critical temperature farabn-
finementT,; and the critical temperature for chiral restoration

T coincide [1]. This finding is highly non-trivial since the spectrum. One of these sums is of particular interest since

expectations had been that two totally different mecha,msmit relates the dressed Polyakov loops to the chiral condensa

involving dllffe(zjren(; e_fnergykscalr?shm;ere ?t work :;or ?ﬁChﬁhe'\/ia the celebrated Banks-Casher relation [12]. If one swist
nomenon. Indeed, irquarks which transtorm under th€ atljoin,, , gauge field by a complex humbemwith unit modulus

representation were coqsidered instead of the quark fiélds ?or equivalently twists the boundary conditions byz) and
standard QCD, largely different values ff andT. were re- picks the coefficient of” in the spectral sums one obtains the

ported in [2]. dressed Polyakov loops with winding numbef10]. With

These results have stirred the hope that a single low ernthis method Bilgici et al. [13] connect the eigenvalue den-
ergy effective degree of freedom is responsible for both phesity at zero and therefore the chiral condensate to the etiless
nomenons. Given that in putel/ (V) gauge theory the long  Polyakov loops. Numerical results for spectral sums of-vari
distance part of the static quark potential depends om\the ous lattice Dirac operators with quenched configuratioms ca
ality of the quarks and that the crucial difference betwegn f  pe found in the recent papers [9, 10, 12, 14] and for ensem-
damental and adjoint quarks #é-ality again, center vortices bles generated with dynamical fermions in [11]. We finally
appear as a natural candidate for such a degree of freedooint out that the spectral approach to the Polyakov line has
these vortices are tightly related to confinement, are BEnsi been extended by using eigenmodes of the Laplacian opera-
in the continuum limit and offer an intriguing picture of de- tor [15]. There, the spectral sum acts as gauge invariant low
confinement at high temperatures [3-6]. It was found quiteenergy filter which reveals the “classical” texture whileacki
recently that the vortices extend their reach to a desonmf  confinement is still active.

spontaneous chiral symmetry breaking as well [7]. In this paper, we generalize the concept of the mode sum
In order to reveal a model independent link between conapproximation to reconstruct the Polyakov Idopally. This
finement and chiral symmetry breaking, Gattringer proposethas the great advantage that now the Polyakov loop correla-
to reconstruct the Polyakov loop expectation vald® in  tor and the static quark anti-quark potential can be stuiied
terms of a particular spectral functidhy, of the lattice Dirac  the light of a few low lying modes of the Dirac operator. We
operator [8]. While the low lying modes of the Dirac opera- then point out that the mode sum approach is not solely tied to
tor are directly related to chiral symmetry breaking bywert lattice quark operators and present an explicit constroaif
of the Banks-Casher relation, the Polyakov loop expegtatiothis approach in the ab initio continuum formulation of Yang



Mills theory. The convergence of the mode sums is demoneverz® yields [8]
strated for the first time. We then argue that a wide class of IR

dominated mode sums are in fact proportional to the Polyakov 1 " ¢

loop. This conjecture is fostered by an explicit calculatid T . Z “k Z “Ap) (4)
these mode sums for Schwinger model and¥6¥(2) gauge k=1 p=l

theory with constant background field strength. We then con- Ny

siderSU (2) gauge theory above and below the deconfinement 0,(z) = > %, (2", @), ()
temperature by means of lattice gauge simulations. Most im- zo=1

portant, we find that a few low lying modes of the quark op-
erator are sufficient to reconstruct the static quark pateat
large quark anti-quark distances. This is a gauge invaaiatht
model independent signal that the color confinement mech
nism has its fingerprints in the low lying quark spectrum.

The first sum in (4) is over all center elements. . ., zy and
the second over aft, eigenvalues of the Dirac operator. The
a/alue of the constant depends on the type of lattice Dirac
operator under consideratiof,, () is the eigenvalue density
and®\, thep-th eigenvalue of the Dirac operatdPy = D-y
with z—twisted gauge field,

(*Du) *1p = "Np*bp,  with ®)
ll. RECALL OF SPECTRAL SUMS FOR LATTICE 2y (20 + Ny, ) = =ty (20, ).
MODELS
In terms of the normalized eigenmodes the color-blind dgnsi

The j-th power of a Dirac operatdPy with nearest neigh- reads

bor interaction on an Euclidean lattice with x N?~! sites P ) = Z B 2 @
can be expanded in Wilson loops of length ug to P ’

j where the sum extends over all eigenfunction$Df; with
{@|Dgle) = Z ac, We. - @ fixed energy),. The densitiesp, are gauge invariant scalar
ICal<i fields. For the trivial center element = 1 we often write
o instead ofp. Averaging the local identity (4) over space
The value of the coefficientc, multiplying the holonomy yields
We, of the loopC, with basex depends on the type of 1
fermions under consideration. The expansion (1) is used to P= - * ziy YNt
relate the Polyakov loop Ve Z Pla K Z K Z (*4) (®)

This simple formula for the averaged loop has been investi-
P(z) = tr P(x) H Uo(wo, = (2) gated a lot in the past. The main problem with the sum on the
right hand side is that it is dominated by the ultraviolett ér
the spectrum and therefore is expected to have an ill defined
with the spectrum of the Dirac operator [8]. On a lattice continuum limit. Butall spectral sums of the form
with N, > N, the sum on the right hand side of (1) con-

tains contractable loops and loops winding once or several S;(U) = Zz; Zf(z’w\p) = ZSf(U;x)
times around the torus in time direction. In order to re- T

late the Polyakov loop to spectral sums of quark eigenmodes np (9)
an interface is inserted into the lattice gauge configunatio Sy(U;z) = Zzz ZZka(x) FEA,)

Uu(z), z = (20, ) by

define (non-local) order parameters for the center symmetry

U (wo. z) = J # Uolwo, @) for u=0andz =0 [10]. Indeed, if we twist the gauge field with a center element
,u( 0 )
Uu(wo,z)  otherwise, 2, we obtain:
(3)
wherez = 2™ js a center element. Contractable Wilson S;(PU) = 284(U). (10)

loops are invariant when one inserts an interface which-is re

ferred to astwisting the gauge field Wilson loops winding  Our important observation is that, as the Polyakov lcap,
k-times acquire a factor*. It follows that for a twisted gauge spectral sums pick up a factor in the center of the group. Thus
field the coefficient of in the series (1) becomes a linear com- not only the Polyakov loop, but also any other spectral sum
bination of dressed Polyakov loops passing throughaving  of the above type might serve as a litmus paper for confine-
length< j and windingl + k&N times around the time direc- ment. Of particular interest are sums which get their main
tion. Herek is an integer and” = 1. Forj = N, there is  contribution from the low lying eigenvalues. It has been-con
only one such loop, namely the straight Polyakov loogat vincingly demonstrated in [10] that the Gaussian sum with
After taking the traces over spinor and color-indices th@ su f(D) = exp(—DD ') is very well suited for that purpose. For
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aSU(3) lattice gauge theory, figure 1 shows the Monte-Carlo In the numerical investigation below we will focus on trun-

averages of thpartial sums cations oflocal spectral sums (9). We will use IR sensitive
5 spectral sums to find good approximationgi{x)P(y)) or
IR ey |2 higher correlators. Guided by our previous results we am@rsi
Gn(U) = Z “k Z exp (=", %) (11) the partial Gaussian sums

k=1 p=1

and demonstrates their rapid convergence to a multipleeof th . e o o

(rotated) Polyakov loop expectation value. Actually itudfis Gn(U; Z kz 0p() exp _| Apl ) (14)
cient to include less thah percent of the low lying eigenval- p=1
ues to obtain a decent approximation of the limiting value.

Similar results hold for the spectral sums of the functions” where g, (=) has been introduced in (5) and (7). We will

study by analytical (for cases which admit a complete analyt
«10-3 ical evaluation of the spectral sums) and by numerical means

OL‘ whether and, in case, to which extent the correlator of two
partial sums approaches the Polyakov loop correlator
05 B = 5.440 |
- (Gn(Us )G (Us y)) — const (P(z)P(y)),  (15)
10 | whenn tends to the the total numbey, of eigenvalues.
rot

(G B = 5.560

15 ] Ill.  SPECTRAL SUMS AND CENTER SYMMETRY IN

THE CONTINUUM
-2.0r : So far the intriguing relations between spectral sums of
5 — 6.000 twisted configurations and Polyakov loops have been estab-
e lished for lattice regulated gauge theories only. It is yet a

25,10 20 30 40 50 80 70 80 90 100 an open_ql_Jestion which res_ults r_emain Jr\rgeaningful in the con-
% of lowest eigenmodes tlnuumlllmlt. Clea_rly, an object I}k&r(DU ) dogs not .mal_<e _
sense in the continuum, and this was the main motivation in
[10] to introduce the generalized spectral sums (9). Even if
Tr f(D) exists in the continuum limit and even if, on the lat-
tice,

f(D) =D~ andf(D) = D 2 corresponding to the propa-
g;to)rs ofD andD?. (Th)ey are of particular interest since they Si(Usz) = Z Sy(a’,z;U) (16)
relate to the celebrated Banks-Casher relation.

The spectral problem (6) is gauge-equivalentto the probler(hlth Sp(x;U
with twisted boundary conditions

FIG. 1: Mean Gaussian sung&°* for SU(3) on a4® x 3-lattice near
Berit. The graphs are labelled with

) from (9) is roughly proportional to the

Polyakov Ioop, there are still the possibilities that #igprox-

Dy*th, = *\y 1,  With imateproportionality is Iqst ir! the continuum limit or.that the
(0 + Ny, ) = — 2“1y (20, T). (12)  constant of proport|or_1allty dl_\/erges._For example, it vv_bs_ o}

P ’ PR served that the factor in (4) diverges in the continuum limit.

For calculating the gauge invariant spectral sums we may ei- In this section we study spectral sums for Euclidean gauge

ther twist the gauge field as in (3) or twist the boundary conditheories in the ab initi@ontinuumformulation for a torus of

tions as in (12). Bilgici et al. extended the results in [10fia extends x L?~! with L much bigger than the inverse tem-

allowed for twists of the type = exp(27ia) in the bound-  perature3 = 1/kgT. The volume of the torus i = 5 - V;

ary conditions [13]. Admitting arbitrary values< [0, 1], the  while the spatial volume is given by, = L?~!. On a torus

twists are no longer center elements&i¥ () but only of  the continuum Dirac operator

U(N). Using nevertheless (12) as the primary definition of

twist whenz is extended td/(1) phases, the coefficients, Dy =iy"(0y — iAy) +im 17)

of the expansion of the twisted quark propagator in powers of

= can be easily obtained [13]. The coefficiéht can be writ-  has discrete eigenvalues, which are real for a vanishing

ten as sums over all |Oops W|nd|mgt|mes around the torus quark mass. We shall consider Hermitian vector potentlals

in time direction. In particular, the coefficient, is related to

the spacetime integrated spectral density\) for vanishing Ap = ALN" (18)

eigenvalue b
9 y The gauge field is described by real-valued functidri$z)

1 . . . ./
B -  oria (with a € {1,2,...,dim(G)}) of the Euclidean space-time
Xy = /0 doz”-"o(AN0), z=e (13)  ointsy — (20, ). The path integral measure contains fields
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that obey periodic boundary conditions in the Euclidearetim The eigenvalues of the Dirac operator for the transformed
direction, gauge field

Au(zo + B, 2) = A, (20, 7). (19) 9DA = Doy = gDag ™" (27)

are different to the eigenvalues Bf, if ¢ is non-periodic in

Even for configurations with non-vanishing instanton numbe time. Although

we may assume periodicity in the time direction [16, 17]. The

Yang-Mills action is invariant under gauge transformasion Dty = Aty (28)
94, = g(A, +1i0,)9™ ", glz) €G, (20)  implies9D 4 9, = A9, for a nontrivial twist the/,, are

no eigenmodes ofD 4 because they are not antiperiodic in
under which the field strength transforms &s,, = time. But for two gauge transformatiomsand g with the

gF,,g7'. In order to maintain the boundary condition (19) same twist: in (21) the transformed operators do have identi-

for the vector potential, we must demand that the gauge-transal eigenvalues

formations are periodic up to a constant twist matrix -
prIREEER A("D) = Ap(7D.0), 29)

9(wo + B, &) = zg(zo, ). (21)  since the Dirac operators are gauge-related by the periodic

gauge transformatiofy —*.

When such a topologically nontrivial transformation is ap- Following the suggestion in [10] we consider the weighted

plied to a strictly periodic vector potential, then

sums
9A, (xo + B, ) :ng#(Io,ﬂl)z_l, (22) St(A) :Zzz Trf (**Da) :/ddef(A;x)
The gauge transformed potentials obey the boundary con- i . B
dition (19) only if = commutes with94,,. This limits us Sp(Asz) = 2 (a|tr f (**Da)|x) (30)
k

to twist matrices in the center of the gauge group and ex-

plains why twisted gauge transformations are called center .= ;
transformations. In an irreducible and unitary repregeria = Z Pk Z “0,(2) f(**Ap),
of the group a center element is a multiple of the identity, ko p=0

z = phase factor 1. The phase factor is such thatis @  pyt now for continuum Dirac operators. HeFe denotes the

group element. We shall denote both the center element anghce over all degrees of freedom, whereagenotes the trace

its phase factor by. . _ _inspinor- and color space only. Similarly as on the lattine o
In the absence of matter fields the twisted transformationgojlects the contribution to the spectral density of allegig

form the global center symmetry. It can break spontaneouslynction with the same energy,
and the traced Polyakov loop

, 0p(®) = Y| pa(@)]”. (31)
P(xz) =trP(xz), P(xz)="Pexp z/ drAo(t,z) |, !
0 The %o are gauge invariant scalars which transform nontriv-
(23) ially under center transformations. According to a theooém
which transforms non-trivially under center transforroas H. Weyl [18] the eigenvalues dP4 on a space of finite vol-

ume have the asymptotic distributiopy ~ p~'/¢ such that
g P g the traces in (30) exist for functiorfswhich decay faster than
P(z) = trPexp Z/0 ds Ao(s, ) | =2 P(z) (24) 1/)4 for large\. Actually, later we shall prove that the spec-

tral sums defined as

serves as an order parameter for the center symmetry. As is . n
well-known, the expectation value &f(z) is non-zero in the Sp(A;z) = lim. DDz, () f(RA)  (32)
deconfining high-temperature phase and it is zero in the con- p=0 k

fining low-temperature phase.

It is important to note that the center symmetry is explic-
itly broken in the presence of matter fields in the fundamlenta,,
representation. For example, quark fields transform as

M(x) = g(x)y(x) (25)

and are anti-periodic in Euclidean time. For a non-trivigkt - Z z, Tr f (*Da) (33)
the transformed field is not anti-periodic anymore, k

exist for a much bigger class of functions.
The spectral functios s transforms under center transfor-
ations as follows,

Sp(*A) =Yz Tr f (**Da)
k

z 22 Tr f (D =285¢(A),
(o + B,) = 2" Hp(wo, @). (26) 2 7 (#Pa) =25t



where we have setz;, = z,. The same argument applies to
the density such that for all elements of the center we have

Sp(A) = z-S;(A) and Sp(A;z) = z-Sp(A4;2). (34)

5

Comparing SU(N) and U(N): The equivalence of the
spectral problems forD 4 on anti-periodic functions an 4
on functions with twisted boundary conditions (35) can be
used to prove that the Dirac operators for certaiqV) and

All spectral sumsS; transform the same way as the Polyakovy (V) fields have identical spectra. To show this we consider a

loop under center transformations and thus equally welleser
asorder parametergor the center symmetry. As on the lat-
tice the eigenvalue problem fotD 4 acting on anti-periodic
functions is gauge-equivalent to

Daty = Aptp, (w0 + 8, 2) = =2~ (w0, ). (35)
For spectral problems the twisting df, has the same effect

as twisting the boundary conditions with the inverse center

element. Since the shifts,(“D4) — A\,(Da) only depend

tracelesgotential4,, which can be viewed both as.(V) or
asu(N) potential. We transform it with twisted gauge trans-
formationsg € SU(N) andg € U(N). The transformed
potentials?’4,, € su(N) and 94, € u(N) are in general dif-
ferent. However, ify andg are twisted with the same center
element: of SU(N) then

Ap (gDA) =N (‘(}IDA) (44)

on the twistz we may as well choose a simple representativéNote that fora: = k/N the center elemerit®(5) in (40) is
in every class of gauge transformations characterizedisy thactually inSU(N) and the result (44) applies. Thus for any

twist.
Gauge group SU(N): The cyclic centefZ  of this group
is generated by

Z = exp (2m'T/N) with 7 =diag(1,1,...,1,1 — N).
(36)
As simple gauge transformations with twist = z* we

choose the powers® of

h(z) = exp (2mizgT/BN). (37)
The transformed gauge potential reads
A, = hk(xo)AM(x)h_k(xo) + ?—]\]f T6,.0,
k=1,...,N, (38)
and the corresponding twisted Dirac operators are
Dy = hEDAhF. (39)

Gauge group U(N): The center of this group consists of
the elements = phase factor 1 with arbitrary phase factors

e2mie  As simple representatives for the twisted gauge trans-

formations with twistz we choose

h*(xo) = exp(2miazo/B) -1, 0<a <1 (40)

su(N)-potentialA,, the Dirac operators with transformed po-
tentials

Aftl) (I) :€2ﬂikI0T/ﬁNAH(SC) 6727rikon/ﬁN
27k
+ ﬁ—N T(SH,O (S SU(N) (45)
27k
AP (2) =Au (@) + 2= 16,0 € u(N)

3N

have identical spectra. This observation is useful when one
calculates spectral sums.

A. Spectral sums and Polyakov Loop

In the absence of matter a gauge invariant functionis a func-
tion of the gauge invariant Wilson loops based at some fixed
base point,

We, (A) =tr P (expi/ Audw“) . (46)
Co

For a contractable loop these objects are invariant under ce
ter transformations and for loops windikgtimes around the

The gauge transformation shifts the potential by a COHStarﬂeriodictimedirectionsthey pick up the factdt. We assume

proportional to the identity matrix,
27
s

similarly as in the construction of the Nahm-transform df-se

Ay (z) = Ay(z) + —al d,0, (41)

dualU(N)-gauge fields [19]. The twisted Dirac operators are

*Da=h"Dah™¢, (42)

and the sum over the center elements in the spectral function

(30) turns into an integral

Si(A) = / dlx Sp(A;x), with

1
Sy(A;x) :/O doz* (x| tr f(*Da)|z), 2=
(43)

Although the center is not discrete the transformation foite
the spectral sums (34) applies.

L > [ in which case we may neglect Wilson loops winding
around the spatial directions.

Since §¢(A; x) is gauge invariant and transforms under
center transformation the same way as a dresseavith base
pointz = (0, z), we conclude immediately that the functions
F(Cqg, A) in the expansion

Sp(A;m) =Y Pe, - F(Ca, A) (47)
Ca

are invariant under both twisted and periodic gauge transfo
mations. We conclude that f&fU (V) these functions only
depend on center symmetric Wilson loops basd6.at). For
example, they may still depend on Wilson loops windi¥g
times around the periodic time direction. For the grélipV)
with continuous centel/ (1) the function can only depend on
contractable Wilson loops and center symmetric combinatio
F: Per.
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Actually, at least for the instanton solutions on the torusone verifies that the analytic continuatigfs, A; ) of the
constructed by 't Hooft [20], a stronger result holds true,sum in (54) is a meromorphic function ef[23]. In even

namely dimensions it has a finite number of simple polessas-
L>8 d/2,...,2,1withresiduesio(z), ai(z), ..., aq/2-1(x). Fur-
S¢(A; ) — const P(z), (48)  therits value at = 0iS ags(z) — 0o(x) [24]. Since the field

strength and its covariant derivatives transform accaydin
the adjoint transformation we conclude that the gauge invar
ant coefficients:,, are invariant under center transformations,
such that they cancel in the center average

»(=29)(z) = F(ls) /dttS 1G'(t, A x) Z L C(s, %A, x)

and this will be demonstrated in the following section. $iac
similar relation approximately holds for certain spectains

on the lattice one may conjecture that it holds for suitahlec
sen spectral sums in the continuum as well.

B. On the convergence of spectral sums

. . = . 55
To investigate the convergence of the spectral sum we con- g) (Z k Zm p(x)) (55)
sider the Gaussian spectral sum b

, 0 It follows thatX'(~2%) (z) has actually no poles in the complex
g'(t, A) = /d xG'(t, Asx) s-plane and thakt'(®) (z) = —go(x). Without summing over
, . ) - the center elements the poles would not disappear and the sum
g'(t, Asx) = sz<$| trexp (—t ZkDA) |~”C> — 0o(). overp would only exist fors > d/2. But if one first averages
k over the center and then sums over the quantum number

(49)  then the last sumin (55) exist for all It is important that one

We subtracted the center-averaged dengity) of the zero- first sums over the center elements and then ovepthieor
modes for later use. More generally,f, ,(z) are the or- example, one finds
thonormal eigenfunctions ab? with eigenvalueu, = A2,

then the center-averaged densitigsare / dtz 3O (z

Zsz/dd:ﬂz’“g =0, (56)

_ * 2 p>0 k
op(x) = Z *op(x) (50) ] - ]
& since all densitie®, integrate to one. The same result follows
with %, (x) defined in (31), wherein they, ,(x) are eigen- from 39 (z) = — gy () sinceg, integrates to zero.

Let us now compare the spectral sums built from eigenval-
ues and densities @2 with spectral sums built from those of
PA An elgenvalump of D? is the square of an eigenvalue
Ap 0f D 4. Inthe masslessasei/\ are both eigenvalues of
the Dirac operator and usid@ 4, 75} = 0 it follows that the

functions onDf4 and not of*D 4 as in the previous sections.
In particular for gauge fields with a non-vanishing instanto
number the zero-mode subtraction in (49) is always necgssa
and one deals with zero-mode subtracted heat kernels

K'(t,A;2) = K(t, A;z) — go(x) = Zef”ﬁtgp(a:), eigenvalue densities @4 to positive and negative eigenval-
p>0 (51) ues are the samg,. = o_ = ¢ whereg is the density (31)
with K (t, A;2) = (x| trexp (—tpix) |x> with eigenfunctions ofD 4. Therefore we have = 2 for

the eigenvalue density @2. Thus we can conclude for the
where the sum extends over alvith 1, > 0. On the torus  spectral sums db 4

the smallest non-vanishing eigenvalug is strictly positive
and the zero-mode subtracted kernel falls off exponewtiall $(=29)(g) = Z Z 2 ((FAp) 72 + (=260,) 72%) g,

K'(t,A;x) —s e "y (z) for t—oco. (52) p>0 k
On the other hand, the heat kernel of the second order ellipti =3 Z Z 2 (14 (=1)%) Prp|° #0, (2)
operatorD? has theasymptoticsmall+ expansion [21] p>0 k
1
N = (14 (-1)*)2'C2)(a). (57)
1 . (
Kt Ai2) = 2 { 3 an(@)t" + 0@}, (59) -2 |
n=0 From this itis clear that in the massless case the spectral su

where the Seeley-deWitt coefficients(x) are gauge invari- Of D> exists in case the spectral sum(@f;)~* exists and
ant local functions built from the field strength and its adva the spectral sums f@p ,* vanish for odds. We conclude that
ant derivatives [22]. Inserting this asymptotic expansidn  also the spectral sums

the Mellin transform

& 1
- ) (2) = P #6,(z) ), 58
(s, Asz) = = dtts_lKl(t,A;a:) () Z (Z k E3SE »( )) (58)
L'(s) Jo (54) p>0  k
= Zu;sgp(:ﬁ) (s >d/2) where again the zero-mode contribution is omitted, exist fo

>0 all s and gauge potentiald,,.



IV. THE SCHWINGER MODEL AT FINITE Below we shall calculate spectral sums for the squared
TEMPERATURE Dirac operatorD3 with vanishing mass. For a positive in-
i i _\2
o _ stanton number its eigenvalugs = A; are [25]
For the Abelian instantons on the torus introduced by

't Hooft [20] all eigenmodes of the operat® 7 can be con- 11y = { 0 degeneracyy (64)
structed in the massless limit. The calculations for Abelia b 2pB degeneracy2q.
and non-Abelian gauge theories are very similar and so arg. : . .
the calculations in two and four dimensions. In this section§mce thtey fre |?depetr_1dent hithey tar_e a(ljso% |nl\:a:cr|ﬁnt un-
we shall compute the spectral sums for all instanton cordigur thert;‘fn irD rans (c)jrma |3nst%2rami?|r]|ztezth y ? ?WS
tions of the Schwinger model. We shall prove that the idgntit atTr f(*D) is independent of such that the spectral sums

(48) holds true with a finite constant Sy(A) in (43) vanish for all functionsf. Since the spatial
' average ofP(x;) vanishes as well, this corroborates the con-

jectured result (48).
For the instantons (61) the spectral problem reads

D i, = — (D,D" + vy F = 65
The U(1)-gauge fields on the two-dimensional torus fall Al ( AT 01) Up = 1wty (63)
into topological sectors characterized by the instantom-nu with boundary conditions (59). We choose a chiral represen-
berq. We choose a trivialization of th&'(1)-bundles such tation with1°y! = o3 and diagonalized,. On the cylinder
that in a given sector the fermionic field satisfies the 'bound [0, 5] x R the anti-periodic eigenmodes read
ary conditions’

Y(xo + B,21) = —(x0, 21),

A. Instantons and excited modes on the torus

Xp,e(x) = e~ imro/B 2milzo/ &(r), (LeZ) (66)

. g (59) with time-independent mode functiogs. These functions
Y(xo,x1 + L) = e”(m)z/J(xo,xl), v =——x, must solve the Schrddinger equation for the supersymeetri
p harmonic oscillator

with ¢ € Z. The gauge potentials are periodic up to a gauge a2 2.2 _
transformation, (—0; +B Bos) &, = 2pB&,, (67)

wherey is the shifted spatial coordinate
Au(xo,z1 + L) — Ap(zo, 21) = Opy(x). (60) 4 P

The fields with minimal Euclidean action have constant field y=1x1+ L (6 —h—-1/2). (68)

strength. We shall calculate spectral sums for the instanto a

solutions Eigenfunctions witlrs¢, = &, are called right-handed. Every
> orh > right hand_ed eigenmode_with energyB gives rise to a left-

Ay=——z14+—, A1 =0 with Fyy=B=—, handed eigenmode,¢, with energy(2p + 1)B. Hence we

4 g ‘E61) may as well focus on the right-handed sector. The zero energy

whereV = L is the volume of spacetime atdan arbitrary states are

constant. The fluxe of B is related to the instanton number Xou(z) = e—imo/ﬁe%iho/ﬁgo(y),

by ® = 2rq. Without loss of generality we assume that the 174

) . o ) B\ Y ) (69)

integerq is positive. The eigenvalues agdyround states of Coly) = (_> e~ BV /2

the massless Dirac operay = iy (0, — iA4,) have been o 7T

calculated earlier in [25]. Here we shall construct all éedi
modes ofD 4.

The twisted gauge potential (41) is equal to the untwiste
potential with shiftech,

wherey(z1) has been defined in (68). The excited eigen-
dnodes contain Hermite polynoms

1

Xpt(x) = ¢y Hy(VBY) x0,0(x), CZQ’ - 2vpl°

(70)
2

“Ao = —Bx1 + —(h+a), “A;=0. (62) . . o
B Here we consider only right handed modes and identify the

nonvanishing component of a right handed solution with the

solution itself. The modes (70) do not satisfy the boundary

Peonditions (59) since

Hence it will do to study the spectral problem fdy, in (61).

The spectral sums will be compared with the Polyakov loo

variable

P(z) = p2mih—i® w1 /L (63) Xp.e(xo, 21 + L) = eW(I)Xp,Z—ﬁ-q(«TOa 1), (71)
) ) ] but the true orthonormal eigenfunctions on tbeus are just

For the instanton potential the straight and all dresse%uperpositions of these functions

Polyakov loops with bas@), x1) have the same value (63).

;I'he)n (47) implies that the spectral sums must have the form Ppo(x) = ZXP treg(@), £=1,...,q. (72)

48). ’ —
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Note that the eigenvalues do not depend/otiRecalling the is proportional toP(z;). Due to the constraints imposed by

¢-dependence af the modes read the Kronecker symbol the double sum fgy, resulting from
the series representation (74) for the eigenmodes, redoces
C .
Ypo(x) = —& e2milt=1/2)z0/5 one sum
p ( ) \/B
2misqro /B . 1 B 1/2
X ZHP (\/E (v + SL)) Soly +sL)e o7 (73) op(x) = c-op(x0)-P(x1) with ¢= 7 (—) , (79)
s 7T

We give a second representation which can be obtained byhere the series,, only depends om,. Each term in the se-
a Poisson resummation. In the appendix we show that thges contains a product of two Hermite polynotfis and two
eigenmodes have the alternative representation Gaussian function&. Defining the variable,, = vB{zo +
B(1/2 + s/q)} the series takes the form

_ P omi(t-1/2-qy/L)s0/8
e vave e op(z0) = 2 e~ BA/4 Z H (Is - \/55/2)
% 3", (VBlan + 58/) & 0 + s5/a) 20/, S -
: (74) x H, (:c n \/Eg/z) et (80)

Forp = 0 both sums definé-functions and one recovers their To integrate over time we observe thgt is periodic inz
modular transformation property. with period/3/q such that

B B/q o0
B. Spectral sums / drgy -+ = (J/ > — (J/ - (8D
0 s 0 s —0oo

To calculate arbitrary spectral sum densities
(z| tr f(D?%)|z) we determine the density of the eigen-
valuey, in theright handed sector

Now we can apply the integral formula [26, (7.377)]

> VT

. /_OO de Hy(x +y)Hp(x +2)e* = ng(—sz), (82)
oy () = [yl (75) _

r=1 whereL,, denotes the Laguerre polynom of orgerand this

o ] leads to
The density in the left-handed sectorgis = g;;l. Hence-

forth we shall skip the superscrigt. To compute the sums T ) _BB*/4
over ¢ we use the representations (74) for the eigenmodes, /dfCO op(z0) = ¢ B Ly(BB/2)e : (83)
since in this form they show a simple dependence on the quan-

tum numbet (recall thaty  ¢). Using Inserting this result into (79) yields
q
$ ezrita=riu/L op(@1) = / dzo 0p(2)
=1 ﬁ (84)
= (04 y.pg €27 E/ L=/ D} e 7 (76) = —%P(xl) Ly(mqr)e ™2 1= I

the sum over can be carried out. Twisting with as in (62)  Taking the trace in spinor space amounts to adding the eontri
amounts to shifting, by «. Since the eigenvalues do not see ytions of the right- and left-handed sectors. This finalyds

the ttWiSt we may first calculate the integral 6, over the g the following explicit result for the spectral sums in 43
center,

1 ' g
Be) = [ dac 2 oy, (0) any  Srtie) = = P)
0 o0
—mwqT/2
and afterwards sum overto calculate the spectral sums (43). X Z F(up) {Lp(mqr) + Lyy—1(mqr)} e7™7/2, (85)
The a-dependence ofp, in (75) comes only from the expo- p=0

nential factor in (76) and the corresponding integral ober t

where we defined._; = 0. This is the main result of this
center elements,

section. As expected on general grounds every function giv-
‘ ‘ ing rise to a convergent series (85) defines a spectral fumcti
/da e 2miagmils—r){e1/L=(htatl/2)/q} S (A, x1) which is proportional to the Polyakov loop. How
fast the series converges to the asymptotic value depends on
=—P(21)0s—r—¢ (78) the particular choice of.



Gaussian sum: Here we consider the Gaussian spectral

sum O.SfR 7-q=0.01 g

G(A;xq) = /d:co /da e 2™ (x| trexp (— D% /1°) |x)
(86)
with some mass parameter The integrandz| . . . |x) is just T-q =003
the heat kernel ofD? on the diagonal in position space. The . 03
resulting series (85) withf () = exp(—2Bp/u?) relates to
the generating function for the Laguerre polynom [27, 10.12

0.4 b

0.2 1

(17)]
7-¢=0.10
1 Tz = 7 j
T X (—1 - Z) = Ly(x)z", |z|<1. (87) 01
p=0
One obtains the simple result % 100 250 300 00 500 500
B B n
G(A;xq) = ~ 2 coth —5 exp (—E coth —2) P(x1). _ (—2) _
L w 2 w FIG. 2: Partial propagator sums,, “’ for P(x1) = 1 and their
(88) limiting values for different torus parameters € 1).
Using B = 27q/BL one finds forL > ¢T/u? that the re-
lation between the Gaussian spectral sums and the Polyakov
loop is the same in all instanton sectors, Figure 2 shows the partial propagator sums
L—o0 12 _ 274
G(A; 1) =3 = (up) e W /4 Pxy). (89) L]
( ) 277( ) ( »(=2) = % — {Ly(mqr) + Ly_1(mqr)} e~ ™I7/2 (95)
A natural energy scale at finite temperature would be the tem- p>o H'»

perature itselfy, = T'. With this choice the infinite-volume

result simplifies further for P(x1) = 1 as a function of the included eigenmodes and

their limiting values calculated from (93). Depending oe th
T ; : )
P(z1) for u=T, L> 5. ratio 7 and the instanton numberthey converge fast to their
2mel/4 (90) limiting values.

Propagator sum: Here we consider the propagator sum

2D (A1) = /dxo /da e 2w <x‘ tr' (*Da)? ‘$>7
(91) In this section we calculate all eigenvalues and eigenfunc-
wheretr’ means the trace without singular contribution of thetions of the Dirac operator for twisted and untwisted instan
q zero-modes. Making use of the summation formulas [26ton configurations with constant field strength on the torus
(8.976)], [28] T* = [0,04] x [0, L]® with volumeV = 3 -V,. As a re-
sult we obtain explicit expressions for the spectral d@ssit

V. FINITE TEMPERATURE SU(2) GAUGE THEORY

i Ly(x) — —~v—logz and i Lp-1(x) = ¢"1(0, 2) As expected, the Gaussian sums reprodece) and get their
e N ' main contribution from small eigenvalues.
(92)
the spectral sum is given in terms of the Euler constaand _ )
the incomplete Gamma-function, A. Instantons with constant field strength
n(=2) — 4ﬂ{7+10g(7rq7)_ewqr F(O,wqr)} e~ TaT/2 P(z1). Following t'Hooft [20] we consider configurations with
s

93) constant field strength,

In the large volume limitr = /L tends to zero and one
obtains the simpler relation Ay = <—Ea:3 +

27h
i O) 03, Ay = Brio3, A1 = A3=0

B
oy i B | (%0)
z — o (v +log(mqr)) - P(x1) + O(B/L). (94)  and assume that the constant chromo-electric and chromo-
magnetic field components and B are positive. The in-

In two dimensiondlr Df is Io_garithmically d_ivergent inthe  stanton number is proportional 163 and to the volume of
ultraviolet forall background fields. For the instanton pOte”'space-time

tial with 41, oc p this is evident. On the other hand, the spec-
tral sumX(~? is finite. Integrating over the center removes 1 EB

the divergence. 1= 35 /T4 Epvap 1T FuyFop = FK 97)
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and the Polyakov loop is periodic in the electric field, wherey is a constant right- or left-handed spinor and eigen-
vector of o3 in color space. Thé&’s are eigenfunctions of
P(x) = 2cos (2mho — Efx3). (98)  harmonic oscillator operators,
For ¢ > 0 the gauge potential is periodic up to a non-trivial Hoz&py = 2(p3 + 1) Ep,, (108)
gauge transformatiod,(z + Lye,) = A,(x) + 0y (), Hi2¢,, = 2(p1 +1)BE,, .

with transition functions given b
g Y The eigenfunctions on the tord®' fulfilling the *boundary

yi(z) = BLxzoos and ~3(z) = —ELxgos. (99)  conditions’ (100) are superpositions of the eigenmodeg)10
and read
The fermions are anti-periodic in time, periodicign and ful-

fill u}p,l (I) = ¢p3,£0 ('r()v xS) ¢P17£2 (x27 xl) X (109)
_ im) with ¢o € {1,...,q03} and?y € {1,...,q12}. The explicit
bz + Ler) =e b(@), (100)  form of the factors are given in (73) or (74) with obvious re-
Y(x + Les) = €@ y(z). placements. For every pair of quantum numbess (ps, p1)
there areys - ¢12 eigenmodes of the squared Dirac operator.
Consistency demands that the fluxes in @Beand 12 planes Forosx = x in color space the variablgsandz are given
are both quantized, in (106) with the upper signs and in spinor space the squared

) Dirac operator acts on the modes in (109) as follows:
®o3 = E(BL) = 2mqo3, ®12 = BL* =2mq12  (101)

D% — 2(psE +p1B) 14 +2 (O 0 ) (110)

with qos3, 12 € Z such that the instanton numbgt= 2qp3q12 0 FEog

is always even. In the chiral representation with Forosy — —y the variableg) and are given in (106) with

o 0 o . (0 o s (o0 0O the lower signs and
7= —iUo 0 = g5 0 = 0 —0p ’ 9 EUO 0
(102) Dy —2(psE+p1iB+B)1,+2 ( 0 0) . (111)
where o is the two-dimensional unit matrix, the squared
Dirac operator takes the form For every paif(p1, ps) and generid, B there are four eigen-

values, each with degeneragy= 2qos - q12. In particular,
9 9 B+ E)oy 0 there existy right-handed zero-modes in agreement with the
Da=-D"—o03@ (( 0 ) (B — E)ao) (103)  index theorem.
with D? = D, D*. The Pauli term acts withs on the color-
SU(2)-indices, with(B + E)oy on right-handed spinors and B. Spectral sums
with (B — E)oy on left-handed spinors)? is proportional to
the four-dimensional identity in spinor space and commutes To calculate the densities, (z) = Y, [¢p.¢(2)|*> we use
with 9y andd.. The (anti)periodic eigenfunctions decaying in the representation (74) for the factots, ,, and v, ¢, in
thex! andz? directions have the form (109). Then the sums ovég and/, are calculated similarly
_ _ as for the Schwinger model. The densitigstr f(D4)|x) do
Upo(x) = e o/ Be2milloro/Bbra/L)e () 75). (104)  notdepend o, sinceD 4 commutes withd,. Hence we may

. as well average over the-coordinate.
On the functionss, the operator—D? reduces to the sum This leads to a contribution

of two commuting harmonic oscillator Schrodinger opersito

. . - 1
one acting o3 and the other om;. On an eigenfunction of 0ps (23) 0p, (21) = /dwogpg (z0,23) - — /dggzgp1 (21, 22)
o3 in color space the operators read L

(112)
Hos = (—02 + B2 ® 1 of the qo3 - ¢12 eigenmodes with fixedps, p1) and fixedy.
Y ’ (105)  The explicit form of the factors is
Hiy = (02 + B*2*) @ 1,
0ps (3) = 105
where we introduced the shifted coordinates:) as follows, ’ L
> E62n2 B 2)2
I I X (14 (=) tr P"(z) Ly, ( )e Bn/27)
y=23——{hoFlotsz}, 2z=a1F —L (106) ( nz::l P2 )
qo3 q12 (113)
for o3¢, = ££,. Thus we recover two copies of the Schwinger 0p, (1) = q12
model and conclude P T T2
. . > N BL*n®\  _pipn/o2
%,z(il?) _ e—mmo/ﬁe2m(€omo/5+€212/L)€p3 (y)§p1 (Z)z(im) X (1 —|—;tI‘Q (:IJ)LPI ( 5 ) e~ B(Ln/2) )7 (114)
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where we introduced the Wilson-loop winding once aroundby the difference (118) or the integral (119). Again the Hesu
thez2-direction, ing series are calculated with the help of (87). After sungnin
. ) ) over theSU (2)-center elements one obtains
Q(z) = e/ 4242 — diag(e’P™ L e Pml) (115) ®

Note that the factors do not depend on the choice of signs in

(106) and this simplifies the analysis considerably. So far w G(Asw) = 23/ 112 1
did not sum or integrate over the twists and this is the reason ° 9 15
why loops winding an arbitrary number of times around the  x (_)” tr P™(z) exp (_ T903TN" oth _2)
time direction contribute to the sum (113). n— 1 5. 2 H
The eigenvalues db? are given by the eigenvalues of the
matrices in (110, 111) It is not difficult to see that eigen- 14 Z tr Q" ) ex (_wqmm cothﬁ)
functions with the following values dfps, p1) contribute to a , 4 P 2 12
given eigenvalug, , = 2(aE + bB) of D% with a,b > 0: =12, (121)

/La,b:>(p3ap1):(aab)v(a_lab)v(aab_1> ( 1 b_l

(116) Not unexpected the first sum contains the center- and gauge
Generically there exisly eigenfunctions with the same eigen- jnvariant variablesr P, tr P3, tr P? . ... If the spatial extend
valueyiq . Butfora = 0 orb = 0 there exist only2q eigen-  of the torus becomes large and we (fbg andgi2, in which

functions and fow = 0 andb = 0 there exisly zero-modes. case the fieldss and B tend to zero, then the Gaussian sum
For a given eigenvalug,, we have the following densities gimplifies to

(a,b>1)

™
@

0a(x) = 2{0a(w3) + 0a-1(x3) }{on(1) + @b—1<x1(>1}17) Goo(Aim) = L5 (=) tr PP () - e~ (8n/2)°

. —1,3,...
where we defined_; = 0. "

Twisting in SU(2): Twisting the gauge potential inside
the gauge groufU (2) amounts to adding)/2 to ho or equiv-
alently changing the sign of the Polyakov loop. The densityfor L > min{q7/u?, ¢/1}. On the other hand, for fixed

(122)

ov(x1) is unchanged but qo03, 12 and fixed spatial extend we regain the the zero-mode
contributions to (121) fop:~2 — oo. Forp=2 — 0 we re-
0a(23) — %0a(x3) = _Yos coverG., in (122). This implies an exponential decay with
a\+L3 0a T3 L _9 di . .
1~ as proposed in the general discussion on the convergence

y Z trP"(m)La(ngﬁgE) F08/27(118) of the spectral sums. . . .
2 If we allow for U(2)-twists with arbitrary phase factors
then the resulting Gaussian sum is again given by the formula
Only odd powers of the untraced Polyakov loop contribute to(121), but in the first sum over only the term withn = 1
the sumg + z* %o over the center elements 6T/(2). This  contributes. In the thermodynamic limit — oo with fixed
confirms with our general analysis given earlier. fluxes we find the simpler result
Twisting inU(2):  We may twist thesu(2) gauge potential
with center elements df (2) or equivalently twist the bound- 3
ary conditions by an arbitrary phase factdf'~. Averaging Goo(As ) = ——— s e~ W?/4 P(z). (123)
over the phases as in (77) and below leads to 4

n=1,3,5,...

@ —2mia _ _qO3 2 ~E(3/2)% As expected, twisting with arbitrary center element#/if2)
/da 0a(3) € Pa)L (ﬁ E/2) removes the higher powers of the Polyakov loop. The formula
_ (119)  is almost identical to the result (89) for the Schwinger mode
Integrating over the center éf(2) the sum over all windings Propagator sums The propagator sums are not absolutly

n collapses to the contribution with just one winding which is ., ergent and the summation has to be carried out over fixed
proportional toP(z). Again this corroborates with our gen- energy shells. Thus they are defined as

eral analysis.
Gaussian sum: To calculate the Gaussian spectral sum for 1
the instanton configurations, /(=2s) (z) = Alméo Z —Bab (124)
- a,b ab
G(4;x) = /d:co Zz; (x| trexp (_Zk’Di /MQ) |) 0<pap <A
k

(120)  The existence of the right hand side for> 0 can explicitly
one needs to calculate the su$, , da» exp(—pap/1>)  be shown with the Mellin transformation of the zero mode
with density (117). Summing over th&®l/(2)-center or inte-  subtracted heat-kernel (121) in accordance with the génera
grating over thé/(2)-center amounts to replacing in (117)  discussion following (55).
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FIG. 3: All eigenvalues of the staggered quark operator foarticular lattice configuration onéd lattice (left). Contribution to the interface
energy as function of the mode index (right).

where the phase factors are given by, (z) =

TABLE I: Paramter set used for the simulations (_1)10+___+IH71.

B 71 Y2 oa®
1.35 2.0348 —0.10121 0.1244(7) )
B. Energy of theZ, interface
VI. NUMERICAL INVESTIGATION The groupSU(2) has only the two center elementsand

z = —1. The center transformatidii — *U in (3) does not

change the (gluonic) action (125). Defining the energy of the

interface by the action differencd, = (S[*U] — S[U]), there

is no penalty in the action for inserting such an interface.
This situation changes whedynamical quarks are in-

) ! Pl cluded: the quark determinant is not invariant under the-map
good rotational symmetry and good scaling [29]. We confmecbing U — *U. Considering the quark determinant as an inte-

ourselves to the gauge grosp/ (2) and to a limited range of 4] hart of the total action, the energy of the interfacedsn
lattice spacings in this first exploratory study. The aci®n given by

given by

A. Numerical setup

Our lattice gauge simulations were carried out oiV,ax
N2 lattice using an improved action which is optimized for

det *Dy
>v,x
g Representing each determinalat Dy; by the product of the
whereF,, (z) is the standard plaquette expressed in terms ogigenvalues\, of the corresponding Dirac operator, we can

the link fieldsU,, (z) € SU(2), i. equally well write
Pulw) = 3 t[Ua(@) U 40) Ul a4 U a) |, (126) A=Y ay), ap:m(lﬁ). (129)
P P

and P,E?,) (x) is half the trace of the x 2 Wilson loop. We
used the parameter set given in Table 1 [29]. Therehy,the
lattice spacing and is the string tension. For the study of .
the eigenmodes of the Dirac operator, we used the stagger
Dirac operator:

We note that in quenched approximation (quark effects on the
link configurations are neglected), the surface enetgyan-
$1es since the configuratioh8 andU contribute with equal
obab|I|ty to the Monte-Carlo average. Neverthelessiitis
structive to studyu,, for a single lattice configuration gener-
ated in quenched approximation. Figure 3, left panel, shows
(x|Dyly) = Z Ines [ Satiy U;TL(I — 1) 517%7!], all 2N;N? eigenvalues for a particular lattice configuration,
while the right panel shows the contributiap to the inter-
(127) face energy. We observe that the dominant contributioneo th
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interface energy arises from the low lying eigenmodes of the

Dirac operator. Our findings also suggest that the mode sum TABLE Il: simulation parameters

in (129) converges. This would imply thatthe interface gger 3 oa2 lattice T/T. configurations
is entirely determined by the IR regime of the quark sector. 7 5= 0.1244(7) 12%6 07 8653
1.35 0.1244(7) 1234 1.0 12000

C. Polyakov loops 135 0.1244(7) 12°2 2.1 12000

Using the eigenvectorg,(z) and eigenvalues,, of the ) o
quark operator, the Polyakov lodp(z) in (2) can be recon- N space andj,(zo, ). Figure 5 shows our findings for

structed at position: by u = 1/3 andp — oo in comparison withw,, in (131). The
w = 1/3 graph hardly shows a dependencergin,, simply
1 & N N because the mode sum is already efficiently damped by the ex-
Sn(z) =3 > (Qp(x)/\p C=0p() A, t) ; ponential factor. In the intermediate rargé < n/n, < 0.7,
p=1 (130) the mode sum utilizinge — oo has a sizable correlation with
P(z) =Sy, (z0, ), Vo the Polyakov loop.
wheren,, = 2N; N3 is the total number of eigenmodes. It was
already observed earlier that the mode sum in (130) is domi- D. The static potential
nated by the high end of the Dirac spectrum. Restricting the
mode sum to a smaller upper limit < n,, we do not ex- On the other hand, we do expect that the expectation value

pect thatP(z) andS,,(z) are correlated locally. In order to for the Polyakov loop correlator

explore which value oft must be used to obtain a satisfactory

agreement, we chose= 0.9 n,, and produced the scatter plot C(r) = <p($) Pz + Te3)> (134)
in Figure 4, left panel. For = n,, we observe a perfect cor-

relation (which served as a benchmark test for our numericgk qominated by the IR regime of Yang-Mills theory at least

approach). Already fon as high ad).9n,, this correlation o syfficiently large separations We therefore define the
has disappeared. A similar result holds for the expectation,,de sum approximation ©0(z, r) by

value of the Polyakov loop [8—10].
In order to quantify this correlation, we introduce C9(r) = <g (20, &) G (z0, @ +Te3)>_ (135)

<P(m)8”(“70’ m)>m Note that the expectation value on the right hand side of the
Wn = : (131) latter equation does not depend on the particular choice for
\/<P2(w)> <531(5U0a $)> o due to translational invariance. From the above corralatio
’ ’ functions, the static quark potentigl(r) and its mode sum
The average extends over the space-time index, and only coapproximatiort ¢ (r) is obtained from
tributions from a single lattice configuration are takemiat-
count. If P andsS,, are completely uncorrelated, we find (in vV (r)/T = —nC(r), V9(r)/T = —-InC7(r), (136)
the confining phase)

whereT is the temperature. In this first numerical study, we

(P) (Sn) have chosen the exponential mode sum with= 0.1 and
o5~ 7 ~0, w,~0. (132)  truncated the mode sum by setting= 50. Thus, the lowest
n 50 eigenvalues contributed.

P x S, we obtairw, ~ 1. Figure 4, right panel, shows,  Which takes place if the temperature exceeds the critidatva

as a function of/n,, which is the fraction of the spectrum Ze ~ 0.69(2) v/o [30]. Temperature is adjusted by varying
which was considered for the mode sum (130). Although théhe temporal exten¥; of the N, x N lattice:

correlation is perfect fon/n, — 1, a decent correlation is T 1
only achieved if almost all of the spectrum is taken into ac- — = (137)
count. Vo Nivoa?

Let us complete this subsection by replacing the mode surgy ;. simylations parameters are summarized in Table 1.
Sn in (130) by the IR weighted sum Figure 6, left panel, shows the potentia/§ (r) in com-
n parison with the full static potentidl () in the confinement
Z (gp(x)e_kz/uz _ zgp(x)e—zki/;ﬁ) . (133) phase forN; = 6. Most striking is that the potential 9 (r)
linearly rises at large distancesand therefore shows confin-

ing behavior. At small distances the potential/9 (r) is flat

In complete analogy to (131), we may defing which quan-  and does not show any sign of Coulomb law. This was not ex-
tifies the correlation between the Polyakov loop at eachtpoinpected since thé/r part arises from the exchange of gluons

| =

Gn(z) =

p=1



14

0.5

¢

1.2 ‘

0.8 ]

0.6 .
0.4

% od s ) |

& % ,

% ]

O- ©

| | I |
‘ 0 0.2 04 06 0.8 1

-1

0.5 1
n/n :

FIG. 4: Correlation between the Polyakov loBjz) and the mode surs,,(, 1) at each point: of a single lattice configuratior,* lattice,
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<

standard
u=1/3
u=infinity

! panel. While the Polyakov loop correlator can be, to a good
§ _ extent, fitted by d /r Coulomb law, the mode sum still shows

a significant linear rise. The interesting question is wheth
in the case of the mode sum the shift of the critical tempera-
ture to higher values is non-vanishing in the continuumtlimi
To answer this question, much more time consuming simu-
— lations using higher values ¢f and therefore larger lattices
are necessary. It would also be interesting to study the crit
cal temperature signalled By“ (r) for several types of mode
sums. This is left to future work.

E. Visualization

The potential/9 (r) flattens for small quark anti-quark dis-
tances . This indicates that the mode sufg(«) in (133) are
rather smooth functions af. In order to get a first impression

FIG. 5: The correlation measute, (131) as a function of/n,, for
different types of mode sums, single lattice configuratithlattice

(right).

of the space texture of these mode sums, we have visualized

1

within the spatial hypercube of a particuf® x 8 lattice con-
figuration. The lattice configuration was generated with the
improved action [29] using = 1.35. Usingo = (440MeV)?
andvoa? = 0.124, the length of the cube is roughdy2 fm.
Thus, we observe a texture which is rather smooth at the

and belongs to the realm of the UV regime. The rather flajgngth scale 06.3 fm. This explains the behavior of the mode

behavior implies a constant correlation at short distaaces
points toward a rather smooth field, ().

sum correlator (135) at short distances.

Also shown in Figure 6 are both potentials, i¥9(r) and
V(r), in high temperature regime. At temperatufés: 27, VIl. CONCLUSIONS
both potential are essentially flat, and, in partic@&i(r), has

lost any signal of the linear rise.

It is generally accepted that the low lying modes of the

The situation is less clear faf ~ T, in Figure 6, right quark operator bear witness of the spontaneous breakdown of
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FIG. 6: The static quark potential extracted from the trtedanode sum (135) and from the Polyakov loop correlator)k8the confinement
phase {V; = 6) and in deconfinement phaé&, = 2) (left panel). The potentials faF ~ 7., (N; = 4) (right panel).

FIG. 7: The mode suniG,(x)| in a 20® spatial hypercube. Side
length of the cube3.2 fm.

chiral symmetry in QCD. Here, we have investigated to whic
extent the low lying modes also contain information on quar
confinement.

of these sums has been studied in some detail. If one first sums
over the center elements and afterwards over the eigersvalue
then the spectral sums exist for the IR dominated mode sums
of interest, for example for/D?. We have argued that the IR
dominated mode sums equally well form an order parameter
for confinement since these sums and the Polyakov loop share
the same center transformation property.

We have thoroughly investigated these mode sums by
means of analytical calculations in the context of the
Schwinger model and ofU (2) gauge theory in the back-
ground of homogeneous field strength. As expected for these
examples, the mode sums are proportional to the Polyakov
loop for each pointin space.

Subsequently, we have employ8d (2) lattice gauge sim-
ulations to study the relation between the low lying modes of
the Dirac operator and the static quark anti-quark potentia
Below the critical deconfinement temperature, the coroelat
between two IR dominated mode sums is able to describe a
linearly rising confining potential at large distaneesin the
high temperature deconfined phase, this correlator refleets
flat behavior of the potential at large distances, and is iy ve
good agreement with the correlator of two Polyakov lines.
This clearly shows that the quark confinement mechanism is
entirely encoded in the low lying spectrum of the Dirac op-

perator. The search for confining degrees of freedom, such as
kvortices or monopoles, in the IR regime of the Dirac operator
is left to future work.

For this purpose, Gattringer’s mode sum approach [8] to the

Polyakov loop expectation valde . P(x) has been general-
ized to reconstruct the Polyakov loop locally. We have als
pointed out that the mode sum approach is not restricted
lattice Dirac operators, but can be directly formulatedha t
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m
APPENDIX: POISSON RESUMMATION FOR HARMONIC For theq ground states the corresponding sums are Gaussian
OSCILLATOR EIGENFUNCTIONS and give rise to theta functions [25]. To perform the sums

for the excited states we observe that under a Fourier trans-

In this appendix we consider and resum the eigenfunctiongormatlon the step operators (A.3) are transformed intp ste

of the squared Dirac operaterD? for the Schwinger model OPerators,
on the torus. We measure Euclidean time in unitgafnd — s
lengths in units ofL. We assume that the fluk = 27q enter- (atf)(n) = ia' f(n), (A.10)
ing the gauge potential
where
Ag = —Pxy +2mhg and A; = 27h A.l

S e O il = (2rg) by = (2m0) 19, (A1)
is positive. Theperiodiceigenmodes on the cylindgr, 1] xR _ )
have the form with dual 'instanton numbeyj related tog by

Xp.t ((E) _ 62771'210 eQTrihlzlé-p(yl) (A2) qq = 1. (A12)

with y' = 21 + X (¢ — hy) , wherel € Z and the mode func- The step operatois @' obey the same commutation relations
tions¢, are eigeqnfunctions afta, asa,al. Since_ the ground statg, is transformed into the
P ground state witl§ we conclude that

ata&, =2p¢,, a= (27 1yl 4 (27mq) 20, A.3 - -

o v i (27 ! #9 Ep(n) = Cp(an§O) = ipcp&Tpfo (A.13)

with [a,a’] = 2. The dependence o enters via the/- B )

dependence af'. The normalized modes are with &(n) = (2§)'/*e~™"". In calculations it is advanta-
geous to use Hermite polynoni, generated by anda'

&) = cpa'&(y) (A.4)
with a’Tpé-O (y) = HP (V 27Tq : y) 50 (y)7
o ~ 5 (A.14)
ERNNE B R (A5) a'?&o(n) = H, (v 27q - 77) €o(n).-

P 2pp!
In terms of these polynomials the equivalent series (A& ta
The normalized eigenfunctions on therus with boundary  the form

conditions (59) are superpositions of the modes on thecylin

del’, ’l/Jp,g (,CC) =c eQﬂ'iémerﬂ'ihl T
. . 0
Upe(@) = 3™ M X e (7) x e g, (org(y' +m)) &y +m) (A1)
—2miqrox T 0_ i
= ¢ Fmiaror 2milhoy =t /O N " f (4t 4 5), and the resummed series (A.9) reads
A.6 .
( ) ’l/Jpg((E) _ zpﬁ e—27riqmow1eQTri(hoyo—fhl/q)
where we introduced the auxiliary function ’ Vi
—2m7riy1 0 m 0 m
; . h X » e H(\/27Tqy+—>§ y +—).
fp(yl) = e2mqy0y1€p(y1) with yO =20 + ?1 (A.7) ; P ( . ) 0( ; )

(A.16)

Here we can apply the Poisson resummation formula ) ] o
In the main body of the paper we used anti-periodic eigen-

1 _ —2mimy § modes of the Dirac operator. These are obtained by replacing
;f(y +9) ;e fm), ho — ho + 1/2 and¢ — ¢ — 1/2 in the results (A.15) and
(A.8)  (A.16).

fn) = / dyt 2 f(y1),

— 00
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