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Abstra
tThe generalized Toda theories obtained in a previous paper by the 
onformalredu
tion of WZNW theories possess a new 
lass of W-algebras, namely the algebras ofgauge-invariant polynomials of the redu
ed theories. An algorithm for the 
onstru
tionof base-elements for the W-algebras of all su
h generalized Toda theories is found, andthe W-algebras for the maximal SL(N ,R) generalized Toda theories are 
onstru
tedexpli
itly, the primary �eld basis being identi�ed.
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1. Introdu
tionIn some previous papers [1℄ it was shown that Toda �eld theories [2℄ 
ould beregarded as Wess-Zumino-Novikov-Witten (WZNW) theories [3℄, in whi
h the Ka
-Moody (KM) 
urrents were subje
ted to some �rst-
lass linear 
onstraints. Amongthe advantages obtained by regarding the Toda theories as redu
ed WZNW theorieswas a very natural interpretation of the W-algebras [4,5℄ of Toda theories, namely, asthe algebras of the gauge invariant polynomials of the 
onstrained KM 
urrents andtheir derivatives [1℄.In a subsequent paper [6℄ it was shown that the WZNW-Toda redu
tion 
ould beextended to yield a series of generalized Toda theories. These generalized Toda theo-ries are a set of 
onformally-invariant integrable theories that interpolate between theWZNW theories and the Toda theories, and are partially-ordered in 
orresponden
ewith the strata of group-orbits in the adjoint representation of the WZNW groupG, the traditional Toda theories 
orresponding to the (unique) minimal stratum. Toobtain these generalized Toda theories the KM 
urrents of the WZNW theories aresubje
ted to a more general set of �rst-
lass linear 
onstraints, and thus, like theToda theories, are gauge theories, the gauge group being just that generated by the
onstraints. As a result these Toda theories possess algebras of gauge-invariant poly-nomials of the 
onstrained 
urrents and their derivatives, where the multipli
ation isde�ned by the Poisson-bra
kets and 
ommutators of the polynomials in the 
lassi
aland quantum 
ases respe
tively. As will be seen below, the algebras of gauge-invariantpolynomials obtained in this way are W-algebras in the sense of Zamolod
hikov [7℄,that is to say, they are non-linear extensions of the Virasoro algebra by primary �elds.But they 
an also be regarded as non-linear extensions of KM algebras.The purpose of the present paper is twofold, namely to give an algorithm for
onstru
ting a basis for all su
h W-algebras (se
tions 3 through 5), and to display theW-algebra itself for the maximal Toda theories of SL(N ,R) (se
tions 6 through 8).The bases are not quite general in that they are 
onstru
ted subje
t to a te
hni
alrestri
tion on the ordering of subgroups in the WZNW redu
tion, but the pro
edure is2



su
h that it 
an readily be generalized to other orderings. To 
larify the pro
edure we�rst 
onsider the 
ase of SL(N ,R) Toda theories before pro
eeding to the general 
ase.All the results in
lude, of 
ourse, the 
onstru
tion of gauge-invariant polynomials forthe 
onventional (minimal) Toda theories.It is evident from the stru
ture of the W-algebra for the maximal SL(N ,R) Todatheories that they are polynomial extensions of KM-algebras, but be
ause the �eldsinvolved are not all primary it is not immediately evident that they are Zamolod
hikovalgebras. However, we determine the non-tensorial properties of the �elds, and, usingthis information, identify the Virasoro operator and the primary �elds (se
tions 9 and10).2. Re
all of Generalized WZNW Redu
tionWe begin by re
alling the generalized WZNW-redu
tion. First the WZNW groupsG used are the (maximally non-
ompa
t) simple groups generated by the real linearspan of the 
anoni
al Cartan generators, i.e. by the generators (Hi; E�) in 
onven-tional notation. For the A and D Lie algebras, for example, these are the simplegroups SL(N ,R) and SO(N;N).The problem is that the KM 
urrents Ja(z) have 
onformal spin unity with respe
tto the 
onformal group generated by the Sommer�eld-Sugawara energy-momentumtensors L(z) = Tzz(z) and �L(�z) = �T�z�z(�z) i.e.[L(z); Ja(w)℄ = �(�wJa(w))Æ(z � w) + Ja(w)�zÆ(z � w); (2:1)and similarly for the barred quantities, and sin
e the 
onstraints that must be im-posed in order to obtain the Toda theories involve setting some of the 
omponents ofthe KM 
urrents equal to non-zero 
onstants, this 
annot be done without breakingthe 
onformal symmetry generated by L(z) and �L(�z). The solution is to repla
e the
onformal group generated by the L(z) and �L(�z) by another 
onformal group gener-ated by modi�ed generators, �(z) and ��(�z) say, with respe
t to whi
h the 
urrent
omponents in question are s
alars. The �'s are de�ned as follows:3



Letmi; i = 1; : : : ; l, where l is the rank of G, be the l fundamental 
oweights of G,sele
t any subsetma, de�ne a ve
tor w as w =Pma and an element H of the Cartansubalgebra H as H = w �H. Then the element H has the property that the simpleroot-ve
tors E�i are eigenve
tors of H with eigenvalues zero or unity (depending onwhether the �i are dual or not to the weights ma 
hosen). Thus[H;E�i℄ = hE�i where h = 0; 1; i = 1; 2; : : : ; l: (2:2)It is 
lear from (2.2) that H provides an integer grading of the whole Lie algebra,[H;E�h ℄ = hE�h where h = h(�) 2 Z: (2:3)In parti
ular the elements of the algebra of the little group of H, whi
h we shall 
all B,have zero grade. It is not diÆ
ult to see that the set of little groups B for all possible
hoi
es of H are just the (non-
ompa
t versions of) the little groups in the adjointrepresentation of the 
ompa
t form of G. Sin
e these little groups are, by de�nition,in one-one 
orresponden
e with the strata of G-orbits in the adjoint representationof (the 
ompa
t form of) G and the strata 
an be partially ordered [8℄ it followsthat the WZNW-redu
tions 
an be partially-ordered in the same way. The minimalstratum is unique, and has as little group the Cartan subgroup of G. It o

urs [1℄for w = s, where s sum over all the simple 
oweights (=half the sum of the positive
oroots), and the 
orresponding (minimal) Toda theory is just the 
onventional Todatheory. The maximal strata are not unique. For example for SL(N ,R) they o

urwhen the redu
ing matrix H has only two distin
t eigenvalues and thus 
orrespondsto a two-blo
k redu
tion, SL(N ,R) ! S(L(p,R) � L(q,R)), where p + q = N . Aparti
ularly interesting 
ase is the redu
tion of SL(2n,R) ! S(L(n,R) � L(n,R)) ofSL(2n,R) into two equidimensional blo
ks. This 
ase is a natural generalization ofthe Liouville 
ase, to whi
h it redu
es for n = 1 and, a

ordingly, we shall 
all theresultant S(L(n,R)� L(n,R)) theory the generalized Liouville theory.The extension of (2.3) to the (left- or right-handed) KM algebras of WZNWtheories (or indeed of any KM theories)[Ja(z); Jb(w)℄ = fab
J
(w)Æ(z � w) + kgab�zÆ(z � w); (2:4)4



where Ja(z) = tr(J(z)�a) and the �'s are the generators of G, is evidently[H(z); J�h (w)℄ = hJ�h (w)Æ(z � w); (2:5)where H(z) = tr(J(z)H). Note that the part JB? of the 
urrent JB 
orresponding tothe little group B, whi
h is orthogonal to H, 
ommutes with H(z), and that H(z) hasa nonvanishing 
ommutator with itself,[H(z); JB? (w)℄ = 0; [H(z); H(w)℄ = k�zÆ(z � w)trH2: (2:6)This means that if we modify the Virasoro operators L(z) of the WZNW theories to�(z) = L(z) + �zH(z); (2:7)then �(z) again satis�es a Virasoro algebra (with 
entre 
 ! 
KM + 12ktrH2), butsin
e[�(z); H(w)℄ = �(�wH(w))Æ(z � w) +H(w)�zÆ(z � w) + ktrH2�2zÆ(z � w)[�(z); J�h (w)℄ = �(�wJ�h (w))Æ(z � w) + (1 + h)J�h (w)�zÆ(z � w); (2:8)only the KM 
urrent 
omponents JB? are 
onformal ve
tors, the H(z) being a spin-one 
onne
tion and the J�h (z) being 
onformal tensors of weight (1+h). The physi
almeaning of �(z) and the 
orresponding ��(�z) is that they are the 
omponents of theimproved (i.e.tra
eless) energy-momentum tensor of the redu
ed theory and the phys-i
al meaning of the 
onne
tion H(z) is that it is a gravitational 
onne
tion of thePolyakov type [9℄. In fa
t if we de�ne the �eld h(z) as H(z)(trH2)�1 thenDz = �z + skh(z); (2:9)is a 
ovariant derivative for the 
urrent 
omponents of spin s i.e.[�(z);DwJ�s (w)℄ = �(�w(DwJ�s (w)))Æ(z � w) + (1 + s)(DwJ�s )�zÆ(z � w) (2:10)Note that even in the 
lassi
al 
ase, for whi
h 
KM = 0, the 
entre 
 for � is not zerobut 12ktrH2. 5



From (2.8) it follows, in parti
ular, that with respe
t to �(z), the 
urrent 
ompo-nents of grade h = �1 transform as 
onformal s
alars. Be
ause of this one 
an imposethe 
onstraints J��1(z) = J��1(0) 6= 0; and J�h (z) = 0; h < �1: (2:11)without breaking 
onformal symmetry, or, more pre
isely, without breaking the 
on-formal symmetry generated by �(z). Note that, in general, the 
onstraints (2.11) 
anbe expressed as J
onstr:(z) =M�1 + Jpos(z); (2:12)where M�1 is a 
onstant matrix of grade minus one and Jpos(z) denotes the partof the 
urrent for whi
h the 
omponents have zero or stri
tly positive grades. The
onstraints (2.11), or, equivalently, (2.12), are the 
onstraints that de�ne the redu
edtheory.An intuitive feeling for the meaning of the 
onstraints (2.11) or (2.12) may beobtained by 
onsidering the G=SL(N ,R) 
ase, for whi
h the 
onstrained 
urrent J(z)takes the form
J
onstr:(z) = 0BBBBBBB�

J11(z) J12(z) J13(z) : : J1n(z)M21 J22(z) J23(z) : : J2n(z)0 M32 J33(z) : : J3n(z)0 0 M43 : : J4n(z)0 0 0 : : J5n(z): : : : : :0 0 0 : Mn;n�1 Jnn(z)
1CCCCCCCA ; (2:13)

where Mr+1;r � Jr+1;r(0) and the Mr+1;r and Jab(z) denote submatri
es of 
urrentswhi
h in general are not single entries or even square matri
es. (The single-entry 
ase
orresponds to the original Toda redu
tion.)The 
onstraints (2.11) (2.12) are obviously not invariant with respe
t to generalKM transformations, J(z) ! U(z)J(z)U�1(z) + kU(z)�zU�1(z), but there exists aresidual group of KM transformations with respe
t to whi
h they are invariant. Theseare the KM transformations for whi
h U(z) lies in the subgroup A of G generated bythe root ve
tors with stri
tly positive h, and 
orrespond to the KM transformations6



that would be implemented by the 
onstraints themselves. These residual KM trans-formations are then regarded as gauge transformations and only those fun
tions, orfun
tionals, of the 
onstrained 
urrents J(z) whi
h are invariant with respe
t to thisgauge group are regarded as physi
al. Sin
e there are dimA 
onstraints and dimAgauge degrees of freedom, there are just dimG � 2dimA = dimB independent phys-i
al �elds altogether. So there exist dimB independent gauge-invariant polynomialsof the 
onstrained 
urrents and their derivatives. Furthermore, sin
e the Poisson-or 
ommutator-bra
ket of two gauge-invariant polynomials is again a gauge-invariantpolynomial, it is 
lear that the Poisson- or 
ommutator-bra
ket algebras of the dimBgauge-invariant polynomials will 
lose. We de�ne these Poisson- and 
ommutator-bra
ket algebras to be the 
lassi
al and quantum W-algebras of the generalized Todatheories.3. W-Bases: Generalized Toda Theories with G=SL(N ,R) and B MaximalWe 
onsider now the problem of 
onstru
ting the dimB gauge-invariant polyno-mials in the 
onstrained 
urrents and their derivatives expli
itly. To illustrate the ideain its simplest form we begin with the 
ase of maximal SL(N ,R) Toda theories, whi
h,as dis
ussed in se
tion 2, are just the 2-blo
k redu
tions of WZNW theory. In this
ase the redu
tion matrix H = w �H takes the form H = 1N diag(qIp;�pIq), wherep+ q = N and Ip and Iq denote the unit matri
es in p and q dimensions respe
tively.The 
onstrained 
urrent (2.12) redu
es toJ
onstr: = �K(z) R(z)M C(z)� ; (3:1)where the entries K, R and C are p2, pq and q2 blo
k-sub-matri
es, respe
tively.The gauge group A of residual KM transformations dis
ussed in the pre
eding se
tionevidently 
onsists of all matri
es of the formg(a) = � I a(z)0 I � ; (3:2)where a(z) is a blo
k-matrix and thus 
ontains pq parameters. We shall assume thatp � q and that the 
onstant matrixM is minimally degenerate, i.e. that rank(MM t) =7



q. This means that there exists a matrix ~M su
h that M ~M = Iq (and that ~MM isa rank-q proje
tion on a spa
e of p dimensions). It also means that we 
an 
hoose abasis so that J
onstr: = 0�A X SB Y T0 I C1A ; (3:3)where Y and C are square matri
es of dimension q and A is a square matrix ofdimension p� q. This basis will be 
alled the 
anoni
al basis.The gauge transformations of the 
onstrained 
urrent with respe
t to g(a) areJ
onstr: ! gJ
onstr:g�1 + g�g�1 (3:4)where g(a) 2 A, and we have set k = 1 to simplify the notation. It will be 
onvenientto write (3.4) as J
onstr: ! Adj(g)J
onstr:; (3:5)where Adj(g) is the usual adj(g) of Lie group theory supplemented with the derivativeterm. The important point is that, as is easily veri�ed from (3.4), Adj(g) satis�es thegroup property Adj(g1)Adj(g2)=Adj(g1g2). It is easy to see that for the sub-blo
k Kof (3.1) the gauge transformations indu
e the transformationsK ! K + aM: (3:6)It follows that if we de�ne a pq-blo
k j asj = K ~M; (3:7)then the gauge-transformation of j is simplyj ! j + a: (3:8)(Thus j absorbs all of the gauge-transformation.) Then, if we de�ne g(j) as the matrixg(a) with a repla
ed by j we have g(j)! g(j + a): (3:9)8



Let us now de�ne the 
urrentJ (2) = Adj(g�1(j))J
onstr:: (3:10)We see at on
e that under a gauge transformationJ (2) ! Adj(g�1(j + a))Adj(g(a))J
onstr:= Adj(g�1(j + a)g(a))J
onstr: = Adj(g�1(j))J
onstr: = J (2): (3:11)Thus J (2) is gauge-invariant and its entries are the required gauge-invariant polynomi-als. That they form a 
omplete set follows from the fa
t that J
onstr: has dimG�dimAindependent 
omponents and sin
e J (2) is obtained from it by a gauge-transformationwith dimA parameters (whi
h are 
ompletely absorbed a

ording to (3.8)) it musthave (dimG�dimA)�dimA = dimB independent 
omponents, whi
h, as dis
ussed inse
tion 2, is the total number of independent gauge-invariant polynomials. On 
om-puting J (2) expli
itly we obtainJ (2) = �K(2) R(2)M C(2) � = �K � jM R+Kj � jC � jMj + j0M C +Mj � : (3:12)Thus the gauge-invariant polynomials in the diagonal blo
ks are a
tually linear in theoriginal 
urrent 
omponents and the gauge-invariant polynomials in the o�-diagonalblo
k are bilinear. Note that sin
e J (2) has only dimB independent entries it mustsatisfy dimA 
onstraints, and it is easy to 
he
k that these areK(2) ~M = 0: (3:13)In the Toda redu
tion a gauge in whi
h the gauge-invariant polynomials are 
ur-rent 
omponents themselves is 
alled a Drinfeld-Sokolov (DS) [10℄ gauge. It is 
learthat the gauge de�ned by J (2) has this property. Thus DS gauges exist for the gener-alized Toda theories and we may writeJDS = J (2): (3:14)The 
ontent of the gauge-invariant 
urrent J (2) be
omes more expli
it in the 
anoni
albasis, in whi
h (3.12) redu
es toJ (2) = 0�A(2) 0 S(2)B(2) 0 T (2)0 I C(2)1A ; (3:15)9



Note that in the generalized Liouville 
ase, i.e. the 
ase in whi
h the two diagonalblo
ks are equidimensional (p = q), we have, in the 
anoni
al basis,�K RM C �! �Y TI C � so J (2) = � 0 T � Y C + Y 0I C + Y � : (3:16)In parti
ular, in the 
onventional Liouville 
ase (p = q = 1) one �nds that, by thetra
eless 
ondition C + Y = 0, (3.16) redu
es further toJ (2) = � 0 �1 0 � ; (3:17)where � = T + Y 2 + Y 0 = tr( 12J2 + HJ 0) is just the Virasoro operator [1℄ of thattheory.4. W-Bases: Generalized Toda Theories with G=SL(N ,R) and Arbitrary BLet us next 
onsider the redu
tion of SL(N ,R) WZNW theory 
orresponding toany subgroup B, i.e. 
orresponding to any number of sub-blo
ks. In this 
ase the
urrent takes the blo
k-form shown in eq.(2.13). It will, however, be 
onvenient tolabel the entries by their weights with respe
t to the redu
ing matrix H of se
tion 2and their rows. For SL(N ,R) this means that we use the rows and the lines parallelto the diagonal, rather than the 
onventional rows and 
olumns. Thus we write
J
onstr: = 0BBBBBBB�

J01 J11 J21 : : Jn�2;1 Jn�1;1M�1;2 J02 J12 : : Jn�3;2 Jn�2;20 M�1;3 J03 : : Jn�4;3 Jn�3;3: : : : : : :0 0 0 : J0;n�2 J1;n�2 J2;n�20 0 0 : M�1;n�1 J0;n�1 J1;n�10 0 0 : 0 M�1;n J0;n
1CCCCCCCA ; (4:1)

It will also be 
onvenient to parametrize the elements g(�) of the gauge group G,whi
h is the group generated by all real stri
tly upper-triangular matri
es, asg(�) = 
1(a1)
2(a2):::
n�1(an�1); (4:2)10



where the 
h(ah) are the matri
es

h(ah) = 0BBBBBBB�

I 0 0 ::: ah;1 0 0 ::: 00 I 0 ::: 0 ah;2 0 ::: 00 0 I ::: 0 0 ah;3 ::: 0: : : ::: : : : ::: :0 0 0 ::: : : : ::: ah;n�h: : : ::: : : : ::: :0 0 0 ::: : : : ::: I
1CCCCCCCA ; (4:3)

and � denotes the 
olle
tion of parameters ah;r. It will also be 
onvenient to 
onsiderthe family of nested subgroups Gh of G de�ned as those with elementsgh(�h) = 
h(ah)
h+1(ah+1):::
n�1(an�1); (4:4)where �h denotes the 
olle
tion of parameters ah; ah+1:::an�1. Note that the 
h(ah)may be regarded as representatives of the 
osets Gh=Gh+1.At this point we have to make an assumption 
on
erning the non-degenera
y ofthe matrixM�1, 
onsisting of all the submatri
es M�1;r. This is the assumption thatthe diagonal blo
ks J0;r in J
onstr: are arranged in order of non-in
reasing dimensionand that the rank of the submatri
es M�1;rM t�1;r is dimJ0;r. As in the previousse
tion, this means that there exists a set of matri
es ~M1;r su
h that M�1;r ~M1;r = I,where I is the unit matrix for the blo
k J0;r (and the same matri
es multiplied in thereverse order form a proje
tion of rank-dimJ0;r for the blo
k J0;r�1). In a 
anoni
albasis M�1;r takes the form ( 0 I ) :Suppose now that J (h) is any 
urrent of the 
onstrained form (4.1) for whi
hthe gauge transformation indu
ed by the general gauge transformation J
onstr: !Adj(g(�))J
onstr: is only with respe
t to the subgroup Gh, i.e.J (h) ! Adj(gh(�h))J (h): (4:5)It is easy to see that the blo
k-
omponents of J (h) with weights less than h � 1are left invariant and that the blo
k-
omponents of weight h � 1 undergo the simpletranslations J (h)h�1;r ! J (h)h�1;r + [
h;M�1℄h�1;r: (4:6)11



More expli
itly, for 1 � r � n� h+ 1, they areJ (h)h�1;r ! J (h)h�1;r + ah;rM�1;h+r �M�1;rah;r�1; (4:7)where we have de�ned ah;0 = M�1;n+1 = 0. It is easy to verify from (4.6) and (4.7)that if we 
onstru
t linear 
ombinations jh;r of the J (h)h�1;r by the iterative pro
essjh;r = �M�1;rjh;r�1 + J (h)h�1;r� ~M1;h+r; (4:8)starting from jh;0 = 0, they transform a

ording tojh;r ! jh;r + ah;r; (4:9)for 1 � r � n� h (and fully absorb the 
oset Gh=Gh+1 part of the gauge transforma-tion).Let us now de�ne the 
urrentsJ (h+1) = Adj(
�1h (jh))J (h); (4:10)where 
h(jh) denotes the 
oset matrix 
h(ah) with ah;r repla
ed by jh;r. Then thegauge transformation of J (h+1) indu
ed by that of J (h) is evidentlyJ (h+1) ! Adj(
�1h (jh + ah))Adj(gh(�h))J (h)= Adj(
�1h (jh + ah)gh(�h)
h(jh))J (h+1): (4:11)But, sin
e gh(�h) = gh(ah; �h+1), it is evident from the nilpotent stru
ture of thegauge group that the argument of Adj in (4.11) is an element of the subgroup Gh+1.Thus J (h+1) ! Adj(gh+1(�h+1))J (h+1); (4:12)where �h+1 is some fun
tion of �h and jh. Sin
e Gn � 1, it then follows by indu
tion,starting from J (1) = J
onstr:, that the 
urrent J (n) is gauge-invariant. We have thusshown that the 
omponents of the (n)th 
urrent in the sequen
eJ (h+1) = Adj(��1h (j))J (1); (4:13)12



where �h(j) = 
1(j1)
2(j2):::
h(jh); (4:14)and the j's are de�ned by (4.8), are gauge-invariant polynomials. Furthermore, theyform a 
omplete set be
ause, as before, J (1) = J
onstr: 
ontains dimG�dimA inde-pendent 
omponents, and sin
e J (n) is obtained from it by gauge transformationswith dimA parameters (whi
h are 
ompletely absorbed a

ording to (4.9)) it must
ontain dimG�2dimA = dimB independent 
omponents, whi
h is the total numberof gauge-invariant polynomials. This implies, of 
ourse, that the 
omponents of J (n)are subje
t to dimA 
onstraints. To see this expli
itly, we �rst note that from (4.7),(4.8) and (4.10) the blo
k-
omponents of weight h� 2 of J (h) 
an be written asJ (h)h�2;r = �J (h�1)h�2;r +M�1;rjh�1;r�1��I � ~M1;h+r�1M�1;h+r�1�; (4:15)from whi
h we obtain the 
onstraints J (h)h�2;r ~M1;h+r�1 = 0 for 1 � r � n�h+1. Sin
ethe blo
k-
omponents J (h)k;r of weight k < h � 2 are equal to J (k+2)k;r whi
h ful�ll theabove 
onstraints, the 
onstraints on J (h) 
an be 
olle
ted asJ (h)k;r ~M1;k+r+1 = 0 for 0 � k � h� 2; 1 � r � n� k � 1: (4:16)Then we �nd that for J (n) the total number of the 
onstraints in the entries of (4.16)is exa
tly dimA. Finally, sin
e J (n) is a 
urrent whose 
omponents are the gauge-invariant polynomials it is, by de�nition, a Drinfeld-Sokolov 
urrent,J (n) = JDS : (4:17)We 
on
lude this se
tion by 
onsidering the 
ase when the dimensions of all thediagonal blo
ks are equal (as happens, for example, in the original Toda 
ase wherethey are all of dimension one). In this 
ase the matri
es M�1;r 
an be 
hosen to beunit matri
es and then we see from the de�nition that the sub
urrents jh arejh;1 = J (h)h�1;1;jh;2 = J (h)h�1;1 + J (h)h�1;2;jh;3 = J (h)h�1;1 + J (h)h�1;2 + J (h)h�1;3; (4:18)13



and so on. This means that (apart from the 
onstant M�1-blo
ks) the blo
ks to theleft of the hth verti
al 
olumn in ea
h J (h) vanish, whi
h is also 
lear from (4.16).In parti
ular, all the blo
ks in J (n) vanish ex
ept those in the last 
olumn. Thusthe entries in the last 
olumn of J (n) are the gauge invariant polynomials for theequidimensional SL(N ,R) redu
tion.For example, for the 3-blo
k (Toda) redu
tion of SL(3,R) WZNW theory oneeasily 
omputes thatJ (2) = 0� 0 J11 + J201 + J 001 J21 � J01J12 � (J11 � J01J02)J03 + J01J 0031 0 J12 � J02J03 � J 0030 1 0 1A ; (4:19)using J01 + J02 + J03 = 0, and hen
e thatJ (3) = 0� 0 0 W31 0 W20 1 0 1A (4:20)whereW2 = J201 + J01J03 + J203 + J11 + J12 + J 001 � J 003 = tr(12J2 +HJ 0); (4:21)and W3 = J21 � J01J12 � J11J03 + J01J02J03 + J 011 + J01(J 001 � J 002) + J 0001= tr[13J3 + P (J 0J + J 00)℄ + tr(PJ)tr(H2J 0); (4:22)H = diag(1; 0;�1) being the redu
tion matrix and P = 12 (H2 +H) being the proje
-tion operator onto the �rst 
omponent of any ve
tor. The gauge-invariant polynomialsW2 and W3 are the se
ond and third-order elements of the W -algebra of the SL(3,R)Toda theory, the se
ond-order polynomial W2 being the Virasoro operator. The ex-pression (4.22) is not homogeneous in the generators be
ause the proje
tion P is nothomogeneous, but by subtra
ting W 02=2 from (4.22) we obtain~W3 = tr[13J3 + 12(H(J 0J + JJ 0) +H2J 00)℄ + 14 [tr(HJ)tr(H2J 0)� tr(H2J)tr(HJ 0)℄;(4:23)whi
h is homogeneously 
ubi
 in the generators.14



5. W-Bases: Generalized Toda Theories for Arbitrary G and BWe now turn to the generalized Toda theories 
orresponding to any of the sub-groups B of any (maximally non-
ompa
t) WZNW group G. We �rst note that thenumber n of blo
ks in the redu
tion due to the redu
tion matrix H = w �H isn = w �  + 1, where  is the highest root of G. We then write the 
onstrained
urrents (2.12) more expli
itly asJ
onstr: =M�1 + n�1Xd=0 Jd �Ed; (5:1)where the grading is with respe
t to H = w �H, and Jd �Ed means Pr JrdErd , wherethe summation index r runs for all generators of grade d (whose range therefore mayvary with d). The elements of the gauge group are of the formg(�) = exp(n�1Xd=1 ad �Ed) (5:2)where the ad's are the parameters. We de�ne the nested subgroups Gh of gauge-transformations gh(�h) = exp(n�1Xd=h ad �Ed) (5:3)where �h denotes all the parameters for d � h, and the 
oset representatives
h(ah) = exp(ah �Eh); (5:4)for the 
osets Gh=Gh+1. In parti
ular we havegh(�h) = gh+1(~�)
h(ah) (5:5)where the ~� are some fun
tions of the �h.As we did before we shall make an assumption about the non-degenera
y of thematrix M�1. To see what assumption we should make we express the assumption forthe SL(N ,R) 
ase in a more general form. It is not diÆ
ult to see that the SL(N ,R)non-degenera
y assumption is that the adjoint a
tion of the matrix M�1 on the Lie15



algebra of the gauge-group (see (4.6)) is not singular (has no kernel). Indeed this iswhy all of the ah appear in (4.9) and 
an be 
ompensated by linear 
ombinations ofthe Jh. The natural extension of this assumption to any group G is that the adjointa
tion of M�1 on the Lie algebra of the gauge-group has no kernel, and this is theassumption that we shall make. If we denote the spa
e of all generators of G of weighth by Sh then sin
e M�1 has a de�nite weight, this assumption 
an also be expressedby saying that the kernels of the maps Erh ! ~Erh�1 = adj(M�1)Erh � [M�1; Erh℄ of Shinto Sh�1 for h � 1 are zero. Note that S0 is just the Lie algebra of the subgroup Band that in general these maps are only into, i.e. the images ~Sh�1 of the maps areonly subspa
es of Sh�1. (For SL(N ,R) they are onto only if h = 1 and the blo
ks areequidimensional.) Let F r1�h be linear 
ombinations of the generators Er1�h whi
h aretra
e orthogonal (dual) to the ~Esh�1:tr(F r1�h ~Esh�1) = Ærs; (5:6)where the non-degenera
y ofM�1 guarantees that the indi
es r; s run from 1 to dimSh.Note that the F r1�h are not unique unless the map is onto, ~Sh�1 = Sh�1. But this willnot a�e
t the results.Now suppose that there exists a 
urrent J (h) of the form (5.1) for whi
h the gaugetransformation that is indu
ed by the original gauge transformation of J is only withrespe
t to gh(�h), J (h) ! Adj(gh(�h))J (h): (5:7)From (5.5) we then haveJ (h) ! Adj(gh+1(~�))Adj(
h(ah))J (h)= Adj(gh+1(~�))�M�1 � ah � ~Eh�1 + h�1Xd=0 J (h)d �Ed +O(d � h)�=M�1 � ah � ~Eh�1 + h�1Xd=0 J (h)d �Ed + O(d � h): (5:8)
From (5.8) we see at on
e that if we de�ne the quantitiesjrh = �tr(J (h)F r1�h) (5:9)16



then they gauge-transform a

ording tojrh ! jrh + arh: (5:10)In parti
ular, the 
oset representatives 
h(jh) gauge-transform a

ording to
h(jh)! 
h(jh + ah): (5:11)Hen
e, if we now de�ne the 
urrentsJ (h+1) = Adj(
�1h (jh))J (h); (5:12)then by exa
tly the same argument that led from (4.10) to (4.14) we 
on
lude that the
omponents of J (n) in the sequen
e of (4.13) are gauge-invariant polynomials. Also,as in the two pre
eding se
tions one sees that they form a 
omplete set and that J (n)is a DS 
urrent, J (n) = JDS : (5:13)The pro
edure of the last three se
tions may be summarized in a more abstra
tway as follows: Suppose J (h) is a 
urrent that gauge transforms only with respe
t tothe subgroup Gh. Then the 
omponents of J (h) of weight k < h� 1 do not transformat all, and the 
omponents of weight h� 1 transform a

ording toJ (h)h�1 ! J (h)h�1 + [
h;M�1℄= J (h)h�1 � adj(M�1)
h: (5:14)Hen
e, if we assume that adj(M�1) is non-singular and de�neJ (h+1) = Adj(
�1h (jh))J (h) where jh = �(adj(M�1))�1PhJ (h)h�1; (5:15)and Ph is the proje
tion on the subspa
e ~Sh�1 of Sh�1, the jh and J (h+1) transforma

ording to jh ! jh + ah and J (h+1) ! Adj(gh+1(�h+1))J (h+1); (5:16)respe
tively. It then follows by indu
tion that the 
omponents of the nth 
urrent J (n)in the sequen
e de�ned by (5.16) are gauge-invariant polynomials, and, be
ause of the
onstru
tion, form a 
omplete set. 17



6. General Pro
edure for Computing W-AlgebrasLet us 
onsider now the 
onstru
tion of the W-algebras themselves. The generalidea is the same as was used in ref.[1℄, namely to 
onsider the (
urrent-dependent)KM transformations that keep the 
onstrained 
urrents in the DS-gauge form-invariantand 
ompute the 
hanges in the non-zero 
omponents due to these transformations.Be
ause the gauge-invariant polynomialsW are linear in the DS 
urrent-
omponents,and the KM transformations are 
anoni
al, these 
hanges are just the 
hanges inthe W 's that are indu
ed by the (Poisson-bra
ket) W-algebra, and thus the stru
turefun
tions for the Poisson-bra
ket W-algebra 
an be obtained from them by inspe
tion.In other words we pro
eed as follows: First we determine the most general matrix Kwhi
h leaves JDS form-invariant i.e. that satis�es[K; JDS℄�K 0 = ÆJDS ; (6:1)where it is understood that ÆJDS satis�es the same 
onditions as JDS. Then weparametrize K in some 
onvenient way as K = K(�a(z)) where the �'s are a setof dimB parameters, a = 1; : : : ; dimB. Sin
e the 
omponents of JDS are the gauge-invariant polynomials W the 
anoni
al transformationsJDS ! JDS + Æ�JDS (6:2)de�ne the 
orresponding 
anoni
al transformationsW !W + Æ�W (6:3)of the matrix of gauge-invariant polynomials 
orresponding to JDS . Sin
e these trans-formations are 
anoni
al we are guaranteed that the variations of the W 's 
an bewritten in the form Æ�W (w) = Z dz�a(z)[Wa(z);W (w)℄; (6:4)for some suitable 
hoi
e of Wa(z). Then, on
e the Wa(z) are identi�ed in terms of theW (w), the W-algebra 
an be obtained from (6.4) by inspe
tion.18



So, in pra
ti
e, all one has to do is 
ompute the most general K that keeps JDSform-invariant, parametrize it in a suitable manner, and 
ompute the variations of the
omponents of JDS for ea
h parameter. On
e this is done, and the 
omponents of Waidenti�ed in terms of the W , the W-algebra 
an be read o� from (6.4). In identifyingthe base-elements Wa it is useful to use the fa
t that the Poisson-bra
kets of any twoelements must be anti-symmetri
. Although this method of 
omputing W-algebrasis mu
h more eÆ
ient than many others it is still quite laborious for more than twoblo
ks and for general WZNW groups G. Hen
e in this paper we shall restri
t ourselvesto the 2-blo
k redu
tions of SL(N ,R).7. W-Algebra for Generalized Liouville TheoriesTo illustrate the basi
 idea, and be
ause this is an ex
eptional 
ase that has to betreated seperately anyway, let us �rst 
onsider the 
ase where the two blo
ks in themaximal Toda theory are equidimensional. In that 
ase N = 2n, the redu
ing matrixH is just H = 12diag(In;�In) where In is the n-dimensional unit matrix and from(3.16) we see that, in the 
anoni
al basis, the 
onstrained DS-
urrent is of the formJDS = � 0 TI C � where trC = 0: (7:1)(Stri
tly speaking, the T and C should be written as TDS and CDS , but we drop thesupers
ripts to simplify the notation.) We write the most general SL(2n,R) matrix Kin the form K = �x y� 
 � where trK = 0: (7:2)The Greek submatri
es are the natural independent parameters be
ause they are 
on-jugate to the C and T submatri
es in the 
urrent with respe
t to the KM 
entre, andthe Latin submatri
es are to be determined from the 
ondition that with respe
t to aKM transformation by K the 
urrent JDS remains form-invariant. The KM variationÆJDS = [K; JDS℄�K 0 of JDS generated by K is easily seen to beÆJDS = �� T� � y + x0 T
 � xT � yC + y0x+ C� � 
 + � 0 y + [C; 
℄� �T + 
0� : (7:3)19



and from this one sees at on
e that K will leave JDS form-invariant if, and only if,x = 
 � C� � � 0 and y = T� + x0: (7:4)The general K matri
es satisfying these 
onditions split naturally intoK
 = � 
 
00 
 � and K� = ��� T� � �0� �oI � (7:5)where tr
 = 0; � = C� + � 0 � �oI and N�o = tr(C� + � 0); (7:6)and the �o is inserted in order to make K� tra
eless. From (7.3) one 
an read o� thevariations in the 
omponents of JDS due to K
 and K� , namely,Æ
C = [
; C℄� 2
0; Æ
T = [
; T ℄ + 
0C � 
00;Æ�C = [�; T ℄ + �0 � � 0o; Æ�T = T�C � (T�)0 � (� + �o)T � �0C + �00: (7:7)The display in (7.7) de�nes the W-algebra for this 
ase. (When allowan
e is made forpartial integration the display is anti-symmetri
.) Let us denote the elements of theW-algebra by the 
orresponding 
omponents Ca = tr(�aC) and Ta = tr(�aT ) of C andT , where the �'s are the generators of GL(n,R) in the fundamental (n-dimensional)representation (and thus in
lude a multiple of the unit matrix as well as the usualSL(n,R) generators). Then the W-algebra given by (7.7) is easily seen to take theexpli
it form[Ca(z); Cb(w)℄ = �feabCe(w)Æ(z � w) + 2gabÆ0(z � w)[Ca(z); Tb(w)℄ = �feabTe(w)Æ(z � w)� heabCe(w)Æ0(z � w)� gabÆ00(z � w); (7:8a)and[Ta(z); Tb(w)℄ = [(hrsab � hsrab)Tr(w)Cs(w)� hrsabC 0r(w)Cs(w)� heab(T 0e(w)� C 00e (w)) + 1N (C 0a(w)Cb(w)� C 00a (w)(tr�b))℄Æ(z � w)+ [hrsabCr(w)Cs(w) + (heab + heba)Te(w)� 2heabC 0e(w) + 1N (2C 0a(w)(tr�b)� Ca(w)Cb(w))℄Æ0(z � w)+ [ 1N (Cb(w)(tr�a)� Ca(w)(tr�b)) + feabCe(w))℄Æ00(z � w)+ [�gab + 1N (tr�a)(tr�b)℄Æ000(z � w); (7:8b)20



where the primes on Æ(z � w) mean di�erentiation with respe
t to z, the feab are thestru
ture 
onstants of SL(n,R) andgab = tr(�a�b); heab = tr(�e�a�b) and hrsab = tr(�r�a�s�b): (7:9)Note that the [Ca; Cb℄ part of the algebra is just a KM algebra (with the 
entredouble that of the original KM algebra). In this sense the W-algebra (7.8) may beregarded as a polynomial extension of a KM algebra. The sense in whi
h it is anextension of a Virasoro algebra will be dis
ussed in se
tion 9. For the moment wenote only that for the SL(2,R) (Liouville) 
ase Ca = 0, and Ta redu
es to a single
omponent and that, sin
e JDS = J (2), this 
omponent is identi
al to the Virasorooperator � obtained in (3.17). Indeed, for this single 
omponent the W-algebra (7.8)redu
es to[�(z);�(w)℄ = ��0(w)Æ(z � w) + 2�(w)Æ0(z � w)� 12Æ000(z � w); (7:10)whi
h is just the Virasoro algebra.8. W-Algebra For Generalized Toda Theories with G=SL(N ,R) and B MaximalLet us now 
onsider the generi
 maximal 
ase when the two blo
ks are not equidi-mensional, i.e., the redu
tion matrix H is of the form H = 1N diag[nIm+n;�(m+n)In℄where m � 1, n � 1 and N = m + 2n. In that 
ase the DS-
urrent in the 
anoni
albasis is of the form (see (3.15))JDS = 0�A 0 SB 0 T0 I C1A where trA+ trC = 0; (8:1)dimA = m and dimI = dimT = dimC = n. (As in (7.1) the entries in (8.1) shouldhave supers
ripts DS, but we have omitted them to simplify the notation.) We thenwrite the most general SL(N ,R) matrix asK = 0�� � xu v w� � 
 1A where trK = 0: (8:2)21



Here again the Greek submatri
es are to be regarded as the independent parametersand the Latins are to be determined by the form-invarian
e 
ondition. The KMvariation ÆJDS = [K; JDS℄�K 0 of JDS generated by K is easily seen to be0� [�;A℄ + �B � S� � �0 x� A� � S� � �0 �S + �T + xC � Ax� S
 � x0uA+ vB � B�� T� � u0 w � B� � T� � v0 uS + vT + wC � Bx� T
 � w0�A+ �B � u� C� � �0 
 � v � C� � � 0 �S + �T + [
; C℄� w � 
0 1A(8:3)from whi
h one sees that JDS remains form-invariant if, and only if,x = A� + S� + �0u = �A+ �B � C� � �0v = 
 � C� � � 0w = B� + T� + v0 (8:4)
The matri
es K that satisfy this 
ondition split naturally into the six setsK� = 0�� 0 00 0 00 0 01A ; K� = 0� 0 � A� + �00 0 B�0 0 0 1A ; K
 = 0� 0 0 00 
 
00 0 
 1A ; (8:5)

Ko = 1N 0� 2n�o 0 00 �m�o �m�0o0 0 �m�o1A ; K� = 0� 0 0 0� 0 0� 0 01A ; (8:6)and K� = 0� �oI 0 S��B �� T� � �00 � �oI 1A (8:7)where� = �A� C� � �0; � = C� + � 0 � �oIn and N�o = tr(C� + � 0): (8:8)As before, the �o has been inserted in order to make K� tra
eless. Note that tr� =(m+ n)�o. From (8.3) one 
an now read o� the variations in the 
omponents of JDS22



due to the K's and one �nds the following table:Â Ĉ trA B S TÆ� [�;A℄� �0 0 0 �B� �S 0Æ
 0 [
; C℄� 2
0 0 
B �S
 [
; T ℄ + 
0C � 
00Æo 0 0 �2mnN �0o �B�o �oS mN (��0oC + �00o )Æ� ^(�B) � ^(B�) tr(�B) 0 � �Æ� � ^(S�) ^(�S) �tr(S�) � 0 �Æ� 0 [�; T ℄ + �̂0 �m� 0o � � �(8:9)where hat means that the tra
e part is to be removed, e.g., Â = A� 1mtrA, and thelower right-hand 3� 3 subtable isB S TÆ� 0 �(T � C 0) + AX +X 0 BX � (B�)0Æ� �T� + �A� �0 0 �SÆ� (�B)A� C(�B)� 2� 0B � �B0 (S�)C � A(S�)� (S�)0 Z(8:10)whereX = �C �A�� �0 and Z = [�; BS℄+ T�C � (�+ �o)T � (T�)0� �0C + �00: (8:11)The array (8.9) de�nes the W-algebra for the general maximal SL(N ,R) Todatheory. Note that the �rst three rows and 
olumns in (8.9) de�ne an S(L(m)� L(n))KM algebra, and the �rst four rows and 
olumns an S(L(m)�L(n))^A(n) KM algebra,where A(n) is the real abelian Lie group of dimension n2. Thus the W-algebra de�nedby (8.9) is a polynomial extension of KM algebra, and the KM subalgebra is quitelarge.To write out the W-algebra de�ned by (8.9) would be quite laborious on a

ountof the parameters being blo
k-matri
es so we shall 
ontent ourselves with writing itout for the S(L(2)�L(1)) redu
tion of SL(3,R). In this 
ase Â = Ĉ = 0 and if wewrite trA = �trC = a one obtains from the last four rows and 
olumns of (8.9) the23



four-dimensional array:a B S TÆo � 23�0o �B�o S�o 13(a�0o + �00o )Æ� B� 0 �T� � 3a�0 � �00 � �B� � 2B�0Æ� �S� � �T� � 3(a�)0 + �00 0 2aS� � S�0Æ� 13 [(a�)0 � � 00℄ �B� � 2(B�)0 �(2Sa+ S0)� � S� 0 Z(8:12)where �T = T � 2a2 � a0 and �B = 2aB +B0, the last entry Z is given byZ = �T� 0 � (T�)0 � 23 [(aa0 + a00)� + (a2 + 2a0)� 0 � � 000℄; (8:13)and B, S and T are no longer matri
es but simple fun
tions. From (8.12) one 
anread o� the W-algebra in an obvious notation as[Wa(z);Wa(w)℄ = 23Æ0(z � w)[Wa(z);Wb(w)℄ = �Wb(w)Æ(z � w)[Wa(z);Ws(w)℄ = Ws(w)Æ(z � w)[Wa(z);Wt(w)℄ = 13[�Wa(w)Æ0(z � w) + Æ00(z � w)℄[Wb(z);Wb(w)℄ = 0[Wb(z);Ws(w)℄ = [Wt(w)� 2W 2a (w)�W 0a(w)℄Æ(z � w)+ 3Wa(w)Æ0(z � w)� Æ00(z � w)[Wb(z);Wt(w)℄ = [�2Wa(w)Wb(w)�W 0b(w)℄Æ(z � w) + 2Wb(w)Æ0(z � w)[Ws(z);Ws(w)℄ = 0[Ws(z);Wt(w)℄ = 2Ws(w)Wa(w)Æ(z � w) +Ws(w)Æ0(z � w)[Wt(z);Wt(w)℄ = �[W 0t (w) + 23Wa(w)W 0a(w) + 23W 00a (w)℄Æ(z � w)+ [2Wt(w) + 23Wa(w)2 + 43W 0a(w)℄Æ0(z � w)� 23Æ000(z � w):
(8:14)
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9. Primary Fields for Generalized Liouville TheoriesThe redu
ed WZNW theories are 
onformally-invariant and thus the W-algebrasasso
iated with them should be expressible in terms of a Virasoro operator and aset of primary �elds. In other words, they should be Zamolod
hikov algebras. Thebase-elements of the W-algebra (gauge-invariant polynomials) 
onstru
ted so far arenot automati
ally primary �elds, be
ause they 
ontain the gravitational 
omponentH(z) = h(z)trH2 of the 
onstrained KM 
urrent J , and, as dis
ussed in se
tion 2,this 
omponent transforms as a spin-1 
onne
tion. That is to say, under in�nitesimal
onformal transformations h a
quires, in addition to the usual tensorial terms, theinhomogeneous term (see (2.8) with k = 1)�h(w) � [�(z); h(w)℄inhom: = Æ00(z � w): (9:1)In this and the next se
tion we determine where h o

urs in the gauge-invariantpolynomials and hen
e identify the Virasoro operator � and the primary �elds. For
larity, and be
ause of some spe
ial features, we treat only the generalized Liouville
ase in this se
tion, leaving the general maximal Toda theories to se
tion 10.In order to lo
ate the gravitational 
omponent h(z) in the gauge-invariant poly-nomials we de
ompose the original 
onstrained 
urrent J
onstr: into its primary �eldand its h(z) parts, i.e., we writeJ
onstr: = ~J + hH $ �Y TI C � = � ~Y TI ~C �+ h(z)� 12 00 � 12 � ; (9:2)where ~Y ; ~C and T 
ontain only primary �elds. From (3.16) the matrix J (2) of gauge-invariant polynomials isJ (2) = � 0 T (2)I C(2) � = � 0 T � Y C + Y 0I C + Y � ; (9:3)and if we now use (9.2) and the 
ovariant derivative D = � + h for the spin-one �eldY to extra
t h expli
itly we obtainJ (2) = � 0 T � ~Y ~C +D ~YI ~C + ~Y �� 12 � 0 ( ~Y + ~C)h+ 12h2 �Dh0 0 � : (9:4)25



From (9.4) it is easy to see that with respe
t to 
onformal transformations the 
om-ponents of J (2) will a
quire, in addition to the usual 
ovariant variations, the inhomo-geneous terms�C(2) = 0 and�T (2) = �12 [( ~Y + ~C)�h�Dw�h+ h�h℄;= �12 [(Y + C)�h� �w�h℄ = �12 [C(2)�h� �w�h℄: (9:5)where we have used (9.3) to re
onvert (Y + C) into C(2). Converting this result intoW -language and using (9.1) we obtain�W
 = 0 and �Wt(w) = �12 [W
(w)Æ00(z � w) + Æ000(z � w)℄: (9:6)Thus the W
's are primary �elds but the Wt's are not.To identify the Virasoro operator � one now uses the fa
t that � must be that
ombination of theW 's whose Poisson-bra
ket with theW 's produ
es the usual tenso-rial 
onformal transformation terms (spin 1 and 2 for the W
's and Wt's respe
tively)plus the inhomogeneous terms shown in (9.6), and it is easy to 
he
k from the array(7.8) that the 
ombination � = tr(12W 2
 +Wt); (9:7)has this property. That is to say,[�(z);W
(w)℄ =�W 0
(w)Æ(z � w) +W
(w)Æ0(z � w)[�(z);Wt(w)℄ =�W 0t (w)Æ(z � w) + 2Wt(w)Æ0(z � w)� 12W
(w)Æ00(z � w)� 12Æ000(z � w): (9:8)Thus the � de�ned in (9.7) is the required Virasoro operator. For n = 1, it 
oin
ideswith the expression (3.17) obtained dire
tly as a gauge-invariant polynomial. Its
entral 
oeÆ
ient 
 is seen from (7.8) to be 
 = 6n, whi
h, for k = 1 is in agreementwith the general result 
 = 12ktrH2 of se
tion 2.To identify the primary �elds one notes from (9.8) and the 
onformal transforma-tion properties of the derivative that the 
ombinations W� = Ŵt � 12W 0
 are primary26



�elds. Sin
e the remaining base-element trWt 
an be repla
ed by � we then see thata Virasoro-primary-�eld basis of the W-algebras for the generalized Liouville theoriesis �; W
 and W� = Ŵt � 12W 0
: (9:9)Note that, be
ause �+h is the 
ovariant derivative for spin-one �elds, the 
ombinationsŴt + 12hW
 are also primary �elds. But they are not gauge-invariant on a

ount ofthe fa
tor h.10. Primary Fields for Maximal Generalized Toda TheoriesAs in the generalized Liouville 
ase we �rst de
ompose the original 
onstrained
urrent J
onstr: into its primary-�eld part ~J and gravitational part H(z) = h(z)trH2:J
onstr: = 0�A X SB Y T0 I C1A = 0� ~A X SB ~Y T0 I ~C1A+ h(z)0� nN 0 00 nN 00 0 �m+nN 1A ; (10:1)where, from the tra
elessness and tra
e-orthogonality to H of ~J (�rst matrix on theright-hand-side) we have tr( ~A+ ~Y ) = 0 and tr ~C = 0: (10:2)From (3.15) the matrix J (2) of gauge-invariant polynomials isJ (2) = 0�A(2) 0 S(2)B(2) 0 T (2)0 I C(2)1A = 0�A 0 S + AX �XC + �XB 0 T + BX � Y C + �Y0 I C + Y 1A ; (10:3)and if we now use (10.1) and the 
ovariant derivative D = �+h for the spin-one �eldsX and ~Y to extra
t h expli
itly we obtainJ (2) = 0� ~A 0 S + ~AX �X ~C +DXB 0 T +BX � ~Y ~C +D ~Y0 I ~C + ~Y 1A+0� nN h 0 00 0 Z0 0 �mN h1A ; (10:4)where Z = �nN [( ~Y + ~C)h+ nN h2 �Dh℄: (10:5)27



From (10.4) and (10.5) it is easy to see that with respe
t to 
onformal transformationsthe 
omponents of J (2) will a
quire, in addition to the usual tensorial variations, theinhomogeneous pie
es0��A(2) 0 �S(2)�B(2) 0 �T (2)0 0 �C2) 1A = 0� nN�h 0 00 0 �nN [( ~Y + ~C)�h+ 2nN h�h�Dw�h℄0 0 �mN�h 1A :(10:6)Using (10.1), (10.3) and D to re
onvert all the quantities in (10.6) into 
omponents ofJ (2) we obtain0��A(2) 0 �S(2)�B(2) 0 �T (2)0 0 �C(2)1A = 0� nN�h 0 00 0 �nN [C(2)�h� �w�h℄0 0 �mN�h 1A : (10:7)Translating this result into W-algebra language, we see that from (9.1) all theW 's areprimary �elds ex
ept the Wo asso
iated with the gravitational �eld h(z) and de�nedas Wo = trA(2), and the Wt's, whi
h, under in�nitesimal 
onformal transformations,a
quire the inhomogeneous pie
es�Wo = mnN Æ00 and �Wt = � nN [W
Æ00 + Æ000℄; (10:8)respe
tively.As in the generalized Liouville 
ase the Virasoro operator is identi�ed as that
ombination of the W 's whose Poisson bra
ket with all the W 's produ
es their usualtensor transformation properties (spin 1 for ~Wa; ~W
;Wb and Wo, and spin 2 for Wsand Wt) plus the inhomogeneous terms (10.8). It is easy to 
he
k from (8.9) that theoperator � = tr[12(W 2a +W 2
 ) +Wt℄�W 0o= tr[12( ~W 2a + ~W 2
 ) +Wt℄ + n+m2mn W 2o �W 0o; (10:9)has this property and is thus the required Virasoro operator. Note that in the DSgauge the matri
es ~Wa and ~W
 are tra
eless and 
ould therefore equally well be writtenas Ŵa and Ŵ
 as in table (8.9). The 
entre 
 of the Virasoro algebra for the operatorin (10.9) is seen from (8.11) to be 
 = 12n(n+m)N , whi
h for k = 1 is in agreement withthe general result 
 = 12ktrH2 of se
tion 2.28



To identify the primary �elds one notes from (10.8) and the 
onformal transforma-tion properties of the derivative that the 
ombinationsW� =Wt� nNW 0
� (m+n)nm2 [W 2o +2mnN W 0o℄ are primary and thus a Virasoro-primary-�eld basis for the W-algebra of thegeneral maximal Toda theories is~Wa; Wb; ~W
; Ws; �; and W� =Wt � nNW 0
 � (m+ n)nm2 [W 2o + 2mnN W 0o℄:(10:10)This is the generalization of the result (9.9) for the generalized Liouville 
ase. Ona

ount of the element Wo it di�ers from the Liouville result not only in the existen
eof the extra Wo terms in (10.10) but also in the fa
t that trW� is a primary �eld andthat the �elds Wt + 1m2 [mWoW
 �W 2o �mW 0o℄; (10:11)whi
h are obtained from the W� by using the 
ovariant derivative �+h! �+ NmnWo,to substitute �NmnWo ~W
 for ~W 0
, are both primary and gauge-invariant.A
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