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We consider conformally coupled wave operators in four dimensions. Such operators are associated with conformally coupled 
massless scalars, massless spin ½ particles, and abelian gauge bosons. We explicitly calculate the change in the determinant of these 
wave operators as a function of conformal deformations of the background metric. This variation is given in terms of a geometrical 
object, the second Seeley-de Win coefficient. 

1. Introduction 

In this paper we discuss the determinants of  wave operators associated with conformally coupled particles, 
focusing on four dimensions. (The two-dimensional situation is extensively discussed in ref. [ 1 ]. ) The results 
obtained are applicable to photons, massless neutrinos, and massless conformally coupled scalars. We find that 
conformal deformations o f  the metric induce a change in the determinant (equivalently, the one-loop effective 
action) that is proportional to the second Seeley-de Witt coefficient (a2). Furthermore, this change in the de- 
terminant my be cast into an explicit form involving the background Riemann tensor and derivatives of  the 
conformal deformation. 

An application to cosmology is considered. We extract the effect of  the scale factor on the one-loop effective 
action, obtaining a result in terms of  the Hubble and decelleration parameters. The expression for the one-loop 
effective action contains coefficients which depend only on the spatial three-geometry. These coefficients are 
easily calculated for the standard Fr iedmann-Rober t son-Walker  cosmologies. 

2. Conformally coupling wave operators 

Consider the following wave operators on d-dimensional spacetime 

d o = V 2 + [ ( d - 2 ) / 4 ( d - 1 ) ] R ,  A~/2=J~ 2, 3(d_e ) /2=~d ,  (1) 

which act on scalars, spinors, and ½ ( d -  2 ) forms, respectively. These operators have very simple transformation 
properties under a conformal deformation of  the metric. I f  gap(z) = exp [ 2 r a ( x )  ] g,~p(O ) then (see e.g. Birrell 
and Davies [ 2 ], Blau, Visser, and Wipf  [ 1 ], or Buchbinder et al. [ 3 ] ): 

A o (r)  = e x p [  -- ½ ( d + 2 ) z a ]  do (0)  exp[ ½ ( d - 2 ) z a ]  , (2) 

0370-2693/88/$  03.50 © Elsevier Science Publishers B.V. 
( North-Holland Physics Publishing Division ) 

209 



Volume 209, number 2,3 PHYSICS LETTERS B 4 August 1988 

/~(~) =exp [  - ½ ( d +  1 )ca] 0 ( 0 )  exp[ ½ ( d -  1 ) ra]  , 

3(a_~_)/2( r) = e x p ( - 2 r a )  ZJ(d_2)/2( O ) . (2 cont 'd)  

Using these simple transformation properties, and the zeta function definition of  the determinant [4],  a minor  
generalization of  the analysis in ref. [ 1 ] yields 

d [ d e t 3 ( r )  ] = - d e t A ( T )  2 f d~" ~ xf~r °'(x)ad/2 [A (~)] ddx '  (3)  

where A is any one of  the operators in ( 1 ), and whenever aa/2 is matrix valued a trace is implied. This equation 
may be easily integrated to obtain 

d e t 3 ( r ) : d e t 3 ( 0 ) e x p (  ( 4 g ) a / 2 2 i d ¢ I x / ~ , ~ ( x ) a a / 2 [ z l ( r ' ) ] d a x  ) . (4) 
0 

In any odd number of  dimensions aa/2 = 0 and det zl is a conformal invariant. Eq. (4)  is valid both in the pres- 
ence and absence of  zero modes for the operator 3 ( r ) .  If zero modes are present a stronger statement is possible 
by making the substitution det 3 ~ d e t '  A/det  x. x is a matrix describing the relative normalizations of  the r- 
dependent zero modes, fully described in ref. [ 1 ]. For notational simplicity we suppress explicit mention of  zero 
modes henceforth, but bear in mind that zero mode information may always be recovered by the above substi- 
tution. It should be pointed out that eq. (4)  is, after several changes in notation (and modulo the discussion of  
zero modes) ,  equivalent to eq. (6.128 ) of  Birrell and Davies [ 2 ]. A major point of  this note is to point out that 
the functional integration over conformal deformations can be performed exactly (in our notation this is just 
the T integration). 

In two dimensions the r integration in (4)  is trivial [ 1 ]. In any even dimension aa/2 is a homogeneous poly- 
nomial in the Riemann tensor, its contractions, and its covariant derivatives. Specialising to four dimensions 
gives 

a2 [A] =A (Weyl)2+ B[ (Ricci) 2 -  ½R 2 ] + C V e R + D R  2 . (5)  

The coefficientsA through D are spin dependent  and are given by (for instance) Birrell and Davies [2 ]. For the 
operators of interest to us D =  0. For spin 0, (A, B, C) = ( - 1, - 1, + 1 ); for spin ½, (A, B, C) = ( _ ~,7 _ ~ ,  
+ 3 ) ;  and, for spin 1, (A, B, C) = ( + 13, - 6 2 ,  - 18). 

A standard computat ion gives for the r dependence of  the curvature 

[ Weyl ]"ay~ (r)  = [ Weyl ] " ~  (0) , 

[Ricci]"p(r)  =exp (  - 2rtr) { [Ricci]"a(0 ) +2zV"Vaa-2r2V"aVaa+ [~'V20"+ 22"2 (VO')2 ]Sc~fl} , 

R ( z ) =exp(  - 2ra) {R ( O ) + 6 [ rV2a + r2(Va)2] } . (6)  

All covariant derivatives V are now with respect to the undeformed metric g-a (0).  We compute 

x/g~ [Weyl ( r ) ]2  = x ~ o  [Weyl(0)]2,  (7) 

x/g-~{ [ R i c c i ( r ) ] 2 _  ½ [R (r)]2} = x ~ o {  [ R i c c i ( 0 ) ] 2 _  ~ [R (0) ] 2+ r [4Ricc i (0)  W a _ 2 R ( O ) V 2 a ]  

+ r  2 [ - 4Va Ricci(0)  Va-4(V2 t r )  2 + 4 ( W a )  2 ] + .~3 [ _ 4V2cr(Va)2_ 8 V a W a V a ]  }, (8)  

, f ~ [ V 2 R ] ( r ) = x ~ o [ V 2 { R ( O ) + 6 [ r V 2 a + r 2 ( V a ) 2 ] } - 2 r V ( V a { R ( O ) + 6 [ r V 2 a + r z ( v a ) 2 ] } )  ] , (9) 

x / ~  [R (r)  2 ] = x ~ o { R ( O ) + 6 [ r V 2 a + r 2 ( V a ) 2 ] }  2 . (10) 

This implies that the combination , f ~ a 2  [A ( r )  ] is a polynomial in r. Since D = 0 this polynomial reduces to one 
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of third order. The r integration in (4) is easily performed using a generalization of Simpson's rule ~l. 

det A(r) =det  A(0) 

( 1 f d4xa(x){~[x~a2](O)+3[x~a2](]z)+~[x~ae](2r)+~[x~a2](z)} ) (11) ×exp  - 8n--- 7 r  

This formula, though compact, is still implicit. An explicit formula may be obtained by directly integrating 
over r. The appearance of the final result may be considerably improved upon by use of several (spacetime) 
integrations by parts: 

det A(z)=detJ(O) exp(-8--~ f d4x~/g[A,a[Weyl]2+B(T6( [Ricci]2 

_ ~R 2 ) + ½r2(4aRicciWa_2RaV2a) + ~r3[ _4aVaRicciVa+6(V2a) (Va)2] + 1~.4[ .q_ 4 (VO-)4 ] ) 

_t_ C(,ro.V2R + ½z. 2 [ 6 (V20.)2 + 2R(Vo.)2  ] q_ ½,t.3 [ 18 (V20.) (Vo.)2 ] + 1,~.4{ ..1_ 12[ (Vo)  4 ] } ) ] ) .  (12) 

3. Cosmological models 

We would like to compare the effective action of conformal wave operators in the "cosmological bckground" 

g4 = ( d t )  2 -  [ a ( t )  ]2g 3 = (dt)2-exp[2a(t) l g3 ,  t~ [0,  T] , (13) 

with that in the reference background g4,0 = (d / )2 -g3  . While we phrase the discussion in terms of cosmology, 
note that our results are applicable to any arbitrary three-geometry which is permitted to fluctuate with a time- 
dependent scale factor. In the static spacetime described by g4,0, the effective action is proportional to the time 
interval and so may be written Self(g4,0) = TEeff(g3). Since only the spatial sections see the conformal factor, eq. 
(4) is not directly applicable. Therefore we define the conformal time by d r / = a - l d t  with range r/~ [0, qo]. 
Theorem (4) does apply to the family of metrics 

g4.r =exp[2raO/)  ] [ (dr/)2-g3 ] =exp[2ra( r / )  ] {exp[ - 2 a ( r / )  (d t )2-g3} . (14) 

In order to avoid the difficulties associated with boundaries and boundary conditions ~2, we shall think of the 
universe as being periodic in time with period T in the t coordinate (i.e. period r/0 in the r/coordinate). This is 
merely a technical convenience; the physics is unaffected. Bearing this in mind, we now consider the one-loop 
effective action [Self= In det J ] for conformally coupled particles, and use our theorem (4) to write 

1 qo 
1 

Serf(g4; T )mae f f (g4 , r= l  ; Y/o) =~]oEeff(g3 ) - ~ f d r  f dq  f d3x~4,~a(tl)a2[~4,~]. ( 1 5 )  
o o 

As in section 2 the r integration is polynomial. In the current situation there are considerable simplifications; 
note that Va~Oa/O~l-O,a, and Roo =Roi = 0. We introduce additional definitions: g2= f d3x ~ 3  = Volume of 
space, ~ = f d3x~33R, andA2 = f d 3 x ~ 3  az(g3). Using eq. (12) we obtain 

"~ For any third-order polynomial: f6 P3 (T') dr' = ~ T[P3(0 ) 4- 3P3(½r) -F 3P3(Iv) +P3(r)  ]. 
~2 Boundaries complicate (and alter) both the statement and proof of our main theorem by introducing surface terms b2 similar to the 

volume term a2 used in (4). These boundary contributions depend on the nature of the boundary conditions imposed, see e.g. Birrell 
and Davies [2] pp. 223,224. 
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~/o ,f S~ff(ga;T)=Eeff(g3)~lo-~5~2 drl(A2cr(rl)+~[B+C](O,a)2+/2{[B+3C](O,,a)4+3C(OZa)2}). (16) 
0 

We may return to "physical t ime"  t by noting: dq=a-1 (t)  dt; a = l n  a; 0 , ja=a 0,1n a = a ;  and (02a) =a// .  Then 
7" 7" 

Seff(g4; r)=Eeff(g3) a(t) 8~ 2 . t t )  (A21na(t )+~[B+C](a)2+/2{[B+3C](iOe+3C(ai i )2})  
0 0 

7" 

- j dt geff(t;g4) , (17) 
0 

which defines the effective energy geff for non-static spacetimes. We introduce [ 5 ] the Hubble parameter  H =  
~i / a, and the decelleration parameter  q = - a/~ / ( ~i ) 2 = _ (d / a ) H 2 to write 

_ _  ( lna ) Eeff(g3) 1 A 2 - -  + ~ [ B + C l a H 2 + / 2 ( [ 3 C + B l a 3 H 4 + 3 C a 3 H 4 q  2) . ( 1 8 )  
°~eff(t; g4)  = a(t) 8zr 2 a 

This, finally, is an expression for the contribution (at one loop) to the effective energy of  the universe due to 
conformally coupled matter  such as neutrinos and photons. Even better, the final form is given in terms of  
observables such as the Hubble and decelleration parameters.  The constants A2 and ~ are calculable for any 
particular choice of  spatial geometry, while/2 is merely a normalizat ion constant. 

I f  the spacetime of  eq. (13) is of  the F r i edmann-Rober t son-Walke r  type, then the spatial metric g3 depends 
on a single scale factor A: 

(dr)---------~2 + r2(dO2+sin2OdO 2) (19)  
g3,A = 1 + r Z / A  2 

with the + ( - ) sign corresponding to an open (closed) universe ~3. The A dependence of  g~ff is in Eeff and the 
geometric quantities ~ a n d / 2  (note that A2 vanishes).  

Since a2 (~4,~=o) vanishes, it is particularly easy to compute  the scale dependence of Eecf(g3,A). The closed and 
open cases are slightly different because only the former  corresponds to a compact  spacetime. With cartesian 
spatial coordinates the closed F r i edmann-Rober t son-Walke r  metric is 

g4.r=o = ( d ~ / 1 2 - ( d x 2 +  (x'dx)2/A2~ 
l _ x Z / A  2 j .  (20) 

Define y -  x/A and r/' - q/A so 

d 2 
g4.r=o =A 2[ (dy] ' )2 - (dy2-k  - ( - y ' d y ) ) ]  (21) 

1 - y  ~ }A" 

The coordinate ranges are r/' e [0, ~lo/A ] and y2~ [ 0, 1 ]. Since A2 vanishes we may read off  from ( 18 ) 

Eerf(A ) =ECrf(1 ) /A . (22) 

We compact ify open universes by enclosing the spatial sections in a (periodic)  box of  vo lume/2  (A) which may 
depend upon A. Then, much like the closed universe case we obtain 

Eeff(A) =A -4  [ / 2 ( A ) / / 2 (  1 ) ] Eel(  1 ) .  (23) 

23 Usually A is set equal to unity, but this involves a redefinition of time at each scale. We prefer not to redefine time but rather to fix its 
range to be t~ [0, T]. 
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Defining the effective energy densi ty  by pe l f -  = Eeff(A)/D(A) gives pelf(A) =p~ff( 1 ) A-4  independent ly  of  the 
prescr ipt ion used to define D(A). 

As a final comment ,  consider  a flat F r i e d m a n n - R o b e r t s o n - W a l k e r  universe,  then A 2 = ~ = 0. Defining a (spa- 
tially averaged)  effective energy densi ty  by 0en- ( t )  = gc f f ( t ) /~  ( t )  = g~n(t) a - 3 ( t ) /g2 we f ind 

Oct(t) =pelf a - - 4  - -  [ ( B +  3 C ) H  4 -t- 3 C H 4 q  2 ] / 8 ~ z  2 . (24)  

Observe that  the term involving PCfr scales in the manner  normal ly  expected for massless particles.  The term 
propor t iona l  to H 4 is negligibly small  at the present  epoch. Dur ing inflation, on the other  hand,  

2 2 4 2 4 H =Aeff/Mp~a,ck, so H =Aeer/Mp~an~k. This is still ra ther  small  compared  to Aeff, but, depending on the detai ls  
of  the G U T  phase t ransi t ion,  may  be appreciable.  

4. Conclusion 

The results o f  this paper  can be unders tood  at a number  of  levels. The results for the de te rminan t  may  be 
viewed as pure mathemat ica l  technology. At  another  level, these results give us informat ion  about  one-loop 
quan tum effects, and,  as we have seen in the discussion of  s imple cosmological  models,  these effects are poten-  
t ially interesting. 

The analysis o f  this paper  leaves open some impor tan t  questions.  Probably  most significantly, one should 
unders tand  the effect of  part icle  masses on det  (A + m2).  Part icle  masses destroy the argument  leading to eq. 
(4) ,  and  it is not  yet clear to us i f  any suitable extension of  the argument  is possible. On another  front, it  would 
be very nice to be able to discuss deformat ions  o f  the metr ic  more  general than conformal  deformations.  
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